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ABSTRACT

Through the use of deep learning models and a comprehensive dataset of multispec-
tral time series data collected by unmanned aerial vehicles (UAVs), this thesis aims to
estimate the grain yield of a wheat field. The major goal is to contribute to agricul-
tural advancements by creating precise and effective predictive models that may help
farmers and decision-makers to manage crop production and maintain food security. To
find the best candidate for this prediction task, a variety of machine learning and deep
learning models are investigated, including Gradient Boosting Regressor (GBR), Deep
Neural Networks (DNNs), and Bidirectional Long Short-Term Memory (BiLSTM) net-
works. The dataset’s completeness and quality must be guaranteed if the model is to
succeed. After some visual inspection of the data and its time series aspects, differ-
ent pre-processing methods such as resampling, imputation, interpolation and second
order differencing are used to ensure a fair chance for the models to learn. The study
demonstrates how modern technology has the potential to change agricultural practices
by utilizing the capabilities of multispectral UAV data. The ability to anticipate grain
yield accurately opens up possibilities for improving crop management, resource alloca-
tion, and environmentally friendly agricultural methods. Despite having difficulties with
hyperparameter tuning, resolving concerns about overfitting, and dealing with missing
values, the findings yield good results and sets the groundwork for a new era of agri-
cultural forecasting where multispectral UAV data and deep learning intersect to enable
informed decision-making and sustainable farming methods.



1. INTRODUCTION

1.1. Background

A major component of human nutrition, wheat is a staple cereal crop that provides the
main source of food for millions of people worldwide. Wheat continues to play a signif-
icant role in modern agriculture, meeting the world’s rising food need while also having
historical significance that dates back to ancient civilizations. In our daily lives, the food
items that are considered most nutritious and beneficial for the human will have the use
of wheat in one way or another. From bakery items using wheat flour to products made
of wheat starch like energy drinks, food additives and animal feed, it can be established
that wheat is one of the most fundamental requirement of our diet. The global demand
of agricultural crops is projected to almost double by the year 2050 (Tilman, et al., 2011)
[1]. On the other hand, there is another study that states: Total global crop production
has only increased by 28% in between the years 1985 to 2005. In about 24-39% of sta-
ple crops growing areas, grain yield either never improved, is decreasing, or has levelled
out (D K Ray, et al., 2012) [2]. These studies emphasize on the need of innovative so-
lutions to improve the production process of wheat grain. There are multiple traits of
a wheat plant that can be studied to help with this purpose. It can include observing
and studying about the plant’s physical appearance and looking for obvious signs of any
potential disease. It is crucial to accurately forecast wheat grain yield because it helps
farmers and agricultural officials to manage crop production, make use of resources in
the best possible manner, and ensure food security. However, the traditional approaches
rely on manual observations and measurements, which are time-consuming and prone to
inaccuracy. These difficulties can be overcome and precise estimates of the wheat yield
can be achieved, thanks to the developments in machine learning algorithms and remote
sensing technologies, such as the utilization of UAV-based multispectral data. The study
of different traits or characteristics of the plant is also known as Plant Phenotyping.

1.2. Multispectral UAV Data and Deep Learning

In recent years, technological advancements have revolutionized agricultural practices,
ushering in new tools to tackle age-old challenges. Utilizing unmanned aerial vehicles
(UAVs) with multispectral sensors is one such invention. This state-of-the-art method
enables the quick acquisition of high-resolution data, collecting many spectral bands
outside the range of the human eye. UAVs provide a bird’s-eye perspective of the
crop’s health and development by collecting multispectral time series data over the wheat
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fields, offering a wealth of information for crop monitoring and yield prediction. Some
branches of machine learning such as Deep Learning has revolutionized a number of
industries by proving to be exceptionally adept at evaluating large, complicated datasets.
Significant advances in image identification, natural language processing, and now agri-
cultural applications have all been made possible by machine learning’s ability to extract
complex patterns and characteristics from enormous amounts of data.

1.3. Problem Statement

The main objective of this thesis is to use multispectral UAV data and deep learning
techniques to create an accurate and dependable model for predicting wheat grain yield.
Multiple traits including Grain Yield, Days to Maturity and Days to heading were ob-
served calculated manually by the other researchers in the farm. The trait of interest for
this study is Grain Yield that can be defined as the total yield of the field in a specific
area. The units originally used while calculating were g/m? (grams per meter square)
but then were converted to ¢/ha (tonnes per hectare) as per the usual standard in the
industry. The dataset is vast and complex because there are multiple observations for
each plot in the field. Cleaning data, further pre-processing and time series analysis can
prove to a challenge. Since the output variable, in this case grain yield has continous and
positive numerical values, it makes it a regression problem.

1.4. Scope and Limitations

The scope of this study is limited to the prediction of wheat grain yield using multi-
spectral UAV data and deep learning models, alongwith Time Series Analysis. The time
series data used in this study is a part of the vPheno (Virtual Phenomics) project funded
by the Research Council of Norawy. It is made up of multispectral images that were
recorded using a UAV-mounted multi-sprectral camera in 5 bands: Red, Green, Blue,
Near Infrared (NIR), and RedEdge. These images were taken on a pre-defined automated
path and stitched together. To cut down on noise and produce more accurate statistics,
the median of these bands was taken. The study’s limitations can be the possibility of
mistakes in the manual measurements of grain yield. Additionally, changes in weather
patterns, soil quality, and other environmental factors that can impact crop growth may
as well have an impact on the accuracy of the deep learning models.
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1.5. Workflow

A wide range of data pre-processing techniques have been used to potentially generate
accurate predictions utilizing the dataset. This includes the removal of outliers, handling
of missing values, resampling the data to a consistent frequency, transformation to 3D
tensors to represent the data in a format suited for deep learning models, and standard-
ization of the data to bring all features to a common scale are some of these. In this study,
a number of deep learning and machine learning models have been utilized for predict-
ing wheat grain yield. Gradient Boosting Regressor, LSTMs, Bi-LSTMs, and GRU are
among the models tested. These models were selected because they can work with time-
series data and can discover intricate patterns and relationships in the data. In addition to
the machine learning models, time series analysis has also been taken into consideration.
In order to analyze the time series data for stationarity, it had to be decomposed into
trend, seasonality, and residuals. The effect of trend and seasonality was then reduced by
differencing the time series data. These procedures were crucial in ensuring the accuracy
and dependability of the prediction models.

1.6. Conclusion

The introduction of this thesis sets the stage for an exciting journey into the realm of
wheat grain yield prediction, highlighting the importance of wheat and its significance in
modern agriculture. The following chapters explore the theoretical foundations, data pre-
processing, deep learning models, and analysis of outcomes, yielding insightful knowl-
edge to support agricultural decision-making and contribute to a future that is more sus-
tainable.

2. THEORY

2.1. Plant Phenotyping

Plant phenotyping is the study of the interaction of genetic characteristics of plants with
the environment and their resulting effects on the development of more desirable traits
(Minnervini, et al., 2013) [3]. It can include many morphological, physiological, bio-
chemical, and molecular characteristics of a plant. The growth of plant phenotyping
as a scientific field has been characterized by significant developments throughout its
lengthy history. Early plant phenotyping pioneers helped enhance our knowledge of
plant biology and laid the path for the creation of cutting-edge methods and technology.
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Phenotyping is a crucial process for crop improvement because it enables us to spot de-
sirable traits in plants that can help them to grow better in future. These traits include,
but are not limited to, plant height, width, leaf area, leaf shape, chlorophyll content, dis-
ease resistance and yield, etc. It has numerous applications in crop development and
agricultural research. The production of crop varieties with enhanced yield, stress tol-
erance, and disease resistance is made possible by its assistance in breeding programs,
genetic mapping, and trait identification. Research on plant phenotyping encounters dif-
ficulties with data collection, analysis, and interpretation. Researchers have difficulties
when integrating and standardizing multi-scale phenotypic data. Large dataset admin-
istration and analysis also call for sophisticated computational methods and tools. But
due to interdisciplinary research efforts and technological breakthroughs, the subject of
plant phenotyping continues to evolve. Future research is showing promise in areas in-
cluding high-throughput phenotyping, bioinformatics, machine learning, and genomics.
These developments have the potential to speed up agricultural improvement and support
sustainable farming.

2.2. Multispectral Imaging and use of UAVs

Multi-spectral imaging is a type of imaging technology that captures images of an object
or scene in multiple wavelengths or colors of light. In contrast to conventional color
photography, which only captures images in the three primary colors of red, green, and
blue, it consists of capturing images in a wide variety of bands, often from ultraviolet to
infrared. Multi-spectral imaging relies on specialized sensors or cameras that can rec-
ognize and capture light at different wavelengths. Each band corresponds to a specific
range of wavelengths. The three primary colors that have a wavelength ranging roughly
from 400nm to 700nm (nanometres), can also be seen by a naked human eye. But the
wavelengths captured by a multi-spectral camera, otherwise not visible to a human eye,
can be very useful in various fields like medicine, environmental monitoring and crop
assessment. Especially when studying wheat fields, there are some heat signature and
chlorophyll content that can be easily captured and then studied using one of these cam-
eras. By analyzing the specific reflectance or absorbance of an object, it is possible
to identify and analyze this object (Humboldt, 2018)[4]. While it has many benefits,
there are some drawbacks and limitations too. Multispectral data collecting and process-
ing calls for specific tools, knowledge, and computational power. To provide precise
and trustworthy results, careful calibration and correction of the obtained images are re-
quired. Moreover, the quality and interpretation of multispectral data may be impacted
by atmospheric factors, sensor noise, and spectral resolution limitations.
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Capturing images of wheat fields that are usually huge, can be an intensive work
altogether. Luckily with the rise in popularity of Unmanned Aerial Vehicles (UAVs),
it has become really feasible to collect such data with great efficiency. A UAV is a
type of aircraft that doesn’t have a human pilot onboard. It can be designed to operate
autonomously or under remote direction to carry out a variety of activities. UAVs fre-
quently come with a variety of sensors, cameras, and tools attached, that enable them to
collect data in the air. These UAVs can be equipped with multi-spectral cameras and a
path can be pre-programmed to them so they can automatically capture multiple images
of the wheat plots across the whole field and stitch them together for further processing.

2.3. Time Series Data

The data is usually stored in the form of a matrix (or rows and columns). This can be
any excel file or a csv (comma-separated values) file. It is also known as a dataset. The
columns are more commonly called features while rows are called samples. If the order
of the data matters, then it is called a Sequential Data. Time series is a special type of
sequential data where the axis along the data is referred to as time (Raschka, et al., 2019)
[5]. In this type of data, the values of a variable of interest are recorded over a specific
time period, such as hours, days, weeks, months, or years. For example if the wheat
images taken using a UAV equipped with a multi-spectral camera at an interval of every
5 days, the organized and sequential dataset, along with the date of each observation can
now be called a time series data. If only one variable is observed throughout the time
period, it is called *Univariate Time Series’. On the contrary, if multiple variables are
observed throughout a specific time peroid, it is called "Multivariate Time Series’. The
time series data has certain properties such as trend and seasonality which means that
the data follows similar pattern over a specific period of time. These so called patterns
can then be used to analyze or predict certain features of our interest. In a wheat field,
analyzing the crops over a specific time period frequency can yield with better results as
compared to data collected at a single time point.

2.4. Time Series Analysis

Time series analysis is the process of analyzing and modeling time series data to under-
stand its underlying structure or to make predictions. It offers important insights into the
behavior and features of data by evaluating temporal patterns and trends. The following
terminologies of time series analysis are relevant for this study.
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2.4.1. Decomposition

Time series data can exhibit a variety of patterns, and it is often helpful to split a time
series into several components, each representing an underlying pattern category. (Hyn-
dman, et al. 2018) [6] A time series can be divided into its trend, seasonality, and residual
(or error) components using a process called time series decomposition. The trend com-
ponent captures the underlying rise or drop over time and shows the data’s long-term
direction or behavior. The repeating patterns that happen at regular intervals and are
frequently correlated with calendar or seasonal events are captured by the seasonality
component. Analysts can better comprehend the inherent temporal patterns and produce
more precise forecasts or projections by isolating these components. The performance of
machine learning models can also be improved by removing such components from the
data. Residuals comprise the unexplained part of data variability, the part not accounted
for by the trend and seasonal components (C. Deb, et al, 2017) [7].

2.4.2. Trend Analysis

A vital component of time series analysis is trend analysis, which focuses on detecting
and deciphering the long-term patterns and behaviors displayed by a dataset over time.
Understanding the overall trend and trajectory of the data, whether it is rising, falling,
or essentially stable. Finding whether the trends are linear, exponential, or involve other
types of growth or decay, is the main purpose of trend analysis. Analysts can generate
accurate predictions, evaluate the effects of particular variables, and spot potential turn-
ing points by spotting and modeling trends. The trend can be identified by taking the
moving average of the data over a given period of time.

2.4.3. Seasonality Analysis

The process of identifying and simulating the periodic patterns in time series data is
known as seasonality analysis. Seasonality can occur at different time scales, such as
daily, weekly, or yearly cycles. Like the trend analysis, seasonal analysis can also prove
to be helpful in making accurate predictions.

2.4.4. Stationarity

The concept of stationarity, which describes the property of time series data where the
statistical aspects of the data remain constant across time, is another important concept
in time series analysis. The mean and variance of a stationary time series are fixed. On
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the other hand, non-stationary time series exhibit statistical characteristics that change
over time, such as a fluctuating mean or variance. If a time series exhibits trend or
seasonality, it is considered non-stationary. In both cases it is possible to transform the
series to stationary by differencing it (Hyndman, 2018)[6].

2.4.5. Differencing

If a time series data is non-stationary, differencing is a typical technique to make it sta-
tionarity. In this technique, each observation is subtracted from the prior observation
to produce the differenced time series. By calculating these differences, the residual
component is taken into account, so the data noise and short-term variations are con-
sidered, while the influence of trends and seasonality is excluded due to a stabilized
mean. This is called first-order differencing. This might not always completely remove
the non-stationary components. By repeating the differencing operation in these circum-
stances, higher-order differencing can be carried out. The series that has already been
differentiated, is differentiated again in second-order differencing, and so on. Higher-
order differencing should be utilized with caution though, as it can result in the loss of
important data and the introduction of unwanted noise.

2.5. Data Pre-processing

Data pre-processing is a crucial step before handling the data to any machine learning
algorithm. It allows the data to be transformed into a format that can be easily understood
and processed by the model. In this section, a number of data pre-processing methods
relevant to this study are discussed including resampling, interpolation, outlier handling
and other commonly used methods.

2.5.1. Data Cleansing and Outlier Detection

This involves dealing with missing values, eliminating outliers, and resolving flaws or
inconsistencies in the data. Inconsistencies can be fixed by data validation and clean-
ing procedures, missing values can be imputed using the proper methods, outliers can
be identified and either deleted or addressed. Outliers are data points that are signif-
icantly different from the rest of the data. Outliers must be handled carefully during
pre-processing since they can significantly affect how well a machine learning model
performs. Outliers are commonly handled by removing them from the dataset. However,
if the outlier covers a significant portion of the data, this could be troublesome. Capping
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the outlier numbers to keep them inside a predetermined range is another approach. One
method to achieve this can be IQR Percentile.

2.5.2. Correlation

The statistical relationship between several features or variables in a dataset is referred
to as correlation. It is employed to comprehend how modifications to one feature affect
changes to another feature. Discovering patterns, dependencies, and correlations among
the data features is mostly dependent on correlation analysis. This is an important step to
make decision about model training and feature selection. If the correlation coefficient is
close to 1, it indicates a strong positive correlation between the features. This means that
as one feature increases, the other tends to increase as well. If the correlation coefficient
is close to -1, it indicates a strong negative correlation between the features. This means
that as one feature increases, the other tends to decrease. A correlation coefficient close
to 0 suggests no significant linear relationship between the features. In this case, changes
in one feature do not have a strong impact on changes in the other.

2.5.3. IQR Percentile

The Interquartile Range (IQR) Percentile technique is used to locate and deal with out-
liers in a dataset. A quartile is a form of quantile used in statistics that divides a dataset
into four equal sections. A number below which 25% of the data falls is referred to as the
first quartile (Q1), a value below which 50% of the data falls is referred to as the second
quartile (Q2), and a value below which 75% of the data falls is referred to as the third
quartile (Q3).

The range between a dataset’s first and third quartiles is known as the Interquartile Range
(IQR). A common technique for reducing outliers from a huge dataset is the IQR per-
centile. The lower and upper thresholds for the IQR percentile method are determined
as Q1 - (1.5 IQR) and Q3 + (1.5 IQR), respectively. Outliers are any data points that are
outside of this range and can be eliminated from the dataset. In contrast to approaches
based on mean and standard deviation, which are susceptible to extreme values, the IQR
Percentile method is robust against extreme values and offers a more accurate measure-
ment for identifying outliers.
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2.5.4. Resampling

Data Resampling is a technique used to change a time series dataset’s frequency or struc-
ture. Changes to the time intervals or data aggregation to a new temporal resolution are
necessary. Resampling is frequently used to account for irregular or irregularly spaced
data points, align data to a specified time frame, or aggregate data from a higher fre-
quency to a lower frequency (downsampling) or vice versa (upsampling). The specific
criteria and data properties determine the resampling approach to use.

Downsampling, or decreasing the frequency of data points, involves aggregating or aver-
aging multiple observations within a specific time interval to obtain a consolidated data
point. When working with high-frequency data and trying to simplify computations or
get a bigger picture of the overall trends in the data, this is helpful. However, because
there are fewer data points, downsampling could lead to information loss.

Upsampling, or increasing the frequency of data points, involves interpolating or adding
new data points to fill in the gaps between existing observations. To estimate the values
between existing data points during upsampling, a variety of interpolation techniques,
including can be used.

2.5.5. Imputation & Interpolation

Imputation is a technique used to fill in missing values using known data from the dataset.
It utilizes statistical methods or models based on the available data to estimate the miss-
ing values. Imputation techniques utilise this knowledge to produce reasonable values
for the missing data by taking into account the relationships between the variables. Im-
putation’s objective is to provide a comprehensive dataset while maintaining the original
data’s statistical characteristics and patterns.

Interpolation is a technique that uses the presumption of a smooth or continuous rela-
tionship to estimate values between known data points. When dealing with ordered or
sequential data, it is especially helpful. By taking into account the patterns and corre-
lations found in the nearby data points, interpolation algorithms compute and fill in the
missing values. The objective is to produce a comprehensive dataset while preserving
the general structure and trends of the original data.

Both approaches seek to deliver a complete dataset without any null values, for addi-
tional analysis or modeling while maintaining the data’s integrity and dependability. The
type of data, the existence of patterns or linkages, and the specific goals of the analytic
or modeling activity, all influence the decision between interpolation and imputation.
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2.5.6. Reshaping to 3D Tensors

Some deep learning models require the data to be in a specific format. For instance, some
Recurrent Neural Networks require the input data to be in the form of a 3D tensor so the
model can capture the temporal dependencies and patterns present in the data. Before
supplying the data to a recurrent neural network (RNN) or other models that require
3D tensor inputs, reshaping is employed to transform the data into the proper shape.
The resulting 3D tensor structure represents a sequence of observations with multiple
features at each time step. Each element in a 3D tensor is indexed by three dimensions:
time steps, features, and samples. The data is arranged into a three-dimensional array in
a 3D tensor.

2.5.7. Standardization and Normalization

Standardization and Normalization are rather important data pre-processing techniques
that enhances the effectiveness of machine learning models. While normalization in-
volves scaling the data such that it falls within a specific range, usually between 0 and 1,
standardization scales the data so that it has zero mean and unit variance. When the scales
or units of measurement of the features in the data differ, standardization is often used to
prevent these features from having a disproportionately large impact on the model. We
can make sure that each feature is given equal weight in the model by standardizing the
data. On the contrary, when the data’s range of values varies greatly, normalization is
frequently utilized. We can make sure that all features have a comparable scale and can
be directly compared by normalizing the data.

2.5.8. Train Test Split

In machine learning, a model is trained using a set of data to make predictions on new
and unseen data. However, we must test our model on a different set of data in order
to judge its effectiveness and make sure that it can generalize effectively to new data.
This is where the concept of train-test split comes into play. The data is divided into
two sets: a training set and a testing set. The model is trained on the training set, and
its performance is assessed on the testing set. By evaluating the model’s performance on
the testing set, we can get an estimate of its generalization ability. If the model does well
on the testing set, it will probably do well on fresh, untainted data. If the model doesn’t
perform well on the testing set, it may have overfitted to the training set, which means it
has memorized the training set rather than learning from it.
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2.6. Machine Learning

Machine Learning (ML) has a long history and has gone through various stages of devel-
opment before becoming one of the most revolutionary areas in computer science. The
origins of machine learning may be traced back to the 1950s, when pioneers like Alan
Turing and Arthur Samuel investigated the idea of “learning machines.” However, with
the emergence of symbolic Al and rule-based systems in the 1980s, there was a tremen-
dous advancement. As a subfield of artificial intelligence, machine learning focuses on
developing algorithms and models that learn from data, making decisions and predic-
tions without explicit programming (M Bishop, 2006)[8]. In many industries such as
healthcare, finance, engineering and farming, machine learning has quickly proven itself
to be an essential tool for resolving complicated problems. These algorithms can find
patterns and relationships in the data that otherwise are not that obvious to humans, and
use them to make predictions, classifications or some other decisions they were intended
for. Machine Learning in turn, has other subcategories and terminologies that include re-
gression, classification, clustering and deep learning. Each has its own set of algorithms
and methodologies and are used for their own unique purposes.

Supervised machine learning is a fundamental paradigm where the model is trained on a
labeled dataset, which means that both the input features and the matching output labels
are given during training. The objective is for the model to discover the underlying cor-
relations and patterns in the data, enabling it to make precise predictions on brand-new,
untainted data. Tasks like classification, where the model divides data into predetermined
classifications, and regression, where the model forecasts continuous numerical values,
are examples of supervised learning. Supervised learning is ideally suited for a wide
range of real-world applications, from image recognition and natural language process-
ing to medical diagnosis and fraud detection, thanks to the availability of labeled data.
Unsupervised machine learning, on the other hand, operates on an unlabeled dataset,
where no equivalent output labels are present and just input features are accessible. Un-
supervised learning’s main goal is to find structures and patterns in the data without ex-
plicit instruction. In order to expose underlying links, the model aims to group together
comparable data points or minimize the dimensionality of the data. Techniques for un-
supervised learning are used for problems including feature learning, anomaly detection,
and clustering. Since they can extract patterns and insights from unstructured, unlabeled
data, they are especially helpful in situations where labeled data is hard to come by or
expensive to acquire.

Two typical supervised learning problems in machine learning are classification and re-
gression. In both cases, predictions regarding an output variable are made by taking into
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consideration input variables, but the nature of the output variable differs. If the output
variable is categorical or discrete, it makes it a classification problem. The main objec-
tive of a classification algorithm is to predict the class or category using unforeseen input
data. Examples of classification can be, determining if an email is spam, categorizing
good and bad reviews of a movie, etc. If the output variable is continuous or numerical,
it makes it a regression problem. It also means that it can have any true value within a
specified or unspecified range. A regression algorithm’s objective is to forecast the value
of the output variable using unforeseen input data. Examples can include estimating a
house value based on its attributes, making stock market predictions and last but not the
least, predicting grain yield of a wheat field, which is why this study can be recognized
as a problem for supervised learning, more specifically Regression. There are many dif-
ferent type of regression models like Lasso Regression, Random Forest but for this study
only Gradient Boosting Regressor (GBR) has been used to set-up a benchmark, since the
main focus of this study was to develop a successful model using Deep Learning.

2.6.1. Gradient Boosting Regressor

Jerome Friedman first developed the Gradient Boosting Regressor (GBR) ensemble
learning method in 2001. It is a type of ensemble machine learning algorithm used
for regression problems. The main idea behind the workflow of GBR is to use simple
models (like a decision tree), learn from its subsequent model, hence creating an overall
strong learner by combining these so called weak learners. By learning form the errors
of the prior models, GBR sequentially adds models to the ensemble after fitting the
model to the training data. It accomplishes this by averaging the outputs of each model
in the ensemble. Weights are chosen to reduce the difference between expected and
actual values. GBR has proven to give the most accurate results amongst other different
Machine Learning based regression models in this study which uses a similar variation
of this data (Ijaz, 2019) [9]. This is the reason why GBR was chosen as a benchmark
model for this study.

2.7. Deep Learning

The concept of an artificial neural network (ANN) was first invented in the 1940s, in
an attempt to emulate the human brain’s ability to solve complex problems. Over the
years it has developed as a mathematical framework straying from its neurobiological
inspiration, such that it is not correct to claim that the ANN learning mechanism mimics
the one performed by human brain (F. Chollet, 2017)[10]. A neural network with several
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layers, each of which is made up of a group of nodes or neurons that conducts a partic-
ular calculation on the input data, is the fundamental building block of deep learning.
Such model trains itself by adjusting the weights and biases of the neurons in such a
way that it minimizes the difference between the predicted output and the actual output.
Utilizing multi-spectral time series data, deep learning has been used to estimate wheat
trait predictions on many different studies, which has enabled farmers and researchers to
make precise and timely decisions regarding these crops.

2.7.1. Deep Neural Networks

Deep Neural Networks (DNNs) are a powerful class of deep learning algorithms that
have been used to tackle a broad range of challenging problems, including speech and
picture identification, natural language processing, and even playing challenging games
like Chess. These neural networks are made up of interconnected layers of artificial neu-
rons that can be trained to recognize patterns and relationships in data. They are inspired
by the structure and operation of the human brain. The diagram in Figure 1 shows an
example of the work flow of a Deep Neural Network (Micheal Nielsen, 2015) [11]. The
circles represent the nodes of the network. The input nodes are usually equivalent to the
number of features being used as inputs. The hidden layers can be different for every
model. Some models can have a lot of hidden layers and nodes depending on the com-
plexity of the problem. The output layer similarly, is dependent on the number of output
variables. In between these layers, the data is processed through so called Activation
Functions that learn from previous iterations and try to improve their performance in the

future iterations.
%{;ﬁddcn layers

output layer

input layer

Fig. 1: General Diagram of a Deep Neural Network
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Note: This image and book is allowed to be copied and shared as per the Creative
Commons Attribution-NonCommercial 3.0 Unported License.

2.7.2. Recurrent Neural Networks

The history of Recurrent Neural Networks (RNNs) dates back to the 1980s when they
were first proposed as a neural network architecture to handle sequential data. RNNs
are advantageous for tasks involving sequential or time-series data because they feature
loops that enable information to remain and be exchanged between time steps, in contrast
to standard feedforward neural networks. RNNs can accept input sequences of varying
length and capture dependencies between sequence members.

RNNs make use of the sequential character of time-series data to estimate wheat yield.
The multispectral observations of the wheat field can be viewed as time steps, and the
RNN processes these observations in order to detect temporal correlations and pat-
terns.The output layer of the RNN commonly employs a linear activation function to
generate continuous numerical predictions for regression applications like the prediction
of wheat yield. To forecast the future yield of wheat, the model learns to map the previ-
ous time-series data, comprising multispectral data and historical yield values. Recurrent
connections in the RNN enable it to capture the seasonality and dynamics in the wheat
production data, which can be influenced by a variety of environmental factors, weather
patterns, and farming practices. The RNN can produce more precise and context-aware
predictions by taking into account the historical context and temporal patterns.
Long-term dependency learning, however, can be hindered by RNN restrictions such the
disappearing and expanding gradient difficulties. Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), more sophisticated variations that provide superior
memory and gradient flow through the network, have been created to overcome these
problems.

2.7.2.1. Long Short Term Memory

Long Short-Term Memory (LSTM) networks were introduced by Sepp Hochreiter and
Jurgen Schmidhuber in 1997 as an extension of RNNs. LSTM networks are a type of
RNNs that have the ability to learn long-term dependencies in sequential input. LSTMs
use a complex memory mechanism to selectively store and discard information over
time, in contrast to typical RNNs, which struggle to remember data from the previous
time steps. This makes it possible for them to process input sequences of any length and
identify complex patterns in the data. An important application of LSTMs is time series
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analysis. Because LSTMs are able to capture long-term dependencies in sequential data,
it makes sense to use them in grain yield prediction as well.

At the core of an LSTM network, is a memory cell that can store information over time.
Three different types of gates, known as input, forget, and output gates, regulate how
information enters and leaves the cell. A sigmoid activation function is used to imple-
ment each gate, and it produces values between 0 and 1 that indicate how open or closed
the gate is. The input gate controls how much new information can enter the cell. The
forget gate decides how much of the present cell state should be kept or thrown away.
The output gate, in the end, chooses how much of the current cell state should be sent to
the next layer.

There is another type of LSTM called Bidirectional LSTM (BiLSTM). It has the ability
to look at the input sequence in both forward and backward directions. It has two sets of
hidden layers that are each used for forward and backward direction. Overall, LSTMs
and BiLSTMs are effective methods for handling sequential data, and they have been
successfully used in applications such as speech recognition and language translation.
They can also prove to be very useful in predicting the grain yield of a wheat field by
taking sequential data into consideration. Figure 2 gives a general insight to how an
LSTM Model works (C Olah, 2015) [12].

® ® ®
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Fig. 2: General Diagram of a LSTM Model

The alpha symbol (o) represents the Forget Gate Activation. Specialized gates in the
LSTM architecture regulate the information flow via the cell state. The forget gate is
one of these gates, which chooses which information from the previous cell state should
be kept or forgotten. The concatenation of the current input and the prior hidden state
serves as the input for the forget gate activation, also referred to as “alpha,” which is a
sigmoid activation function. For each cell state element, it outputs a value between 0 and
1, indicating how much data should be remembered (1) or forgotten (0) for that element.
The LSTM should retain the information if the value is close to 1, but it should forget
the information if the value is close to O.
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Another essential element of the LSTM cell is the hyperbolic tangent activation function,
denoted as “tanh.” It is utilized in the update gate, input gate, and output gate, among
other LSTM components. Tanh is a non-linear activation function that can handle both
positive and negative data since it transfers the input to a value between -1 and 1. In the
context of the LSTM, the tanh activation function is applied to the candidate cell state,
which is a new candidate value that could be added to the cell state. It outputs a new
candidate value between -1 and 1, concatenating the prior hidden state with the current
input. How much of this candidate value will be used to update the current cell state
is determined by the update gate (sigmoid activation). Overall, the LSTM cell is better
able to capture long-range dependencies and solve the vanishing gradient problem that is
frequently present in conventional recurrent neural networks, thanks to the combination
of the forget gate activation (’alpha”) and the tanh activation function.

2.7.2.2. Gated Recurrent Unit

GRU networks were first introduced by 2014 as a simpler alternative to LSTMs (Cho,
et al,2014) [13]. With fewer parameters and a gating mechanism similar to LSTMs,
they are simpler to train and less prone to overfitting. The use of a reset gate and an
update gate to regulate the information flow in the network is the main innovation of
GRUs. Similar to LSTMs, this network can also selectively recall or forget information
by using the gates to decide how much information from the previous time step should be
transferred to the current time step. Backpropagation through time (BPTT), a version of
backpropagation that can manage the temporal structure of sequential data, is often used
to train GRU networks. The network’s weights are changed during training in order to
minimize a loss function that calculates the difference between the predicted and actual
output. Like the LSTMs GRU network is also a powerful tool for modeling sequential
data. In theory, the are more simpler and faster alternative to LSTMs. We can anticipate
more advancements in the field of GRUs, as deep learning research progresses.

2.8. Hyperparameters

In contrast to learning from the data itself, hyperparameters are important factors in
machine learning and deep learning models that control how the learning algorithm
functions. Hyperparameters, which are defined by the user prior to training and have
an impact on the model’s behavior and performance, contrast with model parameters
(sometimes referred to as trainable parameters), which are learned during training to suit
the data. These hyperparameters and other relevant terminologies are defined as follows.
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2.8.1. Trainable Parameters

The variables that a neural network learns during the training phase are referred to as
trainable parameters in the context of deep learning. They are in charge of identify-
ing trends and relationships in the data and represent the model’s weights and biases.
In order to reduce the discrepancy between the model’s predictions and the actual tar-
get values, the model iteratively adjusts these trainable parameters throughout training.
Through optimization algorithms like gradient descent or its derivatives, the parameters
are adjusted. The effectiveness of machine learning models depends heavily on the use
of trainable parameters. The model can generalize well and make precise predictions on
fresh, untainted data by discovering the best values for these parameters from the training
data.

2.8.2. Activation Functions

Activation functions play an important role because they determine the output of a neu-
ron based on the input it receives. By bringing non-linearity to the neural networks, ac-
tivation functions are essential to deep learning. They enable the network to understand
intricate patterns and enable it to carry out a variety of tasks, including classification,
regression, and others. Without non-linear activation functions, the network would oper-
ate as a single linear function, which would restrict its ability to recognize such patterns
and connections in the data. The activation functions relevant to this study are briefly
discussed in the following section.

2.8.2.1. Rectified Linear Unit (ReLU)

ReLU is one of the most prevalent activation methods in deep learning. ReLLU facilitates
effective gradient propagation, which reduces the vanishing gradient issue and expedites
training. While improving on earlier functions, it also has a potential of ’dying’ during
training (Changhau, 2017) [14]. ReLu activation function is used in hidden layers be-
cause it is easy to compute and it can learn complex patterns in the data. It is a simple
function that outputs the input unchanged if it is positive and O if it is negative. Mathe-
matically, ReLU can be defined as:

(x) = max(0, x)
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2.8.2.2. Linear Activation Function

The linear activation function is commonly employed in the output layer of the neural
network for regression problems in deep learning. The linear activation function per-
forms a direct linear mapping of the input to the output, in contrast to other activation
functions which incorporate non-linearity. It is denoted as f(x) = = where x is the input
value this function receives and f(z) is the output.

2.8.3. Loss Function

A loss function, often referred to as a cost function or an objective function in deep learn-
ing, measures the variance between the trained model’s predictions and the actual target
values. A loss function is an objective function that is being optimised during the learn-
ing process (Keras, 2023)[15]. The objective is to reduce the overall loss, which gauges
the model’s effectiveness. There are many loss functions for different purpose, but for
this study Mean Squared Error (MSE) is preferred. In regression problems, the Mean
Squared Error (MSE) loss function is often utilized. Between the projected values and
the actual target values, it calculates the average squared difference. MSE is sensitive to
outliers since it penalizes larger errors more harshly than smaller ones. The objective of
training is to minimize the MSE, which essentially entails lowering the overall prediction
error and raising the predictive accuracy of the model.

2.8.4. Epochs

In the context of deep learning, an epoch is a whole iteration through the entire training
set. The model’s weights are changed at the beginning of each epoch in accordance with
the loss function and the optimization technique of choice. A model can learn from the
data several times and increase its performance by training it via multiple epochs. The
complexity of the job and the quantity of the dataset must be taken into account while
tuning the number of epochs, which is a hyperparameter.

2.8.5. Batch Size

The amount of training samples utilized in each iteration of the optimization method
during training is referred to as the batch size. The model adjusts its weights based on
the average gradient calculated over the batch after batching the training data. Larger
batch sizes demand more memory but can speed up training because more samples can
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be processed concurrently. While training may take longer with smaller batch sizes,
generalization and convergence may be improved.

2.8.6. Dropout Layer

The dropout layer is is employed in neural networks and the main purpose of it is to
perform regularization and avoid overfitting. A portion of the layer’s neurons are ran-
domly dropped out or silenced during training. Due to its inability to significantly rely
on a small number of neurons, this encourages the network to acquire more reliable rep-
resentations. Dropout contributes to the ensemble effect, where various neuronal subsets
are active during training, improving generalization and improving predictions on unob-
served input. Dropout reduces complex co-adaptions of neurons by denying neurons the
option of relying on the presence of other neurons (Alex Krizhevsky, et al, 2012)[16].

2.9. Model Accuracy Metrics

Model accuracy metrics are used to evaluate the performance of machine learning mod-
els. There are many different metrics available depending on the problem and dataset,
but for this study two popular metrics for regression are used.

2.9.1. Coefficient of Determination

Coefficient of Determination also denoted as R? is an accuracy metric for regression
problems. It calculates the percentage of the dependent variable’s variation that can
be predicted from the independent variables. The range of R? values is 0 to 1, with 1
denoting the best fit and 0 denoting no association between the variables. R? values that
are closer to 1 suggest that a bigger amount of the variation is captured by the model,
which indicates improved prediction accuracy.

2.9.2. Root Mean Squared Error

Root Mean Squared Error (RMSE) is another popular accuracy metric for regression
problems. It calculates the average difference between the dependent variable’s expected
value and its actual value. Lower values denote better performance of the model. RMSE
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values vary from O to infinity. RMSE can be written mathematically as follows:

n

1
RMSE = E Zl:(ytrueﬂ' - ypred,i)Q

where n is the number of data points or predictions, e ; 18 the actual value of the i-th
data point, and ¥preq,; s the predicted value for the i-th data point. Both R? and RMSE
are valuable metrics in assessing the accuracy and performance of regression models.
R? provides an indication of the model’s explanatory power, while RMSE gives insight
into the magnitude of prediction errors. It is important to consider both metrics together
to evaluate the model comprehensively. High R? and low RMSE values suggest a well-
performing model with good predictive accuracy.

2.9.3. Oveffitting and Underfitting

Sometimes a machine learning model performs exceptionally well on training data but
poorly on untried or fresh data. In such case, however, the model exhibits a high bias
and the situation is classified as underfitting (Rashcka, et al, 2019) [17]. In other words,
rather than discovering underlying patterns, the model memorizes the training data. As
a result, it performs poorly on new data and captures noise and random fluctuations in
the training set. When the model is very complicated or the training data is insufficient,
overfitting is more likely to happen, causing the model to learn from noise rather of
interesting patterns. Numerous methods, like using more training data, fewer layers or
neurons, adding regularization (such dropout), or early termination during training, can
be used to solve overfitting.

Underfitting, on the other hand, occurs when a machine learning model is too basic to
capture the fundamental patterns in the data, leading to subpar performance on both
the training data and fresh data. The model’s low accuracy and high error rates are
caused by its inability to understand the key characteristics and connections in the data.
Low training and validation/test accuracies or losses, as well as its difficulty in learning
even the training data, are indications of underfitting. Underfitting happens when the
data is either too complex or noisy for the model to handle, or when the model is not
complex enough to reflect the data. The best approach is finding the sweet spot between
underfitting and overfitting, where the model generalizes effectively to new data while
capturing the pertinent patterns from the training data.
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3. METHODOLOGY

3.1. Schematic of The Approach
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Fig. 3: Schematic of Approach to the work

The workflow for this study is shown in Figure 3. The features of interest were se-
lected from the raw dataset and that specific section of the dataset was then separated
into three subsets with respect to each year, that is 2020, 2021 and 2022. The selected
features can be seen in Table A.2. The purpose of separating the data was for the ease in
management and pre-processing. Each set was processed separately. After going through
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resampling, a copy of each of these sets were made to be filled by using Imputation and
Interpolation separately. The purpose of doing this was to compare the performance of
models using different approaches. Similarly more copies of all these instances were
processed separetly while performing 1st order differencing, 2nd order differencing or
no differencing at all. So for the whole study, around 6 instances or copies of all the 3
subsets of the data up until pre-processing. These subsets were concatenated at the end
to form one clean and processed dataset for the models. A brief description of all the
processes is given in Appendix A.3.

3.2. Data Collection

In the vPheno project, to make data collection automated, a fairly popular drone DJI
Phantom 4 (DJI, 2016)[18] was used to collect data throughout the years. This UAV
was equipped initially with MicaSense RedEdgeM camera that could take multi-spectral
images with a wavelength of upto 840nm (MicaSense, 2017) [19]. But with the rise in
popularity DJI decided to make their own multi-spectral cameras, named as P4AM in this
dataset. From 2021 P4M was used as the main camera for data collection. The images
were captured using a total of 5 bands, namely Red, Green, Blue, Near Infrared (NIR)
and RedEdge. The wavelength of these bands can be seen in Table 1. The UAV is also
equipped with a Downwelling Light Sensor. It helps with the calibration of images when
there is a change in lighting conditions. With the help of software applications such
as Pix4D (Pix4D SA, Lausanne, Switzerland))[20] the drone takes a pre-defined flight
path, captures the images and then stitches it all together. The numerical reflectance
values across all 5 bands and all the plots in the field, are then stored in an excel file.
The data was collected at two farms, namely Vollebekk and Staur. Multiple traits such
as Days to Maturity, Days to Heading, Grain Yield and many more were observed and
collected in the dataset for all the different conducted studies. The collection started
from June until August every spring season from 2019 to 2022. In 2019, the data was
collected at 8 different and irregular time points throughout the season. While in 2020,
2021 and 2022 there were 12, 22 and 23 observations per plot respectively. Each plot
has a unique identification number. Because the frequency was inconsistent, it made the
problem more challenging, which means a lot of pre-processing needed to be done.
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Band Wavelength
Blue - 475
Green - 560
Red - 668
RedEdge - 717
Near-Infrared (NIR) - 840

Table 1: Wavelength of Bands

3.3. Computational Resource

All computations were performed using a personal computer equipped with Intel(R)
Core(TM) 15-6300U CPU @ 2.40GHz, 7.86GB of useable DDR3 Random Access Mem-
ory and solid state drive. Windows 11 Pro Version 22H2 was the operating system. From
pre-processing to predictions using machine learning and deep learning models and gen-
eral programming related stuff, Python 3.9.12 in combination with Jupyter Notebook
IDE were used. Table 2 gives some information about the important libraries used for

this study alongwith their purpose.

Library

Purpose

Pandas

Provides data structure functions and helps in reading data from csv file
and storing in the memory in the form of a dataset.

Numpy

The fundamental library for all sort of numerical computing. Helps with
the handling of large and multi-dimensional arrays.

Matplotlib

Provides data visualization tools to create graphs, charts, figures and
plots.

Scipy

An extension of Numpy library that can perform interpolation, imputa-
tion and statistical functions.

ScikitLearn

Provides efficent tools for data analysis alongwith machine learning al-
gorithms for classification, regression and clustering, etc.

TensorFlow

A deep learning framework that contains many tools to create machine
learning and deep learning models.

Table 2: Python Libraries used for this study
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3.4. Pre-Processing Steps

As mentioned in the previous section, the data was collected at inconsistent time points
throughout these three years of interest. For proper analysis and to give all the models a
fair chance to prove their worth, a time series data with consistent and equal time steps
was absolutely necessary. All the procedures were separately applied to each year’s data
and then they were concatenated to form one big dataset. The data had to go through the
following pre-processing steps.

3.4.1. Addressing the inconsistent frequency

To bring all the observations at the same frequency, a function called ’resample’ by
Pandas library was used. It resampled each year’s data to a frequency of 5 days, which in
other words mean that the data was now arranged in such a way that only the rows with
a time difference of 5 days were kept and the rest were automatically removed by this
function. This of course led to some null values as well, at the days where data was not
originally captured. In each year, these rows ranged from 3 to 4 missing values per plot.
But the rest of the time points in each year were more than enough to fill their place by
either using Imputation or Interpolation. Multiple approaches were tested since the data
did not show any linear relation within itself. After experimenting, one copy of the data
was filled by imputation and another copy of the same data was filled using cubic spline
interpolation.

The imputation was done by using ’fillna’ function of Pandas, filling the empty rows
by the median of the rest of the values in that specific column. While the interpolation
was achieved using a library called ’Scipy’. The function that was used is known as
"CubicSpline’.

3.4.2. The Time Series Components

Before we could merge all 3 years in a single dataframe, we needed to do some time
series analysis on each year to figure out if there is something which can affect or im-
prove the models’ performances. The first step was to check that the data was stationary
because a non-stationary data can affect the performance of some models such as LSTM.
The p-value for each feature was calculated using ’adfuller’ function from statsmodels
library. Luckily the p-value for all the features was less than 0.05 which meant that the
data was stationary. The next step was to determine if the data had any trend or season-
ality that needed to be taken care of. It can be done by decomposing the time series data
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into its trend, seasonal and residual components using ’seasonal decompose’ function
of ’statsmodels’ library. Each of the 5 features for each year needed to be decomposed
separately. And every feature showed a trend but no seasonality. This problem was ad-
dressed by ’differencing’ which is just literally taking a difference among the subsequent
observations.

3.4.3. Outlier Removal

After the intial pre-processing phase, each year had 10 observations per plot across simi-
lar time points and frequency. Multiple thresholds for IQR Percentile were tested. Lower
threshold of 20 and upper threshold of 80 produced the best results. This was easily
achieved by using ’percentile’ function from the Numpy library.

3.4.4. Standardizing and Splitting the Data

The concatenated dataset was standardized using ’Standard Scaler’ class and its func-
tion ’fit_transform’ from Scikit Learn library. For splitting the data into train, test and
validation set, again Scikit Learn’s "Model Selection’ class was used for its function
“train_test_split’. 20 percent of the input and output variables were used for evauating the
model. The rest of the 80 percent of training data was again split into 80 to 20 ratio. The
20 percent of which was used as a validation set.

3.5. Model Summary

Multiple models with different hyperparameters were trained and tested. After a lot of
trial and error, it was decided to only include the following models for this study. This
subsection provides an overview of the structure of these models.

3.5.1. Gradient Boosting Regressor

For this machine learning model, even after some trial and error, the default hyperparam-
eters were used and 0.1 was the learning rate. The criterion for measuring the quality of
the split was a special case of mean squared error called Friedman MSE.

3.5.2. Dense Neural Network

To choose the best performing DNN Model, multiple hyperparameters were tested. Ta-
ble 3 shows the structure of a rather dense model but simpler versions were also tested,
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however this model came on top in terms of performance as compared to the others. It
consisted of six hidden layers with decreasing units or nodes in each layer. As mentioned
in the previous sections and also concluded by testing the model, ReLLU activation func-
tion performs the best for the regression task in this study. Linear activation function in
the output layers gets the model a total of 140,737 trainable parameters. Mean Squared
Error was used as the loss function and Adams as the optimizer. This remains constant
for all the other models as well. The model was set to train for 400 Epochs to give it the
proper time it required to learn from the data. The batch size for this model was 128.

Layers Units Activation Function
Dense - 256 - ReLLU
Dense - 256 - ReLU
Dense - 128 - ReLLU
Dense - 128 - ReLU
Dense - 64 - ReLU
Dense - 64 - ReLU
Dense - 1 - Linear

Table 3: Structure of DNN Model

3.5.3. Long Short Term Memory

The structure of LSTM model as shown in Table 4 is similar to DNN, but the noticable
difference is that instead of the usual dense layers, it now has LSTM layers. ReLLU and
Linear were used as the activation funtions for hidden layers and output layer respec-
tively. This model also trained for 400 epochs with a batch size of 64. The total trainable
parameters for this model were 527,265.

Layers Units Activation Function
LSTM - 256 - ReLU
LSTM - 128 - ReLL.U
LSTM - 64 - ReLU
LSTM - 32 - ReL.U
Dense - 1 - Linear

Table 4: Structure of LSTM Model

3.5.4. Bidirectional LSTM

A rather simpler version of Bi-Directional LSTM was taken into consideration which
will be further discussed in the next section. Table 5 shows that only two bidirectional
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layers were used, giving it a number of 134,785 in trainable parameters. Batch size of
350 was used, and this model was trained for 500 Epochs.

Layers Units Activation Function
Bidirectional - 64 - Relu
Bidirectional - 64 - Relu

Dense - 1 - Linear

Table 5: Structure of Bidirectional LSTM

3.5.5. Bidirectional LSTM with Dropout

Table 6 shows another variation of Bidirectional LSTM that was taken into consideration
to observe the effect of Dropout Layers in the model’s performance for this context. A
dropout rate of 0.2 means that during each training iteration, approximately 20% of the
neurons in a specific layer will be randomly set to zero, hence giving it a chance to be

more regularized. This model was also trained for 500 epochs and with a batch size of
350.

Layers Units Activation Function
Bidirectional - 64 - ReLu
Dropout - 02 - -
Bidirectional - 64 - ReLu
Dropout - 02 -
Dense - 1 - Linear

Table 6: Structure of Bi-LSTM Model with Dropout

3.5.6. Gated Recurrent Unit

Another type of RNN was employed to compare it with the previous models. Table 7
shows the structure of the GRU Model with different layers such as batch normalization
and dropout. It had a total of 98,977 trainable parameters and it was tested for 400
Epochs with a batch size of 128. Although a simpler version of this model was also
tested but both gave similar results, more about it in the next section.
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Layers Units Activation Function
GRU - 128 - ReLu
Batch Normalization
Dropout - 02 -
GRU - 64 - ReLu
Batch Normalization
Dropout - 02 -
GRU - 32 - ReLu
Batch Normalization
Dropout - 02
Dense - 1 - Linear

Table 7: Structure of GRU Model with Dropout

4. RESULTS AND DISCUSSION

4.1. Data Preparation
4.1.1. Raw Data and Selected Data

The data was collected at Vollebekk and Staur Farm as mentioned earlier, but for this
study only Vollebekk data from 2020 to 2022 was used because 2019 data had not enough
time points. In its raw form, it had 24 columns that were merely used as a reference of
the location of the plot and some other factors that were not suitable to be treated as a
feature. The total number of observations were 57,264 which included both farms and
early observations from 2019. Figure 4 shows the structure of raw data. These columns
were helpful in initial data preparations, sorting and separating them with respect to year
and location. The features of interest can be seen in Table A.2. The data was divided
into three separate datasets, one for each year’s observations. This helped with the further
pre-processing steps and made it easier to manage. After all the steps were applied, these
three years were concatenated to make one single dataset again. Only the plots marked
as the type ’yield” were selected. For each yield plot, 10 time points from each year
were taken into consideration. Since there were a total of 5 bands, it made a total of
50 columns or features. To train a model, the data needs to be in a wide format which
explains why the number of columns in the final data are more than that of the raw data.
The selected data at the end consisted of 1435 observations and 50 features. For creating
training set, test set and validation set, this dataset was split into 918, 287 and 230 rows
or observations respectively.

34



season location plot number plot type camera line number masbasis2015 line rep .. blue median green median red median rededge median nir median

2022 vollebekk 18920  biomass p4m 13270 13270 NaN 30 .. 0.056673 0.095848 0.117809 0.153384 0.176198
2022 vollebekk 18920  biomass pdm 1327.0 13270 NaN 3.0 .. 0.056812 0.095473 0.114176 0.147188 0.177045
2022 vollebekk 18920  biomass p4m 1327.0 13270 NaN 30 .. 0.051293 0.084907 0.102908 0.143419 0.167718
2022  vollebekk 18920  biomass p4m 1327.0 13270 NaN 30 .. 0.034919 0.055395 0.065450 0.096945 0.115780
2022 vollebekk 1892.0  biomass pdm 1327.0 13270 NaN 30 .. 0.070500 0.116883 0.136900 0.193303 0.231470
2022 vollebekk 18920  biomass p4m 1327.0 13270 NaN 30 .. 0.056069 0.089795 0.111481 0.156016 0.187142

Fig. 4: A few rows from the raw data

Target variables stored in a separate file had many traits observed for similar other
studies. Of all the traits, predicting the Grain Yield is the main focus of this study.
Figure 5 shows the target variables data in its raw form, where grain yield is denoted
by ’GY_g_m2’ and the units used are grams per meter square (g/m?*). The plot number
from both the files were used as an index to later concatenate both files to each other.

env season location plot_number plot type line_number masbasis2015 rep block column DH.dss DM.dss GY g m2 PH.cm GPC pct

3801 2020 _vollebekk 2020 vollebekk 1105 vield 6.0 10290 10 1.0 50 66.0 118.0 713333333 81.67 104
3802 2020_vollebekk 2020 vollebekk 1106 yield 1543.0 15430 1.0 1.0 6.0 68.0 119.0 677333333 86.67 121
3803 2020 vollebekk 2020 vollebekk 1107 yield 1338.0 13380 10 1.0 7.0 66.0 1200 361333333 95.00 15.5
3804 2020 vollebekk 2020 vollebekk 1108 yield 1526.0 15260 1.0 1.0 80 67.0 1170 697333333 86.67 10.8
3805 2020 _vollebekk 2020 vollebekk 1109 yield 1614.0 16140 10 1.0 9.0 68.0 118.0 664.000000  76.67 11.5

Fig. 5: A few rows from the target variables data

4.1.2. Resampled and Filled Data

Since each year had different number of observations, some rows were manually re-
moved to bring all the three years to a equivalent time frame and exactly the same number
of observations. The initial observations where the plant was still in the heading’ phase
were the best rows to remove. This information was available in the target variable file.
In Figure 6 it can be seen that the dates at which data was collected were inconsistent.

env season location plot_type camera lodging date blue_median green_median red median rededge median nir_median

plot_number
1105.0 2020 _vollebekk 2020 vollebekk yield mica False 2020-06-18 0.015137 0.037526 0.014911 0.109639 0.431767
1105.0 2020 _vollebekk 2020 vollebekk yield mica False 2020-06-24 0.014972 0.034236 0.016068 0.094503 0.391461
1105.0 2020_vollebekk 2020 vollebekk yield mica False 2020-06-26 0.012624 0.027086 0.015051 0.075851 0.435237
1105.0 2020_vollebekk 2020 vollebekk yield mica False 2020-07-01 0.017417 0.043442 0.020844 0.107552 0.433779
1105.0 2020_vollebekk 2020 vollebekk yield mica False 2020-07-08 0.022297 0.048837 0.020287 0.114728 0.444705

Fig. 6: Inconsistent Time Points

The data had a consistent frequency after Resampling the data. But it led to some null
values as shown in Figure 7 because of the obvious fact that the data was not recorded at
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that specific time in real life. This was dealt with two separate approaches. Two copies
of the data were made, one was filled using Interpolation and the other was filled with
Imputation to compare the results of the models.

date blue_median green_median red median rededge median nir_median

plot_number

1105.0 2020-06-18 0.015137 0.037526 0.014911 0.109639 0.431767
1105.0 2020-06-23 0.013798 0.030661 0.015559 0.085177 0.413349
1105.0 2020-06-28 0.017417 0.043442 0.020844 0.107552 0.433779
1105.0 2020-07-03 NaN NaN NaN NaN NaN
1105.0 2020-07-08 0.022297 0.048837 0.020287 0.114728 0.444705
1105.0 2020-07-13 0.011046 0.031304 0.016580 0.070497 0.232059
1105.0 2020-07-18 0.022397 0.060377 0.048461 0.138072 0.290974
1105.0 2020-07-23 NaN NaN NaN NaN NaN
1105.0 2020-07-28 0.027139 0.075271 0.070734 0.173504 0.311046
1105.0 2020-08-02 NaN NaN NaN NaN NaN
1105.0 2020-08-07 0.031707 0.071970 0.110121 0.155774 0.253116
1105.0 2020-08-12 0.042600 0.077703 0.126265 0.151689 0.252579

Fig. 7: Resampled Data causes Null Values
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4.1.3. Differencing the Data

Since each wheat plot was observed at multiple time points, the seasonal decomposition
was applied to each plot separately because each could be identified as a variable of its
own. However because of similar conditions all across the plots marked as yield in the
dataset, the time series components were also similar. Figure 8 shows the trend, seasonal
and residual components of one of the plots across all three years, marked as plot 7 as an
internal reference for the code.
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Fig. 8: Trend, Seasonal and Residual Components of one plot

It can be seen that the data has a clear rise in the trend component. Also visually
inspecting the seasonal component verifies that there is a seasonal factor also present in
the data. This calls for differencing the data to minimize the effect of these components
on the accuracy of the models. There is a noticable uncertainty in the residual component
as well which shows that there may be possible anomalies and outliers present in the data.
Multiple approaches were once again used while differencing to compare the results of
the models. After some trial and error, data with first order differencing and second
order differencing were tested separately on the best performing models. A copy of data
without any differencing was also used to identify if the models can handle such data

37



without a lot of pre-processing.

4.1.4. Correlation Plot

Upon inspection of the correlation plot using all 5 features, it can be seen that the some
features have high correlation with each other as shown in Figure 9. At this point two
approaches were used. Once again two copies of the processed data were made, one
was used as it is and in the other one, two columns namely blue_median and red_median
were removed and tested separately on the models. The purpose of this approach was
once again comparing the results to see which one leads to a better performance of the
model. Blue and red bands were removed because of a couple of reasons. They showed
high correlation with other features and in a wheat field, these colors are less prominent
in theory.
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Fig. 9: Correlation Plot among all features

4.2. Evaluation of the Models
4.2.1. Loss Plot

Any model at its first epoch will have a huge error, and then it slightly drops across more
epochs. So the DNN model used for this study also shows the same trend as shown
in Figure 10. When noticed closely, the loss error keeps drops slightly even after 300
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epochs. This is the reason why these models were given at least 400 epochs to get to the
optimum spot of having the least amount of error but also avoiding overfitting.
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Fig. 10: Loss Plot of DNN Model

4.2.2. Discarded Models

To create a starting point for competing the models with each other all models were
trained on imputed data without applying any differencing. As it can be seen in Figure
11 the LSTM Model did not learn anything at all. Similar situation was achieved by
using GRU. So from this point, these two models were discarded due to being practically
useless for further comparison. Later on after further testing, Bidirectional LSTM with
Dropout layers was also discarded, which is the reason why the test score and RMSE for
test data was not recorded at all for these models. Only the three best performing models
were taken into consideration for the rest of the study. As far as this specific approach is
concerned, GBR gave the best overall performance with 0.87 and 0.71 of train and test
score respectively. But this will be addressed in the next subsection. An RMSE of 35.23
and 52.62 can also be observed in Figure 12. It should also be kept in mind that the units
for grain yield are g/m?, and the RMSE value is with respect to that range.
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4.2.3. Effect of Differencing on Overfitting

When the same imputed data is gone through first order differencing, the following re-
sults are achieved as shown in Figure 13 and Figure 14. It can be seen that the perfor-
mance of GBR drops on both train and test data. DNN on the other hand has a drop
in its training accuracy, however the test accuracy is almost the same. This is indicates
that the models were overfitting previously. Instead of learning from the data, they were
memorizing it. However, on the contrary, the perform of Bidirectional LSTM slightly
increases after differencing. This proves that Bidirectional LSTM is taking the sequence
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into consideration, and after the effect of trend and seasonality is reduced, it gives more

accurate results because the data is now more stationary.
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Fig. 13: R? - Imputed Data and First Order Differencing
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4.3. Best Performing Approach

As discussed in the previous subsection, differencing the data helps with reducing the
effects of trend and seasonality, makes the data more stationary. When second order
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differencing is applied to the imputed data, it further reduces it. The performance of
the models show the following results as shown in Figure 15 and Figure 16. A similar
pattern for GBR can be seen, it no longer overfits but the performance slightly drops
after each differencing. DNN’s train and test score also have a less gap which means
differencing also makes it less prone to overfitting. But the most balanced model with
consistent train and test score is Bidirectional LSTM. The RMSE of these models also
show similar patterns. So after a lot of trial and error, when Imputation was used to fill
the empty spots in the data and then second order differencing was applied, it gave the
best results. The results for interpolated data can also be seen in Appendix 4.
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5. CONCLUSION

Using advanced deep learning techniques and a lot of multispectral time series data col-
lected by unmanned aerial vehicles (UAVs), a significant endeavor was undertook in this
thesis to forecast the grain yield of the wheat field at vollebekk. The goal was to con-
tribute in the agricultural sector by creating precise and effective predictive models that
may help farmers and decision-makers manage crop production and maintain food secu-
rity. The accuracy and completeness of the data were crucial to the performance of our
predictive models. Resampling for maintaining consistent frequency throughout the data
in combination with interpolation and imputation to fill in the missing values of the data
assured this robustness. The best outcomes were obtained using imputation and second-
order differencing, underlining the significance of careful data pre-processing in getting
the optimal model performance. Various deep learning and machine learning models
were investigated, such as the Bidirectional Long Short-Term Memory (BiLSTM) net-
works, Deep Neural Networks (DNNs), and Gradient Boosting Regressor (GBR). On the
basis of the dataset on wheat grain yield, BILSTM stood out among these models as the
most promising contender. BILSTM was the best option for this work because of its ca-
pacity to capture temporal dependencies in the multispectral time series data, including
the sequential character of the observations. The trend and seasonal component of the
data caused GBR and DNN models to overfit, but it was later addressed by second order
differencing.

The study helped to demonstrate the potential of multispectral UAV data to revolutionize
agricultural methods and shed light on the possibilities of contemporary technologies.
High accuracy grain production prediction opens the door to improved crop manage-
ment, effective resource management, and sustainable agriculture practices. A number
of difficulties were faced throughout the research, including choosing the proper hyper-
parameters, dealing with overfitting issues, and handling missing values. But the main
difficulty was to bringing the observations of all the years to somewhat same time points.
This included manual removal of the early observations when the crop was still not in
the heading phase. This further helped in resampling. The models performance is ad-
mirable, however it is well trained on only one type of field. The dynamic nature of
agricultural data and the significance of ongoing improvement and adaption to changing
situations can be acknowledged. Future studies could examine strategies that combine
domain expertise and outside data sources to produce predictions that are even more re-
liable and generalized. In conclusion, this study has laid the foundation for a new era
of agricultural forecasting, where deep learning and multispectral UAV data converge to
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drive informed decision-making and sustainable farming practices. And these findings
will hopefully stimulate additional research in this area and help the international effort
to ensure a resilient and food-secure future for upcoming generations.
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Appendix A

1. LIST OF ACRONYMS

Acronym | Full Form
ANN Artificial Neural Network
Bi-LSTM | Bidirectional LSTM
DL Deep Learning
DNN Deep Neural Network
GBR Gradient Boosting Regressor
GRU Gated Recurrent Unit
GY Grain Yield
LSTM Long Short-Term Memory
ML Machine Learning
NIR Near-Infrared
R2 Co-efficient of Determinant (R2)
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
UAV Unmannaed Aerial Vehicle

Table A.1: Table of Acronyms
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2. FEATURES OF INTEREST

Feature Type Brief Description
Plot Number Index A unique identifier for each wheat plot, that is also being used as an index
Date Date Format Has a record of the date at which each observation was made
Grain Yield Numerical The target variable that will be predicted by the models
Blue Median Numerical Median value of the reflectance of the blue band.
Green Median Numerical Median value of the reflectance of the green band.
Red Median Numerical Median value of the reflectance of the red band.
NIR Median Numerical Median value of the reflectance of the NIR band.
RedEdge Median | Numerical Median value of the reflectance of the red edge band.

Table A.2: Features of Interest

3. DESCRIPTION OF WORK SCHEMATIC

Method Description

Data Cleaning and Separation | Selecting only the features useful for training the model, removing any
null values. Separating the data into 3 sets with respect to year.

Resampling Bringing all the sets of the data to the same frequency

Imputation & Interpolation Making a copy of all the sets and filling the empty values using both
approaches.

Trend & Seasonal Analysis | Observing and analyzing any possible trend and seasonality component
in each dataset.

No Differencing Passing on the data for further processes without applying any differ-
encing.

Ist Order Differencing Another copy of datasets is made. Differencing is applied once on all
datasets in order to minimize the effect of trend and seasonal compo-
nents.

2nd Order Differencing Differencing is applied twice on a new instance of the datasets in order
to compare which approach gives the best accuracy on the models.

Standardization The three sets of the data are now concatenated in a single dataset. To
bring the values on a unit variance standardization is applied.

Train Test Split The concatenated dataset is now split randomly into train, test and vali-
dation set.

Transform to 3D Tensors LSTM, Bi-LSTM and GRU require the data to be in the form of 3D
Tensors, so this transformation is applied before training these models.

Table A.3: Applied methods and their purpose
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4. PERFORMANCE OF ALL MODELS

4.1. Imputed Data
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4.2. Interpolated Data

R2 Score

RMSE

Fig. A.7: R? - No Differencing

DNN
Models

E Tain R2 Score

Test R2 Score

0 4 59.58
52.66 51.96
50 4
40 4
B Tain RMSE Score
Test RMSE Score
Bi-LSTM
Models
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