Vis enkel innførsel

dc.contributor.authorKjær, Lene Jung
dc.contributor.authorSoleng, Arnulf
dc.contributor.authorEdgar, Kristin Skarsfjord
dc.contributor.authorLindstedt, Heidi Elisabeth Heggen
dc.contributor.authorPaulsen, Katrine Mørk
dc.contributor.authorAndreassen, Åshild Kristine
dc.contributor.authorKorslund, Lars
dc.contributor.authorKjelland, Vivian
dc.contributor.authorSlettan, Audun
dc.contributor.authorStuen, Snorre
dc.contributor.authorKjellander, Petter
dc.contributor.authorChristensson, Madeleine
dc.contributor.authorTeräväinen, Malin
dc.contributor.authorBaum, Andreas
dc.contributor.authorKlitgaard, Kirstine
dc.contributor.authorBødker, René
dc.date.accessioned2020-10-09T12:17:13Z
dc.date.available2020-10-09T12:17:13Z
dc.date.created2020-01-13T14:01:28Z
dc.date.issued2019
dc.identifier.citationScientific Reports. 2019, 9 .en_US
dc.identifier.urihttps://hdl.handle.net/11250/2682036
dc.description.abstractRecently, focus on tick-borne diseases has increased as ticks and their pathogens have become widespread and represent a health problem in Europe. Understanding the epidemiology of tickborne infections requires the ability to predict and map tick abundance. We measured Ixodes ricinus abundance at 159 sites in southern Scandinavia from August-September, 2016. We used field data and environmental variables to develop predictive abundance models using machine learning algorithms, and also tested these models on 2017 data. Larva and nymph abundance models had relatively high predictive power (normalized RMSE from 0.65–0.69, R2 from 0.52–0.58) whereas adult tick models performed poorly (normalized RMSE from 0.94–0.96, R2 from 0.04–0.10). Testing the models on 2017 data produced good results with normalized RMSE values from 0.59–1.13 and R2 from 0.18–0.69. The resulting 2016 maps corresponded well with known tick abundance and distribution in Scandinavia. The models were highly influenced by temperature and vegetation, indicating that climate may be an important driver of I. ricinus distribution and abundance in Scandinavia. Despite varying results, the models predicted abundance in 2017 with high accuracy. The models are a first step towards environmentally driven tick abundance models that can assist in determining risk areas and interpreting human incidence data.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePredicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic dataen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber16en_US
dc.source.volume9en_US
dc.source.journalScientific Reportsen_US
dc.identifier.doi10.1038/s41598-019-54496-1
dc.identifier.cristin1771536
cristin.unitcode192,16,3,0
cristin.unitnameInstitutt for produksjonsdyrmedisin
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal