Vis enkel innførsel

dc.contributor.authorJåstad, Eirik Ogner
dc.contributor.authorTorheim, Turid K Gjerstad
dc.contributor.authorVilleneuve, Kathleen
dc.contributor.authorKvaal, Knut
dc.contributor.authorHole, Eli Olaug
dc.contributor.authorSagstuen, Einar
dc.contributor.authorMalinen, Eirik
dc.contributor.authorFutsæther, Cecilia Marie
dc.date.accessioned2018-02-02T13:45:27Z
dc.date.available2018-02-02T13:45:27Z
dc.date.created2017-10-03T10:22:29Z
dc.date.issued2017
dc.identifier.citationJournal of Physical Chemistry A. 2017, 121 (38), 7139-7147.nb_NO
dc.identifier.issn1089-5639
dc.identifier.urihttp://hdl.handle.net/11250/2482432
dc.description.abstractThe amino acid L-α-alanine is the most commonly used material for solidstate electron paramagnetic resonance (EPR) dosimetry, due to the formation of highly stable radicals upon irradiation, with yields proportional to the radiation dose. Two major alanine radical components designated R1 and R2 have previously been uniquely characterized from EPR and electron−nuclear double resonance (ENDOR) studies as well as from quantum chemical calculations. There is also convincing experimental evidence of a third minor radical component R3, and a tentative radical structure has been suggested, even though no well-defined spectral signature has been observed experimentally. In the present study, temperature dependent EPR spectra of X-ray irradiated polycrystalline alanine were analyzed using five multivariate methods in further attempts to understand the composite nature of the alanine dosimeter EPR spectrum. Principal component analysis (PCA), maximum likelihood common factor analysis (MLCFA), independent component analysis (ICA), self-modeling mixture analysis (SMA), and multivariate curve resolution (MCR) were used to extract pure radical spectra and their fractional contributions from the experimental EPR spectra. All methods yielded spectral estimates resembling the established R1 spectrum. Furthermore, SMA and MCR consistently predicted both the established R2 spectrum and the shape of the R3 spectrum. The predicted shape of the R3 spectrum corresponded well with the proposed tentative spectrum derived from spectrum simulations. Thus, results from two independent multivariate data analysis techniques strongly support the previous evidence that three radicals are indeed present in irradiated alanine samples.
dc.language.isoengnb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleIn Quest of the Alanine R3 Radical: Multivariate EPR Spectral Analyses of X‑Irradiated Alanine in the Solid Statenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersion
dc.source.pagenumber7139-7147nb_NO
dc.source.volume121nb_NO
dc.source.journalJournal of Physical Chemistry Anb_NO
dc.source.issue38nb_NO
dc.identifier.doi10.1021/acs.jpca.7b06447
dc.identifier.cristin1501684
cristin.unitcode192,14,0,0
cristin.unitcode192,15,0,0
cristin.unitnameMiljøvitenskap og naturforvaltning
cristin.unitnameRealfag og teknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal