• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • View Item
  •   Home
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of fluctuating hydrology during summer and autumn on winter frost hardiness and salt tolerance of selected Raingarden species

Bakhtina, Marina; Hanslin, Hans Martin; Torre, Sissel; Ergon, Åshild; Rosef, Line
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
2024_10.1016.j.ufug.2024.128534_oa.pdf (9.477Mb)
URI
https://hdl.handle.net/11250/3185879
Date
2024
Metadata
Show full item record
Collections
  • Journal articles (peer reviewed) [5269]
  • Publikasjoner fra Cristin - NMBU [6233]
Original version
Urban Forestry & Urban Greening. 2024, 101 1-14.   10.1016/j.ufug.2024.128534
Abstract
Background Vegetated infiltration systems such as raingardens and bioswales are challenging for plant growth and survival due to fluctuating hydrological conditions and further subsequent stresses. Aim Here, we investigated the effect of fluctuation hydrology on growth and flowering and subsequent winter frost hardiness or spring salt tolerance for two common raingarden plant species, Filipendula ulmaria, and Calamagrostis ×acutiflora ‘Karl Foerster’, under controlled conditions. Methods During summer, plants were exposed to four hydrological regimes, each with a different combination of repeating dry and wet cycles. Then, after natural winter acclimation and storage, plants went through standardized freezing tests to determine LT50 and regrowth potential or were exposed to four levels of salt treatments (Control, 28 mM, 56 mM, and 84 mM NaCl) in the following spring. Results We found that fluctuating hydrology reduced the growth of Filipendula ulmaria, experiencing cycles of 72 hours of flooding and 264 hours of drained conditions, followed by a reduction of growth and flowering after salt exposure. Calamagrostis xacutiflora was less responsive to both fluctuating hydrology and salinity. Cycles with the longest dry conditions (Wet-dry cycles) showed the strongest negative effect on the performance of tested species. The hydrological regimes did not influence freezing tolerance in either species. Conclusion Moderate hydrological fluctuations did not cause damage to vegetation in vegetated infiltration systems, at least under shaded conditions. At the same time, drought tolerance is an important trait for species and cultivars in raingardens during hydrological fluctuations. Our prediction that hydrological conditions that negatively affected plant growth would reduce subsequent frost and salinity tolerance was only partially supported.
Journal
Urban Forestry & Urban Greening

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit