Browsing Brage NMBU by Author "Moe, Yngve Mardal"
Now showing items 1-4 of 4
-
Deep learning for automatic delineation of tumours from PET/CT images
Moe, Yngve Mardal (Master thesis, 2019)Purpose: The delineation of tumours and malignant lymph nodes in medical images is an essential part of radiotherapy. However, it is both time-consuming and prone to inter-observer variability. Automating this process is ... -
Deep learning for automatic tumor delineation of anal cancer based on MRI, PET and CT images
Kaushal, Christine Kiran (Master thesis, 2019)Presis inntegning av tumorer ansees som det svakeste leddet og den største kilden til usikkerhet ved planlegging av strålebehandling. Formålet med denne avhandlingen er å utforske mulighetene for automatisk inntegning av ... -
Deep learning-based auto-delineation of gross tumour volumes and involved nodes in PET/CT images of head and neck cancer patients
Moe, Yngve Mardal; Grøndahl, Aurora Rosvoll; Tomic, Oliver; Dale, Einar; Malinen, Eirik; Futsæther, Cecilia Marie (Peer reviewed; Journal article, 2021) -
Visualization of deep learning in auto-delineation of cancer tumors
Huynh, Bao Ngoc (Master thesis, 2020)Purpose: The deoxys framework, developed by Huynh and is available at https://github. com/huynhngoc/deoxys/, has the final goal of creating a user-friendly software that helps radiologists with tumor delineation problems. ...