• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • Vis innførsel
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Preharvest application with calcium and maturity at harvest affects postharvest fungal fruit decay of European plum

Børve, Jorunn; Vangdal, Eivind; Stensvand, Arne
Peer reviewed, Journal article
Published version
Thumbnail
Åpne
2023_10.1007.s10658-023-02654-7_oa.pdf (513.2Kb)
Permanent lenke
https://hdl.handle.net/11250/3079598
Utgivelsesdato
2023
Metadata
Vis full innførsel
Samlinger
  • Journal articles (peer reviewed) [5298]
  • Publikasjoner fra Cristin - NMBU [6263]
Originalversjon
European journal of plant pathology. 2023, 166 (2), 199-208.   10.1007/s10658-023-02654-7
Sammendrag
The combination of preharvest treatments with calcium chloride and fungicides, and storage of maturity graded fruit were assessed in five European plum cultivars. At harvest, samples of fruit within a commercially suitable range in ripening were divided into two categories: less-ripe (tree ripe-) and more-ripe (tree ripe+). The fruit were stored for 10–14 days at 4 °C followed by 2–3 days at 20 °C before the assessment of fungal decay. If calcium chloride was applied six times each season, postharvest fruit decay was significantly reduced in four of nine experiments, with a total mean reduction of around 50%. Two calcium applications in combination with a fungicide treatment reduced decay by approx. 60% compared to the untreated in one experiment. In six of seven experiments there was no effect of preharvest fungicide applications. In six of 10 experiments, fruit of the category tree ripe- had fewer fruit with fungal decay after storage than the tree ripe+fruit. The higher incidence in the category tree ripe+fruit was primarily due to brown rot, Mucor rot, and blue mould. For the category tree ripe+, there was two to ten times more decay than on tree ripe- fruit after a simulated shelf-life period. To ensure low incidence of fungal decay, fruit of commercial harvest maturity may thus be separated in two ripening categories, one for rapid distribution to the market (tree ripe+) and another for extended distribution time (tree ripe-).
Tidsskrift
European journal of plant pathology

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit