• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Faculty of Science and Technology (RealTek)
  • Master's theses (RealTek)
  • Vis innførsel
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Faculty of Science and Technology (RealTek)
  • Master's theses (RealTek)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatial Estimation of Depth to Bedrock using Borehole Data: A Gaussian Process Framework

Gnanaseelan, Marisha
Master thesis
Thumbnail
Åpne
no.nmbu:wiseflow:6839543:54591955.pdf (66.61Mb)
Permanent lenke
https://hdl.handle.net/11250/3077216
Utgivelsesdato
2023
Metadata
Vis full innførsel
Samlinger
  • Master's theses (RealTek) [2009]
Sammendrag
Depth to Bedrock (DTB) is a critical parameter in several fields of study, including geology, hydrology, soil sciences, and civil engineering. However, obtaining this parameter through near-surface geophysical methods can be challenging and expensive, particularly in difficult terrain. Fortunately, high-quality borehole data from previous geotechnical investigations can be used to estimate the DTB in areas where no boreholes have yet been created.

This thesis presents a machine learning framework for estimating the DTB value in areas of interest using Gaussian Process models. The performance of different kernel functions, including Radial Basis Function (RBF), Matérn 3/2 kernels, and combined linear and RBF kernels, is evaluated, along with the impact of implementing anisotropy in the models.

The results show that the Matérn 3/2 kernel with anisotropic implementation performs the best in estimating DTB. However, challenges in hyperparameter optimization, non-Gaussian target variables, and model selection are highlighted, and further investigation into these areas is recommended. The framework presented here provides practical implications for geotechnical engineering. Further, it provides a basis for future research in this area, where the incorporation of additional geological and remotely sensed data could potentially improve the quality of DTB estimation.
 
 
 
Utgiver
Norwegian University of Life Sciences

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit