• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • View Item
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Protecting Thermally Hydrolyzed Biosolids from Pathogenic Bacterial Growth by Addition of Compost

Svennevik, Oda K.; Jonassen, Kjell Rune; Svensson, Kine; Hagen, Live Heldal; Westereng, Bjørge; Solheim, Odd Egil; Nilsen, Pål Jahre; Horn, Svein Jarle; Bakken, Lars
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
Svennevik2020_Article_ProtectingThermallyHydrolyzedB.pdf (1014.Kb)
URI
https://hdl.handle.net/11250/2829694
Date
2020
Metadata
Show full item record
Collections
  • Journal articles (peer reviewed) [3942]
  • Publikasjoner fra Cristin - NMBU [4778]
Original version
10.1007/s12649-020-01300-1
Abstract
Sludge biosolids for agricultural application represent a valuable fertilizer but also a health risk unless pathogens are effectively reduced, and recontamination controlled. The Post Anaerobic Digestion Thermal Hydrolysis Process (Post-AD THP) is gaining interest due to improved dewaterability, reducing the volume and thus transportation costs of biosolids. However, Post-AD THP results in sterile biosolids easily exposed to recontamination by pathogens due to the lack of microbial competitors. In theory, this could be suppressed by establishing a competing community of harmless bacteria. The theory was tested by monitoring the abundance of Escherichia coli (viable counts) and gene abundance (ddPCR) in wastewater recontaminated Post-AD THP biosolids, with and without addition of compost. Respiration, total bacterial population and bacterial diversity (16S rRNA amplicon sequencing) were used to monitor the microbial community. Biosolids from the regulatory approved methods thermophilic AD (TAD) and Pre-AD THP were tested in parallel for comparison. The results demonstrated that regulatory requirements can be reached by storing the TAD and Pre-AD THP biosolids for 3 days after recontamination and the Post-AD THP biosolids for more than 13 days. However, addition of compost suppressed growth of E. coli in Post-AD THP biosolids, reducing the time to comply with regulative requirements. In conclusion, pathogen growth in Post-AD THP biosolids can be controlled by inoculation with compost.
Journal
Waste and Biomass Valorization

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit