• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • View Item
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Soil depth matters: shift in composition and inter-kingdom co-occurrence patterns of microorganisms in forest soils

Mundra, Sunil; Kjønaas, O. Janne; Morgado, Luis; Krabberød, Anders Kristian; Ransedokken, Yngvild; Kauserud, Håvard
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
2021_10.1093.femsec.fiab022_oa.pdf (3.977Mb)
URI
https://hdl.handle.net/11250/2823710
Date
2021
Metadata
Show full item record
Collections
  • Journal articles (peer reviewed) [4028]
  • Publikasjoner fra Cristin - NMBU [4862]
Original version
FEMS Microbiology Ecology. 2021, 97 (3), .   10.1093/femsec/fiab022
Abstract
Soil depth represents a strong physiochemical gradient that greatly affects soil-dwelling microorganisms. Fungal communities are typically structured by soil depth, but how other microorganisms are structured is less known. Here, we tested whether depth-dependent variation in soil chemistry affects the distribution and co-occurrence patterns of soil microbial communities. This was investigated by DNA metabarcoding in conjunction with network analyses of bacteria, fungi, as well as other micro-eukaryotes, sampled in four different soil depths in Norwegian birch forests. Strong compositional turnover in microbial assemblages with soil depth was detected for all organismal groups. Significantly greater microbial diversity and fungal biomass appeared in the nutrient-rich organic layer, with sharp decrease towards the less nutrient-rich mineral zones. The proportions of copiotrophic bacteria, Arthropoda and Apicomplexa were markedly higher in the organic layer, while patterns were opposite for oligotrophic bacteria, Cercozoa, Ascomycota and ectomycorrhizal fungi. Network analyses indicated more intensive inter-kingdom co-occurrence patterns in the upper mineral layer (0–5 cm) compared to the above organic and the lower mineral soil, signifying substantial influence of soil depth on biotic interactions. This study supports the view that different microbial groups are adapted to different forest soil strata, with varying level of interactions along the depth gradient.
Journal
FEMS Microbiology Ecology

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit