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Abstract
Keywords: Runtime Verification, Robotic Autonomous Systems, Online Monitoring, Robot Operating
System

The increased use of autonomous robotic systems has necessitated advancements in safety measures due
to the potential hazards these systems can pose. This increased focus on automation and robotic systems
raises questions on how safety and compliance will be maintained in a steadily advancing automated so-
ciety. With increasing complexity, it has become evident that rigorous offline testing cannot eliminate all
dangers associated with infinite state systems, as safety is limited by the defined test-cases and coverage.
To maintain safety and reliability during runtime, multiple tools often need to be set in place. One such
tool is called Runtime Verification (RV). Runtime verification, a term that has been growing in popularity,
refers to lightweight formal methods for observing, analyzing, and sometimes intercepting the processes
of system software or Cyber-Physical Systems (CPS). One of the most common software libraries for
CPS robotics is the Robot Operating System (ROS). While ROS has a few runtime verification software
tools available, the recent release of ROS 2 has created a gap regarding compatible tools and their usage.
Especially with the shift in infrastructure from a centralized- to distributed discovery. In the case of a
flawed or failing safety controller, runtime verification plays a pivotal role in detecting what went wrong,
when and where it occurred, and how to administer possible mitigating actions. The primary objective of
this thesis is to create a pipeline for the automatic generation of RV monitors for ROS 2 from natural lan-
guage requirements into formally verified temporal logic equations. To achieve this, the pipeline employs
NASA’s Copilot, OGMA, and FRET tools to convert natural language safety requirements into formally
verified temporal logic monitors.

This study also addresses the gap in RV tools for ROS 2, providing a comprehensive overview of
existing tools, implementation strategies, and the benefits of RV in CPS. The framework’s performance
is evaluated through simulation and field testing using the Thorvald-005 agricultural-robot and D435
RealSense camera, focusing on system overhead, event-to-stream-based communication, and violation
reporting efficiency.

Key findings demonstrate that the RV framework effectively improves safety and reliability, with the
monitor maintaining acceptable system performance even under high message rates. The research also
highlights the importance of acknowledging hardware limitations and enhancing predictive capabilities to
further increase system robustness. The findings prove that the automatic generation of formally verified
RV monitors for ROS 2 is possible with current software and is quick to implement or change, making it
feasible to test multiple specification models on the same system without changing the source code.

Future work involves refining the generative RV framework, improving hardware integration, and
extending compatibility to other ROS distributions. The results have contributed to the ongoing develop-
ment of the NASA RV tools, promoting safer deployment of autonomous systems in agriculture and other
domains. This thesis itself is a contribution to the methodology and knowledge ascertained to properly
understand and use Linear Temporal Logic (LTL) monitors.



Sammendrag
Nøkkelord: Kjøretidsverifisering, Autonome robotsystemer, Online overvåking, Robot Operating System

Den økte bruken av autonome robotsystemer har nødvendiggjort fremskritt i sikkerhetstiltak på grunn
av de potensielle farene disse systemene kan utgjøre. Dette økte fokuset på automatisering og robotsys-
temer stiller spørsmål om hvordan sikkerhet og samsvar vil opprettholdes i et stadig mer automatisert
samfunn. Med økende kompleksitet har det blitt tydelig at grundig offline testing ikke kan ta høyde for
alle farer forbundet med uendelige tilstandssystemer, da sikkerheten er begrenset av de definerte testtil-
fellene. For å opprettholde sikkerhet og pålitelighet under drift, er det ofte nødvendig å sette inn flere
verktøy. Et slikt verktøy kalles Kjøretidsverifisering (Runtime Verification, RV). Kjøretidsverifisering, et
begrep som har blitt stadig mer populært, refererer til lette formelle metoder for å observere, analysere
og noen ganger avbryte prosessene til systemprogramvare eller Cyber-Physical Systems (CPS). Et av
de mest brukte språkene for CPS-robotikk er Robot Operating System (ROS). Selv om ROS har mange
tilgjengelige kjøretidsverifiseringsverktøy, har den nylige utgivelsen av ROS 2 skapt et kunnskapsgap
angående kompatible verktøy og deres bruk, spesielt med overgangen fra en sentralisert til en distribuert
oppdagelsesinfrastruktur. Ved feil eller svikt i en sikkerhetskontroller spiller kjøretidsverifisering en
avgjørende rolle i å oppdage hva som gikk galt, når og hvor det skjedde, og hvordan man kan administrere
avbøtende tiltak. Hovedmålet med denne avhandlingen er å lage en pipeline for automatisk generering av
RV-overvåkere for ROS 2 fra krav i naturlig språk til formelt verifiserte temporale logiske ligninger. For å
oppnå dette, benytter pipelinen NASAs Copilot, OGMA og FRET-verktøy for å konvertere sikkerhetskrav
i naturlig språk til formelt verifiserte temporale logiske overvåkere.

Denne studien tar også for seg gapet i RV-verktøy for ROS 2, og gir en omfattende oversikt over eksis-
terende verktøy, implementeringsstrategier og fordelene med RV i CPS. Rammeverkets ytelse evalueres
gjennom simulering og felttesting ved bruk av landbruksroboten Thorvald-005 og D435 RealSense-
kameraet, med fokus på systembelastning, hendelse-til-strøm-basert kommunikasjon og effektivitet i
bruddrapportering.

Viktige funn viser at RV-rammeverket effektivt forbedrer sikkerhet og pålitelighet, med overvåkeren
som opprettholder akseptabel systemytelse selv under høye meldingshastigheter. Forskningen under-
streker også viktigheten av å erkjenne maskinvarebegrensninger og forbedre prediktive evner for yt-
terligere å øke systemets robusthet. Funnene beviser at automatisk generering av formelt verifiserte
RV-overvåkere for ROS 2 er mulig med dagens programvare og er raskt å implementere eller endre, noe
som gjør det mulig å teste flere spesifikasjonsmodeller på samme system uten å endre kildekoden.

Fremtidig arbeid innebærer å forbedre det generative RV-rammeverket, forbedre maskinvareintegrasjon
og utvide kompatibilitet til andre ROS-distribusjoner. Resultatene har bidratt til den pågående utviklin-
gen av NASAs RV-verktøy, og fremmer sikrere utplassering av autonome systemer i landbruk og andre
domener. Denne avhandlingen er i seg selv et bidrag til metodikken og kunnskapen som er oppnådd for å
riktig forstå og bruke Linear Temporal Logic (LTL)-overvåkere.
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1 Introduction
With today’s steadily evolving robotics market, safety has become paramount with the deployment of
robots in human-robot collaborative workspaces. This has become especially true with the seasonal short-
ages in available manual labor within agricultural areas. The tasks to complete are also often quite repeti-
tive and straining on a human body, furthering the use of autonomous robotic systems [1].

The continuous automation of the workplace leads to the question of how paramount safety will be in
the pursuit of efficient production. As John M. Shutske at the Department of Biological Systems Engineer-
ing, University of Wisconsin—Madison, shares in his article on ”Agricultural Automation & Autonomy”:
there were fewer injuries and deaths related to horses when we transitioned to tractor-based mechanization,
but new issues emerged as farms became more mechanized [2]. The increasing use of Robotic Process
Automation (RPA) will likely bring forth new issues that demand for machine learning models and RV
(Runtime Verification) systems for maintenance control and the upkeep of worker safety. At the moment,
the state-of-the-art is not sufficient anymore when it comes to accuracy and efficiency of these systems in
dynamic environments, and a way forward could be to develop better pipelines for RV of systems where
the route, task and environment is being analyzed to generate more proficient safety mechanisms.

The idea behind the use of RV is that the utilization of formal verification of a systems realizability
leads to more robust safety mechanisms. To translate a system into its mathematical formulas, verify its
formal verification and then implement monitors from the results allows the user to know by mathematical
proof that all scenarios within the safety margins are acknowledged by the system. One could believe
that by writing tests one might be able to have a similar system, but the problem with these tests is that
you are limited only to the test coverage [3]. ”Ultra-critical systems require high-level assurance, which
cannot always be guaranteed in compile time. The use of runtime verification (RV) enables monitoring
these systems in runtime, to detect property violations early and limit their potential consequences” [4].
”Since RV does not need to exhaustively check the system behavior, it scales better to real systems, since it
does not suffer from state space explosion problems that can be commonly found in model checking” [5].
With the use of formally verified RV, infinite state systems can be efficiently monitored providing property
violations when errors occur. If there’s a violation, then you trigger either some fault handling mechanism
and/or provide the information to the front-end user.

RV and offline Formal Verification (FV) offer complementary approaches to ensuring system reliability
and safety, but they differ significantly in their application and capabilities. RV focuses on monitoring the
system’s behavior during its actual operation, providing immediate detection and response to violations
of specified requirements. This real-time oversight is crucial for systems where failures can have severe
consequences, such as in agricultural robotics, allowing for prompt mitigation actions like informing users,
intercepting erroneous messages, or shutting down the system to prevent harm. In contrast, offline FV
involves an exhaustive analysis of the system’s design before deployment. This method uses mathematical
models to verify that the system meets its specifications under all possible scenarios, identifying potential
flaws that can be addressed prior to runtime. While offline FV is thorough and can handle complex state
spaces, it can be time-consuming and may not account for all real-world operating conditions. Therefore,
combining RV’s real-time monitoring with the comprehensive pre-deployment checks of offline FV creates
a robust verification framework, enhancing both the reliability and safety of advanced automated systems.



1.1 Problem Statement
Recent advancements in autonomous robotic systems have integrated many tools that can lead to safety-
critical environments where hazard mitigation is paramount to adhere to workplace safety guidelines. In
this thesis, ultra-violet light is used for plant treatment. This equipment can cause damage to eyes and
skin, necessitating increased security for automated use. Without advancements in runtime technology,
the field of autonomous robotics will eventually be filled with robotic systems lacking runtime guarantees,
which, in the event of safety violations, will not have the tools to implement proper mitigation tactics to
ensure safe use. Therefore, there is a growing need for enhanced software control of these Cyber-Physical
Systems (CPS) as we advance the automation of various domains.

Since the release of ROS 2 there has been a gap in knowledge related to runtime verification (RV) and
its implementation for newer distributions. Tools used for ROS have become incompatible, and there are
few resources that clearly demonstrate implementation. This thesis aims to address this gap by providing
a clear overview of existing tools, implementation strategies, and exemplifying why RV is a beneficial
feature in any CPS application.

The paper ”Monitoring ROS2: from Requirements to Autonomous Robots” ([6]) written by Dr. Ivan
Perez at NASA has inspired the problem statement of this paper: To enhance workplace safety and re-
liability throughout the engineering life-cycle by applying generative runtime verification (RV) to the
agricultural domain for ROS 2 applications, turning safety requirements defined in natural language (NL)
into formally verified temporal logic monitors.

1.2 Research Question
1 Is it possible to create a pipeline for the automatic generation of runtime verification monitors for

ROS 2 systems using current software tools?

2 Does the runtime verification monitor help elevate safety during all phases of the engineering life-
cycle?

This study aims to investigate whether it is possible to create a pipeline for the automatic generation
of runtime verification (RV) monitors for ROS 2 systems using current software tools. While this was pre-
viously possible for ROS, the release of ROS 2 has rendered much of the existing software incompatible,
raising the question of how to enhance safety in future ROS 2 projects during all phases of the engineering
life-cycle. The primary goal of the thesis is to come with a contribution to the robotics environment by
developing and testing a RV platform, with the focus on automatic generation of monitors that leads to
active hazard mitigation. This builds upon the work done under a summer project directed by PhD student
Mustafa Adam and Associate Professor Alireza David Anisi. The system will be tested and analyzed on
the RoboFarmer platform developed at The Norwegian University of Life Sciences (NMBU). A secondary
goal of the thesis is to compare this contribution to other existing frameworks for runtime verification on
similar platforms.

To achieve these goals, we will utilize the methodology proposed in ”Monitoring ROS2: from Re-
quirements to Autonomous Robots” ([6]), employing NASA-developed tools such as Copilot, OGMA,
and FRET. This research aims to contribute to the safety and reliability of ROS 2 projects by demonstrat-
ing, and comparing, the usability and reliability of these monitors to other frameworks further adding to
the research of RV of ROS 2 systems.



2 Theory & Background
In the field of robotics and Cyber-Physical Systems (CPS), the growing complexity and integration of
automated systems have necessitated advanced methods for ensuring system reliability and safety. This
section of the thesis delves into the theoretical foundations required to fully understand the advancements
of Runtime Verification (RV), focusing on the principles and methodologies that are crucial for developing
the pipeline proposed by this paper. The theory section conveys key concepts such as runtime verification,
specification languages, and the architectural frameworks that facilitate real-time monitoring and compli-
ance checking. Additionally, it introduces the tools used for monitor generation, FRET and OGMA, as
well as YOLO, and the model D435 RealSense depth camera contained for the specific use case, which is
an autonomous UV-light treatment robot for powdery mildew.

The theory section begins with an in-depth look at RV, (Sec. 2.1), a crucial tool for maintaining system
integrity in real-time environments. RV allows for monitoring of a system’s behavior against its specifica-
tions, thereby enabling the possibility of immediate detection and mitigation of faults or violations. This
proactive approach is essential for systems where failure can have significant consequences, such as in
agricultural robots.

Next, we explore the core technologies and methodologies that support RV, including specification
languages and state machines (Sec. 2.1.1) . These tools provide the formal basis for defining and verifying
system specifications, ensuring that they meet their requirements without failure.

Additionally, we discuss various tools and technologies used to implement and support RV, including
FRET (Sec. 2.2.1), OGMA (Sec. 2.2.2), Copilot (Sec. 2.2.3), and Flask (Sec. 2.2.4) for monitor generation
and user interface. In the related RV tools section (Sec. 2.3), existing software tools for RV are explored,
providing a comprehensive understanding of the current state-of-the-art in runtime verification for robotics
and CPS.

Later, the integration of runtime verification with the popular framework Robot Operating System
(ROS, Sec. 2.4) and its successor, ROS 2, is described in detail. The evolution from ROS to ROS 2
represents a significant shift towards more secure, scalable, and real-time capable systems, which are
increasingly necessary in modern robotics and CPS applications. Since the pipeline implementation
presented in this paper focuses primarily on ROS 2, understanding some of ROS 2’s core concepts is
important.

Finally, the tools used for data gathering is addressed in the Robot Vision section (Sec. 2.6). The Intel
RealSense depth camera (Sec. 2.6.1), and YOLO tool (Sec. 2.6.2) are used for capturing and analyzing
spatial data in real-time environments.

Through this theoretical exploration, this chapter aims to provide a solid foundation for understanding
the technologies and methodologies applied in this paper and how to enhance the safety, reliability, and
performance of automated systems. The information gathered here has been critical in developing the
advanced runtime verification system discussed in the subsequent sections of this thesis.



2.1 Runtime Verification
Runtime verification (RV) is a term that has been growing in popularity over the last few decades, and with
good reason. The increased focus on automation and robotics by technology-leading companies raises
questions regarding how safety and compliance will be maintained in a steadily advancing automated
society. One effective tool for ensuring reliability and safety is implementing RV. RV tools are lightweight
formal methods for analyzing the behavior of software or Cyber-Physical Systems (CPS) during run-
time [7]. They monitor the specifications of the system during runtime. Thus, in the case of a violation of
the specified requirements, a myriad of actions can be performed, such as informing the user, intercepting
wrong messages and overwriting them, or implementing mitigation actions like turning the system off
in the case of a fault. By implementing RV, the reliability and safety during runtime are increased by
decreasing the danger of violations going undetected. RV can eliminate the need for rigorous offline
testing and execution traces prior to runtime, instead utilizing formally verified requirements, which aid
in solving safety monitoring for systems with infinite state spaces.

In both academia and industry, RV has become more widely deployed across the entire implementa-
tion chain, being used from early design phases, through system verification, testing, and during deploy-
ment [7], having formal verification at all stages of the engineering life-cycle [8]. The goal is to increase
safety and reliability from the moment of conception until deployment. RV continues to prove itself as a
beneficial application of formal verification.

When configuring a RV tool, there are three necessary steps [7].

1. Abstraction of (un)desired system behavior in the form of specifications/requirements, ensuring the
model of the system is realizable and formally verified.

2. Generation of monitor(s) from model specifications, ensuring an understanding of the monitor logic
and its capability to adhere to the specified requirements.

3. Fusing the monitor with the real system by implementing a method of information extraction for
monitoring system values. Further development could include hazard mitigation, information inter-
ception, and user experience enhancements.

2.1.1 Specification Languages, State Machines and Temporal Logic

This section introduces some of the most used abstractions and languages for system specification. There
are numerous ways to specify system behavior, and there is no definitive best method. Understanding the
differences between these methods can help in making better choices when choosing or designing a RV
tool.

The two most common terms used when discussing specification languages for RV are state machines
and temporal logic. These are distinct from each other, and each encompasses numerous variants and
combinations that are worth exploring. In the field of temporal logic, the most researched topics are
Linear Temporal Logic (LTL), in both past and future time forms, Metric Temporal Logic, Signal Tem-
poral Logic (STL), and Spatial Temporal Logic. Unlike state machines, temporal logic requires monitor



synthesis techniques to produce executable monitors [7]. These monitors are often described similarly
to a state machine; thus, state machines have the advantage of being directly executable if the system
allows them. For this reason, state machines are often labeled as executable, whereas temporal logic is
declarative. By eliminating the need for monitor synthesis, the threshold for using RV is also lowered. For
further information on how temporal logic works, see Sec. 2.2.1.

In the context of system traces, one often differentiates between finite and infinite systems. The vari-
ants, state machines and temporal logic, have different areas of excellence in this regard. When using
state machines, you restrict yourself to a certain number of states and transitions, which creates a finite
state space. This works well for testing finite systems with low complexity, but when dealing with more
advanced systems that operate over an infinite timeline, temporal logic is often preferred. The expressions
of system properties in temporal logic are unbounded by time periods, making it more suitable for infinite
state space systems.

2.1.2 Monitoring Behavior

There are four methods of monitoring that are commonly used: offline, online, synchronous, and asyn-
chronous.

Offline monitoring is common in software, where the analysis is carried out after the system execution
is complete. Relevant system data is logged during runtime, and the stored data can be modeled or moni-
tored post-execution. Offline monitoring is very useful for scenarios where real-time analysis is not critical
for the system and safety is not a concern. This makes offline monitoring less valuable for Cyber-Physical
Systems, where safety is paramount. Offline monitoring is also less intrusive to the system and adds very
little overhead.

In contrast, online monitoring is executed during system execution, monitoring relevant system events
as they occur. This addresses a limitation of offline monitoring, which is that violations can only be
reported after the system has terminated. The ability to detect violations at their inception opens possibil-
ities for state mitigation and prevention. While this increases safety and reliability of the system, it also
introduces a much larger overhead. Because of the concern with overhead, online monitoring is often done
with incremental analysis working under tight constraints. Online monitoring can often be combined with
offline monitoring in case there is a wish for further analysis and modeling.

The performance of online monitoring can be achieved either by running a simultaneous or a detached
execution. In simultaneous execution, synchronous online monitoring is performed, where the system
waits for the monitoring result after each event has been generated. This so-called lock-step approach is an
intrusive method that guarantees full control over all event generation. In asynchronous online monitoring,
the monitor is detached from the system and operates in parallel. This causes less overhead but often results
in a delayed response. Asynchronous monitoring also increases the risk of missing events from the system
if the monitor cannot keep up with the publishing speed. Most methods fall somewhere on the spectrum
between these two extremes of online monitoring [7].



2.2 RV Tools & Architecture

Proposed by the paper ”Monitoring ROS2: from Requirements to Autonomous Robots” by Dr. Ivan
Perez, the FRET/OGMA/Copilot framework provides a streamlined workflow for generating and imple-
menting runtime verification monitors [6]. The workflow begins with user defined system requirements
using FRETISH with the FRET tool, see Fig. 1. The requirements are then converted into temporal logic
specifications, formally verified, and exported. Then, the formal specifications are exported to OGMA,
which translates them into Copilot-compatible code. OGMA generates the necessary C99 monitor code
and ROS 2 nodes for data collection and violation reporting, making it possible to utilize the Haskell
Copilot language without any prerequisites. The generated C99 code is compiled and integrated into the
target system, where the ROS 2 nodes handle real-time data collection and monitor the system’s behavior.
Ensuring that any violations are promptly detected and reported to the Flask website.

By combining these tools, the framework ensures that system requirements are accurately captured,
formally verified, and continuously monitored during runtime. Fig. 1 and Fig. 2 display how this proposed
architecture would work. Fig. 2 being in the integration with Robotool, while Fig. 1 shows the general
tool-chain to automatically generate monitors for ROS 2, acquired from Dr. Ivan Perez’s paper [6].

In this section the RV tools FRET (Sec. 2.2.1), OGMA (Sec. 2.2.2, Copilot (Sec. 2.2.3) and Flask
(Sec. 2.2.4) are introduced and explained in depth. Providing the necessary information required for
utilizing set tools, and understanding how they function.

Fig. 1: Toolchain proposed by NASA for automatically generating monitors for ROS 2. Note. From
”Monitoring ROS2: from Requirements to Autonomous Robots”, by Ivan Perez, Anastasia Mavridou,
Tom Pressburger, Alexander Will, and Patrick J. Martin, 2022, Electronic Proceedings in Theoretical
Computer Science, vol. 371, p. 210 [6].



Fig. 2: Monitor synthesis architecture integrated with Robotool. Note. From ”Safety assurance of au-
tonomous agricultural robots: from offline model-checking to runtime verification”, by Mustafa Adam,
Elias E. Hartmark, Tage Andersen, David A. Anisi, and Ana Cavalcanti, 2024, p. 3 [8].

2.2.1 FRET

As robotics technology advances, user experience becomes crucial in simplifying robot control. FRET is
a tool designed to lower the threshold for defining system control requirements. Developed by NASA,
FRET is a tool for writing, understanding, formalizing, and analyzing requirements, focusing on allowing
users to write in an “intuitive, restricted natural language called FRETISH” [9]. Here natural language
refers to any language that develops naturally through use. From this restricted natural language, FRET
creates an explanation of the requirement’s meaning, formalizes it, and can create an interactive simulation
of the logic. The simplicity of FRETISH also facilitates the easy conversion of a configuration file, con-
taining variables and their requirements, into past-time metric temporal logic formulas. FRET includes an
’import’ function to achieve this, which is particularly appreciated in frameworks for generating runtime
monitors.

Initially, FRET was limited to the teams at NASA, but recently the tool has been made available as
open source. This has led to valuable feedback from both industry and the research community, which is
crucial since it is used in safety-critical contexts. The emphasis on ensuring the correctness of require-
ment formalization makes it an excellent tool for automatically generating safety monitors for automated
systems.

FRETISH requirements are composed of six fields of information: scope, condition, component*,
shall*, timing, and response*. The fields marked with * are mandatory for any requirement to be func-



tional. Although not all fields are mandatory, it is generally recommended to use most of them to get a
comprehensive requirement. Fig. 3 illustrates how the FRET fields are marked in the app using color, and
the resulting transformation from NL to ptLTL.

When creating a FRETISH requirement, follow the fields definition and use the accepted commands.
This information can be found in the FRET app or in Tab. 1. The table compiles some of the field infor-
mation from FRET along with the accepted commands [10].

FRET Specification

NL: ”While in drive mode, when the speed is larger than 10 m/s, make sure the brakes are experi-
encing a force equal to or above 50 Newtons”
FRETish: In drive mode if speed > 10, the brakes shall within 1 second satisfy (brake force ≥ 50)
ptLTL:
((H (((! drive) & (Y drive)) -> (Y (((O[1,1] (((speed > 10)
& ((Y (! (speed > 10))) | (drive & (Z (! drive))))) & (!
(brake force >= 50)))) -> (O[0,0] ((drive & (Z (! drive))) |
(brake force >= 50)))) S (((O[1,1] (((speed > 10) & ((Y (! (speed
> 10))) | (drive & (Z (! drive))))) & (! (brake force >= 50))))
-> (O[0,0] ((drive & (Z (! drive))) | (brake force >= 50)))) &
(drive & (Z (! drive)))))))) & (((! ((! drive) & (Y drive)))
S ((! ((! drive) & (Y drive))) & (drive & (Z (! drive))))) ->
(((O[1,1] (((speed > 10) & ((Y (! (speed > 10))) | (drive & (Z
(! drive))))) & (! (brake force >= 50)))) -> (O[0,0] ((drive
& (Z (! drive))) | (brake force >= 50)))) S (((O[1,1] (((speed
> 10) & ((Y (! (speed > 10))) | (drive & (Z (! drive))))) &
(! (brake force >= 50)))) -> (O[0,0] ((drive & (Z (! drive))) |
(brake force >= 50)))) & (drive & (Z (! drive)))))))

Fig. 3: A simple example of a translation from NL to pmLTL using FRET. The specification becomes
increasingly complex when time steps are involved in the requirement.

When creating FRET requirements, ensure that the variables are not under-specified, as OGMA may
not be able to generate a functioning monitor script from the output. To check this, open the JSON file
exported from FRET and verify that it contains variable information and their types. If not, add this
information before exporting from FRET. Variables that have already been created can be found in the
Glossary on the FRET create page, in the app [10]. To check if variables in FRET are undefined, press the
edit requirement button and use the glossary listed there. FRET features both a diagram and a simulation
function. While the simulation requires additional software, the diagram works without any additional
programs. The diagram schematic displays the logic of the FRETISH requirement with different colored
blocks. The meanings of these blocks can be found under diagram semantics shown in Fig. 4 with an
example shown in Fig. 5.



Table 1: FRET Requirement Descriptions [10]

Requirement
Description

Mandatory Definition Accepted Commands

Scope No Specifies where the
requirement must hold: in
intervals defined with
respect to a MODE.

before, only before, in, not
in, only in, after or only
after MODE

Condition No Specifies the condition
after which the response
shall hold, taking into
account scope and timing.

whenever, upon, when,
where or if a condition is
true

Component Yes Specifies the component
of the system that the
requirement applies to.

For example:
front right motor or
UV Light

Shall Yes Specifies the beginning of
the timing response to the
requirement

SHALL

Timing No Specifies the time points
or time intervals, where a
response has to occur
once scope and
condition(s) are satisfied.

immediately, at the next
time point, eventually,
always, never, within, for,
after, until, before.

Response Yes Specifies the response that
the component must
provide to fulfill the
requirement.

satisfy BEXP (Boolean
Expression)



Fig. 4: Diagram semantics, for use with Fig. 5.

Fig. 5: Semantics Diagram based on the example in Fig. 3.

In Tab. 2, you will find the boolean operators of FRETISH. These are ”allowed in the expression of
while scope, condition, until and before timings, and response fields” [10].



Table 2: Boolean Operators [10]

Operator Definition Use Case

! not Negation: The opposite or
invertion of a positive
value.

& and
[Conjunction]

Boolean Comparison:
Returns True only when
both values are True.

| or
[Disjunction]

Boolean comparison:
Returns True as long as
one of the Booleans are
True.

xor exclusive or Boolean comparison: If
two Booleans differ, the
result is True. Otherwise
it’s False.

-> or => implication Statement: If p then q

<-> or <=> equivalence Statement: If p then q, and
likewise if q then p.

FRET Architecture

The FRET software is a JavaScript implementation which uses the Electron JS app as a framework for
the desktop-suite application [10][9]. Fig. 6 and Fig. 7 display the inner workings of FRET, while Fig. 8
displays a normal workflow when using FRET. It is recommended to follow a similar workflow in order
to achieve a realizable model robust enough for deployment.

Fig. 6: Architecture of the FRET program [9]. Note. From ”Formal Requirements Elicitation with FRET”,
by Dimitra Giannakopoulou, Anastasia Mavridou, Julian Rhein, Thomas Pressburger, Johann Schumann
and Nija Shi, 2020, p. 5 [9]. CC BY 4.0.



Fig. 7: Architecture of the FRET simulation extension. Note. From ”Realizability Checking of Require-
ments in FRET”, by Andreas Katis, Anastasia Mavridou, Dimitra Giannakopoulou, Thomas Pressburger,
and Johann Schumann, 2022, p. 16 [11].



Fig. 8: Workflow for using FRET. Note. From ”Realizability Checking of Requirements in FRET”, by An-
dreas Katis, Anastasia Mavridou, Dimitra Giannakopoulou, Thomas Pressburger, and Johann Schumann,
2022, p. 16 [11].



Temporal Logic

FRET provides two different types of temporal logic when correctly applied, Past-time Metric Linear
Temporal Logic (pmLTL) and Future-time Metric Linear Temporal Logic (fmLTL). The terms past/future
and Metric define what formulas can be expressed and how they can be used and evaluated. When im-
plemented with a stream language like Copilot, the time component is essential for determining how the
monitor should behave. Temporal logic is particularly suitable because it provides ”... a suitable mech-
anism to express many of the re-occurring patterns in monitor specifications.” with respects to real-time
execution [4].

The important distinction of Past-time Linear Temporal Logic (ptLTL) from Propositional Logic (PL)
is that, while in PL ”every variable may take the value true or false, in ptLTL, every variable may take the
value true or false at each point in the present or in the past [4]. ptLTL introduces temporal operators that
allow logic formulas to consider not only what is true and false at the present, but also past validity. A
simple example provided by NASA shows its utility: suppose the boolean p can be either true or false, but
the logic needs to check that p has always been true. This requires considering the statement’s validity in
both the present and the past. The difference with ftLTL (Future-time Linear Temporal Logic) is that it
considers future states instead of past ones. The appropriate LTL should be applied based on the monitor
requirement.

Metric is an extension on the linear LTL structure, adding the constraint that all system properties must
be satisfied within certain time frames.

Fig. 9: Example illustrating ptLTL’s ability to verify the validity of a requirement from past and present
values. (f = false, t = true). Note. Adapted from ”Copilot 3”, by Ivan Perez, Frank Dedden and Alwyn
Goodloe, NASA, 2020, p. 15 [4].

In Fig. 10 three temporal logic examples have been made for the following definitions:

• ptLTL: Deals with conditions over past states without explicit time intervals. It is useful for check-
ing if a condition has always been true in the past.
Explanation: The value of counter has always been less than or equal to 4 in the past.



• MTL: Adds timing constraints to the conditions, allowing for specifying time-bounded properties
over past or future states.
Explanation: Over the past 3 time units, the temperature has always been at least 100, and over the
past 40 time units, the airspeed has always been at least 100.

• BLTL: Focuses on bounded time intervals for both past and future states, making it useful for
specifying time-bound conditions and guarantees.
Explanation: The airspeed was at some point less than 100 within the past 100 time units, and it has
been consistently 100 or more within the past 10 time units.

I. Past-Time Linear Temporal Logic
prop = PTLTL. alwaysBeen ( counter <= 4)
II. Metric Temporal Logic
prop2 = (MTL. alwaysBeen 0 3 (temperature >= 100))
&& (MTL. alwaysBeen 0 40 ( airspeed >= 100)
III. Bounded Linear Temporal Logic
recover = (BLTL. eventuallyPrev 0 100 ( airspeed < 100))
&& (BLTL. alwaysBeen 0 10 ( airspeed >= 100) [12]

Fig. 10: Temporal Logic examples. Note. Adapted from ”Runtime Verification with Ogma”, by Ivan
Perez, NASA, 2023, p. 21 [12].

It should be duly stated that the results from exporting a specification model, JSON file, may vary
depending on installed dependencies. According to NASA’s GitHub page for FRET, the installation in-
structions specify these dependencies [10]:

• NodeJS (use any version between v16.16.x - v18.18.x)

• Python (Version ≥2. Note: if you are having issues using 3.11 or later, use 3.10)

• (Optional) NuSMV

• (Optional) JKind

• (Optional) Kind 2

• (Optional) Z3

Several of the mentioned dependencies are listed as optional. This can be misleading because, while
FRET will install and launch correctly if the given instructions are followed, issues may arise. Especially
regarding the use of the realizability tools and simulation, most of these functions are only available when
all dependencies are downloaded.



Variable Mapping

The first step in variable mapping is to ensure that you have created or imported a FRET project.
Next, in the FRET portal, enter the FRET Analysis portal, which can be found in the left-hand side
menu. Your project with requirements and variables should be selected from the drop-down menu at the
top, revealing a new set of drop-down menus: one for export language and one for components. After
selecting a component, all its variables will appear in an interactive table below. Before or after mapping
your variables in the Variable Mapper, you get to choose between exporting with CoCoSpec or CoPilot
as exporting languages. CoCoSim, is an analysis tool much like Copilot, but is in it’s own right a greater
automated framework than Copilot and focuses on Simulink/Stateflow. Simulink and Stateflow are graph-
ical languages with diagrammatic environments implemented in Matlab [13]. For this paper, Copilot will
be set as the export language, but regardless of the choice, mapping your variables is necessary to allow
exporting your requirements and variables.

All information on how to use the FRET Analysis portal can be found on their github under fret/fret-
electron/docs/ media/ExportingForAnalysis/analysis.md or in the FRET desktop application, found by
clicking the ”HELP” button in the Variable Mapper.

The Variable Mapper allows for defining the model variable name, variable type, data type, and de-
scription for each variable in a FRET project. Variables can be assigned types such as Input, Output,
Internal, and Mode.

The act of creating the variables define the constraints that the requirements impose over the system.
Proper typing of variables is crucial, and matters significantly, for should one only define Input variables,
the requirements would impose constraints only over system inputs.

Conceptually, some requirements can be thought of as assumptions that we make regarding the sys-
tem’s environment. Currently FRET does not have a way to automatically “flag” such requirements as
assumptions for realizability checking, which can cause non-realizable models. Therefore a manual way
of adding assumptions has been implemented. By adding the keyword “assumption” somewhere in the
requirement ID, for example by renaming “RV-001” to “RV-001-assumption”, FRET will consider it as an
assumption of the model specification.

This matters because, if an assumption is not properly flagged as such, the requirement will be consid-
ered as a constraint that the system must satisfy. In this case the realizability analysis will try to determine
whether there is any way to directly control the value of the input variables that appear in the requirement.
For assumption statements, this can never happen, as input values are provided from an external source,
over which the system has no control.



Realizability Checking

FRET offers a tool for validating the system model based off the written requirements and variable
mapping. The realizability interface provides four different configurations for realizability checking:
”JKind,” ”JKind + MBP,” ”Kind 2,” and ”Kind 2 + MBP.” MBP stands for Model Based Projection. The
”MBP” configurations tend to be inferior in performance overall but may solve problems that standard
quantifier elimination cannot [10].

On the LTLSIM simulator, four major elements are listed:

• Control buttons and menu

• requirements field

• variable traces

• output traces

Reiterating on Sec. 2.2.1, an important note to be aware off when creating the FRETISH require-
ments is that by adding the keyword “assumption” somewhere in the requirement ID, you are disclosing
that the requirement is not a constraint [10]. Failing to correctly define an assumption will result in
an ”UNREALIZABLE” outcome, meaning that a system cannot be implemented to meet the specified
requirements. This indicates that no implementation can conform to the output variable constraints given
any input. Non-assumption requirements will be considered constraints that the system must satisfy, and
the realizability analysis will attempt to determine whether the system can control the input variables. As
input values are provided externally and cannot be controlled by the system, the set of requirements will
be declared “UNREALIZABLE.” Assumptions are often necessary to achieve ”REALIZABLE” results
in FRET. In Fig. 11 are examples of how FRET visualizes the system when the specification is setup
incorrectly, resulting in a unrealizable result.

There are two ways of conducting realizability checking in FRET: monolithic and compositional.
Monolithic is the default option, providing a formal analysis of a single component or parent group. Com-
positional, on the other hand, allows the analysis tool to decompose components into smaller, connected
pieces where requirements are expressed across all connected components. This provides a powerful tool
for compositional formal verification, offering a comprehensive view of all dependencies [14].



Fig. 11: Visualization example of unrealizable results.



Lustre

Lustre is a synchronous dataflow programming language designed for modeling and verifying reactive
systems. It provides a concise and expressive syntax to define how data flows between different sys-
tem components over time. The language is particularly well-suited for applications in control systems,
real-time monitoring, and embedded software, where precise and predictable system behavior is crucial
[14][15].

Lustre plays a significant role in the workflow of formal requirement verification tools like FRET. The
integration of Lustre into FRET’s framework allows for seamless transition from high-level requirement
specifications to detailed formal models that can be used for verification and synthesis [11].

Kind-2, Model Realizability

FRET supports the following programs for realizability checking of FRETISH requirements in Linux:
Jkind, JKind + MBP (Model Based Projection), Kind 2, and Kind 2 + MBP. The role of the realizabil-
ity software is to perform a formal analysis of the system requirements, determining whether the safety
properties are provably realizable or not [15, 14]. Choosing between the realizability software may impact
performance, but the differences are generally not significant.

”Kind 2 is an open-source, multi-engine, SMT-based model checker for safety properties of finite- and
infinite-state synchronous reactive systems” [15]. Kind-2 translates LTL safety properties expressed in
Lustre into an encoded format based on three state transition systems: s, I(s), T (s, s′). Here, s represents
the vector state variables at any given time, I(s) the initial state of the system, and T (s, s′) the properties
of the transition between two states (where s is renamed as s′) [15]. Kind-2 also supports invariant prop-
erties, which are variables or conditions that remain unchanged even after the system state changes. These
invariant properties, denoted as P , hold in any reachable instance of the system.

When compared to previous realizability models, it was concluded that ”Kind 2 is very competitive
with its peers, outperforming its predecessor PKind and providing an answer (either valid or a counterex-
ample) in more cases than any other tool” [15]. In Fig. 12 the performance of different model checkers
have been compared, showing the number of benchmarks solved in relation to time.



Fig. 12: Comparison between realizability models (infinite-statemodel checkers). Note. From ”The kind
2 model checker”, by Adrien Champion, Alain Mebsout, Christoph Sticksel and Cesare Tinelli, 2016,
International Conference on Computer Aided Verification, p.515 [15].

Jkind, Model Realizability

JKind, developed by Rockwell Collins and the University of Minnesota, is an ”open-source industrial
model checker”[16]. Model checkers are used to prove or falsify safety properties of infinite-state system
models. Unlike finite-state models, which can often be too restrictive, infinite-state models handle a
boundless number of possible states, which can lead to significant computational consequences [17].

To manage this complexity, JKind uses multiple parallel engines in the form of SMT-solvers (Sat-
isfiability modulo theories) for its verification process. Where the SMT results are used by JKind for
traceability of properties and model elements. The emphasis on the usability of results distinguishes
JKind, making it essential for simulating unrealizable results in FRET. This is made possible since ”For a
falsified property, JKind provides options for simplifying the counterexample in order to highlight the root
cause of the failure” [16]. Information about the root cause of failures can be as valuable as the results of
the realizability testing, leading to a better workflow for model requirements. Written in Java, JKind uses
SMTInterpol but can be configured with Z3, YICES 1, YICES 2, CVC4, and MathSAT [16]. For FRET,
Z3 is often the primary option.

JKind provides a smoothing algorithm when combined with Z3 or YICES. This is a post-processing
step that minimizes the number of input changes in its counterexample, making system faults more read-
able for the user. The smoothing process adds 40% of runtime, but typically removes more unnecessary
changes per test case [16]. In FRET this might be useful when applied to complex model verification
issues, where Kind-2 will outpace the JKind solution.



Fig. 13: Comparison between infinite-state model checkers. Note that the axes are flipped compared to
Fig. 12. Note. From ”The jkind model checker”, by Andrew Gacek, John Backes, Mike Whalen, Lucas
Wagner, and Elaheh Ghassabani, 2018, Computer Aided Verification: 30th International Conference, p.
23 [16].

Model Realizability Summary

When comparing the performance of JKind and Kind-2 in Fig. 12 and Fig. 13, there is no definitive
choice of the better model checker. Each has its advantages, but in most situations, JKind and Kind-2
will perform well. Of the two, Kind-2 is the faster model checker but offers fewer functions in the FRET
software. JKind, on the other hand, is built in Java and is slower for smaller models but excels in cases
where the models are unrealizable, as it displays the root cause of the failure and applies a smoothing
algorithm.

FRET Simulation

FRET offers a simulation tool to test the logic of the LTL requirements. Provided Kind-2 is installed,
this tool will be available when the system is unrealizable. With Jkind, the simulation tool is also available
for realizable systems. This tool allows users to set up scenarios where the logic of system transitions
is evaluated, visualizing the results clearly and providing a good perspective on how FRETISH logic
functions. Fig. 14 shows an example of this scenario tool, where pressing the small circles changes the
state of the variable. To use JKind or Kind-2, NuSMV must be installed. NuSMV (New Symbolic Model
Verifier) is a ”symbolic model checker”, which FRET utilizes for its verification software [18] [19]. The
results are visualized using JKind or Kind-2.



Fig. 14: Example of how FRET visualizes LTL logic after realizability testing using JKind.

Exporting and Importing

Effective management of requirements and system models involves seamlessly transferring data be-
tween different tools and platforms. FRET supports a streamlined process for importing requirements
from other tools and exporting them into various formats for further analysis and implementation. This
functionality ensures that the requirements are consistent, up-to-date, and easily integrated into different
phases of the system development lifecycle.

FRET provides robust capabilities for importing requirement specifications from other tools, allowing
for a smooth integration of existing data into the FRET environment. One such tool commonly used for
developing robotic applications is Robotool. From Robotool a JSON or CSV file of a system model could
be exported, and used for requirement generation.

After specifying and formalizing requirements in FRET, you might need to export them into other
tools for further development and verification. OGMA, a tool used for generating runtime monitors and
analyzing system behaviors, is one such example where FRET requirements can be exported, using the
Copilot language.



2.2.2 OGMA

OGMA was created by NASA to bridge the gap between FRET and the RV system Copilot [20]. Leading
to an automated process from structured natural language input called FRETISH to the generation of C99
monitor code that can be implemented in Copilot. OGMA translates requirements to a precise mathe-
matical formalism that could be used in safety-critical systems. In this case, safety-critical systems are
processes where failure can result in injury or death of a human [20]. To prevent safety-critical situations,
a crucial aspect of the monitors generated from OGMA is that they perform in hard real-time, thereby en-
suring that any reaction to a property violation does not miss the activation deadline. Hard real-time code
lends itself well to RV of advanced automatic systems where failures could lead to safety-critical events.

For ROS applications, the following works as input for OGMA:

Table 3: Command Line Arguments Description. Note. Adapted from OGMA GitHub by NASA [21].

Argument Description
--app-target-dir DIR Location where the ROS application files must be stored.
--variable-file FILENAME File containing a list of variables that must be made available to

the monitor.
--variable-db FILENAME File containing a database of known variables, and the topic they

are included with.
--handlers FILENAME File containing a list of handlers used in the specification.

Table 4: List of Produced Files. Note. Adapted from OGMA GitHub by NASA [21].

File Path
ros_demo/CMakeLists.txt
ros_demo/src/copilot_monitor.cpp
ros_demo/src/copilot_logger.cpp
ros_demo/src/.keep
ros_demo/package.xml

Not all arguments from table 3 are mandatory for OGMA to work. On the GitHub page, it is stated
that ”You should always provide either a FRET component specification, or both a variable file and a
handlers file.” [21]. In this case, the FRET component specification is the most straight forward to use. In
the case where both the FRET file and the variables/handler files are provided, OGMA will prioritize the
variables/handlers.

Although the DB (database) file is not mentioned as mandatory, it is needed for any subscriber and
publisher nodes to be generated in the ROS directory. This is the case since the DB file is where the ROS
topics are declared and from which the monitors will subscribe to. The DB file requires four inputs in
order, namely: variable name, variable datatype, ROS topic, and ROS topic datatype. An example of what
these inputs might look like is in Tab. 5. OGMA will not produce any warnings if a DB file is not provided,
and the same goes for variables that are not located in the DB file. For this reason, it is important to make
sure all required fields are declared before advancing.

https://github.com/nasa/OGMA
https://github.com/nasa/OGMA


Table 5: ROS DB-file example for OGMA.

Variable Variable Datatype ROS Topic Topic Datatype

distance to target int64 t /scan Int64 t
classifier int64 t /sRobotClassifier Int64 t
alert bool /sRobotAlert bool
halt bool /sRobotHalt bool
slowdown bool /sRobotSlowdown bool
state int64 t /sRobotState Int64 t
turnoffUVC bool /sRobotTurnoffUVC bool

A current limitation of OGMA is that the ROS command does not produce the copilot monitors which
are required for the ROS structure to work. To address this, the Copilot-compiled ’monitor.c’ and ’moni-
tor.h’ files need to be placed in the ’src’ of the ROS directory [21].

Haskell

There are many software packages available to use when looking into applying RV to ROS systems.
One deciding factor for using OGMA, which uses Copilot, is because they are built in Haskell. In this
section, the advantages of Haskell as a language for RV monitor generation are presented.

Dr. Ivan Perez, Senior Research Scientist at NASA and one of the lead programmers behind OGMA,
stated when discussing Haskell that ”Low-level languages may be more error-prone, and some classes of
errors are easier to make. A high-level, safe language can facilitate readability and maintenance, and limit
the likelihood of introducing (some) bugs.” [12]. To explain this choice of programming language, the fol-
lowing features of Haskell are presented: immutability, statically typed (strong type system), higher-order
functions, lazy evaluation, and referential transparency [22].

Immutability: Haskell enforces immutability, a method where data structures cannot be modified
after they are created. This feature simplifies code clarity, reasoning, and bug fixing since the history of
changes can be represented as new values rather than mutations of existing data, providing a history of
changes as they happen within the software.

Statically typed (strong type system): Haskell is known for its statically typed and strong type
system, which means that the types of all expressions in a program are known at compile time, and the
language enforces strict rules on how types can interact. This characteristic of Haskell plays a crucial role
in ensuring program correctness and reliability, especially in the context of Functional Reactive Program-
ming (FRP). This system acts as a sort of guarantee since ”All the types composed together by function
application have to match up. If they don’t, the program will be rejected by the compiler” [22].

Higher-Order Functions: A fundamental part of Haskell is its support for higher-order functions.
Higher-order functions take other functions as arguments or return a function as a result, which can be
beneficial for constructing and combining reactive behaviors in an FRP system [23]. This feature is not
special to Haskell, but the type system further enhances the power and safety of these functions.



Lazy Evaluation: Haskell enforces a lazy evaluation model. Lazy evaluation means that computations
are deferred until their results are needed, meaning that arguments are evaluated only when the values are
actually used. This fits well with FRP models of data streams, as it allows for efficient, on-demand com-
putation of reactive expressions. This also benefits the higher-order functions by making them compose
together well, ”Haskell code makes it easy to fuse chains of functions together, allowing for performance
benefits” [22].

Referential Transparency: A feature mentioned by Dr. Ivan Perez when commenting on the advan-
tages of Haskell is referential transparency. This means that an expression, when evaluated, will always
produce the same result without causing any abnormal effects. This property is crucial for testing because
it ensures that given the same inputs, a function will always return the same outputs as if it was always
running on the same seed, making tests reliable and predictable. The primary purpose of referential
transparency is to make code more predictable, understandable, and easier to reason about by ensuring
that functions are behaving as expected. Dr. Ivan Perez stated the following in a podcast regarding how
NASA uses Haskell for RV: ”And we can actually use some of Haskell’s assets to our advantage or some
of the best-selling points of Haskell to our advantage. For example, when it comes to testing, we can claim
that because we run certain tests, we have the guarantee from the compiler that if we run the same test
cases again, we will get the same result. This is something that you would not get in another language.” [3].

2.2.3 Copilot

OGMA is built around Copilot which is a runtime monitoring language. Copilot is a stream program-
ming language, and that’s where it connects to FRP (Functional Reactive Programming) [3]. The relation
between OGMA and Copilot is that OGMA translates the incoming property requirement and feeds it
into Copilot which generates C code monitors. OGMA would for instance give a Haskell file that ”when
you compile it, it generates hard real-time C99” [3] and ”The C99 backend ensures us that the output
is constant in memory and time, making it suitable for systems with hard realtime requirements.” [24].
OGMA simplifies this process by being able to translate other languages to Copilot, which works since
the difference between Copilot and other libraries Copilot uses like Lustre and temporal logic are very
small. Note that Copilot made by NASA has nothing in common with the GitHub Copilot extension tool
[25].

The Copilot software developed by NASA is a stream-based runtime monitoring language [20]. Made
with the intent of creating RV (runtime verification) frameworks for real-time embedded systems. RV
has been increasingly sought after because of advancements in the robotics fields that require high-level
assurance, and both the Copilot and OGMA software is under active development under NASA [4]. The
goal of Copilot is to ”automatically generate C monitor programs from a high-level DSL embedded in
Haskell.” [26].

Copilot is implemented as a Haskell embedded domain-specific language (EDSL), designed and struc-
tured within the Haskell programming environment, a programming language with a strong performance
in static typing and mathematical precision [4]. Through the Haskell language, Copilot monitors operate
on streams. Streams are infinite successions of values that are being monitored by the system to ensure



everything is as it should be. Streams are beneficial to real-time monitoring, keeping high accuracy when
it comes to timely response and tracking of risk assessment. ”Copilot supports the standard logic operators
from propositional logic, as well as temporal combinators based on temporal logics” [4].

Since Copilot is manufacturing the monitors a degree of assurance that the result is correct is impor-
tant. For this, Copilot Verifier was created by Ryan Scott at Galois [27]. Copilot Verifier is ”a tool that
establishes a format proof between the C code that comes out of Copilot and the denotational semantics
of the language.” [3]. Verification of the C code provides evidence of the safety of the product Copilot has
generated.

Fig. 15: Copilot Verifier architecture. Note. From ”Trustworthy Runtime Verification via Bisimulation
(Experience Report)”, by Ryan G Scott, Mike Dodds, Ivan Perez, Alwyn E Goodloe, and Robert Dockins,
2023, Proceedings of the ACM on Programming Languages, vol. 7, no. ICFP, p. 6 [26].

Copilot supports temporal logic (LTL, PTLTL, and MTL) and provides a library for higher-level con-
structs for ”defining clocks, a Boyer-Moore majority voting implementation and various temporal logics”
[24].

2.2.4 Flask

To create a web interface that continuously operates on a server, Flask can be implemented. Flask is
a lightweight Web Server Gateway Interface (WSGI) microframework that allows any computer on the
network to access the web server given the IP address of the computer running the application. Originating
from the Python community, Flask was developed by Armin Ronacher as a part of the Pocoo project. Its
simplicity and extensibility have made it a popular choice. A significant reason for its popularity is the
way it was designed, focusing on versatility and modularity in its usage. Based on GitHub ratings among
Python web development frameworks, Flask ranks second, only slightly behind Django, another web de-
velopment tool that includes many built-in cybersecurity features. Flask is also used by major franchises,
having both Netflix and Uber as users of the microframework. Flask provides the essentials to build a web
application, offering developers more control and flexibility.

Flask is activated by invoking the app.run() method, which runs the app on a local server that can be
accessed by any computer within the same network [28]. While running, you can access the HyperText



Markup Language (HTML) page through a Uniform Resource Locator (URL) link based on the server’s
IP address. From this address, multiple pages can be created with distinct functionalities and designs.

The aesthetic and design aspects of the web pages within the Flask application can be shaped using
JavaScript and CSS. With the addition of D3, advanced interactive elements can be created that behave
in relation to each other. These elements enhance user experience and the clarity of the presented infor-
mation. One such use case is the automatic generation of state machine charts based on gravity between
nodes of operation. Together, these technologies can create a full-fledged web application that is both
functional and visually appealing.

Rosbridge, SocketIO & rospy for ROS/Flask Integration

To enable Flask to communicate efficiently with ROS for real-time applications, some middleware is
needed to bridge the communication gap. Flask operates as a traditional HTTP request-response model,
which closes the connection after each request is fulfilled. This complicates the process of receiving live
updates from a ROS service since a web page update is needed for each time step. A WebSocket, on the
other hand, allows the server and the client to send messages back and forth at any time without the need
for a request to be opened and closed. Once a connection is established, the information streams both
ways uninterrupted. This makes WebSockets particularly well-suited for real-time applications such as
RV of ROS systems, where low latency and continuous data exchange are required to maintain safety.

WebSocket communication over a single long-lived connection allows for two-way communication
between the client and server. A WebSocket’s efficient and flexible method for real-time web application
enables the server to push updates to the client as soon as they happen. Rosbridge provides one such
system: ”a JSON API to ROS (Robot Operating System) functionality for non-ROS programs” [29].
Essentially, it is a WebSocket server that provides communication between a ROS system and non-ROS
clients. The Rosbridge service enables clients to subscribe to ROS messages, publish ROS messages,
and invoke ROS services. This makes it possible to interact with ROS over the web and integrate ROS
functionalities into web applications such as Flask.

Another WebSocket tool that befits the needs is Flask-SocketIO, which is an extension that gives Flask
WebSocket capabilities. With Flask-SocketIO, real-time bidirectional communication is made possible
between the Flask web client and the server. This gives Flask web applications the ability to instantly
exchange data or updates without needing to refresh the page [30].

Since Flask is built on a Python framework, you can use ROS Python libraries or rospy within the
Flask application to publish, subscribe, or call ROS services directly. This simplifies the communication
to and from the website but requires that your Flask application runs on a ROS-integrated system. This
method is simpler and more direct than using Rosbridge but limits your Flask application to environments
where ROS is installed. The development behind Rospy ”favors implementation speed (i.e. developer
time) over runtime performance” making it non-ideal for critical-path code [31].



Comparative Aspect: Flask-SocketIO is focused on web development, whereas Rosbridge and Rospy
are tailored to robotics applications. Rosbridge provides an interface for non-ROS applications (including
those built with Flask-SocketIO) to communicate with ROS systems, acting as a mediator. Rospy is for
direct interaction with ROS, enabling the programming of ROS nodes. A possible architecture might
involve a ROS-based robotic system where Rospy is used for creating nodes that handle robot control and
sensor data processing. Rosbridge would then provide a WebSocket interface to this ROS system, and a
Flask application augmented with Flask-SocketIO could offer a real-time web interface to interact with
the robot. This setup leverages the strengths of each tool for a robotics application with a web interface.

When using multiple channels for information publishing and gathering, a problem called blocking
arises, where systems like Rosbridge and Flask cannot run simultaneously when they operate on the same
thread. To solve this issue, multi-threading can be applied.

D3

D3.js, also known as Data-Driven Documents, is an open-source Javascript library for manipulating
the Document Object Model based on data. It is designed for data visualization in web browsers with
integration into web standards such as CSS, SVG, HTML, and JavaScript. This enhances the integration
with web technologies, and its flexibility allows for a broad range of applications in data visualization. [32]

Part of the work done prior to this thesis was during a summer project in 2023 financed by the research
project ”Robofarmer”, which is run by SINTEF. The work was executed by a team of three students, two
of whom are the authors of this paper. The focus was on utilizing Human Interface Device (HID) and
Robot state machines, building upon the Yolo machine learning package for human detection, and a Flask
backend web framework for handling logic, data processing from a RealSense 3D camera, and interactions
between frontend user interfaces and the robotic system model. The frontend consisted of a HTML site
for RV. With factors such as flexibility and integration with web technologies, D3.js was considered the
best approach for visualizing the state machines.

2.3 Related RV Tools
Runtime verification (RV) is essential for ensuring the reliability and safety of robotic systems, particularly
those utilizing the Robot Operating System (ROS). Various tools have been developed to facilitate this
verification, each offering unique features and methodologies. This section examines prominent RV tools,
comparing their capabilities and limitations to provide a comprehensive overview of the current landscape.
The tools discussed in this text are ROSMonitoring [5], TeSSLa-ROS-Bridge [33], and ROSRV [34].

Each of these tools makes a unique contribution to the field of runtime verification for ROS, offering
different levels of flexibility and real-time monitoring capabilities. By examining these tools, valuable
insights can be gained into the strengths and limitations of current RV methodologies, which can guide fu-
ture developments and improvements in this critical area. The following sections will explore the specifics
of each tool, highlighting their distinctive features and evaluating their performance in certain contexts of
particular, real-world importance. As a novel contribution, a comparative table is presented of these tools
alongside the OGMA-compiled Copilot monitor system in Sec. 5.4.



2.3.1 ROSMonitoring Tool

For ROS implementations, ROSMonitoring [5] is a powerful tool that facilitates the creation of runtime
verification monitors for both offline and online use. Currently, ROSMonitoring has not been developed
with ROS 2 in mind, but its features and methods remain relevant when compared to those lacking in the
ROS 2 monitor generation through OGMA. In this section, some of the features of ROSMonitoring are
discussed and evaluated.

Similar to OGMA and FRET, ROSMonitoring checks requirements against formally verified logic
specifications, often using temporal logic sequences like LTL. Through the use of formal verification, the
system can be checked both at an offline stage and at runtime. The advantage of an offline check is that,
during the design phase of a ROS application, ROSMonitoring ”exhaustively checks the behavior of a
system.” by performing a variant of a realizability check, as the one in FRET [5]. In ROSMonitoring, this
check is conducted by creating a formal model of the system in question and then performing a ”state
space search” to test the satisfaction of requirements in all configurations[5].

While ROSMonitoring is not unique as a runtime verification platform, it stands out when compared
to existing software due to its integration as a ROS solution and its high portability across different ROS
distributions. Although it currently does not support ROS 2 distributions, efforts are underway to port
ROSMonitoring for use with the ROS 2 system. The structure of the formally verified requirements
in ROSMonitoring is adaptable to various use cases, as it is ”formalism agnostic.” Formalism agnostic
means that the software does not depend on a specific verification formalism in order to understand and
check requirement properties. By leaving the configuration up to the user’s choice of formalism and
ROS distribution, ROSMonitoring offers versatility in its applications. As stated in their documentation,
”ROSMonitoring can be applied to any kind of ROS-based robotic application, with no limitation on how
each communication endpoint is implemented” [5].

A common approach to implementing runtime verification is to place the monitor outside of the ROS
node operation area, where it can serve based on incoming topics and messages. This is how OGMA sets
up the Copilot node, however, in ROSMonitoring the monitors are ”placed between ROS nodes to intercept
messages on relevant topics and check the events generated by these messages against formally specified
properties.” [5]. The advantage of intercepting messages before they have arrived is that the monitor can
act as middleware. Acting upon interception with analysis and possibly modification of the outgoing
message. This enhances system responsiveness and allows the monitor to prevent violation states as they
occur. For applications that do not require the invasive feature of message interception, ROSMonitoring
can be configured to function as a standard runtime verification application, turning off the feature.

Similar to OGMA, all ROS monitors in ROSMonitoring are automatically generated into ROS nodes
that listen to and log incoming messages. The monitors are generated from a configuration YAML file,
which is interpreted by the instrumentation software. The resulting nodes and monitor communicate with
the oracle either through an offline or online approach. The oracle is an external component responsible
for determining the correctness of incoming states. The oracle can adapt to different formal verification
methods without needing to alter its structure, which contributes to the formalism-agnostic nature of ROS-
Monitoring. In Fig. 16 the general architecture of the ROSMonitoring tool can be seen. Fig. 17 shows
the performance decrease of the monitors at varying publishing speeds, which will be referenced in the
discussion when comparing the RV tools.



Fig. 16: Structure of the ROSMonitoring software. Note. From ”ROSMonitoring: A Runtime Verifica-
tion Framework for ROS”, by Angelo Ferrando, Rafael C Cardoso, Michael Fisher, Davide Ancona, Luca
Franceschini, and Viviana Mascard, 2019, Towards Autonomous Robotic Systems: 21st Annual Confer-
ence, p. 389 [5].

Fig. 17: ROSMonitoring overhead percentages based upon the number of messages being posted per
second on ten different topics. Becoming 1000, 5000, and 10000 messages being publishes per second.
Since only the presence of the monitors was being checked they kept the property to be verified as fixed.
Note. From ”ROSMonitoring: A Runtime Verification Framework for ROS”, by Angelo Ferrando, Rafael
C Cardoso, Michael Fisher, Davide Ancona, Luca Franceschini, and Viviana Mascard, 2019, Towards
Autonomous Robotic Systems: 21st Annual Conference, p. 396 [5]



2.3.2 TeSSLa-ROS-Bridge

TeSSLa-ROS-Bridge, created by Marian Johannes Begemann and her team at the University of Lübeck,
Germany, is a runtime verification tool that integrates ROS with the Temporal Stream-based Specification
Language (TeSSLa) [35, 33]. This integration allows a TeSSLa monitor to operate as part of the ROS-
based system, facilitating formally verified safety requirements that monitor the robot during runtime
[33]. TeSSLa is particularly effective for ROS because it employs an asynchronous stream-based runtime
verification (SRV) language, allowing input and output events to be processed independently without a
fixed time grid, relying instead on a timestamp system. This makes TeSSLa suitable for Cyber-Physical
Systems (CPS), which are physical systems controlled by software. The challenge with combining CPS
with synchronous SRV is that data refreshment is not instantaneous, and small delays between updates
can cause violations. TeSSLa removes this problem with the use of timestamps as it has been ”tailored for
SRV of cyber-physical systems” [13].

TeSSLa-ROS-Bridge communicates with the ROS platform by using the publish-subscribe system na-
tive to the Robot Operating System. This is facilitated by the specification language TeSSLa. The concept
behind TeSSLa is that a requirement or specification describes a transformation in the form of a stream
input/output. From the requirement, a TeSSLa boolean stream can be defined, reporting whether the
property is upheld for the current configuration. Advanced output streams are also possible with TeSSLa,
allowing for the checking of value bounds or statistical properties. Additionally, all requirements defined
in TeSSLa have a timestamp attached, enabling timing-based specifications. When an event is processed
by the TeSSLa monitor, the output is logged, notifying the user of the result. If desired, the TeSSLa
monitor can also feed the stream back into itself, allowing for interception strategies or mitigation actions
for perceived violations. Fig. 18 generalizes the TeSSLa-ROS-Bridge architecture [33], demonstrating
how ROS nodes are monitored and interacted with. The setup for the TeSSLa-ROS-Bridge is similar to
the system structure of the OGMA-generated Copilot monitors, as shown in Fig. 25.

Fig. 18: Generalized diagram of how the TeSSLa-ROS-Bridge connects with ROS nodes. The topic
information received by the monitor is treated as events on the stream, and output streams are made
accessible to other nodes. Note. From ”TeSSLa-ROS-Bridge–Runtime Verification of Robotic Systems”,
by Marian Johannes Begemann, Hannes Kallwies, Martin Leucker, and Malte Schmitz, 2023, p. 392 [33].
Springer Nature Switzerland AG.



TeSSLa was originally not designed to support ROS, and a bridge was necessary to facilitate com-
munication between the two. To achieve this, the TeSSLa monitor was encapsulated within a ROS node,
subscribing to existing topics and publishing outputs. The ROS node used for the bridge application runs
ROS 2 and functions like any other ROS 2 node. This simplifies the process of integrating the monitor
into existing ROS systems, requiring no alterations to the ROS structure in order to utilize the TeSSLa
monitor. The bridge also ensures that the monitor remains separate from the system software, providing
a non intrusive monitoring experience. If desired one could implement mitigation actions or intercept
commands based off the monitor outputs. Natively the TeSSLa monitor does not manipulate any ROS
messages. The bridge is programmed in Python using the rclpy library, a ROS client tool for Python. The
TeSSLa monitor within the ROS node is compiled in Rust, with PyO3 linking it to the python bridge.

The TeSSLa-ROS-Bridge was tested in both a practical example, bridging a ROS robot with ROS 2,
and in a simulated environment. Using a ROS node that generated ”dummy events” on an ”Intel Core i7
CPU and 8GB RAM” virtual machine, an average latency of 15 milliseconds from publishing to response
per event was recorded [33]. The study noted that latency was not ”noticeably affected by the size of the
specification,” suggesting that most of the latency is attributed to the bridge implementation. The paper
also mentions that a high frequency of event changes can present challenges to the system, though no
performance results are provided for this scenario.

2.3.3 ROSRV

ROSRV is ”a runtime verification framework for robotic applications on top of the Robot Operating
System (ROS)”, engineered with a focus on enhancing the safety and security of robots within the ROS
ecosystem. ROSRV shares the invasive approach of the ROSMonitoring tool by inserting monitoring
nodes on topic paths, allowing it to intercept and optionally manipulate point-to-point communication
between nodes. Consequentially, the monitor nodes of ROSRV can act as ”men-in-the-middle” [34].
However, ROSRV lacks development for ROS 2.

While both ROSRV and ROSMonitoring utilize intercepting monitor nodes to ensure application
safety, ROSRV introduces an additional, centralized, node called the RVMaster, designed to address the
security issues in ROS-based robotics. This new master node acts as a gateway with stricter management
than the standard ROSMaster, enforcing security policies to make the system safer overall. This means
that all monitoring nodes are managed within a single multi-threaded process, which could pose problems
with a large number of nodes [34]; serving no purpose with the intention of runtime verification, instead
possibly acting as a bottleneck in the system. There are still limitations regarding security in the current
implementation due to its ”reliance on IP addresses in particular and network routing, in general, to
guarantee security” [34]. Despite these limitations, ROSRV offers significantly better security measures
compared to similar monitoring tools.



Mirroring the testing procedures of ROSMonitoring, ROSRV’s performance was assessed by the over-
all overhead introduced into the system with active monitors. The key difference lies in ROSRV opting to
compare the rate of message delivery from a publisher to a subscriber, while ROSMonitoring compared
the message output of the system to several topics. The experiments involved implementing two nodes;
a publisher and a subscriber, with message transmission and reception measured under three conditions:
1) using ROSMaster, 2) using ROSRV without a monitor, and 3) using ROSRV with a monitor. The first
experiment ran for 10 seconds, while the second experiment extended the run time to 10 minutes.

Fig. 19: Performance barplots on the ROSRV framework, where overhead metrics are given in decimal.
Note. Adapted from ”ROSRV: runtime verification for the Robot Operating System”, by Cansu Erdogan,
2015, pp.32-35 [36].
*roscore = ROSMaster, rvcore = ROSRV

The performance metrics in Fig. 19 indicate the minimal impact of the overhead introduced by ROSRV
on the system. Although the 10-second experiments show a marginal decrease in performance, they are
outperformed by the 10-minute experiments demonstrating a negligible overhead over longer periods of
time. The 1-minute experiment indicates minimal differences between conditions, suggesting a rapid
improvement in performance over runtime, further supporting the findings. Despite these positive results,
further testing is required to quantify the scalability of the framework as ROSRV employs a centralized
architecture [34].

It should be noted that due to the advancements in security mechanisms in ROS 2, as mentioned in
Sec. 2.4, the RVMaster designed to enforce security policies is an outdated approach and may serve only
as a potential bottleneck.



2.4 ROS & ROS 2
ROS (Robot Operating System) is an open-source framework designed by robotics research lab and tech-
nology incubator Willow Garage and is, in many ways, the foundation of this paper. ROS was designed to
help researchers and developers create complex and robust robotic applications. With development from
Open-Source Robotics Foundation (OSRF), ROS has become the de facto standard in the field of robotics
research and academia for over 15 years due to its strong, yet simple, core concepts. This has led to ROS
having an extensive set of tools and libraries, as well as an active community and ecosystem.

At a high-level, ROS is a peer-to-peer network of ROS processes [37]. Central to this network is the
ROS Master, which acts as a name service and lookup for the system and is essential for establishing
communication within the network. The network architecture consists of nodes that perform various com-
putational processes. The nodes communicate via messages through channels called topics. Each node
in a system has the capability to publish and subscribe to any topic they want, thus becoming modular
and reusable. The primary mechanism of ROS applications is callbacks. Whenever a node gets a message
through a topic, a callback assigned to the node’s subscription is activated, much like a function in general-
purpose programming languages. Fig. 25 showcases a generalized high-level view of a ROS system by
Clearpath Robotics [38].

Fig. 20: High-level structure of a ROS system. Note. From Clearpath Robotics [38].



However, as with most initial software iterations, ROS has some significant problems. First, ROS does
not provide real-time capabilities, making it unsuitable for deployment in critical operations where precise
timing is essential. Another limiting factor is minimal network security. ROS relies on IP-based access
control policies to manage security and depends heavily on the security of the network it is implemented
on or on external network-monitoring tools such as ROS-FM [39]. With an expanding library of ROS
platforms in various mission-critical scenarios, these limitations have driven researchers to develop ROS 2
to address this, as well as several other issues.

ROS 2 is built on top of Real Time Publish Subscribe (RTPS) as its middleware. RTPS is a Data
Distribution Service (DDS) which provides discovery, serialization and transportation [40]. This offers
authentication, encryption, access control, and audit logging as part of the middleware. Especially relevant
for runtime verification is the feature of distributed discovery. In distributed discovery, there is no central-
ized service to establish communication among individual members of the system, in this case, the nodes.
Instead, the members discover each other. This shift in infrastructure significantly improves scalability by
reducing the risk of bottlenecks by eliminating the centralized service and distributing the load among the
nodes. In centralized discovery, a system-wide impact can be felt if there is a failure, potentially causing
complete shutdown of operation. In contrast, with distributed discovery, the other nodes can continue to
operate after one node fails, enhancing resilience. This introduces runtime verification as a pivotal role,
not just in detecting what, when, and where something went wrong, but also in taking mitigating actions
based on the errors.

One notable feature of ROS and ROS 2 is their event-driven nature, which processes messages se-
quentially, even when multiple messages need to be handled quickly. This sequential processing ensures
orderly communication but can introduce minimal delays when publishing multiple messages simulta-
neously. Although it is not possible to publish all messages at the exact same instant, the delay can be
minimized to achieve an effect that is nearly simultaneous.

2.5 Robotool
RoboTool, developed by RoboStar at the Department of Computer Science, University of York, is men-
tioned in this paper [41]. The idea is that system models generated in RoboTool can be exported to FRET
and automatically made into safety monitors. This is made possible since FRET’s emphasis on temporal
logic enables seamless integration with the offline verification tool, RoboTool. Since Robotool is not
directly used in the paper not too much will be said about it, instead some general information regarding
Robotool is presented.



RoboTool presents itself as a specialized robotics platform specifically designed to support develop-
ment, analysis, and verification of robotic systems [42]. The platform is based on the RoboChart modeling
framework and language, and provides a dedicated environment for the construction of detailed models;
parsing, type checking, validation, graphical editing, and model generation. The aim is to simplify the
process of modeling the complex robotic systems that are prevalent in RoboChart. For context, RoboChart
is a Domain-Specific Language (DSL) based on the Unified Modeling Language that allows for modeling
of robotic applications and supporting verification via model checking [43].

RoboTool facilitates the creation and editing of RoboChart diagrams and automates the generation of
mathematical Communicating Sequential Processes (CSP) and PRISM models [44]. Additionally, it of-
fers a simplified notation employing controlled English to define assertion-capturing properties of interest,
supporting its formalization of properties.

2.6 Robot Vision
Robot vision is a crucial component in the field of robotics, enabling machines to interpret and understand
their environment through visual data. This capability is essential for autonomous systems to navigate,
identify objects, and interact effectively with their surroundings. The integration of advanced vision sys-
tems in robotics, such as depth cameras and sophisticated object detection algorithms, significantly en-
hances the operational capabilities and safety of these systems. Here the RealSense D435 depth camera
and the You Only Look Once (YOLO) imaging tool are described. These tools are used in the thesis for
data collection for usage with the safety monitor.

2.6.1 RealSense Depth Camera

In Cyber-Physical Systems (CPS), the software is combined with physical parts or sensors, and one such
sensor used in this paper is the Intel RealSense D435 depth camera. The RealSense D435, first announced
in 2018, is a stereo solution camera with high-quality depth capabilities. The D435 model has a wide field
of view and an announced range of ten meters, making it a good pick for robotic applications.

In Fig. 21 a photo of the RealSense has been labeled into sections for understanding the features the
camera has to offer. Labeled ”a” and ”c” are the right and left imager sensors, which when combined offer
a stereo infrared (IR) image with depth information. The IR light the imager modules receive is produced
by the IR projector, ”b”, in a structured pattern across the field of view. With infrared light, otherwise
featureless objects like walls become easy to read for the depth module. Infrared light is invisible to the
naked eye, but under low light conditions, it is possible to see the light pattern on a reflective surface, as
shown in Fig 22. The last module ”d” is the RGB sensor. The RGB module records a high-resolution
color image used in conjunction with the depth image in the camera output. The data from the RealSense
camera can be used for object/distance measurement, 3D scene reconstruction, or as any of its parts being
either: an IR depth sensor or RGB camera.



Fig. 21: Intel RealSense camera, model D435. The camera in the image has the following labels: a - right
imager, b - infrared (IR) projector, c - left imager, and d - RGB module [45].

Fig. 22: Image from the RealSense in the dark, showing the infrared (IR) pattern on the reflective parts of
a safety vest.



2.6.2 YOLO

While the novelty may lie in the implementation of the depth camera, YOLO is introduced as the object
detection software that leverages this technology. To be precise, YOLO is a single-stage object detection
framework and has been the de facto industry-level standard for many years [46]. ”Single-stage” defines
the trait of being able to predict bounding boxes and class probabilities directly from a full image in a
single evaluation.

High-level Abstraction of YOLO’s Workflow

To initialize the process of object detection, an input image is divided into a grid of size S². Each
grid cell then produces two things. Firstly, a set of bounding boxes centering a point inside the cell with
associated confidence scores for whether an object is contained in each bounding box. Secondly, a class
probability map pertaining to the object class most likely to be linked with that cell, given an object pre-
sumably exists in the cell. YOLO then combines these elements to yield the output image with detected
objects bounded.

Architecture

The architecture of YOLO follows that of a standard CNN (Convolutional Neural Network). Consist-
ing of a stack of convolutional layers, the input can be distilled. This is followed by two fully connected
layers where the abstract information is parsed and transformed into output vectors for each grid cell.

Fig. 23: YOLO architecture. The input image with three channels, each for the red, green, and blue values
respectively, is distilled into an abstraction and transformed into output vectors used for predictions. Note.
From ”A survey of deep learning-based object detection”, by Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan
Yang, Lingling Li, Zhixi Feng and Rong Qu, 2019, IEEE access, vol. 7, p. 2 [47]. CC BY 4.0.



YOLOv6

More specifically, version YOLOv6 was used for the research in this paper. This is due in part to the
renovated design of the framework along with its impressive performance in real-time object detection.

”The renovated design of YOLOv6 consists of the following components, network design, la-
bel assignment, loss function, data augmentation, industry-handy improvements, and quantization and
deployment”[46].

Table 6: Comparison of Detection Frameworks. Note. Adapted from ”A review: Comparison of per-
formance metrics of pre-trained models for object detection using the TensorFlow framework, by SA
Sanchez, HJ Romero, and AD Morales, 2020, IOP Conference Series: Materials Science and Engineer-
ing, p. 9 [48], and the YOLOv6 GitHub, by Meituan [49].

Detection Frameworks Train mAP FPS
Fast R-CNN PASCAL-VOC 2007+2012 70.0 0.5
Faster R-CNN VGG-16 PASCAL-VOC 2007+2012 73.2 7
Faster R-CNN ResNet PASCAL-VOC 2007+2012 76.4 5
YOLO PASCAL-VOC 2007+2012 63.4 45
SSD300 PASCAL-VOC 2007+2012 74.3 46
SSD500 PASCAL-VOC 2007+2012 76.8 19
YOLOv6-N COCO val2017 37.5 779
YOLOv6-S COCO val2017 45.0 339
YOLOv6-M COCO val2017 50.0 175
YOLOv6-L COCO val2017 52.8 98

Tab. 6 contains data collected from the paper ”A review: Comparison of performance metrics of
pre-trained models for object detection using the TensorFlow framework”[48], as well as the YOLOv6
repository. All code for YOLOv6 is made publicly available by the researchers at Meituan Vision AI
Department on GitHub alongside comprehensive documentation and resources:

https://github.com/meituan/YOLOv6

Tab. 6 portrays benchmarks of several frameworks with a common goal of object detection. The data
was obtained from testing various frameworks on the PASCAL-VOC 2007 and COCO val2017 datasets.
Datasets for object detection normally consist of two elements; images and annotations. Images come with
a range of object categories, meaning different types of objects to be classified, such as ”dog”, ”plane”
and ”bicycle”. Attached to these images are annotations. Annotations include bounding boxes which are
the frames surrounding the objects, and object labels. mAP stands for mean average precision and is the
main metric for evaluation. It is given at varying IoUs (Intersection over Union), which is the overlap of
the ground truth bounding box and the predicted bounding box. The frameworks tested on the PASCAL
dataset evaluate the mAP at a 0.5 IoU threshold. The YOLOv6 frameworks evaluates mAP across a
0.5:0.95 threshold range with an increment of 0.05.

https://github.com/meituan/YOLOv6
https://github.com/meituan/YOLOv6


IoU =
Area of Overlap
Area of Union

By averaging the precision and recall across all classes, the metric conveys how well a given framework
performs with different types of objects.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

Here precision can be seen as the relation between the correctly detected objects and the total number
of objects detected in an image. Recall can be seen as the relation between identified objects and the total
number of objects in an image.

The PASCAL-VOC 2007 dataset is a standard dataset consisting of 9963 images with annotations and
is related to the PASCAL Visual Object Detection challenge. These images come with less complexity
and occlusion, giving clearer pictures with more defined classes. The COCO val2017 dataset, on the
other hand, includes an extensive 118,000 images with annotations with much higher complexity due to a
greater variety of object classes, distances, and occlusion.

From the frameworks tested on the PASCAL dataset, YOLO and SSD300 performed especially well
with 63.4 mAP at 45 frames per second (FPS) and 74.3 at 46 FPS respectively. The YOLOv6 frameworks
tested on the COCO dataset boasted a range of 37.5-52.8 mAP at higher rates of 98 to a staggering 779
FPS. This is especially impressive considering the heightened complexity of the COCO dataset.

Confusion matrices are effective for evaluating classification models, from which accuracy, precision,
recall, specificity, F1 score, fall-out, and miss rate can be calculated. A positive value (P) is the worker
class and a negative value (N) is an adult. Fig. 24 is used to define the equations used for the YOLOv6
evaluation.



Fig. 24: Use the following matrix for the abbreviations used in the formulas.

1 Accuracy
Accuracy measures the overall correctness of the model and is calculated as the ratio of correct
predictions (both positive and negative) to the total number of cases examined.

Accuracy =
TP + TN

TP + TN + FP + FN

2 Precision (Positive Predictive Value)
Precision is the ratio of correct positive predictions to the total predicted positives. It is a measure
of the quality of the positive class predictions. In this case the worker class.

Precision =
TP

TP + FP

3 Recall (Sensitivity or True Positive Rate)
Recall is the ratio of correct positive predictions to the actual positives. This metric tells us how well
the model can identify positive results.

Recall =
TP

TP + FN

4 Specificity (True Negative Rate)
Specificity is the ratio of correct negative predictions to the actual negatives. It shows how well the
model can identify negative results. In this case the adult class.

Specificity =
TN

TN + FP

5 F1 Score
The F1 Score is the harmonic mean of precision and recall, providing a balance between them. It is
particularly useful when the class distribution is uneven.

F1 Score = 2 · Precision × Recall
Precision + Recall



3 Requirements
In this section, the requirements of the paper are outlined, providing information regarding the research
objectives, the specific criteria for designing our desired pipeline for RV, and what safety requirements we
are adhering to when executing simulations and field tests.

3.1 Goals and Objectives
The primary goal of this project is to automatically develop a robust RV platform for ROS 2 applications
from Natural Language (NL) requirements, equipped with a user interface. This platform aims to facili-
tate user interaction with the ROS system through simple commands and will be applicable to both CPS
and simulation environments. The monitor should demonstrate reliable, high-performance results during
execution. Additionally, the RV monitors should be capable of being automatically generated from near-
natural language requirements, which can be converted into formally verified temporal logic for precise
verification.

3.2 System Requirements
The system is designed to meet the following requirements, in no particularly order:

1 ROS 2 Compatibility:
The system must be fully compatible with the Robot Operating System 2 (ROS 2), supporting seam-
less integration and communication with ROS Master nodes. This can be achieved with middleware.

2 Low Latency and High Performance:
The system must exhibit low latency and maintain high performance, even under high load condi-
tions, to ensure timely and efficient operation.

3 Bidirectional Communication:
Support for bidirectional communication is required to enable effective data exchange between
nodes and the front-end. Also benefiting the implementation of front-end user control.

4 Linux Compatibility:
The system must be compatible with Linux operating systems, ensuring broad usability and integra-
tion with various Linux-based environments.

5 Hard Real-Time Capabilities:
The system must support hard real-time operations, ensuring predictable memory usage and execu-
tion time. The system must not use dynamic memory allocation (malloc), for loops, or recursion
to maintain constant memory and time bounds. This is in order to maintain predictable monitor
execution through deterministic behavior and a simplified process.

6 Formal Verification:
The implementation must be formally verified or able to perform verification of requirements, to
guarantee correctness and reliability, particularly in safety-critical applications.

7 Violation Detection and Reporting:
The system must include mechanisms to detect and warn the user of any violations in real-time,
providing alerts through the front-end interface.



3.3 Safety Requirements
Safety requirements are founded on risk assessments and mitigation planning. The risk assessments for
this thesis were made by researchers at the Lincoln Centre for Autonomous Systems, University of Lin-
coln, UK, and presented in an article about probability of human injury during UV-C treatment of crops
by robots [50]. Mitigation plans were further developed and presented during the 2023 IEEE 19th Inter-
national Conference on Automation Science and Engineering (CASE) [44]. They have since then been
updated with the input of a Saga Robotics safety engineer and are listed below.

Table 7: Mitigation plan based on the analysis. Note. From ”Probabilistic modelling and safety assurance
of an agriculture robot providing light-treatment”, by Mustafa Adam, Kangfeng Ye, David A. Anisi, Ana
Cavalcanti, Jim Woodcock, and Robert Morris, 2023, 2023 IEEE 19th International Conference on Au-
tomation Science and Engineering (CASE), pp. 1-7 [44].

ID Human detected Zone Mitigation Actions (µact)
R1 Trained Green Activate sound
R2 Untrained Green Activate sound & slow down
R3 Trained Yellow Activate sound & slow down
R4 Untrained Yellow Turn off UVC & Stop robot
R5 Trained/Untrained Red Turn off UVC & Stop robot

Table 8: Safety requirements, corresponding mitigation plan for the presence of trained/untrained person.
Human is used in the case where both classes apply.

ID Possible situation Mitigation plan
R0 Robot is performing a transition between

rows and no human is detected
Nothing

R1 Robot is performing a transition between
rows and trained worker detected in the
green zone (more than 7m distance)

Activate sound

R2 Robot is performing a transition between
rows and untrained human detected in the
green zone (more than 7m distance)

Activate sound & slow down

R3 Robot is performing a transition between
rows and trained worker detected in the
yellow zone (between 3-7m)

Activate sound & slow down

R4 Robot is performing a transition between
rows and untrained human detected in the
yellow zone (between 3-7m)

Turn off UVC & Stop robot

R5 Robot is performing a transition between
rows and trained worker detected in the
red zone (less than 3m)

Turn off UVC & Stop robot



4 Methodology
The methodology chapter outlines the systematic approach and processes undertaken to achieve the ob-
jectives of this research. It provides a detailed account of all tools, frameworks, and interesting techniques
used in the development and validation of the RV pipeline for ROS 2. The goal of this chapter is to give
the reader an understanding of the research process of this paper and to serve as a resource in aiding future
research on ROS based RV monitoring.

The methodology chapter is divided into several sections, each detailing critical aspects of the research
process. The chapter begins with an introduction to the system architecture, including its development and
implementation (Sec. 4.1), and examines the installation process and integration of FRET and OGMA into
the workflow. Subsequently, the methodologies behind the system’s testing in both simulated and real-
world environments is explained (Sec. 4.2). Lastly, there are two shorter sections addressing the inclusion
of a violation injection device for testing purposes (Sec. 4.3) and the assessment of ethical considerations
upheld during data collection (Sec. 4.4).

The inspiration for advancing RV in ROS 2 applications came from the paper ”Automated Translation
of Natural Language Requirements to Runtime Monitors” by Dr. Ivan Perez and his team at NASA. The
paper outlines the steps for creating C monitors for ROS 2 from FRET input in the following seven steps
[21]:

1 Fret automatically translates requirements into pure Past-time Metric Linear Temporal Logic
(ptLTL) formulas.

2 Information about the variables referenced in the requirements must be provided by the user.

3 The formulas and provided variable data are then combined to generate the Component Specifica-
tion.

4 Based on this specification, OGMA creates a complete Copilot monitor specification.

5 Copilot then generates the C Monitor.

6 This monitor, along with other C code, is given to a C compiler.

7 The final object code is generated.



4.1 Implementation of system architecture
This section details the transformation of a theoretical design into a functional system, outlining the pro-
cess and tools used for setting up the configuration. The development and deployment were carried out on
Ubuntu 22.04.4 (Jammy Jellyfish) using both ROS 2 iron and humble distributions.

Fig. 25 provides a generalized diagram of the monitor architecture used in this project. This architec-
ture integrates NASA’s FRET and OGMA tools to facilitate the automated translation of natural language
requirements into executable runtime monitors, which run in parallel with the ROS 2 nodes. Refer to
Fig. 25 when following the methodology, for a better understanding of how the components are connected.

Fig. 25: Generalized diagram of monitor architecture.

4.1.1 Installation of software

The successful implementation of the system architecture relies heavily on the correct installation and
configuration of various software tools. Here is a detailed guide on the steps and considerations involved
in setting up the software environment, focusing on the essential tools required for the project. All instal-
lation sequences are displayed as bash scripts, with each line representing the next installation step.

FRET
NASA’s Formal Requirements Elicitation Tool (FRET) is used for specifying the robot platform’s re-
quirements. To get started with FRET, refer to the tool’s GitHub page containing installation instructions:
https://github.com/NASA-SW-VnV/fret. Here is a detailed guide on how the tool was set up
for this paper.

The FRET software depends on several other tools:

• NodeJS https://nodejs.org/en/download/

• NuSMV: https://nusmv.fbk.eu/

• JKind https://github.com/andreaskatis/jkind-1/releases/tag/v2.2

• Kind 2 https://github.com/kind2-mc/kind2/blob/develop/README.rst

• Z3 https://github.com/Z3Prover/z3/releases

https://github.com/NASA-SW-VnV/fret
https://nodejs.org/en/download/
https://nusmv.fbk.eu/
https://github.com/andreaskatis/jkind-1/releases/tag/v2.2
https://github.com/kind2-mc/kind2/blob/develop/README.rst
https://github.com/Z3Prover/z3/releases


NuSMV, JKind, Kind 2, and Z3 are optional dependencies that provide additional functionality to
aspects of the FRET portal. The specifics versions used in this paper are:

NodeJS v16.20.2 with npm 8.19.4
NuSMV 2.6.0, JKind 4.5.1-202311081135 with smtinterpol and z3
kind2 v2.1.1-23-gd217e3c
Z3 version 4.8.10 - 64 bit.

For first-time installation and running of FRET, a streamlined process is provided in the bash-script of
Lst. 1:

Listing 1: FRET install script.
1 #!/ bin /bash
2 git clone https :// github .com/NASA−SW−VnV/fret.git
3 cd fret − electron
4 npm run fret − install
5 npm start

OGMA
The OGMA tool by NASA is used for generating the ROS monitoring application. To get started with
OGMA, refer to the software’s GitHub page:
https://github.com/nasa/OGMA

The installation of OGMA involves installing GHC and Cabal. This can be done simply through command-
line code given on GitHub. It is important to note the version when working with Cabal. ”OGMA has been
tested with GHC versions up to 9.2 and cabal-install versions up to 3.6” [21]. However, the recommended
versions are GHC 8.6 and Cabal 2.4 and 3.2. For this paper, GHC 8.6.5 and Cabal 2.4.1.0 were used,
giving the desired result when compiling the monitor. These versions can be installed through the GHCup
tool, which manages different versions of the Glasgow Haskell Compiler and Cabal. The streamlined
process is provided in the bash script of Lst. 2.

Listing 2: GHC and Cabal install script.
1 #!/ bin /bash
2 curl −−proto ' =https ' −−tlsv1 .2 −sSf https :// get−ghcup.haskell . org | sh
3 ghcup install ghc 8.6.5
4 ghcup install cabal 2.4.1.0
5 ghcup set ghc 8.6.5
6 ghcup set cabal 2.4.1.0

Use ghcup list to check the installations. The installed and set versions should be marked with
green double check marks. After installing the correct versions of GHC and Cabal, follow the OGMA
GitHub guide for installing the OGMA software. The installation script for OGMA is shown in the bash
script, Lst. 3.

https://github.com/nasa/OGMA
https://github.com/nasa/OGMA
https://github.com/nasa/OGMA


Listing 3: OGMA install script.
1 #!/ bin /bash
2 git clone https :// github .com/nasa/OGMA.git
3 cd OGMA
4 export PATH=”$HOME/.cabal/bin/:$PATH”
5 cabal v1−update
6 cabal v1− install alex happy
7 cabal v1− install BNFC copilot
8 cabal v1− install OGMA−*/

Note that appending the --force-reinstall argument might be necessary to install the ’OGMA’
executable. Another option for installation would be the Dockerfile mentioned under the OGMA Github.

4.1.2 Requirement Logic and Safety Engineering

Transitioning from installation, we now examine how safety requirements can be defined for a specific
implementation. The logic behind the the monitor’s safety requirements involves risk assessments and
mitigation planning based on a CPS. The CPS in question consists of a robot platform mounted with
360-degree vision of the surrounding area, and object detection software. The area surrounding the robot
is visualized from above in Fig. 26 as a circle with three radii. These radii separate the area into three
distinct zones spanning the spaces of 0-3, 3-7, and 7-10 meters originating from the edges of the robot.
These zones are ”mitigation zones” with increasing threat-levels as the distance to the robot decreases. Due
to the safety risks involved for humans, stricter safety requirements are defined based on proximity to the
robot. The critical question to ask and evaluate is simply, what objects are in any of the given mitigation
zones? This forms the basis for the implementation’s mitigation planning. The mitigating actions are
defined with increasing strictness in Tab. 7 under Sec. 3.3.

https://github.com/nasa/OGMA/issues/126#issuecomment-1978015759


Fig. 26: CAD of mitigation zones in scale with robot to demonstrate dimensions. In reality the green zone
(outer zone) goes indefinitely from the boundary of seven meters. This is only limited by the quality of the
sensor. In this case the RealSense D435 has a graded performance up to ten meters.

4.1.3 Requirement Declarations

Requirement declaration is crucial for translating system specifications into formal, verifiable statements
that can be monitored. To declare a robust model that performs reliably, NASA’s Formal Requirements
Elicitation Tool (FRET) was used. FRET allows for the specification of the requirements to be written in a
structured, restricted natural language called FRETISH , as seen in Tab. 10. The table contains all system
specification requirements used in this thesis. During requirements markdown process in FRET, multiple
iterations are often necessary to model a system properly. Fortunately, FRET offers tools for checking
the finished model. It is recommended to follow the workflow shown in Fig. 8 in Sec. 2.2.1. Once a
model is deemed realizable by FRET, the project overview will look similar to Fig. 27. In this overview,
each requirement is represented by a circle: the color green indicates a completed specification, white for
undefined requirements, and red for unverifiable ones.



Building upon the variable mapping information in Sec. 2.2.1, Tab. 9 lists all variables with their type
information and a short description. These correspond to the requirements in Tab. 10, and without the
correct variable mapping this specification model would not work. Understanding the correct mapping
of inputs and outputs is crucial for creating a functional model. In the case of unrealizable results during
testing, one should foremost reconsider the variable types. Secondly, follow the workflow in Fig. 8. By
following our example, it should be easier to understand how to set up the variable mapping correctly.

There are only two inputs in Tab. 9: classifier and distance to target. These are the two readings
acquired from the robot’s sensors. You could therefore look at FRET inputs as sensory inputs or uncon-
trollable data. Outputs represent different states of individual actions the robot can take, such as halting,
slowing down, or turning off ultraviolet lights, all being controllable data. OpState represents the current
active mitigation state of the robot and can have any value from 0 to 3, based on the four mitigation plans
mentioned in Sec. 4.1.2 and 3.3. dgt 3 and dgt 7 (dgt, distance greater than) are what we call auxiliary
variables and define our distance thresholds for mitigation zones. FRET needs to know at what points
the mitigation states should hold, but it does not accept mathematical computations within requirement
declarations. Mathematical operations should instead be assigned under ”Variable Assignment in Copilot”
as shown in Fig. 29.

Table 9: Variable Mapping.

Variable Name Variable Type Data Type Description
Alert Output boolean Mitigation to sound an alert under de-

termined condition
Classifier Input integer Identification variable for human de-

tected by system
dgt 3 Internal boolean Auxiliary variable used to mark criti-

cal threshold in distance related to re-
quirements

dgt 7 Internal boolean Auxiliary variable used to mark criti-
cal threshold in distance related to re-
quirements

distance to target Input integer Distance to the identified human given
by the depth camera

Halt Output boolean Mitigation to stop the robot under de-
termined condition

OpState Output integer Current active mitigation state of the
robot

Slowdown Output boolean Mitigation to slow down the robot un-
der determined condition

TurnoffUVC Output boolean Mitigation to turn off the ultra violet
lights under determined condition



Table 10: FRETISH Requirements.

Requirement ID FRETISH

classifier info: none = 0, trained person = 1, untrained person = 2
The different states are defined by the operationalstate requirements below

classifier assumption sRobot shall always satisfy classifier=0 xor classifier=1 xor classifier=2
dtt assumption While !(classifier=0) the sRobot shall always satisfy distance to target>=0
operationalstate 0 While OpState = 0 sRobot shall always satisfy (!slowdown & !halt & !alert & !turnof-

fUVC)
operationalstate 1 While OpState = 1 sRobot shall always satisfy (!slowdown & !halt & alert & !turnof-

fUVC)
operationalstate 2 While OpState = 2 sRobot shall always satisfy (slowdown & !halt & alert & !turnof-

fUVC)
operationalstate 3 While OpState = 3 sRobot shall always satisfy (!slowdown & halt & !alert & turnof-

fUVC)
state req000 While classifier = 0 sRobot shall always satisfy OpState=0
state req101 While classifier = 1 sRobot shall always satisfy (dgt 7 ⇒ OpState=1)
state req102 While classifier = 1 sRobot shall always satisfy (! dgt 7 & dgt 3 ⇒ OpState=2)
state req103 While classifier = 1 sRobot shall always satisfy (! dgt 3 ⇒ OpState=3)
state req201 While classifier = 2 sRobot shall always satisfy (dgt 7 ⇒ OpState=2)
state req202 While classifier = 2 sRobot shall always satisfy (! dgt 7 & dgt 3 ⇒ OpState=3)
state req203 While classifier = 2 sRobot shall always satisfy (! dgt 3 ⇒ OpState=3)

Fig. 27: FRET visualisation of requirements under the aRobot project, having formally verified the system.
Each green circle contains a requirement of the system.



4.1.4 Monitor Implementation

To better illustrate the implementation of the monitor, it is beneficial to provide an example. Consider a
safety requirement based on the presence of an untrained person, R4, defined in Tab. 8. The FRETISH

translation of this natural language requirement can be input into the FRET Requirements portal as shown
in Fig. 28. In the portal the different aspects of the requirement are given a field description, and the
resulting semantics can be analyzed with the diagram assistant. Parent requirements IDs can also be used
in the cases where requirements are dependent on each other. Otherwise, the process is straightforward,
and much can be learned by studying the templates given by FRET. Previously inputted variable names can
be found in the glossary, ensuring that common variables shared between requirements are not duplicated.
The auxiliary variables of the given FRET requirement will need to be defined in the FRET Variable
Mapping portal. For the requirement in Fig. 28, this would mean that dgt 7 and dgt 3 need to be
defined. This is done in the variable mapping section, where thresholds like dgt 7 (distance greater than
7 meters) are declared, as illustrated in Fig. 29.

Fig. 28: FRET Requirement example.



Fig. 29: Mapping of an internal variable for a distance greater than seven meters.

As mentioned in the FRET realizability manual, auxiliary variables must be assigned using the Ver-
imag Lustrev6 syntax and can only contain defined variables. In this case, distance to target and
classifier are variables mapped in the Variable Mapper as integer inputs. This follows the logic that
both the distance value and the class are values provided by sensors, and not outputs for the monitor to
control.

After exporting the finished specification file with Copilot syntax, which includes all requirements for
the project, a CSV file containing a variable database must be created. The CSV file should contain the
FRET variables, variable types, and associated ROS topics. The CSV structure is illustrated in Fig. 11, and
further information regarding database setup can be found on the OGMA github. Once the necessary files
are ready, including the JSON specification file from FRET and the database CSV file, then the complete
workflow for the OGMA software can be followed. The guide is provided in Fig. 30. In this workflow
example, the JSON file is named sRobotSpec, and the CSV file is named sRobot. Remaining file names
are for files created during compiling and monitor generation, and can be changed.

Table 11: Variable Database Example.

Variable Name Variable Datatype ROS Topic Topic Datatype
”distance to target”, ”int64 t”, ”/scan”, ”Int64 t”

”classifier”, ”int64 t”, ”/sRobotClassifier”, ”Int64 t”
”alert”, ”bool”, ”/sRobotAlert”, ”bool”
”halt”, ”bool”, ”/sRobotHalt”, ”bool”

”slowdown”, ”bool”, ”/sRobotSlowdown”, ”bool”
”state”, ”int64 t”, ”/sRobotState”, ”Int64 t”

”turnoffUVC”, ”bool”, ”/sRobotTurnoffUVC”, ”bool”

https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/exports/realizabilityManual.md
https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf
https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf
https://github.com/nasa/OGMA


OGMA workflow

#Generate the monitor from FRET specification:

OGMA fret-component-spec --target-file-name monitor
--fret-file-name sRobotSpec.json > monitor.hs

#Compile the monitor:

cabal v1-exec -- runhaskell monitor.hs

#Generate the ROS monitoring application using FRET requirements
and the variables database:

OGMA ros --fret-file-name sRobotSpec.json --variable-db sRobot.csv
--app-target-dir ros_demo

(The application will be generated in a package by any name
given to the input argument --app-target-dir)

Change "-" to "_" in the monitor.hs, if necessary
(errors could arise otherwise).

Move the .c .h and types.h files into ros_demo/src/ folder.

#In ros_demo/src/copilot_monitor.cpp
remove "prop" from handlers, if they cause issues.

#In ros_demo/src/copilot_logger.cpp
remove "prop" from handlers, if they cause issues.
And in the case of 'warning: unused parameter ‘msg’':
remove msg from SharedPtr in callback functions

#If you plan on using copilot_logger:
In ros_demo/src/CMakeLists.txt
uncomment add_executable section for copilot_logger,
add copilot_logger as an installation TARGET

#Everything should be set up correctly now, test by
going to the workplace directory and colcon build:
cd ∼/ROS˜2_ws && colcon build

#Running the monitor:
ros2 run copilot copilot
#If uncommented from CMake:
ros2 run copilot copilot_logger

Fig. 30: Workflow of pipeline solution through OGMA.



The rest of this section will explore the monitoring application we have just created through an example
C++ code. In Lst. 4, the generated monitor code runs the CopilotRV node. This node checks the system’s
states and reports violations when requirements are broken. This functionality is achieved through the use
of callback functions that execute the step function each time a topic is updated. If the step function detects
a violation, then the handler function for that requirement will forward the violations message, publishing
it on a handler ROS topic. This is later addressed by the safety controller.

Listing 4: Example of OGMA-Copilot generated monitor.
1 // Define the monitoring node:
2 class CopilotRV : public rclcpp :: Node {
3 public :
4 CopilotRV() : Node(”copilotrv”) {
5 // Define subscribers and publishers
6 classifier subscription = this −> create subscription <std msgs::msg::Int64>
7 (”/ sRobotClassifier ” , 10,
8 std :: bind(&CopilotRV:: classifier callback , this , 1) ) ;
9 ...

10 }
11 // Define monitor violation publishers :
12 void handleroperational state0 () {
13 ...
14 }
15 // Define
16 void classifier callback ( const *ROSDataType* msg)
17 ...
18 step ()
19 }

OGMA uses past-time Linear Temporal Logic (ptLTL), where time is considered discrete, meaning
time is modeled as a sequence of separate moments. The increment between successive events are of-
ten referred to as steps. For OGMA, the triggering of the step function is the defining moment when
the monitor evaluates whether the system complies with the requirements. As shown in Lst. 4, the step
function is by default called at every variable callback. This is because the generated monitor will have
the step function set up for stream-based communication, whereas ROS operates on an event basis. This
discrepancy requires manual adjustments to ensure that the generated monitor functions properly. There
are several ways to address this issue, but one approach is to use timed calls of the step function running
at an interval or to externally group publishing where the step function runs in-between groups, emulating
a synchronized system. Proper integration will ensure that the system properties are refreshed before the
states are verified by the monitor. This thesis went with the latter approach.



4.1.5 Flask-ROS Architecture

The Flask-ROS architecture consists of two main components:
Flask Web Server: Acts as the front-end interface, serving HTML pages and handling HTTP requests

from web clients.
ROS 2 Node: Manages communication with ROS topics, services, and actions, processing incoming

data from various sensors, actuators, and software.
The Flask application and the ROS 2 node are initialized separately to ensure non-blocking operation,

as ROS runs in a parallel thread. Blocking occurs when the execution of one task prevents the progress of
another. During early testing, this was a problem since when launching the ROS node the Flask website
would not initialize. The Flask app was blocked by the ROS node spinning, meaning that it only began ini-
tialization after the ROS node had terminated. In Lst. 5 an example of the ROS multi-thread initialization
is shown, which allows Flask to initialize normally by running the app.run command.

Listing 5: Multi Thread Execution of ROS Node.
1 def init ros node (app):
2 rclpy . init ( args=None)
3 global node
4 node = TeleopNode(app)
5 executor = rclpy . executors .MultiThreadedExecutor()
6 executor .add node(node)
7
8 try :
9 executor . spin ()

10 except Exception as e:
11 node. get logger () . error ( ' Exception in executor spin : %r' % (e ,) )
12 finally :
13 executor .shutdown()
14 node.destroy node ()
15
16 # Start ROS node in a separate thread
17 threading .Thread( target = init ros node , args=(app ,) ,
18 daemon=True).start ()

After initialization is complete, the software is ready to receive and post information. The Flask app
cannot by itself connect to ROS topics and read the incoming messages. To achieve this, subscribers,
callback functions, and data processing are implemented using the rospy library. The ROS node sets up
subscriptions to all necessary topics and delivers the data to their respective callback functions. Each
subscription has an associated callback functions that processes the incoming data and updates the Flask
app’s configuration dictionary. This process is used for simulated data, real values captured with sensors,
and incoming images from the Yolov6 package. This process is also used for surveillance of the handler
file topics, which report violations when they occur. The Flask app serves static files and templates,
where various routes are handled. On these routes client requests are performed often delivering data to
the front-end website through the use of HTML scripts. In Lst. 6 one such route is displayed delivering
classification data from the Yolov6 package to the front end Flask application. The Flask routes handle



HyperText Transfer Protocol (HTTP) GET requests, which retrieve the latest data stored in the app.config
dictionary and returnes it as a JSON response. This system allows web clients to fetch real-time data from
the ROS system and sensors over the connected Wi-Fi network.

The Flask website is also capable of bi-directional communication, as shown in Sec. 4.1.7. This allows
the user to send ROS messages back from the user interface, which is useful for testing or in the case of
implementing or calling hazard mitigation actions.

Image Handling is served in a similar way. The ROS node processes incoming images from the /y-
olo im topic, saves them, and updates the Flask app’s configuration. The Flask app then serves these
images via an HTTP route. With sufficient system hardware performance, these images can later be com-
piled into a video of the event.

Listing 6: ROS Flask.
1 class TeleopNode(Node):
2 def init ( self , app):
3 super () . init ( ' teleop flask ' )
4
5 qos profile = QoSProfile(depth=10,
6 durability = DurabilityPolicy .VOLATILE)
7 self . bridge = CvBridge()
8
9 # ROS topic subscriber

10 self . classifier subber = self . create subscription ( Int64 ,
11 ' / sRobotClassifier ' , self . classifier callback , qos profile )
12
13 # Callback function
14 def classifier callback ( self , msg):
15 self .app. config [ ' classifier ' ] = msg.data
16
17 # In the Flask app:
18 @app.route( ' / classifier ' )
19 def classifier () :
20 classifier value = app. config . get ( ' classifier ' , 0)
21 return jsonify ({ ' classifier ' : classifier value })

4.1.6 Architecture Performance Optimization

The implementation of the Flask-ROS architecture, complete with the RealSense depth camera and clas-
sification software, is somewhat resource intensive for lower-end hardware. To better utilize hardware
and reduce the workload on the computer’s central processing unit, certain optimizations must be made.
One optimization is to delegate tasks to the computer’s graphics processing unit (GPU). The favorable
performance of deep neural networks has led to the increased popularity of deep learning in recent years.
However, this powerful tool comes at a high resource cost and can quickly become a bottleneck [51]. For-
tunately, Pytorch supports hardware accelerators such as GPUs [52]. This support is primarily for NVIDIA
hardware through CUDA, NVIDIA’s parallel computing platform. There is also support for AMD GPUs



through ROCm and experimental support for Google’s Tensor Processing Units, designed to accelerate
machine learning tasks [51].

4.1.7 WebSocket Implementation

After testing multiple configurations of different WebSocket options mentioned in Sec. 2.2.4, Rosbridge
proved to be the easiest option to configure and use in our case.

To set up the WebSocket connection for sending ROS commands from our Flask app to the ROS nodes
controlling the robot simulation or system as a whole, the rosbridge server package was utilized. This
package provides a JSON API to ROS functionality for non-ROS programs, allowing them to communi-
cate with ROS nodes using web protocols.

In our implementation, we launched the rosbridge websocket using the following launch command in
a separate terminal:

$ ros2 launch rosbridge_server rosbridge_websocket_launch.xml

This command initiates a WebSocket server that listens for incoming connections and allows con-
nected users to send commands to ROS nodes through the WebSocket interface. This setup is crucial
for the web-page platform, which aims to monitor the runtime verification. The WebSocket reduces the
latency between the Flask page and ROS nodes, allowing data to be almost instantaneously displayed on
the web page when it is received on the ROS topics. With Rosbridge, it becomes possible to create a
seamless communication channel between the Flask application and the ROS environment. This enabled
the Flask app to send commands to the robot simulation, facilitating real-time interaction and control. A
feature which allowed testing of mitigation actions such as calling a shutdown of the robot during field
tests, see Sec. 5.3. The WebSocket connection established by Rosbridge supports various ROS operations,
including publishing to topics, subscribing to topics, and calling services, all through a straightforward
JSON-based protocol.

Implementation Steps:

1 Setup Rosbridge Server: Ensure rosbridge server is installed and properly configured in your
ROS 2 environment.

2 Launch Rosbridge WebSocket: Use the provided command to launch the WebSocket server, as
described in Sec. 4.1.7.

3 Configure Flask App: In the Flask application, use a WebSocket client library to connect to the
Rosbridge WebSocket server. In our implementation the Rosbridge is connected through the HTML
template file. In the example code Lst. 7 the structure behind how the injection buttons send ROS
messages from the website is shown. In this example, only the dtt assumption is implemented,
which sends a negative distance value, causing the distance assumption requirement to be violated.

This integration simplifies the development and testing process, making it easier to ensure that the robot
simulation behaves as expected under various conditions. Leveraging the flexibility of Rosbridge, our
platform can effectively monitor and control the ROS-based system, ensuring robust runtime verification.



Listing 7: ROSBridge Setup for use with Injection Handler.
1 <script>
2 var ros = new ROSLIB.Ros({
3 // default address for ROSBridge;
4 url : ' ws :// localhost :9090 '
5 }) ;
6
7 ros .on( ' connection ' , function () {
8 console . log( ' Connected to websocket server . ' ) ;
9 }) ;

10
11 ros .on( ' error ' , function ( error ) {
12 console . log( ' Error connecting to websocket server : ' ,
13 error ) ;
14 }) ;
15
16 ros .on( ' close ' , function () {
17 console . log( ' Connection to websocket server closed . ' ) ;
18 }) ;
19
20 function injectHandler (handlerName) {
21
22 var injectiontalker = new ROSLIB.Topic({
23 ros : ros ,
24 name: ' / injection detection ' ,
25 messageType: ' std msgs/ String '
26 }) ;
27
28 var injectionmsg ;
29 // data order :
30 // class , distance , state , slowdown, halt , alert , uvc
31
32 if (handlerName == ”dtt assumption”) {
33 var injectionmsg = new ROSLIB.Message({
34 data : ” 1,−1,3, false , true , false , true ”}) ;
35 }
36
37 injectiontalker . publish ( injectionmsg ) ;
38 }
39 </ script>



4.2 Simulation and Field Testing

Simulation and field testing are critical phases in the development and validation of robotic systems and au-
tomated applications. This section provides an overview of the methods and tools employed to rigorously
test and validate system functionality under controlled and real-world conditions. Through a combination
of simulated environments and practical field tests, the aim is to ensure that the system meets its design
requirements and performs reliably. This section is divided into three parts: Field Testing (Sec. 4.2.1),
Simulation (Sec. 4.2.2), and RealSense Setup with Inferer (Sec. 4.2.3). Each giving a detailed description
of the setup and execution.

4.2.1 Field Testing

For the accumulation of classification data, a simple sequence of walking towards and away from the cam-
era was repeated several times over the span of ten minutes. The sequence was documented at a capture
rate of one frame every three seconds. Two individuals were present; one wearing a vest to classify as
worker, and another in civilian apparel classifying as adult. This process was conducted at both noon and
in the evening.

A similar method was used when the Thorvald robot was active. Running the monitor through a laptop
placed on the top of the robot, with the RealSense camera pointed forwards to collect data. All field tests
with the Thorvald robot were performed in a polytunnel, driving in parallel to strawberry hedges. The
worker-class subject walked back and forth unpredictably, while the robot was driven manually. All while
performing data collection of the monitor behavior. Testing was performed under dry conditions on sunny
and cloudy days, with additional tests to assess how natural light affected the classification data.

4.2.2 Simulation

In this study, the Gazebo 11 software was employed as the simulation environment. Gazebo is a stand-
alone application independent of ROS and ROS 2, offering rapid testing of realistic simulations in both
simple and complex environments as well as being a robust platform familiar to many in the field of
robotics.

The open-source TurtleBot3 package was chosen for its widespread use in educational robotics. De-
signed to work seamlessly with ROS and ROS 2, the TurtleBot3 facilitates quick setup of simulations for
demonstration purposes, and is fully compatible with Gazebo. The integration of Gazebo with ROS 2
was done through a set of packages called gazebo ros pkgs. For this project, custom CAD models
for the robot, as shown in Fig. 31, and mitigation zones were designed in Fusion 360 to more accu-
rately reflect the system addressed in this thesis. The simulation environment was configured to repli-
cate an agricultural setting, as provided by the FieldRobotEvent, Virtual maize field GitHub (2023),
https://github.com/FieldRobotEvent/virtual_maize_field.

https://github.com/FieldRobotEvent/virtual_maize_field


Fig. 31: Fusion 360 model of the Thorvald robot, used for demonstration in the gazebo environment.

Fig. 32: Gazebo environment. Note. From the Virtual maize field GitHub, by FieldRobotEvent [53].

https://github.com/FieldRobotEvent/virtual_maize_field


Fig. 33: Gazebo simulation of mitigation zones. See Sec. 4.1.2 for context.

A virtual joystick and teleoperation ROS 2 node facilitating real-time control and simulation inter-
action were provided by Lars Grimstad and translated to ROS 2 by co-student Henrik Nordlie. This
effectively gave control of the robot’s directional movements during simulation, only requiring topic
inputs on whether the robot was to slow down or halt operation by altering the output from the velocity
callback of the teleoperation node.

A spotlight was constructed for the Gazebo environment to simulate an ultraviolet light module, and
a black cylinder to represent a human. Consequently, to manipulate the models’ positions based on the
robot’s pose data and allow ROS 2 integration, custom Gazebo plugins were made. The first Gazebo plugin
consists of a ”ToggleLightPlugin” class that inherits from the gazebo::ModelPlugin class that manages
Gazebo models during simulation and a ROS 2 node that allows for communication with the ROS 2
platform. The plugin effectively toggles the spotlight based on Boolean messages by listening to the
/sRobotTurnoffUVC ROS 2 topic. The second Gazebo plugin handles positional variables for the spotlight
and mitigation zone models to follow the robot platform through the environment. This plugin also inherits
from the gazebo::ModelPlugin and interfaces with ROS 2 to listen to topics. The spotlight mimics the
robot’s complete pose, but the mitigation zones and cylinder only trace the robot’s X and Y coordinates.
The cylinder additionally moves linearly along the X-axis of the robot based on the float values of the
/scan topic to visualize the depth of a person within the robot’s field of view. This approach more clearly
visualizes the robot’s actions based on the identified object’s position relative to it. The spotlight model
was defined with the toggle plugin configuration within the .world file of the simulation. The other models
are defined within the same .world file, but the follower plugin is included in the robot’s SDF model.



Fig. 34: System diagram of simulation setup consisting of Gazebo and ROS 2 nodes.

Fig. 35: Simulation of active Thorvald robot applying UV lights in the field.



4.2.3 RealSense Setup with Inferer

This section explains the initialization and processing of image data from the RealSense D435 camera.
Most steps are mentioned, but some related to processing are skipped for the sake of brevity. For a more
detailed explanation of the initialization, refer to the RealSense-ROS installation page at Github.

1 To begin using the RealSense D435 camera for linux operating systems, several packages needs to
be downloaded. Firstly, the RealSense library and camera distros, shown here:

$ sudo apt install ros-<ROS_DISTRO>-libRealSense2*
$ sudo apt install ros-<ROS_DISTRO>-RealSense2-*

2 When using the YOLO package, you will need additional packages like CV2 and pytorch. If this
is the case, then follow the installation guide for the chosen YOLO model. Here the YOLOv6 is
deployed.

3 Before running any YOLO prediction, the camera node must be launched. With the D435 model,
the RealSense2 camera package is used. Connect the camera via USB and use the following launch
command:

$ ros2 launch RealSense2_camera rs_launch.py enable_rgbd:=true
enable_sync:=true align_depth.enable:=true enable_color:=true
enable_depth:=true

Among other things, this ensures that the resolution and FOV of the RBG and depth image are the
same. This is required by the current YOLO solution.

4 To run the YOLO prediction on the image:

$ ros2 run yolov6 inferer

If this command results in an import error related to allocated memory, try the following command:

$ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6:/
usr/lib/x86_64-linux-gnu/libgcc_s.so.1:$LD_PRELOAD

5 The RealSense should now be functioning with the Inferer YOLO model running. Publishing clas-
sified images to corresponding topics with related depth values. The path to the PT and YAML
file containing the corresponding labels is located at the bottom of ”yolov6/yolov6/core/inferer.py”.
Any software edits will most likely be made in the Inferer code.

https://github.com/IntelRealSense/RealSense-ros#installation


The Inferer code handles much of the post-processing on the YOLO-processed RealSense image. This
includes running the YOLOv6 model on the RGB image, publishing data to ROS topics, defining the depth
value to the class subject, visualizing the class and borders of the class, and showing the distance zones
based on color. The latter is shown in Fig. 8, illustrating how the RGB image is labeled and bordered
based on classified subjects, with the border color indicating the zone in which the distance is measured.

Listing 8: Definitions of Prediction Box Colors and Distances in Inferer.
1 if draw predictions :
2 class num = int ( cls )
3 label = None if hide labels
4 else ( self . class names[class num]
5 if hide conf
6 else f '{ self . class names[class num]} {conf :.2 f} ' )
7
8 #Coloring the Boxes Based on the Zone
9 depth int = int (depth . data )

10 zone msg = String ()
11
12 if depth int < 3000:
13 zone msg.data = ”red”
14 zone color = (0, 0, 255)
15
16 elif depth int < 7000:
17 zone msg.data = ”yellow”
18 zone color = (0, 255, 255)
19
20 else :
21 zone msg.data = ”green”
22 zone color = (0, 255, 0)
23
24 self . plot box and label ( img ori , max(round(sum(img ori.shape)
25 / 2 * 0.003) , 2) , xyxy, label , color=zone color)
26
27 self .zone pub. publish (zone msg)

The RealSense camera delivers the depth information in an image of similar size to the RGB image.
This depth information is not inherently connected to any sections or classifications made, so selecting the
correct depth information to use is done via code. The depth zones are created from the zones identified
during classification. These zones contains a lot of information, and simply taking the average will not
yield accurate results due to background and foreground elements that are separate from the subject. To
address this issue, a middle section of the depth zone is separated, and the mean value is calculated based
on this new section. The assumption is that the classification zones will always center around the subject,
making it likely that the center of the zone contains mostly accurate depth information. Fig. 9 shows a
section of the Inferer code used for depth calculation. The lambda function, labeled middle, is designed
to extract the central part of a N-dimensional array by slicing each dimension into its middle part.



If the result of the middle function returns an array, then the mean of the data is calculated and published.
This is the distance value used by the monitor. If the middle function returns no data array, then the
depth value is set to zero. The decision was made to set the depth value to zero when no class is returned,
providing consistent results.

Listing 9: Prediction Box Processing for Distance Calculation in Inferer.
1 # Center Lambda Function
2 middle = lambda x: x[ tuple ( slice ( int (np. floor (d/4) ) ,
3 int (np. ceil (3*d/4) ) ) for d in x.shape)]
4
5 # Use the Lambda Function on Depth Image
6 middle section = middle( depth detection section )
7 if middle section . size > 0:
8 # Calculate the Mean Depth in the Middle Section
9 depth value = np.mean(middle section)

10 else :
11 # Default Value
12 depth value = 0

4.3 Monitor Violation Injection Device
The main tool used for testing the system’s specifications was the violation injection device. This tool
consists of a set of buttons, each targeting a different requirement based on the handler topics. When
pressed, the button will deliver a message to a ROS node over a Rosbridge WebSocket.

The message contains the target states required to force a specific violation to occur. When activated,
the injection button pauses the data stream from the camera, ensuring that the violations states are not
overwritten before the system has been verified by the monitor. The injection process also logs a message
to the Violation Log Messages section, declaring which violation has been injected. If everything is set
up correctly, a second log message is published afterward, declaring that a violation has been reported.
The tool was instrumental in observing that all requirements worked as intended and in ensuring that the
Copilot monitor performed as expected during testing. Fig. 36 shows a screenshot of the entire web page,
where the injection buttons are located on the right side under ”Handler Injectors”. Below the buttons
is where you find the log page. Fig. 37 provides a close-up of the buttons along with the log post used
to inject violations. The violation messages come with a timestamp indicating when the violation was
reported. Lastly, Fig. 38 focuses on the sRobot state information from the web page in Fig. 36, displaying
the latest topic info and the last reported violation. This provides a comprehensive overview and a valuable
tool for understanding why a violation occurred.



Fig. 36: Snapshot of webpage. Injection buttons on the right side, information regarding robot state on the
left side.

Fig. 37: Violation injection buttons. Each button triggers a violation scenario to be published that only
breaks that single requirement which the buttons are named after.



Fig. 38: Display block on the webpage, from Fig. 36, containing all the variables of the test system and
the latest violation message.

4.4 Research Ethics
When collecting data in the field and during testing, human subjects were used. To maintain the privacy of
unwilling volunteers, all images containing identifiable people were deleted after classification data was
collected, retaining only anonymous information related to class and distance. Images with identifiable
people that have not been deleted were retained with the agreement of the subject in the frame, maintaining
the ethical responsibility of the thesis.



5 Results
Runtime Verification (RV) relies on the creation of monitors that observe the system’s execution traces
against predefined properties or specifications. These monitors can provide timely warnings or trigger
mitigation actions when deviations from the expected behavior are detected. The effectiveness of an RV
system depends heavily on its ability to perform with minimal overhead, ensuring that the monitoring
process does not unduly burden the system being observed.

This section explores the empirical data behind the implementation of the Copilot RV framework,
generated by OGMA from FRET requirements, when applied to a robotic system. Specifically, it focuses
on the integration effects of RV within the Robot Operating System (ROS) environment in both simulation
and field testing. The primary objectives include assessing the overhead introduced by the RV monitors,
evaluating their performance under different operational conditions, and demonstrating their effectiveness
in detecting and responding to safety violations.

The structure of the chapter is as follows:

Monitor Behavior, Sec. 5.1 - This subsection details the performance metrics of the monitoring
software, including its overhead, the asynchronous nature of data publishing, and the latency between
violation injection and detection.

Simulation, Sec. 5.2 - This subsection describes the methods used for simulating robot data and
presents the results from simulated scenarios, demonstrating the monitor’s functionality.

Field Testing, Sec. 5.3 - This subsection provides insights into the practical application of the RV
system in real-world settings, highlighting the robustness and reliability of the monitoring framework.
Additionally, it gives an example of a mitigation action tactic.

By systematically analyzing the performance and impact of the RV system, these results aim to con-
tribute to the discussion of safer and more reliable robotic applications, ultimately facilitating their inte-
gration into human-centric environments.



5.1 Monitor Behavior

In this section, data regarding the performance of the monitor software is tested and displayed. The data
here is important in determining the advantages and disadvantages of the system pipeline. During testing,
the areas of performance which have been tested are: overhead of the system (Sec. 5.1.1), asynchronous
nature of publishing (Sec. 5.1.2), and the time between injection of violation until report together with the
delay caused by removing the LTL nature of the monitor (Sec. 5.1.3).

5.1.1 System Overhead

In investigating the performance of an RV tool, overhead is an important factor. The level of overhead
is what limits the amount of information the monitor can evaluate and commit. To identify the system’s
bottlenecks, a robot scenario was established where messages were published at varying frequencies to
the monitor, each time letting the monitor evaluate the nominal state. For this test, a nominal scenario
was used, as violations are infrequent, thus testing the total number of messages the monitor can handle.
This is similar to the ROSMonitoring overhead test, where a fixed nominal message was returned for
each state [5]. The Hertz values used in the test also mirror some of the values used in ROSMonitoring for
clarity when comparing the two RV platforms. The Hertz values tested were 5,000, 10,000, 12,500, 15,000,
17,500, and 20,000, corresponding to the number of messages published per second during runtime. The
number of messages was distributed over seven different topics, as shown in the ROS DB-file in Tab. 5. To
clarify, the number of messages published per second on each topic is equal to the average hertz rate, the
topics summed up equal the Hertz value. The graph values in Fig. 39 indicates the average hertz across all
seven topics, while Fig. 40 relays the performance decrease when the monitor is introduced compared to
without. Fig. 41, 42, and 43 display the values gathered for three different publishing rates over the span
of three minutes, showing how the average times diverge at higher frequencies.

In Fig. 39, data from two tests are plotted next to each other. The blue bars (without monitor) represent
the average frequency of messages published without the monitor running. This data was gathered by
averaging the time between each data publishing across topics. The orange bars represent the average
frequency with the monitor running. For lower Hertz values, the monitor had little impact; at 10,000
Hertz, the natural variance in the data even showed better performance with the monitor. As expected, at
higher Hertz values, significant overhead was introduced, and the monitor bar flattened out at around 1,800
messages per second per topic, totaling around 12,600 messages. Testing the upper bound of standalone
publishing (without monitor) flattened out at around 22,300 Hertz, meaning 3,186 messages per topic.

To understand the performance decrease during testing, the overhead percentage formula (1) was ap-
plied. The results, seen in Fig. 40, show a peak performance decrease of 53.9 % at 20,000 Hertz.

Overhead =

(
Pstandalone − Pmonitor

Pmonitor

)
× 100% (1)



Fig. 39: Publish Frequency in Hertz.

Fig. 40: Percent Overhead.



The average Hertz values were gathered by logging timestamps before each publish on the turnoffUVC
topic. All topics were published in tandem, thereby logging the turnoffUVC average was the average
across all topics. In Fig. 41, 42, and 43, it is observed that with larger Hertz values, the divide steadily
increases between the baseline values and those with the monitor implemented. Initial values with the
monitor sometimes show a rapid increase in the average Hertz due to initialization completing, stabilizing
the values after a few seconds. In the figure where the total Hertz was meant to be 15,000, the monitor
values plateau at around 1,800 Hertz. With the increased difference between the data with and without the
monitor, the noise in the data becomes less visible, making the values easier to read.

Fig. 41: Testing with a publishing speed of 10kHz over seven topics, both with and without the monitor
running. Data collection was performed over the span of three minutes.



Fig. 42: Testing with a publishing speed of 12.5kHz over seven topics, both with and without the monitor
running. Data collection was performed over the span of three minutes. From above 10kHz, the data starts
to diverge, revealing the effect of the monitor on the performance of the software.

Fig. 43: Testing with a publishing speed of 15kHz over seven topics, both with and without the monitor
running. Data collection was performed over the span of three minutes. Beyond 12.5kHz, the data with the
monitor running starts to stabilize, indicating the upper bound publishing speed possible with the monitor
in use.



5.1.2 Asynchronous Publishing

The original output from using OGMA was a ROS 2 monitor script intended for stream-based communi-
cation. Since ROS is event-based, multiple violations were observed in early testing, with the conclusion
that the current setup did not work with the requirements as written. One way of fixing this is by changing
the requirements to allow time gaps before states should be nominal, allowing the code to refresh all topics
in time, using accepted timing commands like ”within” from Tab. 1. However, to keep the instantaneous
nature of the requirements, a change was made to how the system checked the requirements. By moving
the call of the step function, the code could use the requirements as written with very minimal performance
impact. Fig. 44, 45 and 46 were collected on a Ryzen 3 5000 series, to determine why violations appeared.
They show the asynchronous nature of publishing, which caused the violations since all topics were not
updated before the step function call. This data was crucial in defining the method of calling the step
function, either by calling it on a timed interval or always calling it after the last topic was refreshed, with
the latter being used.

Fig. 44: Data results from testing the delta time from first topic publish to last. Testing the asynchronous
nature of the publishing system, which can lead to monitor violations given how OGMA generates the
monitor files.



Fig. 45: Results from Fig. 44 compared to the threshold of one millisecond. One millisecond was the
threshold for calling the step function in early testing phases. The issue related to asynchronous publishing
can be solved either by editing the monitor call function or changing the requirements.

Fig. 46: Results from running the publisher node for around three hours, looking for the max delay between
first and last publish in a strained environment. The highest value at 2h 52m 54s was achieved when the
system crashed, resulting in a gap between first and last publish of around 20 milliseconds. Overall, the
delta times were very consistent and low.



5.1.3 Violation Report

So far, the monitor shows it can handle a great volume of messages and that it is possible to configure the
step function for event-based information. The following figures analyze the time it takes from reporting
a violation state until the violation is flagged and logged. Without this knowledge, it is difficult to trust
the monitor implementation, as safety-sensitive systems require quick responses when faults are detected.
Firstly, in Fig. 47, an early version of the monitor code was running, logging the time from sending
the violation state until a violation was logged on the handler topic. The handler topics are what the
copilot monitor.cpp and copilot logger.cpp code communicate over; by intercepting these
messages, the Flask website can display violations when they are flagged. The most important take away
from the initial data regarding the violation report time was that it was fast enough to be viable for robotic
system testing. On a later date, a larger test was performed, getting the average response time across
over one hundred iterations. The results can be seen in Fig. 48. At the point of running the larger data
collection, the monitor code and system had become more computational heavy, and the violation injection
was performed from the Flask website. This might be the reason behind why the average values seem to
be higher than in the initial tests, in Fig. 47. Still, the times were quite low, averaging at 33 ms. During
testing, the LTL nature of the monitor often clogged log files because when a violation is reported, it will
continue to be reported since the monitor also acknowledges violations of the past. To prevent the LTL
method, a simple solution was applied were each time a violation was reported, the system would restart
the safety monitor. In this way, the monitor memory was reset while all log files remained as normal. This
is not a recommendable change as it adds a big delay between violations where nothing is reported. The
delay caused by closing the CopilotRV node and relaunching it can be seen in Fig. 49. For the relaunch,
an average of 1.5 seconds was spent without violations being reported, it was kept for testing purposes.

Fig. 47: Results from running the publisher node and checking how much time goes before a violations
is reported. The step function in this case was run every 10ms. Therefore, any time collected is subject
to a time discrepancy of 0-10ms delay where the violation could have been reported already if the step
function was run instantly.



Fig. 48: Time between injection of violation until state was flagged by the copilot monitor. Getting the
average value across over one hundred iterations. STD stands for standard deviation.

Fig. 49: Time between relaunches of the CopilotRV node in which the monitor system is inactive when
receiving state changes. States will still be updated, but in the case of violations, none will be reported.
This is to avoid the temporal logic system which will continue to report violations when one has happened
in the past. These results were gathered by listening to when the CopilotRV node became active again.



5.2 Simulation
Two methods of data simulation are presented with the aim to showcase the functionality of the monitor
system. During the thesis these methods have been crucial during development of the pipeline and without
them it would be far more time consuming to develop the requirements and monitoring tool. Sec. 5.2.1
mentions underlying data simulation tools that have been publishing behavior data related to the inputs
from external sensors or tools. These have been used to give state information following the logic of the
requirements in Tab. 10. Data simulation has also been used to make speed plots which give a good view
of the state events during testing. In Sec. 5.2.2, images and data from Gazebo simulation are presented.
Here a CAD model of the Thorvald has been made and applied in a simulated environment, which in
difference with the real Thorvald is now running on ROS 2. Making it possible to bridge the gap between
the communication happening on the robot and the mitigation actions or events the monitor wants to apply.

5.2.1 Simulated Robot Data
Many ROS 2 publisher- and subscriber nodes gathered information and data regarding the performance and
robustness of the system during development. The subscriber node of the srobot realistic output
package is still in use. All logic of the system requirements is within this node, and when connected with
a RealSense camera or injection device, it will publish state information based on class and distance data.
The node is a tool for violation injection, state publishing, and robot simulation. It is additionally a safety
controller. Before acquiring the RealSense camera, the srobot realistic output package also had
a publisher node that emulated class and distance data for early testing of monitor capabilities, as well as
publishing speed values based on the halt and slowdown topics. In Fig. 50, an example shows how the
emulated speed data works, visualizing the different speed modes of the robot, giving a perspective on
the robot’s behavior under an experiment based on log files saved during each run. In the image, the
system starts in halt mode because an adult is in the frame close to the camera; then the adult leaves and a
worker is in the frame at a medium distance, triggering the slow-down response. Lastly, the worker leaves
the frame, and the speed returns to full capacity. The dip in speed at 230 seconds is because the worker
walked towards the camera to get out of frame, triggering the halt response. There is a ramping period
between modes of operation where the simulation quickly gains or loses speed.

Fig. 50: Simulated speed data under the effect of slow-down and halt messages.



5.2.2 Gazebo Simulation

A simulation, constructed as described in Sec. 5.2, demonstrates the monitor’s effectiveness in mitigating
safety risks in human-robot environments. The simulation plays a vital role in validating the integration
and functionality of the monitoring system. By altering the safety controller so the robot fails to fulfill
safety requirements, one can trigger handlers to post violations. The violations can, in turn, activate miti-
gating actions, serving as a second layer of safety assurance. The monitor can identify incorrect or missing
logic in the safety controller by listening to all the topics. It can also take action in critical situations when
the safety controller malfunctions.

To test the first statement, one can contradict any mitigation plan in Tab. 7. One could for example
remove the logic to halt the robot when a worker is in the red zone, contradicting R5. The goal would be
to trigger a handler violation for

operationalstate 3 that should trigger a callback in the safety controller, stopping the robot.
For the second statement, simply strip the controller of its logic to trigger operationalstate 3 upon
the conformed worker and distance arguments in Tab. 1. The goal would be to trigger a handler violation
for state req103 in Tab. 7. The monitor’s violation handler for state req103 was modified to post
not only to the violation topic but to the halt topic in hopes of stopping teleoperation.

Fig. 51 showcases a scenario where the safety controller fails to publish a halt message due to flawed
logic. The monitor does not read a halt message in the system and warns that operationalstate 3
was not upheld. The safety controller listens to the warning and appropriately stops the robot, proving that
the monitor can identify flaws in the safety controller.

Fig. 51: Compiled screenshots of front-end showcasing the first violation scenario triggering a handler,
correcting the safety controller to publish to the halt topic.



In Fig. 52, the safety controller fails to uphold operationalstate 3 when a worker is less than 3
meters from the robot. The monitor realizes that the state has not changed and warns that state req103
is not fulfilled and personally publishes a halt message to stop the robot, proving that the monitor can take
mitigating actions of its own in critical situations with little needed modification. This proves useful in a
scenario where you want the monitor to be stricter with mitigation than the safety controller due to any
concern of an inherent flaw in the system.

Fig. 52: Compiled screenshots of front-end showcasing the second violation scenario triggering a handler,
causing the monitor to publish to the halt topic.

The following collection of videos on GitHub provides dynamic representations of the robot’s capabil-
ities and performance: https://github.com/Andersen0/Thesis_Workspace

https://github.com/Andersen0/Thesis_Workspace


5.3 Field Testing
The results of the field testing are used to evaluate the performance under different operational conditions
and the effectiveness in detecting and responding to safety violations. This section contains information
and figures from all testing conducted outdoors at campus NMBU Ås and the surrounding areas, including
the poly tunnel at the farm field located in Ås. The data collected is divided into two sections. The
first section aims to build confidence in the manually configured YOLOv6 package, which was used for
subjects classification, with data compiled into confusion matrices. The second section build upon previous
data, showcasing the robustness of the monitor system by using it in a field environment with a robot
driving alongside it. This includes examples of use cases, mitigation actions, violation behavior, and
expected results when using the Copilot monitor system. The data is presented in the form of event
images, log outputs, and monitor behavior plots based on speed values from simulation and odometry.

5.3.1 YOLO Field Test

To clarify, the underlying intention of these tests is not to benchmark the YOLOv6 classifier, but rather to
prove that the model reaches the accuracy threshold required to test the monitor. An accuracy threshold of
70 percent was set to ensure the model performs reliably in practical applications, defined in the ”Proba-
bilistic Modelling and Safety Assurance of an Agriculture Robot Providing Light-Treatment” paper [44].
The YOLOv6 model is trained on manually labeled data, necessitating the need to test the performance of
the model to ensure high accuracy during monitor use. To test the model for intended use, field tests were
conducted both in sunny areas and in the polytunnel. Larger tests were conducted over ten minutes, while
shorter tests examined changes caused by factors like clothing. Data was collected for both the adult and
worker classes, compiling the results into confusion matrices. In all tests, the subject moved in a straight
line back and forth between two points, ensuring testing conditions remained similar.
Classification results from outdoor tests of the configured YOLOv6 package trained on manually labeled
data are displayed in confusion matrices in Fig. 54, 55, 56, and 59.

Fig. 53: Classification of a worker and an adult, differentiated by a safety vest, at noon.



Fig. 54: Initial outdoor tests provided good results. Showing that the model performs especially well in
identifying workers, while non-workers (adults) are more challenging. One reason of which might be more
variation in the adult images, which could benefit from having more training data.
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= 0.95



Fig. 55: When changing into a white sweater as seen in Fig. 53, the classifier more often than not classified
the person as a worker. Further development or upgrade of the YOLO model and training data provided is
advised.
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Fig. 56: Number of true and false classifications for each class over the span of ten minutes, test performed
outside, taking a sample image every three seconds. Calculation and counting of the results was done
manually, and images where the data was obscured were discarded.
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The first experiments were performed in sunlight at noon, but much of agriculture is done inside poly-
tunnels. A similar test, taking classification data of a subject moving back and forth inside the tunnel, was
performed for both the worker and adult classes. This time, a simulated speed plot was logged alongside
the classification data to observe the behavior of the monitor when seeing a person moving back and
forth inside the tunnel. This test was important to observe that the tunnel and objects within did not have
an adverse effect on the 3D camera or the YOLOv6 package output. It was observed that elements of the
tunnel would occasionally trigger the YOLOv6 classification, but overall, the monitor’s behavior remained
consistent. The data is visualized in two sets of figures, Fig. 57 and Fig. 58, containing a static image from
the data gathering and the corresponding speed plot. The data from the two tests have been compiled into
the confusion matrix of Fig. 59.

Fig. 57: YOLOv6 class identification experiment performed in the poly-tunnel over the span of ten min-
utes. The class under testing is the adult class, which effects the monitor behavior by more often going
into slow down mode compared with the worker class in Fig. 58. The simulated speed values follow the
logic of the requirements in Tab. 1.



Fig. 58: YOLOv6 class identification experiment performed in the poly tunnel over the span of ten minutes.
The class under testing is the worker class, which demands very small distances between the camera and
subject before going into halt states. The simulated speed values follow the logic of the requirements in
Tab. 1.



Fig. 59: Number of true and false classifications for each class over the span of ten minutes, test performed
inside the poly-tunnel, taking a sample image every three seconds. Calculation and counting of the results
was done manually, and images where the data was obscured were discarded.
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5.3.2 Monitor System Field Test

This section shows images and data from field testing with the Thorvald-005 robot. These tests were per-
formed in the poly-tunnel at NMBU, Ås. the runtime verification platform ran throughout the use of the
Thorvald, collecting Realsense images, violation logs, speed logs, and internal odometry from Thorvald.
The purpose of these tests was to visualize the intended use of the RV platform for ROS applications and
to demonstrate how mitigation actions can be used alongside the monitors.

Two variations of the field test scenario were used. One for nominal operation where the robot was
performing as intended with no changes to the monitor system, checking the robustness of the monitor
while state changes and hazards situations were occurring. The second scenario was done in the exact
same way, but with a fault injected where there was a one percent chance that when the UV light should
turn off, it would not. The intention of this was to test that the monitor would respond and to have an
example of a mitigation action being performed. Having a active UV light in the presence of humans can
be damaging, so in accordance with this danger, the UV light violation would prompt the monitor to run a
bash script. The bash script took control of the Thorvald through a local WiFi connection and shut down
all operations, essentially turning the robot off.

The RV monitor was originally meant to run on the Thorvald or be more closely connected to the ROS
system of the robot. This became too much of a challenge since the Thorvald robot runs an old version
of ROS called Kinetic. In order to communicate efficiently with ROS kinetic, a ROS bridge would have
to be used, but most ROS bridge services had no support for ROS Kinetic. A possible solution would
be to download an old version of Linux with ROS Kinetic on the computer and use that for bridging the
information, but this became too lengthy a process for acquiring examples of how to intertwine the ROS
systems for this thesis.

In Fig. 60, there are images captured with a camera from the experimentation area and from the Re-
alsense camera mounted on the Thorvald are shown. The Realsense images have been processed by the
YOLOv6 package and our Inferer code to produce classifications with a confidence value. The color of
the bounding box around the target is based off the Realsense distance values. These images showcase
the environment in which the tests were performed and how the class and distance values were collected,
which define what state the robot is in and what requirements are active.



Fig. 60: Experimentation with the Runtime Verification monitors next to the poly-tunnels at NMBU. The
Inferer function uses the data from the Realsense and YOLOv6 package to collect class and distance
data, which is further used to determine the robot’s current state. Further data collected from this can be
observed in Fig. 61 and Fig. 62.



During the testing, the robot and monitor were connected over a local WiFi hot-spot generated by
a mobile phone. This setup facilitated a stable internet connection and hosted the Flask website on a
reachable IP. By hosting the website locally, all current state information became accessible to any unit
connected to the WiFi. This was used to control the behavior of the robot and to observe faults or violations
that occurred. Fig. 61 shows two screenshots of the website taken from a mobile phone connected to the
IP. On the website, the information related to the state information and the latest violation is displayed.
When the robot is in slowdown or halt mode, the tags for those states blink in yellow for slowdown and
red for halt. The last image containing a class of type adult or worker is displayed at the bottom of the
page, this could also be altered to show the latest image without the consideration of class.

Fig. 61: Two images taken not far apart showing current state information and visualization of the website
from a mobile phone connected to the web page IP. Demonstrating the Flask tool used to monitor the state
information and the behavior of the monitor/robot.



The simulated speed data was also logged for all field tests, providing a plot showing the intended
behavior of the robot given the safety requirements. These are categorized into three speed modes; normal
operation, slowdown, and halt. The plot in Fig. 62 shows the expected behavior of the entirety of the field
test, as seen in Fig. 61, and 60. The nature of safety requirements can become chaotic when people work
in close proximity, as seen in the field test, underscoring the importance of proper safety systems.

Fig. 62: Simulated speed values from field test. The test was performed with a person of class worker
moving around the mission area. Since the subject was correctly labeled as a worker, the robot rarely
needed to halt operation but often slowed down.

A smaller test was performed to compare the output of the monitor with simulated speed data, checking
that the monitor followed expected behavior. Fig. 63 contains two plots: the first is gathered from linear
speed odometry data on the Thorvald robot, and the second is the simulated speed. The Thorvald was
driven manually using the web page monitor as a guide, and later, the correlation between the monitor data
and the simulation was checked. The odometry data was only from linear speeds, so sections involving
turning gave zero speed linearly. This is why the beginning and end of the plot differ between the two
figures. Additionally, the ramping time on the simulated speed is longer than that of the Thorvald robot.



Fig. 63: The first plot shows the linear odometry values from the Thorvald during a test of driving parallel
to a strawberry field towards a worker. The robot slowly moves towards the stationary person until a
halt is achieved, then the person moves out of the way and the robot returns to normal operation. The
second plot mirrors this with simulated speed data of the encounter. Only linear speed was gathered from
the odometry, meaning that when turning, the speed was measured as zero. Other than that, the figures
correlate well. The Thorvald was driven manually based on the monitor safety data.



In a low complexity environment, it is not expected that the monitor system will encounter violations
from normal use. Therefore, to test the violation reporting and mitigation action part of the system, an
injection device/system was used. For general testing of all the requirements, injection buttons were
created with a violation event designed to trigger a specific requirement. This method worked for all
requirements in Tab. 10, and the buttons can be seen in Fig. 37. A second way of triggering the violations
was implemented with a field test in mind. In this scenario, a one percent chance was programmed so
that when the UV light would normally turn off, it would instead turn on. This caused a violation in
the handleroperationalstate 3 requirement. Additionally, to prove that mitigation actions could
be implemented from the monitor output, a bash script was created to SSH onto the ROS platform and
shut down the robot in case of a UV light violation. A bash script was used since no ROS bridge was
implemented for the Kinetic software on the robot platform due to incompatibility issues and limited
resources. Fig. 64 shows the violations that occurred during the field test with the one percent chance that
the UV light would not turn off. The monitor receives new data frequently, so even with a one percent
chance, it still triggers quite often. The monitor and the robot are two separate systems, which is why
shutting down the robot does not close down the monitor system or stop it from gathering data from its
surroundings.

Fig. 64: Violations that occurred because of the UV light not turning off when it should. This was achieved
by adding a one percentage chance that the violation would happen when state three was reached. All
violations are logged with a timestamp, both on the website and in a separate log file. The newest violation
is always displayed on top.



The image in Fig. 65 shows a typical case where the UV violation was triggered. The adult class is
more susceptible to this violation since state three is active more often than with the worker class. While
driving, the violations and system information were tracked with a mobile phone, also seen in the image.
The image was taken at the moment the induced UV light violation occurred. This happened multiple times
during the course of this experiment, all of which can be seen in the log in Fig. 62. The violation happens
frequently since the UV state is updated at the same speed as the incoming data from the RealSense. This
frequency depends on the performance of the computer it is attached to, which is often limited by the
YOLOv6 and Inferer code since they require significant computing resources for each image.

Fig. 65: Image from timestamp 13:33:08, which is the same timestamp a violation occurred because of
the UV light not turning off.



When testing with the UV violation, both the mitigation action and the violation reporting worked as
intended. The monitor was capable of running a shutdown command on the Thorvald robot when the UV
light did not turn off, and the monitor reported and logged everything as it happened. The simulated speed
plot in Fig. 66 shows how the test was performed from beginning to end. First, the robot was allowed to
drive normally to ensure no violations or bugs were reported. Then, a person of the adult class entered
frame, triggering state three. This resulted in the violations seen in Fig. 64. After being in halt mode,
the adult walked slowly away from the robot, and since the monitor continued collecting data, the plot
continued to show transitions to slow down and normal operation mode, even though the robot was shut
down due to the violation.

Fig. 66: Simulated speed data from field test with UV violation being reported.



5.4 RV Software Tool Comparison
The intention behind summarizing the software used in the RV tools ROSMonitoring (Sec. 2.3.1), TeSSLa-
ROS-Bridge (Sec. 2.3.2), and ROSRV (Sec. 2.3.3) is to provide an overview of existing software alterna-
tives to Copilot and the features offered by different methods. This comparison aims to encourage in mak-
ing an informed decision regarding which RV software to consider for a given problem. Gaining insights
into the capabilities of other models can also benefit the ongoing development of the Copilot-OGMA solu-
tion for ROS. During the preparation of this paper, issues related to the Copilot-OGMA solution for ROS
have been flagged and addressed. Although the ROS support is currently preliminary, it is hoped that this
paper will inspire continued use and support for CopilotRV with ROS. In Tab. 12 all methods mentioned
in Sec. 2.3 are compiled along with Copilot-OGMA. Highlighting some of the more noteworthy features
they offer and at least one drawback. In Tab. 12, Intcp indicates whether the RV method can intercept and
modify messages to prevent violations.

Table 12: Comparison of Runtime Verification Methods

Software
tools

Monitor
Logic Features

ROS 2
sup-
port

Intcp*
Hard
Real-
Time

Pros and Cons

Copilot-
OGMA LTL, ptLTL

Haskell EDSL,
generates C code

Pre-
liminary

✓

✗ ✓

+ Suitable for real-time
+ Formal verification
- Requires Haskell knowledge
when used without OGMA

ROS-
Monitoring

Flexible
(formalism
agnostic)

Integrated ROS
solution

TBR⊛

✓
✓ ✗

+ High portability
+ Real-time message interception
- Invasive, can add overhead

TeSSLa-
ROS-

Bridge

temporal
stream-
based

language

TeSSLa language
within ROS

node, Python
bridge

✓ ✗ ✗

+ Asynchronous verification
+ Complex timing constraints
- Lacking data regarding
performance under heavy load

ROSRV

Custom
(based on

safety/secu-
rity policies)

Integrated ROS
solution with

custom master
node & monitor

nodes

✗ ✓ ✗

+ Seamless ROS monitoring
+ Customizable
- Security relies on network/IP
- Outdated, no longer supported

*Intcp = Ability to intercept and modify messages. ⊛TBR = To Be Released.



6 Discussion
In this section, we provide a detailed analysis of our findings from the implementation of automated
generation of monitors from Natural Language (NL) to formally verified specification models in a ROS
environment. This analysis includes a discussion of results (Sec. 6.1), a comparison with previous research
and RV methods (Sec. 6.2), and an exploration of the broader implications of our findings (Sec. 6.3). Our
goal is to assess the strengths and limitations of the RV framework, highlight its practical implications,
and discuss its potential to enhance the safety and efficiency of autonomous robotic systems. This section
addresses the research questions and objectives outlined in earlier chapters, providing a critical evaluation
of the framework’s effectiveness and identifying areas for future improvement which are later reiterated
on in the future works section (Sec. 8).

6.1 Results Discussion
The results discussion section delves into the analysis and interpretation of the findings obtained from the
implementation and testing of the OGMA compiled Copilot Runtime Verification (RV) framework within
a ROS environment. This section aims to provide a comprehensive evaluation of the monitor behavior,
simulation outcomes, and field testing results. By examining these findings, we aim to understand the
strengths, limitations, and practical implications of the RV framework, as well as its potential for en-
hancing the safety and efficiency of autonomous robotic systems. The following sections will detail the
specific findings related to monitor behavior (Sec. 6.1.1), simulation scenarios (Sec. 6.1.2), and field test-
ing (Sec. 6.1.3). Through this discussion, we will address the research questions and objectives outlined
in earlier chapters, providing a critical assessment of the framework’s effectiveness and areas for future
improvement.

6.1.1 Monitor Behavior Findings

The most significant results for discussion pertain to the monitor behavior during testing. These find-
ings are crucial in determining the functionality of the OGMA-Copilot solution and the usability of the
pipeline, which transitions from natural language expressions of a model specification in FRET, and finally
to Copilot using OGMA. The empirical data shown in Sec. 5.1 is summarized in Sec. 6.1.1. Each topic
being discussed in the following paragraphs to evaluate the findings.

The implementation of the Copilot Runtime Verification framework in the ROS environment showed
a significant improvement in detecting and responding to safety violations. The monitor was tested for
system overhead (Sec. 5.1.1), limitations of stream to event-based language caused by asynchronous pub-
lishing (Sec. 5.1.2), and the responsiveness of the system when detecting violations (Sec. 5.1.3).



System Overhead and Performance: The overhead introduced by the RV monitors was consistently
within acceptable limits, even under high message publishing rates. The study quantified the system
overhead introduced by the monitors at different publishing speeds and found that up to a certain thresh-
old (12.5kHz or 1.785HZ per topic), the system maintained stable performance. Beyond 12.5kHz, the
overhead started to impact the system’s responsiveness, increasing the bottleneck delay caused by the
monitor not being able to respond to all messages in time. This resulted in a plateau of the average rate of
messages being delivered per second to the monitor as shown in Fig. 39. The publishing limit on a single
ROS topic was also met during testing, but higher Hz values were reached by distributing the message
load onto all seven topics used in the system model, as seen in Tab. 5. The current implementation of the
monitor code being able to process 12.5k state messages per second was seen as a significant achievement,
although the monitor should not be exposed to such loads. Due to the changes made to the step function,
messages were processed in groups, reducing unnecessary calculation. Therefore, while the monitor
tracked all 12.5k state messages, it did not need to run the step function for each single message, instead
checking the requirements when all states where updated. Around 1,800 iterations of the step function per
second seemed to be the limit, while the ROS publishing plateau on a single topic was 3,186 messages
per second, indicating that ROS is not the current limiting factor. The specification model used in this
example was also a simpler scenario to model. Higher complexity models are more likely to increase the
time spent on requirement computation. Still, the pipeline system performs well and will be able to be
used in most modern software or cyber-physical systems (CPS) without issue. A possible solution for
higher complexity models is to split the requirements into groups that can be tested separately, lessening
the load on the system as a whole. This approach has been proposed by other RV methods as a way to
increase performance for larger systems. FRET allows for designating requirements to groups following a
parent name, which could be used for creating a workflow towards monitor generation for multiple system
areas.

Event- vs. Stream-Based Logic: The study revealed the asynchronous nature of ROS data publishing
and its impact on the Copilot monitor, which assumes synchronous stream-based Linear Temporal Logic
(LTL). The difference in logic caused multiple violations to arise, necessitating a solution to fix the issue.
As shown in Fig. 44, even though the topics are set to publish at the same time, there is a small delay
between each topic. This delay, while minor, causes violations because the monitor expects all topics to be
updated simultaneously. In Fig. 67, the delayed topics are visualized, with a step function call following
each. This setup can potentially cause violations during state transitions since requirements are checked
before all topics are updated.



Fig. 67: The timing of the step function, after compiling the Copilot monitor without configuration, when
used on asynchronous data publishing.

Two methods were tested to solve this issue. First, the step function was called with a timer function
that, if properly implemented, could ensure the function always resolves between state changes. The
limiting factor was that the delay between each function call is a period of time when violations could
occur without instant flagging, delaying the response. The second solution, which was adopted, involved
running the step function after the last topic was updated, ensuring all previous topics are refreshed. An
example of this is shown in Fig. 68, where the step function is called after the last topic (topic 4) is updated
on the transition state. The limitation of this solution is that the order of topic publishing must always be
followed, and the time from the first topic to the last must be kept as short as possible. From Fig. 44 and
Fig. 45, one can see that the delay caused by waiting for all seven topics is small, but in Fig. 46, the delay
can increase as the performance strain increases. A major increase in delay was only observed in the event
of a system crash, as seen in Fig. 46, otherwise, the results remained consistent. A problem encountered
when switching to faster hardware was that state changes could occur before the step function was able to
run, as publishing happened before the monitor received the previous topic. This caused violations during
state changes, but a simple solution was to incorporate a minor delay between each publish of the seven
topics, allowing the step function to run without simultaneous refreshes. When the system was functioning
with the hardware, few faults were observed without intentional injection.



Fig. 68: The timing of the step function post-Copilot monitor configuration, when used on asynchronous
data publishing.

Violation Reporting and Behavior: The framework’s ability to report violations accurately and
promptly was tested extensively. The average time to detect and report a violation was within the ex-
pected range, demonstrating the framework’s efficiency. In early implementation phases, the time from a
violation state being published to the violation message being received averaged below 20ms. After ad-
ditional backend features were added, the average time increased to 33ms, as shown in Fig. 48. For most
safety-critical systems, a time of 33ms is efficient for detecting a violation and initiating necessary mitiga-
tion actions. By changing the nature of the monitor to add safety controller features, one could intercept
and change states within this time frame to prevent violations, further enhancing safety. An example of
this is discussed in the simulation findings (Sec. 6.1.2). For testing purposes, some changes were made
to limit the LTL nature of the monitor. This was because ptLTL logic makes past violations control the
logging of the present, causing violation handler functions to continue posting. This overflow of violation
logs complicates debugging and controlled use of the monitor. To solve this, the CopilotRV node control-
ling the monitor code was relaunched each time a violation was flagged using a bash script. This caused
a major delay in monitoring where no violations could be logged but also limited the ptLTL logic to the
point where only one or two violations were flagged each time a non-nominal state was received. The
delay averaged at 1.5 seconds as seen in Fig. 49. This is not recommended for any use other than testing.
Additional solutions could involve editing the Copilot monitor code or maintaining the ptLTL logic since
violations are rare in normal operation. Dividing requirements into groups based on hazard severity could
also help define different monitor responses. High-severity groups could keep ptLTL logic, while less
critical issues reset themselves if the problem does not persist.



6.1.2 Simulation Findings

Simulation proved to be an invaluable tool throughout the development and testing of the system. Without
simulation, developing the requirements and monitoring tools would have been far more time-consuming.
The simulation tests, which included various scenarios such as speed variations and object detection,
confirmed the reliability of the RV framework in maintaining system integrity and performance under
different conditions. Simulated robot data, such as speed and positional information, was accurately mon-
itored and reported by the RV system, ensuring that the robot’s actions were consistently aligned with the
safety requirements. The Cyber-Physical System (CPS) Thorvald-005, addressed in this study, originally
runs on an End-Of-Life (EOL) ROS Kinetic distribution. The Gazebo simulations provided a robust
platform compatible with the ROS 2 system to test the RV framework under controlled conditions. The
results showed that the RV monitor could handle complex scenarios involving multiple moving objects
and dynamic environmental changes. By simulating conflicting mitigation plans and deliberately breaking
the safety controller, Sec. 5.2.2 successfully demonstrated that the monitor can identify flaws in the safety
controller and act as a second-layer safety controller in critical situations.

The simulation also revealed a significant issue with the depth output of the RealSense camera during
testing. Due to the method of gathering depth data from the center point of the closest bounding box,
any obstruction that would pass along the middle of the bounding box would shorten the reading, making
the classified person appear closer to the robot in simulation than one could perceive in the actual image.
With many objects in the frame, this could potentially lead to extremely erratic measurements. To address
this, a Kalman filter was applied to smooth the depth data. Kalman filtering, a common algorithm used
to minimize mean squared error, tracks the estimated state of the system and the variance over time [54].
In deployment, the use of an advanced camera grid could also improve the data consistency. Another
issue was the camera’s decreasing accuracy at greater distances, manifesting as increasing noise beyond 3
meters.

6.1.3 Field Testing Findings

YOLOv6 Performance: The integration of the YOLO object detection system with the RV framework
proved effective in identifying and classifying objects in the environment. This was crucial for ensuring
the safety of the robotic operations, particularly in identifying human workers, adults, and the distance to
the subject. The accuracy of the classification model was crucial in collecting stable and correct data for
testing of the monitor system.

The YOLOv6 model was trained with manually labeled data of workers and adults in different envi-
ronments, raising some concerns about the model’s performance. To evaluate the system, a 70% accuracy
threshold (defined in CASE2023 paper [44]) was set as the lower limit, and multiple tests were conducted
in both indoor and outdoor areas. These tests were carefully planned and executed in a controlled manner,
limiting variables that could affect the results. The evaluation concluded that the model achieved accu-
racies above the lower threshold in all daylight tests, with the highest performance observed in the data
collected from the poly-tunnel Fig. 59.



However, the model was not without faults. It performed best on the worker class, never misclassifying
the subject as an adult, but the adult class was more challenging. This is likely due to a larger variation
in the training data and a limited data pool. This sometimes caused the adult class to be handled as a
worker, especially when the subject wore lighter clothes resembling a safety vest. Overall the reliance on
the safety vest for worker classification became a problem when objects in frame obscured the vest.

To improve the robustness of the adult and worker classifications, a memory function could be im-
plemented to track subjects in the frame, ensuring class changes only occur when the probability of a
certain class is sufficiently high. The confidence threshold for the YOLO model changed throughout the
project, ultimately settling at 40% to prevent subjects in the frame from becoming unclassified when the
confidence value was too low. The low confidence value occasionally caused misclassification of objects,
though this was rare and typically occurred with bright yellow or tall objects. This issue could be mitigated
with additional training data for the YOLO model. The speed graph in Fig. 57 shows the stability of the
classification, clearly following the pattern of back-and-forth walking without misclassifying objects in
the meantime.

Monitor System Performance: The RV system’s performance in field tests was consistent with the
simulation results. The system was able to maintain its monitoring capabilities and ensure compliance
with safety protocols even in outdoor environments with varying conditions. The monitor was also used
to activate a mitigation action for an induced violation caused by the UV light not turning off. In this test,
the monitor took control over the Thorvald-005 robot through SSH and forced a shutdown of the hard-
ware, ensuring the safety of the subject. The Flask app during testing displayed its capabilities of reliably
delivering real-time data concerning the robot’s state and violations that occurred, making it possible to
receive data on a WiFi-connected phone or system.

Hardware: In real-world field tests, the RV framework successfully identified and mitigated safety
hazards, although sometimes the results were limited by the accessible hardware. For instance, the
Thorvald-005 was running an old version of ROS Kinetic, which made using Rosbridge for ROS commu-
nication between the monitor and robot difficult to achieve and too time-consuming for the thesis. The
limiting hardware for the performance of the monitor was the RealSense camera and laptop used in the
experiments. The RealSense camera worked optimally at distances of 0-3 meters, which was not ideal for
robotic field work. While the classification performed by the YOLO model did not suffer from the camera
hardware, the distance values were inaccurate for larger distances. The frame rate from the camera was
impacted by the connected system, which in this instance was an AMD Ryzen 3 laptop that struggled with
performance under high load. Overall, the received data was stable enough and reliable for testing the
monitor capabilities.



6.1.4 Summary of Key Findings

This section provides a comprehensive overview of the most important results from our research, empha-
sizing how these findings address the research question, meet system requirements, and contribute to the
existing body of knowledge.

The problem statement of this project was ”To enhance workplace safety and reliability throughout
the engineering life-cycle by applying generative runtime verification (RV) to the agricultural domain for
ROS 2 applications, turning safety requirements defined in natural language (NL) into formally verified
temporal logic monitors.” Sec. 1.1. This aim was driven by the intention to enhance workplace safety,
serve as an example of the implementation of automatically generated monitors, and contribute to the
ROS 2 RV space. The research questions were: ”Is it possible to create a pipeline for the automatic gen-
eration of runtime verification monitors for ROS 2 systems using current software tools?” and ”Does the
runtime verification monitor help elevate safety during all phases of the engineering life-cycle?”, Sec. 1.2.

In summary, all goals were achieved, proving that the automatic generation of formally verified RV
monitors for ROS 2 is possible with current software and quick to implement for existing systems during
active development and for systems already in deployment. This approach further bolsters the safety and
reliability of the system, with the potential to implement mitigation tactics and safety controller behavior.
By using the NASA created tools FRET, OGMA, and Copilot we were able to fulfill all system require-
ments of the research, as seen in Sec. 3.2.

Problems encountered during development included the lack of time to properly connect the ROS
Kinetic system with the ROS 2 RV platform with the use of a bridging tool, which made implementing
mitigation tactics for the unsupported operating system of the Thorvald-005 robot difficult but achievable
through SSH connection. Another issue was that the automatically generated monitors from Copilot
expected stream-based communication, while ROS operates on an event basis, leading to asynchronous
data publishing and violations. This was solved by a small change in the Copilot monitor code.

In retrospect, further research should have been conducted on the buildup of requirements and the
limits of FRET as a generation tool for ptLTL logic. The specification model used in the project (Tab. 10)
demanded immediate change of system states to validate nominally. Due to asynchronous nature of pub-
lishing, this was not possible, necessitating a change to the step function. By altering the requirements, it
might be possible to use a time tick validation to approve requirements within a time frame. This would
enable the safety monitor to handle event-based topics with a stream-based approach. However, OGMA
uses the ptLTL version of the formula, where time is considered discrete, making a full implementation
of continuous-time metric temporal logic non-trivial. A possible change is to use the step function as a
metric of time, creating a time unit of a specified resolution, and re-writing the properties to be ”WITHIN
X steps”. Although there is no guarantee that the monitor will not miss an event, this uncertainty is
common for all computer property evaluations at runtime. Another possibility could be to manually edit
the Copilot code to include an input signal called time that contains the current real time. There are other
languages in which this might be easily expressed, but they lack guarantees about memory consumption
during execution.



The RV system displayed low latency for both violation reporting at 33 ms and front-end warn-
ings, while maintaining high performance on tested hardware. The monitor was capable of bidirectional
communication, which facilitated the implementation of safety controller features tested in simulation
environments. All of this was achieved on Ubuntu systems, utilizing formally verified hard real-time code
generated by Copilot.

To summarize, the implementation of the Copilot RV framework in a ROS 2 environment demonstrated
significant improvements in detecting and responding to safety violations in both simulated and real-world
tests. The overhead introduced by the RV monitors was within acceptable limits, and the change made
to accommodate the asynchronous nature of data publishing ensured minimal delays in violation detection.

Significance of Findings: Runtime Verification is a term growing in popularity, and with good rea-
son. The increased focus on automation and robotics by technology-leading companies raises questions
regarding how safety and compliance will be maintained in a steadily advancing automated society. In the
agricultural domain, the increased use of automation with heavy machinery begs the question: how safe
are our systems? One effective tool for ensuring reliability and safety is implementing RV. This choice
is made even simpler with RV being increasingly lightweight formal methods for analyzing the behavior
of software or cyber-physical systems during runtime [7]. With automated generation, the bar of entry is
lowered for using set tools. Thus, in the case of a violation of specified requirements, a myriad of choices
are made available, such as delivering information to the user, intercepting wrong messages and overwrit-
ing them, or implementing mitigation actions like turning the system off in the case of a fault, as in field
test (Sec. 5.3). By implementing RV, the reliability and safety during runtime is increased by lessening the
risk of violations going undetected. With proper implementation we have seen that RV can eliminate the
need for rigorous offline testing and execution traces prior to runtime, instead utilizing formally verified
requirements, which aid in solving safety monitoring for systems with infinite state spaces.

The results shown here should inspire RV to become more widely deployed across the entire imple-
mentation chain, being used from early design phases, through system verification, testing, and during
deployment, all stages of the engineering life-cycle [8]. The goal is to increase safety and reliability from
the moment of conception until deployment, with simplified tools that anyone can use through the monitor
generation based on NL. RV continues to prove itself as a beneficial application of formal verification,
featuring the following enhancements from our findings:

Enhanced Safety
The findings highlight the RV framework’s potential to significantly enhance the safety of robotic systems
operating in dynamic and potentially hazardous environments.

Improved Efficiency
The ability to detect and mitigate violations in real-time contributes to more efficient and reliable robotic
operations, reducing the risk of accidents and system failures.

Scalability and Flexibility
The RV framework’s scalability and adaptability to different ROS environments, specification models, and
scenarios demonstrate its potential for widespread application in various fields, including agriculture.



6.2 Comparison with Previous Research

Our findings align with previous studies such as the ROSMonitoring tool, ROSRV, and TeSSLa-ROS-
Bridge, which also showed that runtime verification can effectively enhance the safety of robotic systems.
There are, however, pros and cons to weigh when faced with the choice between several frameworks.
When weighing the impact of the Copilot monitor, it would be best to compare it with the ROSMoni-
toring tool, as it has more extensive research on the effects of introducing monitors to the system. Our
approach that uses asynchronous verification with the synchronous Copilot language, was able to achieve
competitive performance with the ROSMonitoring software. By presenting the monitor under gradually
increasing system loads in a similar fashion as performed on the ROSMonitoring tool [5], distinguishing
the weights of the frameworks becomes a simple task of comparing the empirical data of Fig. 17 and
Fig. 40. The ROSMonitoring monitor shows an introduction of overhead at message rates just shy of
5000 Hz with 500% overhead at 10000 Hz. The OGMA-Copilot monitor, on the other hand, introduces
overhead at message rates just shy of 12500 Hz with just over 50% overhead at 20000 Hz. In both cases
only the impact of the presence of the monitor was tested, as such the property was fixed to be verified.
This demonstrates how lightweight the OGMA-Copilot monitor is over other RV monitors, making it
better suited for running on lower to middle-end hardware. This is likely to be the case when comparing
OGMA-Copilot to ROSRV as well, with ROSRV having a high risk of bottle-necking due to it’s central-
ized architecture mentioned in Sec. 2.3.3.

The OGMA-generated monitor and the TeSSLa-ROS-Bridge share the most common properties, both
being designed with ROS 2 in mind, with similar structures when comparing generalized diagrams in
Fig. 18 and 25. Seemingly, one of the most important aspects to consider is the requirement specification
language for each respective framework: TeSSLa and FRETISH . TeSSLa is marketed as a convenient
language for specification and verification of cyber-physical systems with its natural and short syntax,
offering more than just RV, with datastream analysis and semantic documentation. The TeSSLa-ROS-
Bridge monitor additionally offers advanced output streams allowing for the checking of value bounds
or statistical properties, and timing-based specifications. This should be possible for the OGMA-Copilot
monitor, but would conflict with the predictable memory and time bounds as OGMA-Copilot prides itself
on being hard real-time C99.

OGMA and FRET being compatible brings several merits for the development process of cyber-
physical systems. Given that FRETISH is so close to natural language, the small learning curve allows
researchers and system developers to quickly set up and deploy a monitor to test a system solution against
its intended behavior. By pin-pointing errors and being able to act as a safety controller through minimal
alterations, the monitor makes for a safer developmental process with faster localization of bugs or defects.
The solution being non-intrusive guarantees that the monitor will not affect the system. The continued
development by NASA on the OGMA-Copilot monitor could only serve to simplify the RV process and
deliver formally verified specification systems to early prototyping and deployment of robotics. Both have
the benefit of being open-source and readily available for ROS 2. ROSMonitoring is, however, currently
developing a ROS 2 system, but it is yet to be released. At the inception of the study, few options for RV
of ROS 2 existed.



6.3 Implications of the Findings
The reduced overhead and improved response times observed in our study suggest that the Copilot frame-
work is well-suited for deployment in safety-critical applications. This can potentially lead to more robust
and reliable robotic systems capable of operating in dynamic environments such as agricultural robotics.
The method has been proven to be competitive with existing tools, with strong benefits in ease of use
and quick deployment times. Continued development of automatic generation of RV monitors, like the
method proposed here, will in the future help in lowering the threshold of safety upkeep and reliability
enhancement. This includes eliminating the need for meticulous offline testing for infinite state machines,
where formal RV requirements provide improved model coverage and quick response times. Inclusion
of advanced tracking and prediction algorithms will possibly further improve the safety and reliability of
agricultural robots by predicting safety-critical situations and reliability concerns before they become real
problems.

Throughout the thesis, our research has contributed to the active NASA development of the RV tool
OGMA and Copilot by addressing code issues and engaging in conversation with the lead developer, Dr.
Ivan Perez. Through our work OGMA and Copilot issues on GitHub have been addressed and solved by
the diligent workers at NASA. The following is a list of issues we have addressed during development,
which have been handled by NASA:

Fixed for version 1.3 of OGMA:
(ogma-core) Equivalence operator translation issue: https://github.com/nasa/OGMA/issues/
126
(ogma-core) Spec2Copilot translator not sanitizing handler names: https://github.com/nasa/
OGMA/issues/127
(copilot-core) Linker error during compilation of ROS application: https://github.com/nasa/
OGMA/issues/130

Fixed for version 1.4 of OGMA:
(ogma-cli) Add docker-file with complete workflow for ROS 2 backend including compiling the ROS
app: https://github.com/nasa/OGMA/issues/136
(ogma-core) ROS backend incorrectly mapping float and double types: https://github.com/
nasa/OGMA/issues/138
(Github)
(ogma-cli) Missing explanation of DB structure for ROS: https://github.com/nasa/OGMA/
issues/143

https://github.com/nasa/OGMA/issues/126
https://github.com/nasa/OGMA/issues/126
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https://github.com/nasa/OGMA/issues/136
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https://github.com/nasa/OGMA/issues/138
https://github.com/nasa/OGMA/issues/143
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7 Limitations
This section outlines the various limitations encountered in this study, both from a software (Sec. 7.1)
and hardware (Sec. 7.2) perspective, as well as practical recommendations (Sec. 7.3) for overcoming
challenges in future implementations.

7.1 Software Limitations
The software tools used in this thesis consisted of FRET, OGMA, Copilot, Flask, ROS 2, and mainly
Python for back-end programming on a Linux distribution. Summarized, the limitations experienced with
the software consisted of timing, communication, and dependency issues, often related to the Copilot to
ROS 2 language barrier, which is preliminary at this point.

A limitation of most runtime verification software for ROS is that topics are the only monitor mes-
sages checked. In complex ROS applications, however, it is quite common to have external commands,
but usually, these commands are received on a topic to which an action client subscribes. This way, the
runtime verification platform can also react to external commands.

Given the monitor-to-system language barrier, with Copilot expecting synchronous information
streams, and ROS 2 adapting an asynchronous, event-based, pub-sub architecture, integrating the two
systems requires a transition-point to synchronize data flows. Keep in mind that all code that OGMA and
Copilot generate for the monitors is hard real-time, meaning it has predictable memory and time bounds,
no mallocs, no for-loops, and no recursion. To circumvent timing issues, you can allocate a discreet time
interval to the past-time algorithm while writing requirements. You can check the system state as many
times as you want within this interval and evaluate if there have been any violations of requirements each
time you transition to the next interval. Let’s say you have a time interval of 1 second. You can have a set
resolution of one tenth or hundredth of a second to log the state 10 or 100 times per second and evaluate
whether one of these 10 or 100 states triggers a violation. This, however, means that you have to allocate
memory of unbounded size, losing the predictable memory and time bounds. There’s also no guarantee
that you won’t miss an event, even with the smallest possible window, as computers still poll at fixed
intervals.

One could avoid a step interval by encoding some of these properties directly in Copilot by providing
an input signal called ”time” that contains the current (real) time. This requires writing custom Copilot
expressions and extensions. Researchers are encouraged to see the documentation for the Haskell Copilot
library [55], as well as the official technical report by NASA [56].

One limitation of our study is the dependency on specific ROS distributions, which may limit the
generalizability of our findings to other robotic platforms. Additionally, the simulation environment can-
not fully capture the complexity of real-world scenarios, which may affect the performance of the RV
framework.

The Thorvald-005 robot originally runs on an end-of-life (EOL) ROS Kinetic distribution. This was a
problem which caused limitations to the degree of bidirectional communication we were able to perform



without extensive work on setting up a Rosbridge on a Kinetic operating system. While possible, it was
deemed too large a task for the value of the outcome. For use of the monitor system we assume one would
either have the time to properly set up a bridge connection or that the CPS hardware will use compatible
distributions that are up to date, making the bidirectional communication possible.

7.2 Hardware Limitations & Assumptions
The hardware used in the project consisted of laptop computers, a desktop computer, one RealSense
camera model D435 and the Thorvald-005 robot. Summarized, the limitations experienced with the use
of these consisted of performance and incompatibility issues that limited the scope of what we were able
to achieve but not the results themselves.

For testing purposes, the 10 meter range of the RealSense was a problem that created a lot of noise
on the distance results. The limited number of depth cameras led to a limited field of view (FOV) with
no mitigation for objects blocking the frame. In an ideal environment there would be multiple cameras
throughout the poly-tunnel and on the robot, giving a 360° view of the surroundings mitigating objects
from blocking the view. These were assumptions we made for deployment of such a system, meaning
that all issues related to limited FOV and detection of a subject was not important for the end results. The
distance inaccuracy was also accommodated with the use of data filtering.

The laptops used during the project often had issues when all programs were running, limiting the
number of frames we were able to process from the RealSense. This was mostly related to back-end sys-
tems for the website and logging that caused a high computational cost to the system during runtime. This
was not ideal, and would assumably not be active during normal operation, only for testing. Otherwise,
the systems upheld the monitor system and was able to react to violations and call the Thorvald-005 robot
during field-testing. The monitor itself is very lightweight, which is a benefit for implementing it on a
CPS. During simulation there were no issues related to performance since the desktop computer was used,
which had a major performance increase when compared to the laptops.

7.3 Practical Recommendations
Practitioners deploying runtime verification in robotic systems should consider the asynchronous nature
of data publishing to minimize system overhead. Moreover, adapting the Copilot framework to support
predictive verification could further enhance its effectiveness in preemptively addressing potential safety
violations. We also recommend careful study of how the requirements are defined as they make or brake
the monitor system if not properly maintained, for this FRET is useful with its realizability checking
features. Especially timing constraints can be difficult to define, as proper knowledge of the desired LTL
logic is instrumental in understanding how to correctly create the model specification. The use of metric
temporal logic (MTL) operators in continuous or discrete time lands into that category of unmonitorable
in runtime very quickly, due to the complexity and potentially high resource demands of continuously
verifying time-bounded properties. One way of allowing MTL operators involves modifying the OGMA-
generated apps to run Copilot’s step function at discrete intervals, using a resolution of ”x” number of
steps as a timing constraint. This method serves as a workaround, while waiting for a permanent fix.



8 Future Works
The exploration and development of generative Runtime Verification (RV) for ROS 2 systems has yielded
significant insights and advancements. However, several areas remain ripe for further research and devel-
opment to enhance the capabilities, efficiency, and applicability of RV in robotic systems. This section
outlines key directions for future work, aimed at addressing current limitations and expanding the frame-
work’s utility. By integrating predictive capabilities, automating user interface generation, improving
signal processing, and enhancing hardware and software compatibility, the RV framework can be further
refined to meet the evolving demands of modern robotics. Collaboration with industry and research organi-
zations will be crucial in driving these innovations forward. The topics related to future work is addressed
in separate paragraphs for added clarity and understanding.

Predictive Runtime Verification: Integrating predictive RV capabilities to anticipate and address
potential violations before they occur would significantly enhance system safety and reliability. This
could involve developing algorithms to predict future states of the robot and preemptively mitigate safety
issues.

Automated User Interface Generation: Creating automated tools for generating user interfaces that
facilitate the monitoring of online RV systems. This would improve usability and make it easier for
operators to interact with and understand the system’s status in real-time. Reintegrating the D3 library of
displaying state machine systems, with simple interface for choosing hazard mitigation tactics for different
requirements.

Enhanced Stream to Event-Based Signaling: Improving solutions for converting stream-based sig-
nals to event-based ones. Given the challenges encountered with asynchronous data publishing in ROS,
refining this aspect would lead to more accurate and efficient monitoring. Solved either by improved uti-
lization of the step function, changing the copilot monitor code, or reworking the system requirements to
have time from step count resolution.

Advanced Tracking and Prediction Algorithms: Including advanced tracking and prediction algo-
rithms to improve the system’s ability to handle dynamic environments. This enhancement could help in
predicting and preventing safety-critical situations, further increasing the reliability of agricultural robots
and other CPS applications. This would solve issues related to the Inferer switching class of subject when
objects are blocking sight, and would change the dynamic of how mitigation actions are used, calling nec-
essary actions before safety-critical events arise instead of after.

Hardware Improvements: Addressing hardware limitations, such as the range and accuracy of Re-
alSense cameras and the performance of YOLOv6 under different conditions. Upgrading to more powerful
computing platforms and improving sensor accuracy would enable the RV framework to perform better
in diverse and challenging environments. Improved hardware would also benefit in finding a improved
stream to event-based signaling method, by lessening limitations connected to performance.

Integration with Bridge Solution for Other ROS Distributions: Extending the compatibility of the
RV framework to support a wider range of ROS distributions beyond ROS 2, ensuring broader applica-
bility and ease of integration with various robotic platforms. This would have helped during field testing
with the ROS Kinetic Thorvald-005 robot.



Refinement of Requirement Specification Models: Further research into refining the requirement
specification models in FRET to handle asynchronous publishing more effectively. This could involve
developing new approaches to validate requirements within specific time frames, thereby improving the
monitor’s ability to handle event-based topics using a stream-based approach.

Continued Development of RV Tools for ROS 2: Continued collaboration with organizations like
NASA and the team behind ROSMonitoring to address issues and improve tools. Engaging with the
broader research community and industry partners will help in refining the RV framework and ensuring it
meets the evolving needs of modern robotic systems in agricultural domains, as well as others.

9 Conclusion
To reiterate, this thesis set out to develop and evaluate a robust Runtime Verification (RV) platform for
ROS 2 applications, automatically generated from natural language requirements and equipped with a
user interface. The first research question was stated:

1 Is it possible to create a pipeline for the automatic generation of runtime verification monitors for
ROS 2 systems using current software tools?

The primary goal was therefore to provide a reliable implementation example of an automatically
generated monitor, and contribute to the ROS 2 RV space. Through the use of NASA-developed tools
such as FRET, OGMA, and Copilot, we successfully achieved this objective. The second research was
stated:

2 Does the runtime verification monitor help elevate safety during all phases of the engineering life-
cycle?

The secondary goal was therefore to demonstrate the functionality and effectiveness of the monitor and
compare it to previous runtime verification software tools. It was demonstrated that the monitor is capable
of elevating safety through debugging during all phases of the engineering life-cycle. Key findings also
illustrate that the RV framework developed in this research significantly improves the safety and reliability
of robotic systems by detecting and responding to safety violations effectively. The framework’s low
overhead and rapid response times makes it well-suited for deployment in dynamic environments, such
as the agricultural domain. This was demonstrated in the specified use case of an autonomous UV-light
treatment robot of powdery mildew of strawberries.

However, this research also encountered several limitations. The dependency on specific ROS dis-
tributions and the simulation environment’s inability to fully capture real-world complexities are notable
constraints. Additionally, hardware limitations, such as the performance of RealSense camera and com-
putational constraints of the laptops used, posed challenges during testing.



Future research should focus on integrating predictive RV capabilities, automating user interface gen-
eration, and improving stream to event-based signaling. Enhancing hardware configurations and extending
compatibility with other ROS distributions will further improve the framework’s effectiveness. Continued
collaboration with industry organizations like NASA and the broader research community will be crucial
in refining the RV framework and addressing its current limitations.

In conclusion, this research has made significant strides in the field of runtime verification for ROS 2
systems, contributing valuable insights and methods to enhance robotic safety and reliability. The suc-
cessful implementation and evaluation of the Copilot RV framework for ROS 2 mark an important step
forward, with promising implications for future advancements in this critical area. We hope our work
will contribute in the further enhancement of workplace safety and reliability of robotic operations, with
our thesis being used as an example for teaching how to employ RV systems for simulation and field
deployment. Our work has prefaced how integration of RV monitors are easier to implement than ever
through the use of generative monitor creation, and that further research on the topic will be crucial in
creating a lower bar for entry, making sure that all safety critical CPS equipment is not only adhering to
requirements during offline testing, but also during runtime.

“Now is no time to think of what you do not have. Think of what you

can do with what there is.”

— Ernest Hemingway, The Old Man and the Sea
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