• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • Vis innførsel
  •   Hjem
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra Cristin - NMBU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving broad scale forage mapping and habitat selection analyses with airborne laser scanning: the case of moose

Lone, Karen; van Beest, Floris; Mysterud, Atle; Gobakken, Terje; Milner, Jocelyn Margarey; Ruud, Hans-Petter; Loe, Leif Egil
Journal article, Peer reviewed
Thumbnail
Åpne
EcosphereES14-00156.pdf (4.499Mb)
Permanent lenke
http://hdl.handle.net/11250/275680
Utgivelsesdato
2014
Metadata
Vis full innførsel
Samlinger
  • Journal articles (peer reviewed) [5298]
  • Publikasjoner fra Cristin - NMBU [6263]
Originalversjon
10.1890/ES14-00156.1
Sammendrag
Determining the spatial distribution of large herbivores is a key challenge in ecology and

management. However, our ability to accurately predict this is often hampered by inadequate data on

available forage and structural cover. Airborne laser scanning (ALS) can give direct and detailed

measurements of vegetation structure.We assessed the effectiveness of ALS data to predict (1) the distribution

of browse forage resources and (2) moose (Alces alces) habitat selection in southern Norway. Using ground

reference data from 153 sampled forest stands, we predicted available browse biomass with predictor

variables from ALS and/or forest inventory. Browse models based on both ALS and forest inventory variables

performed better than either alone. Dominant tree species and development class of the forest stand remained

important predictor variables and were not replaced by the ALS variables. The increased explanatory power

from including ALS came from detection of canopy cover (negatively correlated with forage biomass) and

understory density (positively correlated with forage biomass). Improved forage estimates resulted in

improved predictive ability of moose resource selection functions (RSFs) at the landscape scale, but not at the

home range scale. However, when also including ALS cover variables (understory cover density and canopy

cover density) directly into the RSFs, we obtained the highest predictive ability, at both the landscape and

home range scales. Generally, moose selected for high browse biomass, low amount of understory vegetation

and for low or intermediate canopy cover depending on the time of day, season and scale of analyses. The

auxiliary information on vegetation structure from ALS improved the prediction of browse moderately, but

greatly improved the analysis of habitat selection, as it captured important functional gradients in the habitat

apart fromforage.We conclude that ALS is an effective and valuable tool for wildlife managers and ecologists

to estimate the distribution of large herbivores.
Beskrivelse
-

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit