Vis enkel innførsel

dc.contributor.authorLee, Aline Magdalena
dc.contributor.authorMyhre, Ane Marlene
dc.contributor.authorMarkussen, Stine Svalheim
dc.contributor.authorEngen, Steinar
dc.contributor.authorSolberg, Erling Johan
dc.contributor.authorHaanes, Hallvard
dc.contributor.authorRøed, Knut
dc.contributor.authorHerfindal, Ivar
dc.contributor.authorHeim, Morten
dc.contributor.authorSæther, Bernt-Erik
dc.date.accessioned2020-07-09T07:59:52Z
dc.date.available2020-07-09T07:59:52Z
dc.date.created2020-01-09T12:43:48Z
dc.date.issued2020
dc.identifier.citationMolecular Ecology. 2020, 29 (1), 56-70.en_US
dc.identifier.issn0962-1083
dc.identifier.urihttps://hdl.handle.net/11250/2661530
dc.description.abstractLevels of random genetic drift are influenced by demographic factors, such as mating system, sex ratio and age structure. The effective population size (N e) is a useful measure for quantifying genetic drift. Evaluating relative contributions of different demographic factors to N e is therefore important to identify what makes a population vulnerable to loss of genetic variation. Until recently, models for estimating N e have required many simplifying assumptions, making them unsuitable for this task. Here, using data from a small, harvested moose population, we demonstrate the use of a stochastic demographic framework allowing for fluctuations in both population size and age distribution to estimate and decompose the total demographic variance and hence the ratio of effective to total population size (N e/N ) into components originating from sex, age, survival and reproduction. We not only show which components contribute most to N e/N currently, but also which components have the greatest potential for changing N e/N . In this relatively long‐lived polygynous system we show that N e/N is most sensitive to the demographic variance of older males, and that both reproductive autocorrelations (i.e., a tendency for the same individuals to be successful several years in a row) and covariance between survival and reproduction contribute to decreasing N e/N (increasing genetic drift). These conditions are common in nature and can be caused by common hunting strategies. Thus, the framework presented here has great potential to increase our understanding of the demographic processes that contribute to genetic drift and viability of populations, and to inform management decisions.en_US
dc.language.isoengen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleDecomposing demographic contributions to the effective population size with moose as a case studyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber56-70en_US
dc.source.volume29en_US
dc.source.journalMolecular Ecologyen_US
dc.source.issue1en_US
dc.identifier.doi10.1111/mec.15309
dc.identifier.cristin1769323
dc.relation.projectNorges forskningsråd: 244647en_US
dc.relation.projectNorges forskningsråd: 223257en_US
dc.relation.projectEC/FP7/268562en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal