Vis enkel innførsel

dc.contributor.authorAcanakwo, Erik Francis
dc.contributor.authorSheil, Douglas
dc.contributor.authorMoe, Stein Ragnar
dc.date.accessioned2021-03-23T11:02:33Z
dc.date.available2021-03-23T11:02:33Z
dc.date.created2019-01-14T10:16:24Z
dc.date.issued2019
dc.identifier.citationEcosphere. 2019, 10 (1), .en_US
dc.identifier.issn2150-8925
dc.identifier.urihttps://hdl.handle.net/11250/2735044
dc.description.abstractDecomposition is important for nutrient cycling and the dynamics of soil organic matter. The factors that influence local decomposition rates in savannas dominated by Macrotermes mounds remain uncertain. Here, we experimentally assessed the effects of macro- and micro-detritivores, active and inactive mounds, and vegetation cover on wood decomposition rates for eight common woody plant species in Lake Mburo National Park, in Uganda. Five pairs of Macrotermes mounds, one active and one inactive per pair, were selected. Each mound provided two sample locations, one, the most shaded (with canopy cover), and one, the most open (without canopy cover) edge of mound. In addition, for each mound pair, one additional sample location was located off-mound, in an open level area between the mounds. After one, three, and 12 months, protected (wrapped in 1-mm mesh fiber-glass excluding macrodetritivores) and unprotected wood samples from each location were retrieved, brushed clean, oven-dried, and weighed. After 12 months, mean percentage mass loss was four times higher for unprotected than protected wood samples across all species located on mound sites (when decomposition in shaded and open microhabitats was combined). Mean percentage mass loss across all species combined was 1.2 times higher on active than inactive mounds. Across all mounds, decomposition was on average 1.1 times more rapid in the shaded than open mound parts. These differences were more pronounced on inactive mounds (1.3 times more rapid in the shaded than open parts). Percentage mass loss was markedly lower off-mound (12.6 0.8%) than on active (25.9 1.5%) or inactive mounds (19.7 1.2%). Proportional mass loss for unprotected wood decreased with increasing wood density, but proportional mass loss of protected wood samples was not detectably influenced by wood density. Our study highlights the strong and locally contingent influence of termite mounds, termite activity, vegetation, and their interactions on wood decomposition rates within a savanna landscape. Furthermore, variation in per-species wood decomposition rates, including the negative correlation with wood density, depends on accessibility to macrodetritivores.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleWood decomposition is more rapid on than off termite mounds in an African savannaen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber11en_US
dc.source.volume10en_US
dc.source.journalEcosphereen_US
dc.source.issue1en_US
dc.identifier.doi10.1002/ecs2.2554
dc.identifier.cristin1655923
cristin.unitcode192,14,0,0
cristin.unitnameMiljøvitenskap og naturforvaltning
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal