Show simple item record

dc.contributor.authorMosavi, Amirhosein
dc.date.accessioned2020-11-30T13:56:13Z
dc.date.available2020-11-30T13:56:13Z
dc.date.created2020-10-28T14:17:59Z
dc.date.issued2020
dc.identifier.citationAppl. Sci. 2020, 10(21), 7521en_US
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/11250/2690284
dc.description.abstractThis paper utilizes computational fluid dynamics as well as a group method of data handling (GMDH) method to predict the mean velocity of intake. Firstly, the three dimensional flow pattern in a 90-degree intake is simulated with ANSYS-CFX at a transverse ratio equal to one (W*b/W*m = 1) that W*m is the width of the main channel and W*b is the width of the branch channel. The comparison of mean velocity in the simulated intake and experimental channel represents the high accuracy of ANSYS-CFX modeling (mean absolute percentage error (MAPE) = 5% and root mean square error (RMSE) = 0.017). A group method of data handling (GMDH) is one type of artificial intelligence approach that presents elementary equations for calculating the problem’s target parameter and performing well in complex nonlinear systems. In this research, to train and test the GMDH method, input data is needed in all parts of the channel. Since there is not enough laboratory data in all parts of the channel, to increase the benchmarks, the laboratory model is simulated by the Computational Fluid Dynamics (CFD) numerical model. After ensuring the proper accuracy of the numerical results, the built-in CFD numerical model has been used as a tool to create primary benchmarks in the channel points, especially in areas where there is no laboratory data. This generated data has been used in training and testing the GMDH method. The diversion angle with the longitudinal direction of the main channel (θ), the longitudinal coordinates in the intake (y*), and the ratio of the branch channel width to the main channel (Wr) have been applied as the input training data in the GMDH method to estimate mean velocity. The results of the statistical indexes used to quantitatively examine this model, (R2 = 0.86, MAPE = 10.44, RMSE = 0.03, SI = 0.12), indicated the accuracy of this model in predicting the mean velocity of the flow within open channel intakes.en_US
dc.language.isoengen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleCombination of Group Method of Data Handling (GMDH) and Computational Fluid Dynamics (CFD) for Prediction of Velocity in Channel Intakeen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume10en_US
dc.source.journalApplied Sciencesen_US
dc.source.issue21en_US
dc.identifier.doi10.3390/app10217521
dc.identifier.cristin1842977
dc.source.articlenumber7521en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal