• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Faculty of Science and Technology (RealTek)
  • Master's theses (RealTek)
  • Vis innførsel
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Faculty of Science and Technology (RealTek)
  • Master's theses (RealTek)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Forecasting PV-Diesel Microgrid Campus Load Using Machine Learning: The University of the Free State QwaQwa Campus Microgrid

Ajaegbu, David Chukwudi
Master thesis
Thumbnail
Åpne
no.nmbu:wiseflow:7110333:59110634.pdf (3.046Mb)
Permanent lenke
https://hdl.handle.net/11250/3154056
Utgivelsesdato
2024
Metadata
Vis full innførsel
Samlinger
  • Master's theses (RealTek) [2009]
Sammendrag
This thesis focused on using machine learning techniques to forecast the load of a photovoltaic (PV)-diesel-powered microgrid on the QwaQwa Campus at the University of Free State in South Africa. The hybrid PV-diesel system is installed to mitigate frequent power shortages faced in South Africa. The methodology involved training multiple ML models, including Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU), hybrid Convolutional Neural Networks (CNN), Extreme Gradient Boosting (XGB), and a Random Forest (RF) Regressor, using historical consumption data. These models were evaluated based on their performance in accurately predicting short-term electricity consumption.
 
This thesis focused on using Machine Learning (ML) techniques to forecast the load of a photovoltaic (PV)-diesel-powered microgrid on the QwaQwa Campus at the University of Free State in South Africa. The hybrid PV-diesel system is installed to mitigate frequent power shortages faced in South Africa. The methodology involved training multiple ML models, including Long Short-Term Memory networks, Gated Recurrent Units, hybrid Convolutional Neural Networks, Extreme Gradient Boosting, and a Random Forest Regressor, using historical consumption data. These models were evaluated based on their performance in accurately predicting short-term electricity consumption.
 
Utgiver
Norwegian University of Life Sciences

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit