• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Faculty of Science and Technology (RealTek)
  • Master's theses (RealTek)
  • Vis innførsel
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Faculty of Science and Technology (RealTek)
  • Master's theses (RealTek)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploration of Reservoir Computing and Artificial Neural Network Architectures as Saliency Detectors

Vang, Georg
Master thesis
Thumbnail
Åpne
no.nmbu:wiseflow:7110333:59110629.pdf (1.179Mb)
Permanent lenke
https://hdl.handle.net/11250/3148040
Utgivelsesdato
2024
Metadata
Vis full innførsel
Samlinger
  • Master's theses (RealTek) [2009]
Sammendrag
This study explores the performance of reservoir-type and conventional artificial neural networks as saliency detectors, inspired by Li Zhaoping's hypothesis regarding the V1's role as a saliency detector. A comparative analysis evaluates various models on a simple input image time series task, focusing on their effectiveness in training and out-of-sample validation data.

Results indicate that while reservoir models exhibit higher training data loss compared to non-reservoir networks, they outperform other models on new data. Modifications to the reservoir structure show promise in improving both loss and Intersection over Union (IoU) score performance on the training and out-of-sample validation data. However, the study does not find that imposing a more visual cortex-like structure in the reservoir enhances its performance.

Further analysis suggests that while reservoir models offer advantages such as cost-effectiveness and robustness for changes in input data, they may lack the precision of more trainable models like CNNs. Limitations to the thesis include the scope of hyperparameter exploration and the lack of overfitting mitigation techniques like the use of dropout.

Future research should focus on refining all models to measure the potential performance on both training and out-of-sample data. This includes exploring ensemble methods and improving weight initialization techniques to enhance model precision and adaptability, leading to advancements in various real-world applications.
 
 
 
Utgiver
Norwegian University of Life Sciences

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit