Vis enkel innførsel

dc.contributor.authorHagen, Espen
dc.contributor.authorDahmen, David
dc.contributor.authorStavrinou, Maria
dc.contributor.authorLinden, Henrik
dc.contributor.authorTetzlaff, Tom
dc.contributor.authorVan Albada, Sacha
dc.contributor.authorGruen, Sonja
dc.contributor.authorDiesmann, Markus
dc.contributor.authorEinevoll, Gaute
dc.date.accessioned2018-01-02T10:07:39Z
dc.date.available2018-01-02T10:07:39Z
dc.date.created2016-11-12T00:33:53Z
dc.date.issued2016
dc.identifier.citationCerebral Cortex. 2016, 26 (12), 4461-4496.nb_NO
dc.identifier.issn1047-3211
dc.identifier.urihttp://hdl.handle.net/11250/2473924
dc.description.abstractWith rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm2 patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail.nb_NO
dc.language.isoengnb_NO
dc.relation.urihttp://cercor.oxfordjournals.org/content/early/2016/10/20/cercor.bhw237.full
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectBeregningsorientet nevrovitenskapnb_NO
dc.subjectComputational Neurosciencenb_NO
dc.titleHybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.nb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.subject.nsiVDP::Medisinske fag: 700nb_NO
dc.subject.nsiVDP::Midical sciences: 700nb_NO
dc.source.pagenumber4461-4496nb_NO
dc.source.volume26nb_NO
dc.source.journalCerebral Cortexnb_NO
dc.source.issue12nb_NO
dc.identifier.doi10.1093/cercor/bhw237
dc.identifier.cristin1399729
dc.relation.projectNorges forskningsråd: 214842nb_NO
dc.relation.projectEU/269912nb_NO
dc.relation.projectAndre: DFF-1330–00226nb_NO
dc.relation.projectNorges forskningsråd: NN4661Knb_NO
dc.relation.projectAndre: DI 1721/3-1nb_NO
dc.relation.projectEU/604102nb_NO
cristin.unitcode192,1,1,0
cristin.unitnameInstitutt for matematiske realfag og teknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal