• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • Vis innførsel
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalized spectrum of second order differential operators

Gergelits, Tomas; Nielsen, Bjørn Fredrik; Strakos, Zdenek
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
GNS_2020_SINUM+%28002%29.pdf (508.4Kb)
Permanent lenke
https://hdl.handle.net/11250/2830065
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Journal articles (peer reviewed) [3942]
  • Publikasjoner fra Cristin - NMBU [4778]
Originalversjon
SIAM Journal on Numerical Analysis. 2020, 58 (4), 2193-2211.   10.1137/20M1316159
Sammendrag
We analyze the spectrum of the operator $\Delta^{-1} [\nabla \cdot (K\nabla u)]$, where $\Delta$ denotes the Laplacian and $K=K(x,y)$ is a symmetric tensor. Our main result shows that this spectrum can be derived from the spectral decomposition $K=Q \Lambda Q^T$, where $Q=Q(x,y)$ is an orthogonal matrix and $\Lambda=\Lambda(x,y)$ is a diagonal matrix. More precisely, provided that $K$ is continuous, the spectrum equals the convex hull of the ranges of the diagonal function entries of $\Lambda$. The involved domain is assumed to be bounded and Lipschitz, and both homogeneous Dirichlet and homogeneous Neumann boundary conditions are considered. We study operators defined on infinite dimensional Sobolev spaces. Our theoretical investigations are illuminated by numerical experiments, using discretized problems. The results presented in this paper extend previous analyses which have addressed elliptic differential operators with scalar coefficient functions. Our investigation is motivated by both preconditioning issues (efficient numerical computations) and the need to further develop the spectral theory of second order PDEs (core analysis).
Tidsskrift
SIAM Journal on Numerical Analysis

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit