Vis enkel innførsel

dc.contributor.authorMekasha, Sophanit
dc.contributor.authorByman, Ida Roksvåg
dc.contributor.authorLynch, Catherine
dc.contributor.authorToupalová, Hana
dc.contributor.authorAndera, Ladislav
dc.contributor.authorNæs, Tormod
dc.contributor.authorVaaje-Kolstad, Gustav
dc.contributor.authorEijsink, Vincentius Gerardus Henricus
dc.date.accessioned2018-05-03T07:24:09Z
dc.date.available2018-05-03T07:24:09Z
dc.date.created2017-05-30T11:25:22Z
dc.date.issued2017
dc.identifier.citationProcess Biochemistry. 2017, 56 132-138.nb_NO
dc.identifier.issn1359-5113
dc.identifier.urihttp://hdl.handle.net/11250/2496881
dc.description.abstractOne potential strategy for biorefining of chitin-rich biomass entails enzymatic saccharification, which, so far, has been scarcely explored. Here, saccharification of chitin was explored using response surface methodology available in the MODDE®10 software, to develop optimal cocktails of five mono-component enzymes from Serratia marcescens, three chitinases, SmChiA, SmChiB, SmChiC, a lytic polysaccharide monooxygenase, SmLPMO10A (or “CBP21”), and a beta-N-acetylhexosaminidase, SmCHB (“chitobiase”). These five enzymes were recombinantly produced in Escherichia coli. For both shrimp and crab chitins, SmChiA was the most abundant (40% and 38%, respectively) in the optimized cocktails, whereas SmChiB, SmChiC and SmLPMO10A were present at 30% and 26%, 15% and 23%, and 3% and 2%, respectively. Saccharification yields were 70%–75%, whereas a “minimal” cocktail of SmChiA and SmCHB gave only 40% saccharification. These results show that enzymatic saccharification of chitin requires multiple enzyme activities applied at dosages similar to those used for saccharification of cellulose.
dc.language.isoengnb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleDevelopment of enzyme cocktails for complete saccharification of chitin using mono-component enzymes from Serratia marcescensnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersion
dc.source.pagenumber132-138nb_NO
dc.source.volume56nb_NO
dc.source.journalProcess Biochemistrynb_NO
dc.identifier.doi10.1016/j.procbio.2017.02.021
dc.identifier.cristin1472737
dc.relation.projectNofima AS: 201702nb_NO
dc.relation.projectNorges forskningsråd: 262308nb_NO
dc.relation.projectNorges forskningsråd: 221576nb_NO
dc.relation.projectEC/FP7/FPR7-289284nb_NO
cristin.unitcode192,12,0,0
cristin.unitnameKjemi, bioteknologi og matvitenskap
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal