Vis enkel innførsel

dc.contributor.advisorHolden, Stein
dc.contributor.advisorAlfnes, Frode
dc.contributor.advisorKassie, Menale
dc.contributor.authorKatengeza, Samson Pilanazo
dc.date.accessioned2018-12-10T09:51:17Z
dc.date.available2018-12-10T09:51:17Z
dc.date.issued2018
dc.identifier.isbn978-82-575-1519-5
dc.identifier.issn1894-6402
dc.identifier.urihttp://hdl.handle.net/11250/2576820
dc.descriptionPhd thesis 2018:47
dc.description.abstractIs agriculture becoming climate-smart? Can recurrent weather events such as droughts explain increased use and adoption of agricultural technologies that are perceived climate-smart? I have merged a four-wave household panel data of nine years (2006-2015) with daily rainfall data (2003-2015) in this thesis to examine farmer uptake and opportunities of climate-smart agriculture (CSA) technologies in Malawi. Specifically, I have tested how exposure to dry spells influences use of CSA technologies and how adoption affects maize productivity in the face of weather shocks. CSA holds potential to minimize negative effects of weather shocks, particularly among smallholder farmers in sub-Saharan Africa (SSA). Smallholder farmers in SSA have limited adaptation options against weather shocks such as floods, hailstorms, droughts and prolonged mid-season dry spells. CSA technologies provide such farmers with options to hedge against weather-related crop production losses. An empirical question however is whether farmers respond to exposure to weather risks by adopting CSA technologies and how adoption protects them against weather-related yield losses. I have addressed this empirical question in my thesis through four related specific questions. One, what are the impacts of exposure to recent dry spells on use of integrated soil fertility management (ISFM) technologies? Two, how do recent dry spells and farm input subsidies affect adoption of drought tolerant (DT) maize varieties? Three, what is the impact of DT maize varieties on maize productivity under rainfall stress? Four, what are the farm-level impacts of farm input subsidies vis-à-vis climate-smart technologies? In paper one I examined the impact of early-season and late-season dry spells on use of ISFM technologies focusing on organic manure and maize-legume intercropping. Results showed an increase in use of organic manure and maize-legume intercropping over time. There was also an increase in adoption of DT maize varieties from 2006 to 2015 as reported in paper two. Previous exposure to one-year lag of both early- and late-season dry spells was associated with high likelihood of using maize-legume intercropping and organic manure. Similarly, the likelihood of adopting DT maize varieties was positively influenced by exposure to recent dry spells and access to seed subsidy. There was, however, inconsistent impact of two-year and three-year lags of both early- and late-season dry spells on use of maize-legume intercropping and organic manure. The results in papers one and two imply that farmers build weather expectations from previous weather conditions and respond to weather risks by investing in CSA technologies. Farmers’ response is influenced by perceived benefits of the technologies under changing weather. The results also indicate that immediate dry spells are more influential in building such weather expectations than long-term weather conditions and hence more significant in enhancing use of CSA practices. In addition, the results reveal that agricultural extension services and farm input subsidies play important roles in promoting use of CSA technologies. Farm input subsidies for example, directly influences adoption of DT maize varieties through provision of cheap seed and indirectly by providing farmers with experience of DT maize varieties under weather risks. In papers three and four, I have argued that CSA technologies have potential to protect farmers from drought-related yield losses. Evidence from paper three showed that average maize yields of adopters of DT maize varieties were significantly higher than that of non-adopters in the sample areas. The literature review in paper four provides further evidence that adoption of CSA technologies such as organic and inorganic fertilizer and conservation agriculture provides stable and long-term maize productivity effects. These results suggest that consistent and appropriate use of CSA technologies in SSA countries can help reduce the risk of low crop production under weather shocks. In paper four I have also argued that integrating farm input subsidies and CSA technologies is potentially a magic bullet. Many countries in SSA are implementing large-scale farm input subsidies but the impact on maize productivity is modest mainly because of declining soil fertility and frequent dry spells. In addition, poor timing of input delivery, beneficiaries receiving less than the required amount of inorganic fertilizer and targeting errors have contributed to modest impact of input subsidies. While recent reforms in Malawi FISP are working towards improving on timing of input delivery and targeting errors, soil fertility concerns remain unaddressed in FISP implementation strategies. Addressing soil conditions by integrating subsidized inorganic fertilizer with organic fertilizer and CA has potential to enhance the impact of FISP. This approach is potentially drought-resilient, soil fertility enhancing, and increases the efficiency with which subsidised inputs are used. Consequently, the impact of FISP on maize production is likely to be higher, more consistent and enduring and provide the government with an exit strategy.nb_NO
dc.description.abstractBlir landbruket mer klimasmart? Kan gjentatte klimasjokk som tørke forklare økt bruk og opptak av landbruksteknologier som oppfattes som klimasmarte? Jeg har kombinert fire runder av bondehushold panel data som går over ni år (2006-2015) med daglige nedbørsdata (2003-2015) i denne oppgaven for å undersøke opptak og muligheter for klima-smarte landbruksteknologier (CSA) i Malawi. Nærmere bestemt har jeg testet hvordan eksponering for tørkeperioder påvirker bruk av CSA-teknologier og hvordan adopsjon påvirker maisproduktivitet i møte med klimasjokk og -variasjoner. CSA har potensial til å redusere negative effekter av klimaendringer, særlig blant småbønder i Afrika sør for Sahara (SSA). Småbønder i SSA har begrensede tilpasningsalternativer ved klimavariasjoner som oversvømmelser, haglstormer, og tørkeperioder. CSA-teknologier gir slike bønder muligheter til å bli mindre sårbare for klimabaserte avlingsskader. Et empirisk spørsmål er imidlertid om bønder reagerer på eksponering mot værrisiko ved å ta i bruk CSA-teknologier og hvordan adopsjon beskytter dem mot værrelaterte avkastningstap. Jeg har studert dette empiriske spørsmålet i avhandlingen min gjennom fire relaterte konkrete forskningsspørsmål: En, hva er virkningen av eksponering for nylige tørkeperioder ved bruk av integrerte teknologier for bevaring av jordas fruktbarhet (Integrated Soil Fertility Management - ISFM)? To, hvordan påvirker eksponering for tørkeperioder og tilgang på subsidiert gjødsel og såkorn adopsjon av tørketolerante (drought tolerant – DT) maissorter? Tre, hva er virkningen av adopsjon av tørketolerante (DT)-maissorter på maisproduktivitet under varierende nedborforhold? Fire, hvordan påvirker subsidiering av kunstgjødsel og såfrø opptak av klimasmarte landbruksteknologier?
dc.description.sponsorshipNORADnb_NO
dc.language.isoengnb_NO
dc.publisherNorwegian University of Life Sciences, Ås
dc.titleClimate-smart agriculture in Malawi : uptake and opportunities in the face of climate changenb_NO
dc.title.alternativeKlima-smart landbruk i Malawi : teknologivalg og muligheter under varierende nedbørforhold
dc.typeDoctoral thesisnb_NO
dc.description.versionacceptedVersionnb_NO
dc.subject.nsiVDP::Agriculture and fishery disciplines: 900nb_NO
dc.date.embargoenddate01.09.2020


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel