Show simple item record

dc.contributor.authorMontesinos-Lopez, Osval A.
dc.contributor.authorMontesinos-Lopez, Abelardo
dc.contributor.authorLuna-Vazquez, Francisco Javier
dc.contributor.authorToledo, Fernando H.
dc.contributor.authorPerez-Rodriguez, Paulino
dc.contributor.authorLillemo, Morten
dc.contributor.authorCrossa, Jose
dc.date.accessioned2021-03-23T14:21:28Z
dc.date.available2021-03-23T14:21:28Z
dc.date.created2019-05-27T17:40:07Z
dc.date.issued2019
dc.identifier.citationG3: Genes, Genomes, Genetics. 2019, 9 (5), 1355-1369.en_US
dc.identifier.issn2160-1836
dc.identifier.urihttps://hdl.handle.net/11250/2735151
dc.description.abstractEvidence that genomic selection (GS) is a technology that is revolutionizing plant breeding continues to grow. However, it is very well documented that its success strongly depends on statistical models, which are used by GS to perform predictions of candidate genotypes that were not phenotyped. Because there is no universally better model for prediction and models for each type of response variable are needed (continuous, binary, ordinal, count, etc.), an active area of research aims to develop statistical models for the prediction of univariate and multivariate traits in GS. However, most of the models developed so far are for univariate and continuous (Gaussian) traits. Therefore, to overcome the lack of multivariate statistical models for genome-based prediction by improving the original version of the BMTME, we propose an improved Bayesian multi-trait and multi-environment (BMTME) R package for analyzing breeding data with multiple traits and multiple environments. We also introduce Bayesian multioutput regressor stacking (BMORS) functions that are considerably efficient in terms of computational resources. The package allows parameter estimation and evaluates the prediction performance of multi-trait and multi-environment data in a reliable, efficient and user-friendly way. We illustrate the use of the BMTME with real toy datasets to show all the facilities that the software offers the user. However, for large datasets, the BME() and BMTME() functions of the BMTME R package are very intense in terms of computing time; on the other hand, less intensive computing is required with BMORS functions BMORS() and BMORS_Env() that are also included in the BMTME package.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleAn R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-based Predictionen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1355-1369en_US
dc.source.volume9en_US
dc.source.journalG3: Genes, Genomes, Geneticsen_US
dc.source.issue5en_US
dc.identifier.doi10.1534/g3.119.400126
dc.identifier.cristin1700657
dc.relation.projectNorges forskningsråd: 267806 (FFL og JA)en_US
dc.relation.projectAndre: CIMMYT CRP Global Maiz Breeding Programen_US
dc.relation.projectAndre: Bill & Melinda Gates Foundationen_US
cristin.unitcode192,10,2,0
cristin.unitnameInstitutt for plantevitenskap
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal