Vis enkel innførsel

dc.contributor.advisorRolstad-Denby, Cecilie
dc.contributor.authorChapuis, Anne
dc.date.accessioned2017-02-02T14:05:18Z
dc.date.available2017-02-02T14:05:18Z
dc.date.issued2011
dc.identifier.isbn978-82-575-1023-7
dc.identifier.issn1503-1667
dc.identifier.urihttp://hdl.handle.net/11250/2429309
dc.description.abstractThis thesis addresses the process of iceberg calving at the front of tidewater glaciers and tries to clarify what controls the calving of glaciers, from observations in the field to modeling and predictions. Iceberg calving is the detachment of ice from a parent glacier and it makes the glacier very sensitive to its local environment. In turn, calving at a glacier front has a strong impact on the glacier dynamics and can trigger and/or enhance glacier instabilities, acceleration and glacier retreat, making the calving process a crucial factor in glacier dynamics and hence in sea level rise. This thesis is based on field observations, collected throughout 4 years at the front of Kronebreen, Svalbard. A special emphasis has been given to trying various observation techniques: ground-based RADAR, direct observations, seismic monitoring, terrestrial photogrammetry and remote sensing. Using ground-based RADAR we were able to automatically detect 92% of the largest calving events. The percentage detected by seismic monitoring is lower (about 10%) but the technique allows for finer distinction between different calving types and glacier-related seismic events. Seismic equipment also requires less maintenance, less technical expertise and less funding, and can be left in the field for several months. Terrestrial photogrammetry is a very useful tool that can provide glacier dimensions and a continuous monitoring of the general conditions at the front. Finally, direct observations are recommended for the study of calving because it can provide, when used together with terrestrial photogrammetry, both qualitative and quantitative data. The qualitative aspect provides key information for understanding the calving process but is especially hard to obtain with technical methods. The question of seasonal calving variations is also addressed and we show that glacial seismic activity is highly variable throughout the year with recurrent increased activity in autumn, while velocity is low. However this thesis focuses on explaining very short-term variations: the individual calving events. Individual calving events have received so far very little attention in the field and no attention in modeling studies. This thesis was inspired by other studies of complex natural processes in which individual events are all equally considered, large and small, and which emphasize the value of understanding a process at the individual scale, for example the study of earthquakes or forest fires. We first show that general spatial patterns in calving activity can be explained by glacier characteristics like longitudinal stretching rate, which themselves are very linked to the glacier geometry. We then created a simple calving model with the object of understanding what controls the size and timing of calving events. Our simple model, focussing solely on the interplay between calving and its impact on the front stability, manages to reproduce the size and timing distribution of calving events as observed in the field. This result highlights the role of calving on front stability and on calving itself. Front stability is shown to be crucial in the control of calving. Implications of this new finding are that the size distribution of calving depends on the glacier stability: a glacier becoming unstable will produce a higher proportion of large calving events. Beyond a critical glacier stability, calving can become self-sustained and ongoing, leading to very rapid glacier retreat. We propose that the characteristics of the calving event sizes distribution indicate how close a glacier is to rapid retreat. One main point of this thesis is to show the importance of studying calving events at an individual scale to gain more understanding of the process.nb_NO
dc.description.abstractDenne avhandlingen omhandler kalvingsprosessen i fronten av en tidevannsbre og den forsøker å klargjøre hva som kontrollerer kalving av breer, ved hjelp av feltobservasjoner, modellering og prediksjon. Kalving av isfjell skjer når is brekker av fra en isbre, og kalving gjør breer svært sensitive til det lokale miljøet. Motsatt har også kalvingen ved brefronten en stor innflytelse på breens dynamikk, kalvingen kan initiere eller forsterke ustabilitet, akselerasjon eller tilbaketrekking av breen, hvilket gjør kalvingsprosessen til en sentral faktor for isdynamikken, og for havnivået. Denne avhandlingen er basert på feltobservasjoner som er samlet gjennom fire år ved fronten av Kronebreen på Svalbard. Det er blitt lagt spesielt vekt på å prøve ut forskjellige observasjonsteknikker, bakkebasert RADAR, direkte observasjoner, seismisk monitorering, terrestrisk fotogrammetri, og fjernanalyse. Ved hjelp av bakkebasert RADAR kunne vi detektere 92% av de storste kalvingsepisodene. Prosentandelen for seismisk monitorering er mye lavere, ca 10%, men denne monitoreringen tillater finere distinksjon av forskjellige kalvingsformer og brerelaterte seismiske episoder. Seismisk utstyr krever også mindre ettersyn, mindre teknisk ekspertise og lavere finansiering, og utstyret kan være utplassert i felt uten tilsyn i flere måneder. Terrestrisk fotogrammetri er et svært nyttig verktøy som kan fortelle om breens dimensjoner og som muliggjør en kontinuerlig monitorering av generelle forhold ved fronten. Tilsutt anbefales direkte observasjoner for å studere kalving, fordi disse i kombinasjon med terrestrisk fotogrammetri kan gi både kvalitative og kvantitative data. Det kvalitative aspektet gir essensiell informasjon for forståelsen av kalvingsprosessen, men er spesielt vanskelig å oppnå ved teknologiske metoder. Spørsmålet om sesongbaserte kalvingsvariasjoner er også undersøkt og vi viser at kalvingsaktiviteten er svært variabel gjennom året, med gjentagende økning i aktivitet på høsten når også hastigheten er på sitt laveste. Allikevel fokuserer denne avhandlingen på å forklare de svart raske variasjonene, nemlig individuelle kalvingshendelser. Så langt har det blitt viet svært lite oppmerksomhet mot individuelle kalvingshendelser i felt, og ingen oppmerksomhet innen modelleringsstudier. Denne avhandlingen er inspirert av studier av komplekse prosesser hvor individuelle hendelser er vurdert likeverdige, store som små, og som vektlegger verdien av å forstå prosessen på en skala på individuelt nivå, for eksempel for studier av jordskjelv. Vi viser først at generelle romlige monstre i kalvingsaktivitet kan forklares ved brekarakteristikker som longitudinell tøynings rate (stretching rate), som igjen er knyttet til breens geometri. Vi har laget en enkel kalvingsmodell hvor intensjonen er å forstå hva som kontrollerer størrelse og tidspunkt for kalvingshendelsen. Vår modell, som fokuserer kun på interaksjon mellom kalving og dennes innflytelse på frontstabiliteten, greier å reprodusere størrelses- og tidsfordeling av kalvingshendelser som observert i felt. Dette resultatet fremhever kalvingens rolle på frontstabiliteten og på kalvingen selv. Det viser seg at frontstabiliteten er en essensiell styringsmekanisme for kalvingen. Konsekvensene av dette nye funnet er at størrelsesfordelingen av kalvingshendelsene avhenger av breens stabilitet; en bre som blir ustabil produserer høyere proporsjon av større kalvingshendelser. Over en kritisk brestabilitet vil kalvingen bli selvopprettholdende og vedvarende, hvilket vil medføre en svart rask tilbaketrekning av brefronten. Vi fremsetter en påstand om at karakteristikken av fordelingen av størrelsene på kalvingshendelsene indikerer hvor nært forestående en rask tilbaketrekning er for breen. Et hovedpoeng ved denne avhandlingen er å vise hvor viktig det er å studere kalvingshendelser på en skala på individuelt nivå for å oppnå en bedre forståelse av prosessen.nb_NO
dc.description.sponsorshipGLACIODYNnb_NO
dc.language.isoengnb_NO
dc.publisherNorwegian University of Life Sciences, Åsnb_NO
dc.relation.ispartofseriesPhD Thesis;2011:60
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleWhat controls the calving of glaciers? From observations to predictionsnb_NO
dc.title.alternativeHva kontrollerer kalving av breer? Fra observasjoner til prediksjonernb_NO
dc.typeDoctoral thesisnb_NO
dc.subject.nsiVDP::Mathematics and natural science: 400::Geosciences: 450::Other geosciences: 469nb_NO
dc.source.pagenumber1 b. (flere pag.)nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal