• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • Vis innførsel
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

RippleNet: A Recurrent Neural Network for Sharp Wave Ripple (SPW-R) Detection

Hagen, Espen; Chambers, Anna; Einevoll, Gaute; Pettersen, Klas Henning; Enger, Rune; Stasik, Alexander Johannes
Journal article
Submitted version
Thumbnail
Åpne
2020.05.11.087874v1.full.pdf (2.038Mb)
Permanent lenke
https://hdl.handle.net/11250/2827981
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Journal articles (peer reviewed) [3942]
  • Publikasjoner fra Cristin - NMBU [4778]
Originalversjon
10.1101/2020.05.11.087874
Sammendrag
Hippocampal sharp wave ripples (SPW-R) have been identified as key bio-markers of important brain functions such as memory consolidation and decision making. SPW-R detection typically relies on hand-crafted feature extraction, and laborious manual curation is often required. In this multidisciplinary study, we propose a novel, self-improving artificial intelligence (AI) method in the form of deep Recurrent Neural Networks (RNN) with Long Short-Term memory (LSTM) layers that can learn features of SPW-R events from raw, labeled input data. The algorithm is trained using supervised learning on hand-curated data sets with SPW-R events. The input to the algorithm is the local field potential (LFP), the low-frequency part of extracellularly recorded electric potentials from the CA1 region of the hippocampus. The output prediction can be interpreted as the time-varying probability of SPW-R events for the duration of the input. A simple thresholding applied to the output probabilities is found to identify times of events with high precision. The reference implementation of the algorithm, named ‘RippleNet’, is open source, freely available, and implemented using a common open-source framework for neural networks (tensorflow.keras) and can be easily incorporated into existing data analysis workflows for processing experimental data.
Tidsskrift
bioRxiv - the preprint server for biology

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit