Vis enkel innførsel

dc.contributor.authorMagnussen, Eirik Almklov
dc.contributor.authorZimmermann, Boris
dc.contributor.authorBlazhko, Uladzislau
dc.contributor.authorDzurendová, Simona
dc.contributor.authorDupuy--Galet, Benjamin Xavier
dc.contributor.authorByrtusova, Dana
dc.contributor.authorMuthreich, Florian
dc.contributor.authorTafintseva, Valeria
dc.contributor.authorLiland, Kristian Hovde
dc.contributor.authorTøndel, Kristin
dc.contributor.authorShapaval, Volha
dc.contributor.authorKohler, Achim
dc.date.accessioned2023-03-22T13:31:07Z
dc.date.available2023-03-22T13:31:07Z
dc.date.created2023-01-13T13:14:47Z
dc.date.issued2022
dc.identifier.citationCommunications chemistry. 2022, 5 (1), .
dc.identifier.issn2399-3669
dc.identifier.urihttps://hdl.handle.net/11250/3059893
dc.description.abstractInfrared spectroscopy delivers abundant information about the chemical composition, as well as the structural and optical properties of intact samples in a non-destructive manner. We present a deep convolutional neural network which exploits all of this information and solves full-wave inverse scattering problems and thereby obtains the 3D optical, structural and chemical properties from infrared spectroscopic measurements of intact micro-samples. The proposed model encodes scatter-distorted infrared spectra and infers the distribution of the complex refractive index function of concentrically spherical samples, such as many biological cells. The approach delivers simultaneously the molecular absorption, sample morphology and effective refractive index in both the cell wall and interior from a single measured spectrum. The model is trained on simulated scatter-distorted spectra, where absorption in the distinct layers is simulated and the scatter-distorted spectra are estimated by analytic solutions of Maxwell’s equations for samples of different sizes. This allows for essentially real-time deep learning-enabled infrared diffraction micro-tomography, for a large subset of biological cells.
dc.language.isoeng
dc.titleDeep learning-enabled Inference of 3D molecular absorption distribution of biological cells from IR spectra
dc.title.alternativeDeep learning-enabled Inference of 3D molecular absorption distribution of biological cells from IR spectra
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersion
dc.description.versionpublishedVersion
dc.source.pagenumber10
dc.source.volume5
dc.source.journalCommunications chemistry
dc.source.issue1
dc.identifier.doi10.1038/s42004-022-00792-3
dc.identifier.cristin2106580
dc.relation.projectEC/FP7/328289
dc.relation.projectDirektoratet for internasjonalisering og kvalitetsutvikling i høgare utdanning: CPEA-LT-2016/10126
dc.relation.projectNorges forskningsråd: 257622
dc.relation.projectNorges forskningsråd: 289518
dc.relation.projectNorges forskningsråd: 305215
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel