• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • School of Economics and Business (HH)
  • Master's theses (HH)
  • Vis innførsel
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • School of Economics and Business (HH)
  • Master's theses (HH)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimising Customer Churn Prediction in Telecommunications: A Comparative Analysis of Machine Learning Models Using Hierarchical Time Series Forecasting

Dak Al-Bab, Alin
Master thesis
Thumbnail
Åpne
no.nmbu:wiseflow:7111458:59124720.pdf (3.625Mb)
Permanent lenke
https://hdl.handle.net/11250/3148117
Utgivelsesdato
2024
Metadata
Vis full innførsel
Samlinger
  • Master's theses (HH) [1213]
Sammendrag
This thesis investigates the application of hierarchical time series forecasting to predict customer churn in the telecommunications industry. By employing advanced machine learning models such as SARIMA, Prophet, ETS, LSTM, and XGBoost, the study aims to enhance the accuracy and relevance of churn predictions. The research compares the effectiveness of these models, focusing on their ability to forecast churn counts rather than individual churn events. The findings indicate that Prophet and XGBoost offer superior performance across different levels of data aggregation. This study contributes to the field by demonstrating the benefits of hierarchical forecasting for strategic planning and resource allocation, providing valuable insights into customer retention strategies.
 
 
 
Utgiver
Norwegian University of Life Sciences

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit