• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • View Item
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A human relevant mixture of persistent organic pollutants induces reactive oxygen species formation in isolated human leucocytes: Involvement of the β2-adrenergic receptor

Berntsen, Hanne Friis; Bodin, Johanna Eva; Øvrevik, Johan; Berntsen, Christopher Friis; Østby, Gunn Charlotte; Brinchmann, Bendik Christian; Ropstad, Erik; Myhre, Oddvar
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
Friis+Berntsen_2021_Ahu.pdf (1.980Mb)
URI
https://hdl.handle.net/11250/2832737
Date
2021
Metadata
Show full item record
Collections
  • Journal articles (peer reviewed) [5256]
  • Publikasjoner fra Cristin - NMBU [6211]
Original version
Environment International. 2021, 158 1-18.   10.1016/j.envint.2021.106900
Abstract
Exposure to chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) persistent organic pollutants (POPs) is associated with immunotoxicity and other adverse effects in humans and animals. Previous studies on POPs have mainly focused on single chemicals, while studies on complex mixtures are limited. Using DCF and luminol assays we examined effects on ROS generation in isolated human neutrophils, monocytes and lymphocytes, after in vitro exposure to a total mixture and sub-mixtures of 29 persistent compounds (Cl, Br, and PFAA). The mixtures were based on compounds prominent in blood, breast milk, and/or food. All mixture combinations induced ROS production in one or several of the cell models, and in some cases even at concentrations corresponding to human blood levels (compound range 1 pM – 16 nM). Whilst some interactions were detected (assessed using a mixed linear model), halogenated subgroups mainly acted additively. Mechanistic studies in neutrophils at 500× human levels (0.5 nM – 8 µM) indicated similar mechanisms of action for the Cl, PFAA, the combined PFAA + Cl and total (PFAA + Br + Cl) mixtures, and ROS responses appeared to involve β2-adrenergic receptor (β2AR) and Ca2+ signalling, as well as activation of NADPH oxidases. In line with this, the total mixture also increased cyclic AMP at levels comparable with the non-selective βAR agonist, isoproterenol. Although the detailed mechanisms involved in these responses remain to be elucidated, our data show that POP mixtures at concentrations found in human blood, may trigger stress responses in circulating immune cells. Mixtures of POPs, further seemed to interfere with adrenergic pathways, indicating a novel role of βARs in POP-induced effects.
Journal
Environment International

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit