• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • School of Economics and Business (HH)
  • Master's theses (HH)
  • Vis innførsel
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • School of Economics and Business (HH)
  • Master's theses (HH)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Forecasting Inflation in Norway Using Machine Learning

Nesse, Martin Bergsholm
Master thesis
Thumbnail
Åpne
no.nmbu:wiseflow:7111458:59124692.pdf (6.559Mb)
Permanent lenke
https://hdl.handle.net/11250/3148116
Utgivelsesdato
2024
Metadata
Vis full innførsel
Samlinger
  • Master's theses (HH) [1213]
Sammendrag
This thesis investigates the efficacy of machine learning (ML) models, such as Random Forest and Long-short-term memory (LSTM), in forecasting post-Covid inflation trends in Norway. The research demonstrates that LSTM models outperform traditional benchmark models and an autoregressive integrated moving average (ARIMA) model within a 12-month forecast horizon, focusing on the sudden surge in inflation following the pandemic. The findings are constrained to the specific economic conditions of the post-Covid period in Norway, with no testing performed under other economic circumstances. This thesis contributes to the understanding of ML’s potential in economic forecasting and suggests pathways for future research to overcome its limitations and explore new methodologies in the field of economic analysis.
 
 
 
Utgiver
Norwegian University of Life Sciences

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit