• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Faculty of Science and Technology (RealTek)
  • Master's theses (RealTek)
  • View Item
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Faculty of Science and Technology (RealTek)
  • Master's theses (RealTek)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-spectral UAV Data Analysis for Wheat Yield Prediction: A Deep Learning Approach

Ashar, Muhammad
Master thesis
Thumbnail
View/Open
no.nmbu:wiseflow:6872769:55141168.pdf (1.360Mb)
no.nmbu:wiseflow:6872769:55141168.SourceCode_2ndOrderDifferencing.ipynb (1.023Mb)
URI
https://hdl.handle.net/11250/3091161
Date
2023
Metadata
Show full item record
Collections
  • Master's theses (RealTek) [1899]
Abstract
Through the use of deep learning models and a comprehensive dataset of multispectral time series data collected by unmanned aerial vehicles (UAVs), this thesis aims to predict the grain yield of a wheat field. To find the best candidate for this prediction task, a variety of machine learning and deep learning models are investigated, including Gradient Boosting Regressor (GBR), Deep Neural Networks (DNNs), and Bidirectional Long Short-Term Memory (BiLSTM) networks.
 
 
 
Publisher
Norwegian University of Life Sciences

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit