
RippleNet: A Recurrent Neural Network for Sharp
Wave Ripple (SPW-R) Detection

Espen Hagen1,*, Anna R. Chambers2, Gaute T. Einevoll1,3, Klas H. Pettersen4, Rune Enger5, and
Alexander J. Stasik1,**

1Dept. of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
2Section of Physiology, Dept. of Molecular Medicine, Inst. of Basic Medical Sciences, Faculty of

Medicine, University of Oslo, Oslo, Norway
3Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway

4NORA - The Norwegian Artificial Intelligence Research Consortium, Faculty of Mathematics and
Natural Sciences, University of Oslo, Oslo, Norway

5Section of Anatomy, Dept. of Molecular Medicine, Inst. of Basic Medical Sciences, Faculty of
Medicine, University of Oslo, Oslo, Norway

*Corresponding author: espenhgn@gmail.com
**Corresponding author: a.j.stasik@fys.uio.no

Abstract

Hippocampal sharp wave ripples (SPW-R) have been identified as key bio-markers
of important brain functions such as memory consolidation and decision making.
SPW-R detection typically relies on hand-crafted feature extraction, and laborious
manual curation is often required. In this multidisciplinary study, we propose a
novel, self-improving artificial intelligence (AI) method in the form of deep Re-
current Neural Networks (RNN) with Long Short-Term memory (LSTM) layers
that can learn features of SPW-R events from raw, labeled input data. The algo-
rithm is trained using supervised learning on hand-curated data sets with SPW-R
events. The input to the algorithm is the local field potential (LFP), the low-
frequency part of extracellularly recorded electric potentials from the CA1 region
of the hippocampus. The output prediction can be interpreted as the time-varying
probability of SPW-R events for the duration of the input. A simple thresholding
applied to the output probabilities is found to identify times of events with high
precision. The reference implementation of the algorithm, named ‘RippleNet’,
is open source, freely available, and implemented using a common open-source
framework for neural networks (tensorflow.keras) and can be easily incorpo-
rated into existing data analysis workflows for processing experimental data.

Keywords: Machine learning, deep learning, recurrent neural networks, neuroscience, sharp wave
ripples (SPW-R), Hippocampus CA1, local field potential (LFP).

1 Introduction

Experimental background: Sharp wave ripples (SPW-R) are highly synchronous, fast oscilla-
tions observed in the CA1 region of the hippocampus of mammals, and are linked to mechanisms
that play important roles in memory function (Buzsáki 2015). The oscillations associated with SPW-
Rs are typically observed in the local field potential (LFP), which is the low-frequency (. 300 Hz)
part of extracellularly recorded electric potentials measured in neural tissue. SPW-Rs arise in sleep
and resting states and consist of large amplitude deflections of the local field potential (LFP) signal
originating in the hippocampal CA3 region (‘sharp waves’), that can elicit fast oscillations in the
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hippocampal CA1 region (‘ripples’). Excitatory output from the CA1 region during ripples encodes
sequences of neuronal activation of awake experiences, that reaches wide areas of the cortex as well
as subcortical nuclei. For a comprehensive review on SPW-Rs, their origin and function, see for
example Buzsáki 2015.

The SPW-R oscillations are observed above the cortical γ-band frequencies (30 − 90 Hz) (Silva
2013) of the LFP, and lie between 160 − 180 Hz in mice (Buzsáki, Logothetis, and Singer 2013;
Buzsáki et al. 2003), and between 130 − 160 Hz in rats (Buzsáki, Logothetis, and Singer 2013;
Buzsaki et al. 1992; John O’Keefe 1978). Features of one such example SPW-R event recorded
using the experimental setup in Figure 1A,B are illustrated in Figure 1C. The wide-band LFP (top
panel) contains a transient oscillation in its 150-250 Hz range (middle panel), also evident in the
time-frequency resolved LFP spectrogram (bottom panel).
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Figure 1: Experimental setup. A set of recordings used for this study were acquired concomitant
to two-photon microscopy from head-fixed mice. A: Mice were prepared with a single electrode in
the the hippocampal CA1 region and a contralateral reference electrode, chronic glass window for
two-photon microscopy and a headbar for head-fixation. B: LFP recordings were mostly recorded
concomitant to two-photon microscopy in head-fixed mice. C: Example of a single detected SPW-R.
Top panel: raw LFP data; Middle panel: bandpass filtered LFP signal (150-250 Hz); Bottom panel:
LFP spectrogram.

SPW-R detection: The fractions of neurons in hippocampal regions CA1 and CA3 which are ac-
tive during different SPW-R events vary greatly, and the number of small and medium-sized events
outnumber large, highly synchronous events (Csicsvari et al. 1999a; Buzsáki 2015). Hence, the re-
sulting distributions of SPW-R power are skewed as the synchrony between neurons throughout the
network (i.e., correlations) greatly affects the LFP power in the SPW-R band (Csicsvari et al. 2000;
Schomburg et al. 2012; Buzsáki 2015; Hagen et al. 2016). Consequently, defining a fixed threshold
for SPW-R detection based on e.g., the power or envelope of the LFP in a chosen frequency band
(Csicsvari et al. 1999a; Csicsvari et al. 1999b; Einevoll et al. 2013; Ramirez-Villegas, Logothetis,
and Besserve 2015; Norman et al. 2019; Tingley and Buzsáki 2020) remains heuristic.

Different existing and novel real time algorithms for SPW-R detection were reviewed and tested on
synthesized datas by Sethi and Kemere 2014. Such methods are applied with band-pass filtered LFP
data, commonly in the 150 − 250 Hz range, and may incorporate adaptive thresholding (Fritsch,
Ibanez, and Parrilla 1999; Jadhav et al. 2012).

Deep learning: Recent years have seen a surge in different supervised and unsupervised learn-
ing algorithms, propelled by hardware acceleration, better training datasets and the advent of deep
convolutional neural networks (CNN) in image classification and segmentation tasks (see e.g., Le-
Cun, Bengio, and Hinton 2015; Rawat and Wang 2017). Deep CNNs are, however, not yet as
commonplace for time series classification tasks (Fawaz et al. 2019). Unlike traditional neural net-
works (NNs) and CNNs which typically employ a feed-forward hierarchical propagation of acti-
vation across layers, recurrent neural networks (RNN) have feedback connections, and is suitable
for sequential data such as speech and written text. One architecture of RNNs is Long Short-Term
Memory (LSTM) RNNs (Hochreiter and Schmidhuber 1997), capable of classifying, processing and
predicting events in time-series data, even in the presence of lags of unknown duration.
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In speech recognition, deep RNNs with multiple stacked LSTM layers have been successful in
classifying phonemes (Graves, Mohamed, and Hinton 2013). Graves, Mohamed, and Hinton 2013
also found bidirectional LSTM RNNs to improve classification performance over unidirectional
LSTM RNNs, which can only account for past context. The present context of SPW-R detection is
analogous and amounts to recognition of a single phoneme or word in a temporal sequential signal
such as sound.

Summary of present work: Here, inspired by RNNs shown to be successful on speech-
recognition tasks, we propose the utilization of LSTM-based RNNs for the automated detection
of SPW-R events in continuous LFP data. Our open-source implementation, RippleNet, is built
with a combination of convolutional, (bidirectional) LSTM and dense output layers with non-linear
activation functions. RippleNet accepts raw LFP traces of arbitrary length as input, and omits the
typical SPW-R detection steps of band-pass filtering the input LFP as well as manual feature extrac-
tions such as computing the signal envelope via the Hilbert transform or time-frequency resolved
spectrograms. Using training data with labeled SPW-R events in real-world datasets from different
sources we trained RippleNet to predict a continuous signal representing the time varying probabil-
ity of SPW-R event in the input. A simple search of local peaks above a fixed threshold can then
be applied with the output probabilities, and is here shown to yield accurate predictions of the time
of SPW-R events in separate validation and test datasets, with low prediction rates of false positive
(FP) and false negative (FN) events. RippleNet also runs faster than real-time on typical CPUs, and
even faster on graphical processing units (GPU).

RippleNet’s implementation differs from Zuo et al. 2019, one of very few deep CNN based al-
gorithms specifically designed for detection of high-frequency oscillations (HFO), that is, epilep-
togenic zone seizures in intracranial electroencephalogram (iEEG) recordings, in that (1) explicit
conversion of 1D input sequences with multiple rows into gray-scale images are avoided; (2) nor-
malization of the input to zero mean and standard deviation to unity is not required; (3) input seg-
ments can be of arbitrary length (i.e., continuous) but segments within single batches have to be of
the same length; (4) a fairly low number of parameters are trainable which may reduce overfitting;
and (5) its outputs are continuous signals that represent the time varying probability of an SPW-R
event at all time points of the inputs, in contrast to classifying whether or not a HFO class occurs in
each fixed-size input segment.

Manuscript structure: This paper is organized as follows: In Methods we detail the acquisition
of experimental LFP data, labeling of SPW-R events, preprocessing steps, numerical analysis, and
the technical implementation of RippleNet. In Results we evaluate the performance of RippleNet
during training and application on separate validation and test sets. In Discussion we discuss the
possible consequences, extensions and other applications of this work.

2 Methods

2.1 Experimental data

2.1.1 Mouse data

Male and female mice (C57Bl/6J; Janvier labs) underwent LFP electrode implant surgery at ap-
proximately 10-14 weeks of age. All mice had previously been implanted 2-3 weeks earlier with a
custom made titanium headbar glued to the skull and covered with a dental cement cap. For elec-
trode implant surgery, mice were anesthetized with isoflurane (3 induction, 1.5 maintenance) with
body temperature maintained at 37 degrees Celsius. Burr holes were drilled for the LFP electrode
and reference electrode over the dorsal CA1 region of the hippocampus (A/P -2 mm, M/L 2 mm)
and contralateral primary somatosensory cortex (A/P – 0.5 mm, M/L 3 mm), respectively. Silver
wire electrodes (1.25 mm diameter, insulated, GoodFellow) were lowered to a depth of 0.8 mm for
dorsal CA1. The reference electrode was implanted at the brain surface. Mice were allowed to
recover from isoflurane anesthesia while headfixed for at least 15 minutes, and electrode placement
was confirmed by monitoring the LFP signal online. Electrodes were affixed to the headbar with
cyanoacrylate glue and a thin layer of dental cement.

All procedures were approved by the Norwegian Food Safety Authority (project: FOTS 19129).
The experiments were performed in accordance with the Norwegian Animal Welfare Act and the
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European Convention for the Protection of Vertebrate Animals used for Experimental and Other
Scientific Purposes.

LFP recordings were band-pass filtered (0.1-1000 Hz) and amplified (1000x) with a DAM50 dif-
ferential amplifier (World Precision Instruments Inc). Line noise was removed using a HumBug
50/60 Hz Noise Eliminator (Quest Scientific Inc). For experiments, mice were headfixed under a
two-photon microscope objective after brief isoflurane anesthesia. They were given at least 15 min-
utes to recover from anesthesia before recordings were taken. In most cases, LFP recordings were
performed concurrently with two-photon calcium imaging through a chronic cranial window over
the retrosplenial cortex, in 10 minute sessions. During recordings, mice were able to walk freely
on a disc equipped with a rotary encoder to record locomotion, grooming and postural adjustments.
Experiments were performed in the dark. LFP and rotary encoder signals were acquired at 20 kHz
and downsampled to a final sampling frequency fs = 2500 Hz in LabView (National Instruments).
The LFP signals were saved in units of millivolts (mV).

The different animals, number of sessions, total recording durations and number of SPW-R events
are listed in Table 1.

SPW-R detection procedure: Pre-processing for manual SPW-R detection was performed us-
ing MATLAB 20181. The LFP signal was first band-pass filtered between 150 and 250 Hz using
a digital filter filtfilt. The coefficients for the order 600 finite impulse response (FIR) filter
were generated using the fir1 function. The band-pass filtered LFP was then used to compute the
absolute of the Hilbert transform of the data. The output was smoothed by convolving with a 1052-
point Gaussian filter with σ = 40 ms using gaussfilt (James Conder 2020). The findpeaks
function was used to find peaks which were 3 standard deviations above mean in a moving time
window with duration 1 s. A minimum peak width at half height of 15 ms and a minimal peak dis-
tance of 25 ms were required, calculated based on data reported in Axmacher, Elger, and Fell 2008;
Davidson, Kloosterman, and Wilson 2009; Caputi et al. 2012. Potential ripple locations where then
manually inspected using the symmetric one second time window around it, based on the Hilbert
transformation and the raw LFP signal.

2.1.2 Rat data

To supplement the training and validation datasets containing SPW-R events that could be extracted
from the in-house datas described above, we utilized publicly available datasets from the Buzsaki
lab webshare2 (Petersen, Hernandez, and Buzsáki 2018). The datas were obtained in the adult rat
(Long Evans) in awake and sleep states using chronically implanted probes with a total of 96 or 128
channels (Tingley and Buzsáki 2018; Tingley and Buzsáki 2020). The datasets were

• DT2/DT2_rPPC_rCCG_3612um_1360um_20160303_160303_084915,
• DT7/20170324_576um_144um_170324_123932,
• DT9/20170509_468um_36um_170509_103451.

The LFP signal of contacts located in CA1 was extracted and converted to units of mV, along with
the corresponding times and durations of labeled CA1 SPW-R events. SPW-R events were identified
and labeled as described in Tingley and Buzsáki 2020. We here defined SPW-R event times as the
mean of onset and offset times. All events in awake and sleep states were extracted. The sampling
frequency of the LFP data was here fs = 1250 Hz.

The different animals, number of sessions, total recording durations and number of SPW-R events
are summarized in Table 1.

2.2 Data preprocessing

The mouse LFP data were downsampled to a common sampling frequency fs = 1250 Hz and tem-
poral resolution ∆t = 1/fs. For temporal downsampling we used the scipy.signal.decimate
function with default parameters. The rat LFP datasets were used as is. For visualization, we ex-
tracted the band-pass filtered LFP φBP(t) from the LFP φ(t) using 2nd-order Butterworth filter

1https://www.mathworks.com
2https://buzsakilab.com/wp/datasets
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coefficients computed with critical frequencies fc ∈ {150, 250} Hz. Filters were applied to φ(t)
using a zero phase shift, forward-backward filter implementation. Filter coefficients were computed
using scipy.signal.butter and applied with scipy.signal.filtfilt.

2.2.1 Wavelet spectrograms

To compute spectrograms of LFP data φ(t) we relied on the complex Morlet transform with pa-
rameters ω = 6, scaling factor s = 1 and lengths Mf = 2sfsω/f for fundamental frequencies
f ∈ {100, 110 . . . , 240, 250} Hz. The numbers Mf were rounded down to the nearest integer.
The set of discrete wavelet coefficients for each frequency f were computed using the function
scipy.signal.morlet as

Ψf = π−0.25e−0.5x2

(ejωx − e−0.5ω2

) with (1)

x ∈
{
−2πs,−2πs

(
1− 2

Mf

)
, . . . , 2πs

}
. (2)

Each row of the spectrograms S(t, f) = [Sf (t)] were then computed for all frequencies in f as

Sf (t) = |(φ ∗Ψf )(t)|2, (3)

where the asterisk denotes a convolution. We used the discrete 1D implementation by
scipy.signal.convolution in ‘full’ mode. To visualize the spectrograms, we employed a log-
linear matplotlib.cm.inferno color map, with lower and upper limits determined as exp(c),
where c is the 1% and 99% percentiles of log(S), respectively.

2.2.2 Training, validation and test data

Input data: We chose to use the raw single-channel LFP data segments as input to the neural
network algorithm, that is, by defining X(t) = [φ(t)]. For reasons related to the RNN implemen-
tation we defined each segment X(t) as shape (ntimesteps, 1) arrays, even if we here work with
single-channel LFP data.

One-hot encoding of SPW-R events: The train of n labeled times t〈i〉 of the SPW-R events in
each continuous LFP data segment can be expressed mathematically as

T (t) =
n∑
i=1

δ(t− t〈i〉), (4)

where δ(·) denotes the dirac delta distribution, and i the index of the event in a session. We then
assumed that each SPW-R has a typical durationD = 50 ms on the interval [t〈i〉−D/2, t〈i〉+D/2).
A binary ‘one-hot’ encoding vector for the SPW-R events y(t) was then computed as

y(t) = min
(
ϕ(t), 1

)
,where (5)

ϕ(t) =
((
θ(t− t〈i〉 +D/2)− θ(t− t〈i〉 −D/2)

)
∗ T
)

(t), (6)

for the entire duration of each LFP segment. Here θ(·) denotes the Heaviside step function. The vec-
tor y(t) can be interpreted as the time-varying, binary probability p ∈ [0, 1] of an SPW-R occurring
at any given time t.

Datasets: As the SPW-R occurrence in the data was sparse (that is, y(t) = 0 for most t), training
the neural network on entire data segments of different durations is impractical. A likely training
outcome is predicting ŷ(t) = 0 for all times t of the input. For each labeled SPW-R event we
therefore extracted temporal segments of duration Tsample = 1000 ms from X(t) and y(t), that
is, on the interval [t〈j〉 − T

〈j〉
offset − Tsample/2, t

〈j〉 − T
〈j〉
offset + Tsample/2). The offsets T 〈j〉offset ∈

[−(Tsample − 3D)/2, (Tsample − 3D)/2) were randomly drawn for each event. The superscript 〈j〉
here denotes a sample indexed by j from any LFP recording session.

For the total number nSPW−R of SPW-R samples across all animals and sessions, the shapes of the
combined input and output dataset matrices X and y for training, validation and testing were both
(nSPW−R, Tsample/∆t, 1).
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All data entries except for a hold-out set were randomly reordered along their first axis, and then
split into 2 separate file sets for validation and training, each of sizes summarized in table 1. The
validation set was used to monitor loss during training and quantification of performance as detailed
below. The hold-out test set constructed from the entire session of one animal (mouse 4029) was
only utilized for final evaluation of the RNN after training and validation. For visualization purposes
we also stored the corresponding segments of band-pass filtered LFP (φ〈j〉BP(t)) and spectrograms
(S〈j〉(t, f)) for every labeled event.

In an effort to balance the set of features that can be learned by RippleNet from datas obtained mice
and rat, we extracted a similar count of SPW-R events for training and validation from the rat data
as for the mouse data.

Table 1: Summary of data acquisition, and extracted training, validation and test data.

Animals and sessions
mouse ID # sessions duration (s) # SPW-R
4028 4 2412 425
4029 1 603 86
4030 4 2412 658
4031 2 1206 176
4046 4 2410 596
4104 1 603 181
4105 3 1809 231
4106 4 2412 382
4214 3 1812 491
4215 3 1812 440
6102 3 1812 467
6112 3 1812 376
rat ID # sessions duration (s) # SPW-R
2 1 29283 4498
7 1 25575 3714
9 1 26434 3677

Extracted datasets
X,y nSPW−R: {4461, 4400} (mouse and rat)

shape: (nSPW−R, 1250, 1)
Xtrain,ytrain ntrain: {4175, 4000}

shape: (ntrain, 1250, 1)
Xval,yval nval: {200, 200}

shape: (nval, 1250, 1)
Xtest,ytest ntest: {1, 0}

shape: (ntest, 753914, 1)

2.3 RippleNet implementation

2.3.1 Network description

The causal and non-causal RippleNet implementations, summarized schematically and with pa-
rameters in Table 2, consist of a Gaussian noise layer applied to the input, then one 1D convolu-
tional layer followed by a dropout layer, followed by another 1D convolutional layer followed by
batch-normalization, rectified-linear (ReLu) activation and dropout layers. The output of the last
convolutional layer are consecutively fed to the first (bidirectional) LSTM layer followed by batch
normalization and dropout. The final (bidirectional) LSTM layer is followed by a dropout, batch-
normalization and a final dropout layer. Bidirectional layers are optionally applied using a wrapper
function. The output is governed by a time-distributed layer wrapping a dense activation layer, which
facilitates application of the dense layer to every temporal slice of the input. Hence, the output is a
matrix of the same dimensionality as the input matrix.

The Gaussian noise layer and dropout layers are only active during training in order to prevent
overfitting of the training set, and inactive during validation and testing. The kernel weights of the
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convolutional, dense and LSTM layers are initialized with the Glorot uniform initializer. Recur-
rent connections in LSTM layers are initialized using the Orthogonal initializer. For optimization
we chose the Adam algorithm which implements an adaptive stochastic gradient descent method
(Kingma and Ba 2014). The settings for model compilation, optimization algorithm and model fit-
ting are summarized in Table 3. For 3-fold cross-validation different RNN instances are initialized
using different random seeds affecting initializers, dropout layers and optimization. This ensure
replicable results on similar GPU hardware.

Layer dimensions were hand tuned, with the aim of reducing the amount of trainable parameters
and reducing evaluation times and overall training times, while maintaining achievable loss J and
MSE reasonably low.

2.3.2 Loss function and evaluation metric

For training the RNN we used the binary cross entropy loss function
(tf.keras.losses.BinaryCrossentropy)

J = − 1

N

N∑
n=1

[
y(n) log ŷ(n) +

(
1− y(n)

)
log
(
1− ŷ(n)

)]
, (7)

where N = Tsample/∆t is the number of temporal samples in the label array y and RNN prediction
ŷ. To monitor training and validation performance of the RNN we used the mean squared error

MSE =
1

N

N∑
n=1

(
y(n)− ŷ(n)

)2
. (8)

2.4 Data analysis

2.4.1 Thresholding

The output ŷ〈j〉(t) ∈ (0, 1) of RippleNet is a discrete signal of same temporal duration and resolution
as an input segment X〈j〉(t). The signal ŷ〈j〉(t) can be interpreted as the time-varying probability
of an SPW-R ripple event. To extract time points of candidate ripple events, we ran the peak-
finding algorithm implemented by scipy.signal.find_peaks using an initial threshold of 0.5,
minimum peak inter-distance of 50 ms (same as D) and peak width of 20 ms. These parameters
were set heuristically. Other parameters were left at their default values.

Further analyses of SPW-R detection performance were conducted by varying the threshold ∈
{0.1, 0.35, . . . 0.85, 0.95} and peak width ∈ {0, 5, . . . , 50} ms in a grid search, and assessing the
influence on the metrics described next.

2.4.2 Quantification of true and false predictions

On the validation and test data sets, we counted a true positive (TP ) for the predicted time t̂SPW−R

of an SPW-R event if y(t̂SPW−R) = 1, false positive (FP ) if y(t̂SPW−R) = 0 and false negative
(FN ) if no peaks above threshold in ŷ(t) were found in time intervals where y(t) = 1. ŷ(t) can
be above threshold if FP predictions occur next to labeled SPW-R events and result in FN counts.
Negative samples, where y(t) = 0 for all times spanned by the LFP samples, were not included
in any of the training, validation or test sets. Hence, evaluation of true negative (TN ) predictions
were not performed. Note, however, that by construction, each sample y〈j〉(t) was equal to zero up
to 95% of the time spanned by the sample, and that more than one SPW-R event may exist in each
segment.
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Table 2: RippleNet neural network structure and parameters for both unidirectional and bidirectional
variants.

RippleNet architecture and settings
tf.keras.layer: Parameters:
Input shape: (None, 1)

↓
Gaussian standard deviation: 0.001

↓
Conv1D filters: 20

kernel size: 11
strides: 1
use bias: False
padding: same
activation: None
parameters: 240

Dropout rate: 0.8
↓

Conv1D filters: 10
kernel size: 11
strides: 1
use bias: True
padding: same
activation: None
parameters: 2210

BatchNormalization parameters: 40
Activation activation: ReLu
Dropout rate: 0.8

↓
LSTM/ units: 20/6
Bidirectional(LSTM) activation: tanh

recurrent activation: sigmoid
return sequences: True
parameters: 2480/816

BatchNormalization parameters: 80/48
Dropout rate: 0.8

↓
LSTM/ units: 20/6
Bidirectional(LSTM) activation: tanh

recurrent activation: sigmoid
return sequences: True
parameters: 3280/912

Dropout rate: 0.8
BatchNormalization parameters: 80/48
Dropout rate: 0.8

↓
TimeDistributed(Dense) nodes: 1

activation: sigmoid
parameters: 21/13
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Table 3: Summary of settings for model compilation, optimization and fitting of training data set.

Model and optimizer settings
tf.keras method: Parameters:
Model.compile loss: binary_crossentropy

optimizer: tf.keras.optimizers.Adam
metrics: mse

optimizers.Adam lr (learning rate): 0.005/0.01
beta_1: 0.9
beta_2: 0.999
epsilon: 1e-07

Model.fit Xtrain: shape (ntrain, 1250, 1) array
ytrain: shape (ntrain, 1250, 1) array
batch size: 20
epochs: 50
Xval: shape (nval, 1250, 1) array
yval: shape (nval, 1250, 1) array

2.4.3 Precision, recall and F1 metrics

The following quantification metrics of SPW-R detection performance are used:

Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
, (10)

F1 = 2 · Precision ·Recall
Precision+Recall

. (11)

Recall is sometimes referred to as True Positive Rate (TPR) and Sensitivity in the literature (e.g.,
by Zuo et al. 2019). Precision is also known as Positive Predictive Value (PPV). The F1 score
represents the harmonic mean of Precision and Recall. These metrics are all defined on the interval
[0, 1], with 1 being best.

2.4.4 Correlation analysis

To quantify the temporal agreement with labeled and predicted SPW-R event times, we compute the
cross-correlation coefficients between predicted ripple event times t̂〈j〉 and labeled event times t〈j〉
as function of time lag τ as (Eggermont 2010, Eq. 5.10):

ρυυ̂(τ) =
(
Rυυ̂(τ)− NυNυ̂

N

)((
1− Nυ

N

)(
1− Nυ̂

N

))− 1
2

, where (12)

Rυυ̂(k) =
1

N

N∑
n=1

υ(n)υ̂(n+ k). (13)

Here, υ and υ̂ are the time binned Nυ and Nυ̂ times of labeled and predicted SPW-R events using a
bin width ∆ = 2 ms, where N = Nυ +Nυ̂ .

2.4.5 Signal energy

To quantify ‘strengths’ of ripples in the band-pass filtered LFP, we compute the signal energy (not
to be confused with energy in physics) as

E〈j〉s =
N∑
n=1

|φ〈j〉BP(n)|2, (14)

where N = 2τ/∆t and τ ∈ [−100, 100] ms denotes time relative to the SPW-R event time.
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2.5 Technical summary

The Python-based preprocessing and data extraction steps used Python3 (v3.6.10), jupyter-
notebook4 (v6.0.3), numpy5 (v1.18.1, van der Walt, Colbert, and Varoquaux 2011), scipy6 (v1.4.1,
Virtanen et al. 2020), h5py7 (v2.10.0, Collette et al. 2019), matplotlib8 (v3.2.1, Hunter 2007), pan-
das9 (v1.0.3, McKinney 2010) with the Anaconda Python Distribution10 (v4.8.3) running on a 13-
inch 2016 Macbook Pro with macOS Mojave (v10.14.6).

The main training, analysis and visualization of performance of RippleNet was implemented and
executed using Python (v3.6.9), jupyter-notebook (v5.2.2), numpy (v1.18.2), scipy (v1.4.1), h5py
(v2.10.0), matplotlib (v3.2.1), seaborn11 (v0.10.1, Waskom et al. 2020), pandas (v1.0.3) and tensor-
flow12 (v2.1.0, Abadi et al. 2015) running on the Google Colaboratory portal13 using GPU hardware
acceleration (using single Nvidia K80s, T4s, P4s or P100s cards).

3 Results

We here present our main findings and analysis of RippleNet, an automated, trainable recurrent
neural network algorithm for detecting SPW-R events in single-channel LFP recordings.

3.1 Experimental data

Brain signals such as the LFP are characterized by low-frequency fluctuations, with spurious os-
cillatory events that may occur in different parts of the frequency spectrum. A few 1 s samples of
hippocampus CA1 LFP, here used as validation data X〈j〉(t) ∈ Xval for the SPW-R detection al-
gorithm, are shown in Figure 2A. Each sample contains at least one labeled SPW-R event at times
marked by the green diamond symbols. The SPW-R events identified using a conventional method
involving manual steps (cf. Methods), are hardly discernible by eye. They stand out, however, in the
corresponding bandpass-filtered LFP signals φ〈j〉BP(t) (panel B) and in the time-frequency resolved
spectrograms S〈j〉(t, f) (panel C). Individual samples may also include potential SPW-R events that
were not labeled. Events may have amplitudes of ∼ 0.1 mV in the filtered signal. Their durations
are also short (. 100 ms).

3.2 Training and validation of RippleNet

We next continue with 3-fold cross validation of different instances of RippleNet during and after
training. We investigate both unidirectional (causal) and bidirectional (non-causal) variants of Rip-
pleNet, keeping the counts of trainable parameters about a factor two higher for the unidirectional
variant (cf. Table 2). The computational load during training was approximately a factor two higher
for the bidirectional variant. We observed ∼90 and ∼170 ms/step on Tesla P4 GPUs during train-
ing, respectively. The entire dataset (X,y) is split into separate training, validation and test sets with
dimensions detailed in Table 1. Each RippleNet instance was initialized in each trial with different
random seeds affecting initial weights, parameters etc., throughout the different model layers.

The training and validation loss J andMSE as function of training epoch are shown in Figure 3A,B,
respectively. Continuous lines show training performance, while dashed lines show validation per-
formance for different models. Models M1-3 are unidirectional, while models M4-6 are bidirec-
tional. All models within each group, except M1, display similar and stable trajectories for their

3python.org
4jupyter.org
5numpy.org
6scipy.org
7h5py.org
8matplotlib.org
9pandas.pydata.org

10www.anaconda.com
11seaborn.pydata.org
12tensorflow.org
13colab.research.google.com
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Figure 2: Snapshots of experimental data. A: Samples of raw LFP traces (X〈1〉(t), X〈2〉(t), . . .) with
at least one SPW-R event. The green diamonds mark the times of the labeled events. Each column
corresponds to samples j from the validation dataset. B: Bandpass-filtered LFP traces φ〈j〉BP(t). C:
Wavelet spectrograms S〈j〉(t, f) computed from the LFP traces.

respective training sets. Validation loss and MSE are as expected inherently more variable across
epochs, due to the smaller number of validation samples. The bidirectional variants perform consis-
tently better than the unidirectional variants after just a few training epochs, both in terms of loss J
and MSE. Validation loss J and MSE are reduced compared to training loss as noise and dropout
layers are not active during validation. The different trajectories indicate no signs of over-fitting
either to the training or validation sets.
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2 × 10 1

J

A
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0 10 20 30 40 50
epoch
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Figure 3: A: Training and validation loss J as function of training epoch for different RippleNet
training runs, where initial network connection weights are instantiated using different random
seeds. The continuous and dotted lines show loss on training and validation sets, respectively. B:
MSE as function of training epoch.

3.2.1 Validation set performance

Training and validation losses J and MSE only provide an indication of the ability to detect SPW-
R events using the different models. First, in Figure 4 we visually compare a subset of predictions
ŷ〈j〉(t) on LFP samples from a validation set (X〈j〉(t) ∈ Xval(t)), to one-hot encoded SPW-R events
y〈j〉(t) (see Methods). Here, all models produce predictions (panels C) with responses above the
detection threshold for labeled events, but spurious threshold crossings may occur elsewhere.

The non-causal bidirectional RippleNet variants (models M4-M6) produce output with notably less
spurious fluctuations below threshold, when compared to the causal variants (M1-M3). These spu-
rious fluctuations reflect the fact that signal power in the expected frequency range of SPW-R events
do not vanish due to other ongoing neural processes, measurement noise etc. The bidirectional mod-
els do an overall better job at predicting the boxcar shapes of the one-hot encoded SPW-R events in
panel B, owing to the fact that the full input time series are factored into their predictions.
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We next quantify the different models’ performance in terms of counts of true positives (TP), false
positives (FP) and false negative (FN) on the full validation set. Summarized in Table 4, trained
models of each kind (uni- vs. bidirectional RippleNets) show similar numbers of TP events using
the initial settings for the peak-finding algorithm when applied to the individual model predictions
ŷ〈j〉(t). The counts of TPs are for all models generally in the same range, but total error counts
(FP plus FN counts) are consistently higher for the unidirectional RippleNets compared to their
bidirectional counterparts.

In Table 4 we also compute the corresponding measures of performance from the TP, FP and FN
counts. Precision, the ratio between TP predictions and total number of predictions, and Recall,
the ratio between TP predictions and the sum of TP and FN predictions, are for most models around
0.9. Bidirectional models which show a better performance in terms of TP, FP and TN counts, and
result in improved F1 scores of around 0.92.

Table 4: TP, FP, TN counts and performance metrics for RippleNet models on validation data.

Model performance summary
model TP FP FN FP +

FN
Prec. Recall F1

1 520 82 36 118 0.864 0.935 0.898
2 493 49 63 112 0.91 0.887 0.898
3 512 72 44 116 0.877 0.921 0.898
4 528 69 28 97 0.884 0.95 0.916
5 517 51 39 90 0.91 0.93 0.92
6 518 51 38 89 0.91 0.932 0.921
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Figure 4: Comparison of RippleNet predictions on samples from the same test set. Each column
corresponds to different LFP samples X〈j〉 shown at the top. A: Input LFP samples X〈j〉. The
diamonds mark the labeled times of SPW-R events. B: Label vectors y〈j〉(t). C: Predictions ŷ〈j〉(t)
made by the different RippleNet instances. SPW-R events found by the peak-finding algorithm are
marked with diamond markers.

3.2.2 Effect of detection threshold and width parameters

The analysis above assumes fixed hyper-parameters for the peak-finding algorithm (cf. Methods)
applied to the predictions by RippleNet instances on the validation set, including threshold, minimal
peak interdistance and width (in units of time steps of size ∆t). We next hypothesize that the
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total error counts (FP+FN) can be minimized and correct prediction counts (TP) can be maximized
using a hyper-parameter grid search, and therefore chose to optimize thresholds and widths for
each network with respect to the F1-score. We keep the minimal peak interdistance the same as
the boxcar filter width used to construct y(t). Summarized in Figure 5, the TP and FP counts
for each model increased when lowering the threshold and width. FN counts increase for high
threshold values and widths. Bidirectional models (M4-6) are less affected by the width setting
compared to the unidirectional variants. The different models display different ‘sweet spots’ in
terms of total number or errors (FP+FN). These counts are reflected in the calculated Precision
and Recall values. The F1 space show for some models multiple local maxima. Here model 4
has the overall best performance, both in terms of least amounts of errors and highest F1 score.
For further analysis and later application to a hidden test set we therefore choose that model, with
detection threshold 0.7 and peak width of 0 time steps. In passing, we note that the other two
bidirectional RippleNet instances achieve nearly similar levels of performance, while unidirectional
variants have higher error counts.

0.25
0.50
0.75

th
re

sh
. M1

0.25
0.50
0.75

th
re

sh
. M2

0.25
0.50
0.75

th
re

sh
. M3

0.25
0.50
0.75

th
re

sh
. M4

0.25
0.50
0.75

th
re

sh
. M5

0 50
width (ms)

0.25
0.50
0.75

th
re

sh
. M6

0 50
width (ms)

0 50
width (ms)

0 50
width (ms)

0 50
width (ms)

0 50
width (ms)

0 50
width (ms)

250 500
TP

200 400
FP

250 500
FN

250 500
FP + FN

0.6 0.8
Precision

0.4 0.8
Recall

0.4 0.8
F1

Figure 5: Effect of varying parameters threshold and width for the peak finding algorithm applied to
predictions on the validation datas made by different RippleNet instances. Each row corresponds to
different models and the columns to different metrics. Colorbars are shared among panels in each
column. The cross hatches in the F1 column correspond to parameter combinations maximizing the
F1 score as summarized in Table 5.

3.2.3 False (FP & FN) predictions

Having assessed the best performing RippleNet model instance and combination of width and
threshold parameters on the validation set (Table 5), we next analyze features FP and FN predic-
tions on the validation dataset. LFP samples resulting in FP and/or FN predictions are illustrated in
Figure 6-7. From this subset of samples, FP predictions appear to occur for transient events carrying
power in the 150-250 Hz frequency range as reflected in both band-pass filtered LFPs (panels B) and
LFP spectrograms (panels C), similar to correct (TP) predictions. One explanation may be that the
procedure used to process the data initially either missed SPW-R events with poor signal-to-noise
ratio, or that they were rejected manually based on some criteria. The prediction vectors ŷ〈j〉(t)
approach a value of 1 in some FP cases, implying a high probability of an actual SPW-R event.

For the set of samples resulting in FN predictions, the RippleNet make predictions ŷ(t) with magni-
tudes during the labeled SPW-R events that simply fail to produce a large enough amplitude and/or

13

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.087874doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.087874
http://creativecommons.org/licenses/by-nd/4.0/


Table 5: TP, FP, TN counts and performance metrics for different RippleNet instances on validation
datasets, using optimized threshold settings.

Optimized models performance summary
model thresh. width TP FP FN FP+

FN
Prec. Recall F1 width

(ms)
1 0.25 37.5 518 71 38 109 0.879 0.932 0.905 30
1 0.3 37.5 518 71 38 109 0.879 0.932 0.905 30
2 0.35 31.2 498 47 58 105 0.914 0.896 0.905 25
3 0.55 31.2 505 55 51 106 0.902 0.908 0.905 25
4 0.7 0 522 43 36 79 0.924 0.935 0.93 0
5 0.4 0 534 63 24 87 0.894 0.957 0.925 0
6 0.5 0 525 53 32 85 0.908 0.943 0.925 0

width for the peak-finding algorithm to detect the event. Here, a reduction of the threshold value for
example will reduce FN counts, and increase FP and TP counts (cf. row 4 in Figure 5). Other cases
resulting in both a FN and FP registration occurs if the predicted event time is outside of the boxcar
shapes of the one-hot encoded signal. One such case is occurring in column 2 of Figure 6.
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Figure 6: Examples of validation samples j resulting in FP and FN predictions. Each columns
shows (A) input sequence, (B) bandpass-filtered LFP, (C) spectrograms and (D) predictions. The
green, orange and red diamond markers denote times of TP, FP and FN events, respectively.

3.3 Ripple detection in time-continuous LFP data.

With the same RippleNet instance as in the previous section, we next pay attention to the litmus test
of this project, that is, applications to time continuous LFP recordings of arbitrary durations. We
choose the 10 minute duration LFP signal of one session of one animal excluded from training or
validation data (mouse 4029, session 1, see Table 1), and make predictions using RippleNet. This
hold-out data set mimics new recordings unavailable at the time of training the networks. Predicted
events within 1 s of movement periods are removed from the analysis to suppress FPs resulting from
e.g., muscle noise.

By construction, the RippleNet algorithm can, in principle, be run on LFPs of arbitrary duration,
even if all training and validation samples are of the same duration. We tested two operating modes:
Either feeding in the entire LFP sequence as a single sample (not shown), or reshaping the LFP
sequence into many sequential samples of the same duration. For the latter the predictions made
on each sample (ŷ〈j〉(t)) can be concatenated together to form a continuous signal spanning the
duration of the LFP entirely. In practice, 5-fold zero-padding and splitting of the signal into samples
of duration 0.5 s, running predictions, concatenating predictions and computing the median output
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Figure 7: Same as Figure 6 showing another set of samples with detection mistakes.

worked well on the hidden test set. Start-up transients in the output are suppressed by zero-padding
the beginning and end of the full LFP signal by various amounts and realigning the predictions
accordingly before computing the median.

For the 10 s segment X(t) shown in Figure 8A, with corresponding bandpass-filtered LFP, spectro-
gram and one-hot encoded events (panels B-D), all labeled SPW-R events are found (panel E). Not
surprisingly, other significant responses with strengths above the peak-finding detection threshold
are also found, resulting in a larger count of FPs compared to TPs (summarized in Table 6). Based on
the previous analysis on a validation set with no negative samples that result in an error rate of about
one per seven TP SPW-R event, we expect a higher frequency of FP predictions when predictions
are made on samples spanning the entire session.

Table 6: TP, FP, TN counts and performance metrics on continuous test set.

Model performance summary on continuous test dataset
model TP FP FN FP +

FN
Prec. Recall F1

4 78 104 8 112 0.429 0.907 0.582

For the approximate 10 minutes duration of the input LFP sequence, the chosen RippleNet instance
finds about two times the number of events compared to the number of labeled SPW-R events in the
input LFP sequence, see Figure 9A and Table 6. The cumulative count of predicted events appears
linearly dependent on the cumulative count of labeled events. The cross-correlation coefficients
ρyŷ(τ) between predicted event times and labeled events in the test set (in bins of 2 ms) in Figure 9B,
demonstrates a temporally precise prediction of event times, well within the 50 ms boxcar window
around for each labeled SPW-R event in y(t) (Figure 8D).

3.3.1 Features of predicted SPW-R events

Having established that the chosen RippleNet instance predicts presumed FP events at a high rate
relative to TP rate in continuous LFP data, we next investigate the dependence between predicted
SPW-R probability (ŷ〈j〉) and signal energy in the band-pass filtered LFP E〈j〉s (Equation (14)). The
RippleNet instance fares well with the labeled events in the hidden test set, with only a handful of
FNs but many FPs (summarized in Table 6). The majority of labeled samples result in probabilities
ŷ〈j〉 above the detection threshold 0.7. The ten samples with highest predicted probability are shown
in Figure 10 rows 1-3, as well as the 10 samples with lowest predicted probability in rows 4-6. The
RippleNet model instance recognizes SPW-R events with high amplitudes and quite stereotypical
appearance both in the band-pass filtered LFP and spectrograms. At the lower end of the scale,
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Figure 8: Application of RippleNet on continuous data. A: 10 s excerpt of input LFP signal X(t) =
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Figure 9: A: Cumulative counts of predicted SPW-R events as function of labeled SPW-R events.
B: Cross-correlation coefficients between predicted ripple event times and labeled event times as
function of time lag τ (2 ms bin size). C: Bandpass-filtered LFP SPW-R event energy (EφBP 〈j〉 ) as
function of (1 − ŷ〈j〉) of SPW-R events (orange dots). The contour lines show the bivariate kernel
density estimate of the kdeplot method in the Seaborn plotting library. The top and bottom panel
shows labeled and predicted SPW-R events, respectively. D: Averaged spectrograms for labeled
(top) and predicted (bottom) SPW-R events.
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SPW-R events show irregular fluctuations at lower amplitudes. The same holds true for the SPW-
R events detected above threshold by the RippleNet algorithm (Figure 11). Detected events have
transient activity around 150 Hz in their respective spectrograms.

It thus appears that features of SPW-R events detected by the RippleNet algorithm share features
of the manually scored events. In Figure 9C we plot the signal energy E〈j〉s (Equation (14)) depen-
dence on probability of non-event (1− ŷ〈j〉) as predicted by the RippleNet instance. In this double-
logarithmic plot, the distributions are overlapping, but many more RippleNet-detected events have
lower energy and predicted probability. This finding is in agreement with the observed skewed dis-
tributions of SPW-R power (see e.g., Csicsvari et al. 1999a). We note that the averaged spectrogram
of labeled and predicted events in Figure 9D are also very similar in appearance.
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Figure 10: Labeled events (input LFP, bandpass-filtered signal, spectrograms) from the hidden test
set with RippleNet confidence. Rows 1-3 shows events with high RippleNet-predicted probabilities
(ŷ(t〈j〉) ≈ 1), rows 4-6 shows labeled 10 events with the lowest predicted event probability.

4 Discussion

4.1 Summary

In this paper we have introduced the RippleNet algorithm for detecting SPW-R events in time-
continuous LFP data as recorded with single- or multi-channel probes in hippocampus CA1. The
development of the RNN was motivated by high-performance speech recognition systems which
utilize deep LSTM based RNNs (Graves, Mohamed, and Hinton 2013; Michalek and Vanek 2018).
In the present context, the binary problem of detecting SPW-R events is simpler than speech recog-
nition which must distinguish between different phonemes making up a spoken language. As such,
the SPW-R detection task is analogous to mobile device wake up call detection to commands such
as "Hello Siri!" or "OK, Google!" in noisy environments.

17

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.087874doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.087874
http://creativecommons.org/licenses/by-nd/4.0/


0.25

0.00

0.25

(m
V)

y 6 = 0.74 y 12 = 0.74 y 157 = 0.73 y 28 = 0.73 y 121 = 0.72 y 8 = 0.72 y 143 = 0.72 y 152 = 0.72 y 41 = 0.71 y 5 = 0.70

0.025

0.000

0.025

(m
V)

FP FP FP FP FP FP FP FP FP FP

-100 0
 (ms)

100

150

200

250

f (
Hz

)

-100 0
 (ms)

-100 0
 (ms)

-100 0
 (ms)

-100 0
 (ms)

-100 0
 (ms)

-100 0
 (ms)

-100 0
 (ms)

-100 0
 (ms)

-100 0
 (ms)

10 4
10 3
10 2
10 1

(a
.u

.)

Figure 11: Same as Figure 10 but for 10 SPW-R events detected at or above threshold by the Rip-
pleNet algorithm. TP and FP status are shown in each column.

4.2 RippleNet performance on validation data

We trained different versions of RippleNet, each instantiated with different random weights on the
same samples from the full set of manually scored data obtained in both mouse and rat CA1. On our
validation dataset with mouse and rat data, the best-performing RippleNet instance resulted in 522
TP, 43 FP and 36 FN SWP-R predictions resulting in a combined F1 score of 0.93 (Table 5).

The non-causal versions of RippleNet utilizing bidirectional LSTMs is found to outperform the
causal unidirectional versions during training and validation. On the validation data with optimized
detection threshold settings, unidirectional RippleNets achieved similar TP counts, but with consis-
tently higher error counts than bidirectional variants. The best-performing unidirectional RippleNet
resulted in 518 TPs, 71 FPs and 38 FNs and F1 = 0.905.

The fact that the bidirectional versions outperform the unidirectional versions during training and
validation, even if numbers of trainable parameters are larger for the latter cases is an indication that
also the future context of the input LFP contains information about SPW-R events. Thus, real-time
applications of RippleNet may be hampered by use of the unidirectional version, which may only
use past and present context in order to make a prediction. For offline detection of SPW-R events
the better choice is the bidirectional version.

4.3 RippleNet performance on test data

A hidden test dataset was also obtained from a single animal with one single session that is not
included in any of the training/validation data. This best reflected real-world application to newly
obtained LFP recordings in mouse. Features of actual SPW-R events may differ somewhat from
those in the training/validation data obtained in different animals and species (Table 1). Test perfor-
mance (in terms of loss J , MSE, Precision, Recall, F1) can be expected to be reduced compared to
results obtained on the train and validation set. Indeed, the resulting counts of 78 TPs, 104 FPs and
8 FNs resulted in poor Precision (0.429) but still good Recall (0.907) and harmonic mean between
the two (F1) of 0.582. We found that application of the RippleNet algorithm results in far more
predictions of events with low energy than the conventional detection procedure used to label the
test set initially.

When continuous LFP is used as input to the algorithm, RippleNet predicts many more events than
were manually labeled in the test set, but superfluous events have similar features to labeled events.
Given the nature of RNN parameters trained using backpropagation (Hochreiter and Schmidhuber
1997), the RippleNet algorithm may also be sensitive to hidden features in the LFP different than
high-frequency (around 150 Hz or so) oscillations typically associated with SPW-R events, raising
the question of whether or not conventional SPW-R detection algorithms relying on band-pass fil-
tered LFPs discard useful information contained in other parts of the raw signal. One major caveat to
the fact RippleNet algorithm finds most labeled events in the test and validation sets, but also many
other positives, imply that the user must still make manual, quite likely subjective, judgements of
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whether or not detected events are true SPW-R events. As discussed below, results judged by a
domain expert can be used to improve the method.

4.4 Improved data and extensions of RippleNet

Additional training data: Additional datasets containing labeled SPW-R events, available from
online resources such as CRCNS.org (Teeters et al. 2008), can be added as soon as they become
available. At present, several CRCNS deposits with CA1 LFPs have been made, but not every
dataset comes with labeled SPW-R events. The uploaded datas are mostly obtained in rats using
different kinds of electrodes such as laminar probes, tetrodes, and in different brain states such as
sleep, anesthesized and awake states. While CA1 SPW-R events may represent underlying brain
mechanisms that are highly preserved across species, it is a priori unclear if the SPW-R features
our algorithm learned to recognize in the presently used mouse and rat datasets overlap with those
in other data. The SPW-R events may for example have a different distributions of power across
frequencies, or typical durations. For the present paper we opted to use only two sources of data,
which should each be internally consistent in terms of data quality and methods (species, acquisition
hardware, noise levels, data processing steps, label consistency etc.).

Data augmentation: Synthesizing recordings could also act as a potential supplement to real data.
Generative Adverserial Nets (GAN) (Goodfellow et al. 2014) have for instance proven to produce
very lifelike data in other domains such as image generation (e.g., Karras et al. 2019). There is
an untapped potential to generate virtually unlimited amounts of ‘fake’ LFPs with similar statistics
(power spectrum, temporal correlations, etc.) as the real data. A simple SPW-R model based on the
superposition of modulated oscillatory events on pink (1/f ) noise was already proposed by Sethi
and Kemere 2014, but pure pink noise can not account for the temporal correlations of real data.

Neural network architecture: RNNs with LSTM layers or Gated Rectified Unit (GRU) layers
(Chung et al. 2014) have for some time been considered state-of-the-art in sequence learning (Bai,
Zico Kolter, and Koltun 2018). More recently, alternative architectures such as Temporal Convolu-
tional Networks (TCN), for example WaveNet (van den Oord et al. 2016), also demonstrate capabil-
ities of learning long-term temporal relationships in data. TCN networks were by Bai, Zico Kolter,
and Koltun 2018 shown to outperform LSTM networks on various sequence learning tasks, and
should also be evaluated for the SPW-R detection task described throughout this manuscript. The
framework developed here around the high-level tensorflow.keras module allows for straight-
forward comparison between different architectures. This comparison should also include conven-
tional CNNs (LeCun, Bengio, and Hinton 2015) and variants such as deep residual networks (He
et al. 2015) and inception networks (Szegedy et al. 2015; Ismail Fawaz et al. 2019). With the
LSTM-based architectures we finally chose, one could potentially achieve even better performance
by varying hyper parameters for the optimizer (e.g., learning rate), dropout layers (dropout rate), dis-
abling batch-normalizing layers, optimize kernel sizes for the convolutional layers, add additional
hidden layers and so forth.

Better-quality labels: While we here did not systematically compare predictions using funda-
mentally different architectures, we briefly tested multi-layered CNNs, causal TCNs, and replacing
LSTM layers with GRU layers, but saw either worse or similar performance on the training and
validation data. Similarly, we also tested increasing the layer sizes (and numbers of trainable param-
eters) and noted longer evaluation times and only slight improvements in accuracy. With the existing
data and labels the features any deep learning method may learn is limited if labels are inaccurate.
For instance, the rat dataset contained information on SPW-R durations (which we ignored) while
the mouse data only contained their locations. More accurate predictions on the existing dataset dur-
ing training and validation can be achieved by more thorough labeling, perhaps by multiple experts
independently.

Self-improving method: As soon as RippleNet has been used to find SPW-R event times in
batches of new data, validated SPW-R events can supplement the initial training dataset. Then,
the pre-trained RippleNet instance presented here can be trained for more iterations, learn new fea-
tures and consolidate learned features present in the initial and new samples. With time and several
such iterations, an even better performance can be achieved. Another possibility is classification
of different kinds of SPW-R events and non-SPW-R (noise) events. We did not yet persuade such
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classification, as it would require a modification to the final dense output layer to use the so-called
Softmax activation function instead of the presently used sigmoid activation function. The output
dimensionality and values would then reflect the number of classes and respective probabilities.

Online and offline RippleNet applications: The bidirectional LSTM architecture is here found
to perform better than the causal, unidirectional LSTM variant. Only the latter may see potential
use in online and real-time applications, which only rely on past and present segments of the input
time series. High temporal accuracy may be achieved, and unidirectional RippleNet instances may
therefore see potential use in closed loop experiments where a stimulus may be delivered at the
times of detected SPW-R events. As the RippleNet algorithm runs on temporally downsampled LFP
signals, a good realtime factor is achievable on short segments, in particular if the computer has
GPU accelerating capabilities.

Pre-trained RippleNet models can easily be loaded (with the tf.keras.load_model function in
Python), and can be incorporated into Python-based data processing workflows with ease. For this
purpose, models may also be converted to the higher-level tf.estimator API.

Web/cloud applications: The majority of development and analysis of RippleNet was incorpo-
rated using Jupyter notebooks14 running on the Google Colaboratory portal15 with data file access
and synchronization via Google Drive16. RippleNet can be provided as a Cloud service, or as a
service running locally on the user’s computer. The latter may facilitate on not having to upload
potentially large files but will greatly benefit from a local GPU in order to accelerate compute times.
Distribution of RippleNet to end users can be done using containers in Docker17, Kubernetes18 or
similar. A cloud service however would facilitate on the powerful GPU backends provided via
services like Google Cloud19 which also has efficient data handling.

Another option could also be a port of RippleNet to tensorflow.js as the model is already only us-
ing keras constructs. The conversion step appears trivial20 and could allow execution of RippleNet
in html contexts.

Graphical User Interface (GUI): The current RippleNet version is set up as a step-by-step work-
flows in Jupyter notebooks for training, validation and application to continuous data, respectively.
While a standalone, interactive RippleNet application with a GUI is certainly possible to develop
using cross-platform application tools such as PyQT21, it is presently only considered. A prototype
jupyter notebook which allows for user-interactive rejection of detected events (noise events) and
storage of accepted events has been implemented, however.

4.5 Outlook

This work is an effort to introduce novel machine learning and deep learning algorithms for the
detection of SPW-R events in electrophysiological data. The RippleNet algorithm presented here
learns through supervised learning an internal representation of features of SPW-R events, which
facilitates a highly non-linear transformation of input LFP signals into output signals that represent
the time-varying probabilities of SPW-R events. This represents a fundamental change from the
typical procedure employed in standard detection workflows relying on hand crafted feature extrac-
tion. With access to more training data with labeled events, the method can improve by running
more training iterations on new data. Our hope is that the tool can reduce the amount of time the
experimentalist spend on manual extraction of SPW-R events using heuristic criteria, and allow for
a better understanding of features of these events and their role in brain function. Also, we hope
that this powerful framework may be adapted to other detection tasks, for instance onset of epileptic
seizures. In this direction, there are many potential applications, also clinical.

14jupyter.org
15colab.research.google.com
16drive.google.com
17docker.com
18kubernetes.io
19cloud.google.com
20tensorflow.org/js/tutorials/conversion/import_keras
21riverbankcomputing.com/static/Docs/PyQt5
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