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8 Abstract 

9 Errors in forest inventory data can lead to sub-optimal management decisions and dramatic economic 

10 losses. Forest inventory approaches are typically evaluated by their levels of precision and accuracy; 

11 however, this overlooks the specific usefulness of the data in decision-making. By evaluating the value 

12 of information (VoI), we can assess the usefulness of the data for specific decision-making problems. 

13 We evaluated the VoI through stochastic programming for four airborne laser scanning-based 

14 inventory approaches. The stochastic programming model explored the trade-off between the 

15 maximal net present value and the minimal conditional value at risk of meeting specified periodic 

16 income targets. We evaluated a range of periodic targets and risk aversion preference levels. To 

17 compare the performance of the inventory approaches, we used a reference dataset that was 

18 acquired using a forest harvester with precise positioning. For a wide range of the trade-offs, inventory 

19 approaches with higher-quality information provided the best overall performance. If only one of the 

20 extreme objectives was desired, less precise inventory approaches were sufficient to produce high-

21 quality solutions. 

22

23 Keywords: forest planning, value of information, stochastic programming, uncertainty, risk 

24 management, forest inventory, data quality 
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25 1. Introduction

26 Forest planning is a multifaceted process that involves designing and proposing alternatives for 

27 implementing strategies and operations aimed at managing forest resources. The traditional aim has 

28 been to meet industrial needs for forest products while ensuring that silvicultural practices are carried 

29 out in a sustainable, cost-efficient, and responsible manner (Bettinger et al. 2017). This aim has 

30 expanded to include more varied benefits, including biodiversity, carbon storage, and protecting 

31 sensitive ecosystems (Hunault-Fontbonne and Eyvindson 2023). Achieving a balance between these 

32 objectives is a complicated task, requiring the use of complex data and mathematical models. 

33 High-quality data are essential for accurate forecasts of a forest’s development; however, the expense 

34 of these data should be carefully considered when evaluating inventory data needs. All data include 

35 some level of uncertainty, as perfect information about the standing trees is nearly impossible to 

36 obtain. In addition to data uncertainty, other significant sources of uncertainty include inaccuracies in 

37 growth and yield models, market volatility, and natural disturbances (Pasalodos-Tato et al. 2013). 

38 The study of inventory errors has been of particular interest to foresters, with detailed analyses 

39 starting in the late 20th century. Uncertainties in the initial inventory data can substantially impact the 

40 accuracy of the predictions of the growth and yield models (Gertner and Dzialowy 1984), leading to 

41 sub-optimal management decisions with the potential for large economic losses. To limit the impact 

42 of this uncertainty, decision-makers often opt to obtain forest information with the greatest accuracy, 

43 to minimize the losses. However, data accuracy alone does not indicate the extent to which a given 

44 inventory approach is useful for decision-making (Ketzenberg et al. 2007). To effectively evaluate the 

45 usefulness of accurate inventory data in forest planning, decision-makers should conduct a value of 

46 information (VoI) assessment.

47 The value of forest information has been defined as the difference between the expected values of a 

48 management decision made with and without additional information (Kangas, 2010). By evaluating 
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49 the VoI obtained using alternative forest inventory approaches, we can quantify which inventory 

50 approach is the most efficient for the specific forest planning use case. 

51 The most common method used to compare the VoI of inventory approaches is the so-called cost-

52 plus-loss (CPL) analysis. This method quantifies the total inventory cost as the sum of the direct 

53 inventory costs and the losses that occur due to sub-optimal decisions. Consequently, the inventory 

54 method with the lowest total cost is identified as the most favorable (Burkhart et al. 1978). In early 

55 forestry CPL analyses, Eid et al. (2004) compared forest inventory approaches based on laser scanning 

56 and photo-interpretation. The results demonstrated that despite the higher direct cost of laser 

57 scanning, it led to improved decision-making and reduced the total cost compared to lower-cost 

58 photo-interpretation data. Later studies compared expected losses from different inventory 

59 approaches, e.g., stand-wise visual inventory and airborne laser scanning (ALS) (Mäkinen et al. 2010), 

60 inventory approaches that rely on the use of ALS, satellite data, or their combination (Duvemo et al. 

61 2007), and ALS and digital aerial photogrammetry (Kangas et al. 2018). 

62 Bergseng et al. (2015) applied CPL analysis to identify expected losses when using data obtained from 

63 four ALS-based inventory approaches. These inventory approaches were area-based approaches 

64 (ABAs) to calculate the mean values and diameter distributions (ABA-MV and ABA-DD, respectively) 

65 of forest stands, the individual tree crown (ITC) approach, and the semi-ITC approach. In the ABA, 

66 regression models fitted on a sample of field plots with corresponding ALS metrics are used to predict 

67 forest attributes over a grid tessellating the inventory area (Næsset 2002). In ABA-MV, predicted forest 

68 attributes are then summarized to mean stand values, whereas in ABA-DD, diameter distributions are 

69 obtained (Gobakken and Næsset 2004, 2005). In the ITC approach, tree-level information is obtained 

70 by delineating ITC segments from ALS data (Hyyppä and Inkinen 1999). The semi-ITC approach 

71 mitigates systematic errors in the ITC approach that arise from segmentation errors, by allowing tree 

72 crown segments to contain single, multiple, or no trees (Breidenbach et al. 2010). The results from the 

73 CPL analysis (Bergseng et al. 2015) demonstrated that ABA-DD was a favorable inventory approach 
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74 that resulted in the smallest losses. The ITC and semi-ITC inventory approaches avoided large losses 

75 as they both tended to detect the largest and most valuable trees; however, their inventory costs were 

76 substantially larger than for ABA methods. ABA-MV demonstrated the largest losses among the 

77 studied approaches, resulting from sub-optimal management decisions. 

78 Although CPL analysis has been shown to be effective in evaluating the VoI obtained with different 

79 inventory approaches, the method is not without limitations. Forest-focused CPL studies have only 

80 evaluated the economic impact of the data quality. This assumes that the utility of a decision-maker 

81 is expressed solely through the net present value (NPV) maximization problem. Moreover, the 

82 reference data used for comparing inventory approaches were typically assumed to be free of error. 

83 An alternative way of quantifying the VoI is using stochastic programming. Stochastic programming 

84 allows the incorporation of various sources of uncertainty into the development of forest 

85 management plans, as well as the specific formulation of the objective function (Birge and Louveaux 

86 2011; King and Wallace 2012). Earlier forest-specific studies using stochastic programming have 

87 demonstrated how the VoI can be evaluated by quantifying the difference in the objective function 

88 values resulting from various model formulations (Eyvindson and Cheng 2016; Eyvindson and Kangas 

89 2016; Eyvindson et al. 2017). These studies primarily focused on the evaluation of the VoI derived 

90 from using different optimization model formulations while utilizing the same inventory data. 

91 We explored the difference in the VoI obtained by using inventory data acquired from a variety of 

92 inventory approaches, applied to the same stochastic programming optimization problem. The 

93 optimization problem aimed to maximize the NPV while minimizing the conditional value at risk (CVaR) 

94 of not achieving specific income targets. The use of this CVaR formulation can be interpreted as an 

95 income even-flow requirement that strives to ensure a relatively consistent income over the planning 

96 horizon. Providing an even flow of income (or timber) enables stable economic conditions for forest 

97 owners and communities that rely on the forestry sector.  
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98 The research objectives of this study were twofold. The first main research objective was to develop 

99 a stochastic programming-based framework for the comparison of the VoI of four inventory 

100 approaches with different costs: ABA-DD, ABA-MV, ITC, and semi-ITC. When designing the framework, 

101 we addressed three specific sub-objectives: (1.1) to account for uncertainty in all of the inventory 

102 datasets and the reference inventory data; (1.2) to expand the VoI problem formulation to incorporate 

103 multiple objectives; and (1.3) to quantify the impact of the VoI with respect to the decision-maker’s 

104 risk-aversion preferences. The second main research objective was to evaluate when accurate forest 

105 inventory data are cost-efficient and when less accurate data may be sufficient for specific problems. 

106 To enhance the readability of this paper, we have included a comprehensive list of abbreviations in 

107 Table 1.

108 Table 1. List of abbreviations used in the paper. 

Abbreviation Definition
ABA Area-based approach
ABA-DD Area-based approach diameter distribution
ABA-MV Area-based approach mean values
ALS Airborne laser scanning
CPL Cost-plus-loss
CVaR Conditional value at risk
EVPI Expected value of perfect information
ITC Individual tree crown
kNN k nearest neighbors
NPV Net present value
VaR Value at risk
VoI Value of information
VoII Value of improved information

109

110 2. Materials and methods

111 2.1. Study overview

112 Forest inventory data were obtained using four ALS-based inventory approaches: the area-based 

113 mean values (ABA-MV), area-based diameter distribution (ABA-DD), individual tree crown (ITC), and 

114 semi- individual tree crown (semi-ITC). Data collected by the harvester during harvesting operations 
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115 were used as a reference dataset, as these data provided high-quality on-site information. All data 

116 were collected from the municipalities of Etnedal, Nord-Aurdal, Sør-Aurdal, and Nordle Land in 

117 southern Norway.

118 To evaluate the differences between the VoI provided with the four studied inventory approaches, we 

119 designed the methodology presented in Fig. 1. The input data used to simulate the development of 

120 the forest under uncertainty included forest inventory information, estimates of the inventory 

121 uncertainty, and a set of management alternatives to be applied. Through the simulation process, we 

122 generated multiple simulations for each stand, considering different levels of uncertainty. We then 

123 applied Monte Carlo random sampling to create 1000 unique scenarios to represent different 

124 realizations of the possible initial inventory conditions of the forest holding. These scenarios were fed 

125 into a stochastic optimization model to assess how risk preferences affect the output. To compare the 

126 various inventory approaches, we evaluated the outcomes of the obtained solutions against the 

127 reference dataset and calculated the VoI for each solution.

128

129 Fig. 1. Methodology flowchart used to assess the value of information of inventory approaches with 

130 varying properties of uncertainty.

131 2.2. Inventory data
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132 We used forest inventory data that applied four ALS-based inventory approaches (ABA-MV, ABA-DD, 

133 ITC, semi-ITC), using data collected by four ALS surveys acquired in 2013, 2016, 2017, and 2019 using 

134 different instruments and acquisition parameters. The reference data used in VoI assessment were 

135 collected by a single-grip Komatsu 931XC harvester with precise positioning of the harvester head. In 

136 total, 131375 trees from 49 stands were recorded, with Norway spruce accounting for 89%, Scots pine 

137 for 6%, and deciduous trees, mainly birch, for 5%. For details on the collected harvester data, see 

138 section A1 in the Appendix.

139 For the ABA-DD, ITC, and semi-ITC approaches, we followed the data processing methodology 

140 described in Noordermeer et al. (2023). Tree crowns were segmented from the ALS data and 

141 harvested areas were delineated from the harvester data (for details, see section A2.1. in the 

142 Appendix). The polygons of harvested areas were tessellated using a regular grid of 250 m2, and grid 

143 cells that were completely located within the polygons were selected as observations for the ABA (Fig. 

144 2A). The polygons of segmented tree crowns that intersected ABA grid cells were then used as 

145 observations for the ITC approach. For each segment, we used the harvested tree within the segment 

146 for which the coordinates of the treetop (x,y,z) in the harvester data were nearest to the coordinates 

147 of the treetops detected in the ALS data (Fig. 2C). In this way, we established the closest spatial match 

148 in three dimensions between trees registered in the harvester data and those detected in the ALS 

149 data. For the semi-ITC approach, the methods proposed by Breidenbach et al. (2010) were used. The 

150 same tree crown segments that intersected ABA grid cells were used as observations; however, 

151 multiple harvested trees were allowed for a given tree crown segment. As a result, some semi-ITC 

152 segments were empty, some contained a single tree, and some contained multiple trees (Fig. 2D). Tree 

153 lists were then compiled for all harvester observations, and for the ABA-MV specifically, the number 

154 of stems within the grid cell (N), and the diameter and height of the basal area median tree (Dgm and 

155 Hgm, respectively) were computed.
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156 For the ABA-DD, ITC, and semi-ITC approaches, tree lists were imputed for each target observation 

157 using the harvester data, based on the k nearest neighbors method (kNN, McRoberts et al. 2015) 

158 according to selected ALS metrics (for details, see section A3 in the Appendix). For the ABA-MV 

159 approach, the mean values of N, Dgm, and Hgm were correspondingly imputed (Fig. 2B). The ALS 

160 metrics were selected using the leaps package (Lumley 2004), based on linear models with the tree 

161 height and volume as response variables. The number of neighbors was selected using the caret 

162 package (Kuhn 2008) by fitting kNN models with the tree height and volume as response variables. 

163 The value of k that minimized the root mean square error was selected. Finally, kNN models were 

164 trained using the yaImpute package (Crookston and Finley 2008) in R, with the selected ALS metrics 

165 as predictors and default parameters (for details, see section A2.2. in the Appendix). 

166 For the ABA-MV approach, tree-list information was created using diameter distribution models. 

167 Specifically, the forest simulator applied a diameter distribution model proposed by Kangas and 

168 Maltamo (2000) if basal area information was present; otherwise, a model proposed by Kilkki et al. 

169 (1989) was applied for spruce, and a model proposed by Siipilehto (1999) was applied for other 

170 species. One important note is that depending on the inventory approach used, there can be variations 

171 in the modeled errors due to the method used to construct the tree list. Quantifying the impact on 

172 the overall error is challenging as it differs at a stand level and is also influenced by the distribution of 

173 tree sizes within the stand. 
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174

175 Fig. 2. The inventory approaches used in the study: (A) area-based approach (ABA), where plot-level 

176 reference data are linked to ALS data in statistical models, and the models are then used for prediction 

177 over a grid tessellating the inventory area; (B) in area-based mean values (ABA-MV), predicted forest 

178 attributes are summarized to mean stand values, and in area-based diameter distribution (ABA-DD) 

179 diameter distributions are obtained; (C) individual tree crown (ITC) approach, where reference data 

180 on individual trees are linked to ALS data computed for segmented tree crowns; and (D) semi-

181 individual tree crown (semi-ITC) approach, which allows tree crown segments to include one, multiple, 

182 or no trees.

183 2.3. Simulation process

184 The inventory data from the four inventory approaches and the tree information from the reference 

185 harvester data were used as input for the simulation. Inventory errors were introduced systematically, 

Page 10 of 36Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

O
PEN

 A
C

C
ESS: This w

ork (the A
uthor’s A

ccepted M
anuscript) is licensed under a C

reative C
om

m
ons A

ttribution 4.0 International License (C
C

 B
Y

 4.0), w
hich perm

its unrestricted use, 
distribution, and reproduction in any m

edium
, provided the original author(s) and source are credited.



11

186 sampling across the distribution of the errors. For each of the inventory approaches, we assumed the 

187 errors of the inventory of the number of trees and height of the trees (or stratum for the ABA-MV 

188 case) to be normally distributed around the mean of predicted values with a standard deviation of 

189 20%. To address sub-objective 1.1, we assumed the information on the trees from the reference data 

190 to be more accurate than the outputs of the four inventory approaches but not perfect. To reflect this, 

191 we assumed the error of height of the trees in the reference data to be normally distributed around 

192 the mean with a standard deviation of 5%. To forecast the future development of the forest, we used 

193 the forest simulator SIMO (Rasinmäki et al. 2009). The SIMO simulator is open-source software that 

194 can utilize a wide variety of input data. For this application, both stand-level and tree-level data were 

195 used. With tree-level data, a tree list is directly imputed to the simulator, whereas with stand-level 

196 data, a tree list is constructed based on diameter distribution assumptions before starting the 

197 simulation. For this application, forest development was simulated for 50 years, with 10 five-year 

198 periods, and a branching approach similar to that of Siitonen (1993) was applied to construct a large 

199 variety of management schedules. 

200 The same simulation process was applied to all five datasets, incorporating uncertainty using a 

201 systematic approach. This process produced multiple sets of simulations with different levels of 

202 uncertainty for each stand, each containing an identical set of management schedules. The simulated 

203 data were used as the input when constructing scenarios for the optimization process. For each 

204 scenario, the Monte Carlo random sampling approach was applied for each stand’s sets of simulations, 

205 resulting in a set of 1000 scenarios. Each scenario was represented by a randomly selected simulation 

206 for each stand. According to Eyvindson and Kangas (2015), the generated number of scenarios is more 

207 than sufficient to represent the stochastic forest management problem. 

208 2.4. Stochastic programming optimization model

209 To evaluate the VoI obtained from the four inventory approaches, we utilized a standard stochastic 

210 programming optimization model. Following sub-objective 1.2, the model aims to maximize the 
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211 expected net present value (𝔼(𝑁𝑃𝑉)) while simultaneously minimizing the conditional value at risk 

212 (CVaR) of not achieving the periodic target incomes. The CVaR is a measure of downside risk. The CVaR 

213 measures the mean of the losses that exceed the value at risk (which measures the upper quantile of 

214 potential losses; Duffie and Pan 1997). The CVaR can be easily linearized (Rockafellar and Uryasev 

215 2000), which simplifies its incorporation into a stochastic programming model. In this formulation, the 

216 CVaR minimization objective acts as a soft constraint that helps to ensure income even-flow over the 

217 periods. Soft constraints in stochastic programming can be violated by the model when necessary to 

218 ensure the feasibility of the solution. The overall formulation of the model represents one of the most 

219 common forest management problems, with the goal of maximizing the NPV while ensuring an even-

220 flow constraint (Eyvindson and Kangas 2016). The designed stochastic programming model presents 

221 an updated formulation of an earlier model presented by Eyvindson and Cheng (2016): 

Objective function:

(1) 𝑀𝑎𝑥 𝜆
𝔼(𝑁𝑃𝑉) ―  𝑁𝑃𝑉∗

𝑁𝑃𝑉∗ ― 𝑁𝑃𝑉∗
― (1 ― 𝜆)

∑𝑇
𝑡=1 𝐶𝑉𝑎𝑅𝑡

𝐶𝑉𝑎𝑅∗

Subject to

(2) 𝑁𝑃𝑉𝑛 =
𝑇

𝑡=1

𝐼𝑛𝑡

(1 + 𝑟)(𝑡𝐷―𝑈) +

𝐽

𝑗=1

𝐾𝑗

𝑘=1

𝑃𝑉𝑛𝑗𝑘𝑇𝑥𝑗𝑘

(1 + 𝑟)𝐷𝑇 ,    ∀𝑛 = 1,…,𝑁,

(3) 𝔼(𝑁𝑃𝑉) =
𝑁

𝑛=1
𝑝𝑛𝑁𝑃𝑉𝑛 , 

(4) 𝐼𝑛𝑡 =

𝐽

𝑗=1

𝐾𝑗

𝑘=1
𝑥𝑗𝑘𝑐𝑗𝑘𝑛𝑡,      ∀𝑛 = 1,…,𝑁  𝑡 = 1,…,𝑇, 

(5) 𝐿𝑛𝑡 = [𝑏𝑡 ― 𝐼𝑛𝑡]+,      ∀𝑛 = 1,…,𝑁   𝑡 = 1,….,𝑇,

(6) 𝐶𝑉𝑎𝑅𝑡 = 𝑉𝑎𝑅𝑡 +
1

(1 ― 𝛼)𝑁

𝑁

𝑛=1
[𝐿𝑛𝑡 ― 𝑉𝑎𝑅𝑡]+,       ∀𝑡 = 1,…,𝑇,

(7)
𝐾𝑗

𝑘=1
𝑥𝑗𝑘 = 1 ,     ∀𝑗 = 1,…,𝐽,

222

223 where the sets, variables, and parameters used in the model are presented in Table 2.

224

225

Page 12 of 36Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

O
PEN

 A
C

C
ESS: This w

ork (the A
uthor’s A

ccepted M
anuscript) is licensed under a C

reative C
om

m
ons A

ttribution 4.0 International License (C
C

 B
Y

 4.0), w
hich perm

its unrestricted use, 
distribution, and reproduction in any m

edium
, provided the original author(s) and source are credited.



13

226 Table 2. Description of used notation. 

Symbol Definition
Sets
𝐽 The set of stands
𝐾 The set of silvicultural operation prescriptions 
𝑁 The set of scenarios that represent uncertainty
𝑇 The set of time periods 
Variables
𝑐𝑗𝑘𝑛𝑡 Income generated from stand 𝑗 by applying prescription 𝑘 under scenario 𝑛 for period 

𝑡
𝐶𝑉𝑎𝑅𝑡 Conditional value at risk for period 𝑡
𝔼(𝑁𝑃𝑉) Expected net present value 
𝐼𝑛𝑡 Income for scenario 𝑛 for period 𝑡
𝐿𝑛𝑡 Losses for scenario 𝑛 for period 𝑡 
𝑁𝑃𝑉𝑛 Net present value for scenario 𝑛
𝑝𝑛 Probability of scenario 𝑛 occurring 
𝑃𝑉𝑛𝑗𝑘𝑇 Productive value for scenario n at stand 𝑗 managed according to prescription 𝑘 for 

the final period
𝑉𝑎𝑅𝑡 Value at risk for period 𝑡
𝑥𝑗𝑘 Proportion of stand 𝑗 managed under prescription 𝑘
Parameters
𝛼 Confidence interval for the value at risk
𝑏𝑡 Target income for period 𝑡
𝐶𝑉𝑎𝑅∗ Maximum conditional value at risk reached when net present value maximization is 

considered as the main objective of the model
𝐷 Duration of the period
𝜆 Risk coefficient 
𝑁𝑃𝑉∗ Maximum net present value reached when net present value maximization is 

considered as the main objective of the model
𝑁𝑃𝑉∗ Minimum net present value reached when conditional value at risk minimization is 

considered as the main objective of the model
𝑟 Discount rate
𝑈 Timing of a silvicultural operation during the period

227

228 To enable the accomplishment of sub-objective 1.3, we introduced the risk coefficient 𝜆 to the 

229 objective function. The risk coefficient is defined by a decision-maker and allows them to specify their 

230 risk aversion preference. In our model, the parameter varied between 0 and 1, bounding the problem 

231 between the two extremes of a risk-averse solution with a pure focus on minimizing the CVaR and a 

232 risk-neutral solution with a focus on maximizing 𝔼(𝑁𝑃𝑉). 

233 Equation 1 presents the objective function, which aims to maximize 𝔼(𝑁𝑃𝑉) and minimize the CVaR. 

234 We used a 3% discount rate (𝑟) and 90% confidence interval (𝛼). Both 𝔼(𝑁𝑃𝑉) and the CVaR are 

Page 13 of 36 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

O
PEN

 A
C

C
ESS: This w

ork (the A
uthor’s A

ccepted M
anuscript) is licensed under a C

reative C
om

m
ons A

ttribution 4.0 International License (C
C

 B
Y

 4.0), w
hich perm

its unrestricted use, 
distribution, and reproduction in any m

edium
, provided the original author(s) and source are credited.



14

235 balanced by the maximum and minimum values that could be achieved at extreme points, when the 

236 objective function focuses solely on optimizing one of the components (the minimum value of the 

237 CVaR will always be zero; therefore, it is not part of the equation). This way, each component of the 

238 objective function is scaled between 0 and 1. By changing the risk coefficient 𝜆, the decision-maker is 

239 able to express their risk-aversion priority, e.g., with 𝜆 = 1, the focus is only on 𝔼(𝑁𝑃𝑉), with 𝜆 = 0, 

240 the focus is only on CVaR, and with 𝜆 = 0.5, both components of the objective function are treated as 

241 equally important. 

242 The NPVs for each scenario are computed using Equation 2; they are evaluated as the sum of 

243 discounted incomes from silvicultural operations and the productive value of the forest at the end of 

244 the planning horizon. The productive value is computed using the models from Pukkala (2005). 

245 Equation 3 evaluates 𝔼(𝑁𝑃𝑉). Equation 4 computes the incomes generated by each scenario at each 

246 period. Equation 5 calculates the losses for each scenario and each period. The losses are expressed 

247 as the difference between the stated periodic income target and achieved incomes. For this study, 

248 targets were set by testing and selecting those that remain achievable under most scenarios. Equation 

249 6 computes the CVaR for each period. In Equations 5 and 6, the “+” symbol refers to keeping only 

250 positive values, while all negative values are set to 0. Finally, Equation 7 ensures that the entire 

251 proportion of the area of each stand is allocated to a specific management prescription. This means 

252 that overall, the model formulation follows the Model I formulation of Johnson and Scheurman (1977), 

253 where a set of management treatments is developed for each stand. 

254 2.5. Assessment of the value of information

255 To assess the first research objective, we computed the VoI of the different inventory approaches by 

256 following a series of steps. First, the stochastic programming model was run with each of the inventory 

257 datasets as input (using an initial Monte Carlo sample set of scenarios generated in the simulation 

258 process). A direct comparison between these models’ outputs is impossible, as the input inventory 

259 data are different. Therefore, to allow the outputs to be compared, we extracted the obtained solution 
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260 (a list of management prescriptions to be implemented for the forest holding) from each inventory 

261 dataset so that they could be evaluated against the reference dataset. This solution was then applied 

262 to the simulated reference dataset (obtained with another Monte Carlo scenario set) as input. This is 

263 a simple calculation of the expected “real-life” outputs that a decision-maker would have obtained if 

264 they designed a management plan based on the data from a certain inventory approach. 

265 To compute the VoI obtained from the four studied approaches, we needed to compare the objective 

266 function values for all solutions evaluated using the reference dataset. This required us to run the 

267 stochastic programming model with the reference data to obtain the optimal solution with the most 

268 accurate data. We then extracted the objective function value obtained with the reference data, as 

269 well as the corresponding objective function values obtained after applying the solutions from the 

270 inventory approaches’ datasets to the reference data. The VoI for each approach was then determined 

271 by calculating the difference between the two objective function values (Equation 8), following a 

272 methodology similar to that described in Chapter 4 of Birge and Louveaux (2011). We suggest the term 

273 value of improved information (VoII): 

(8) 𝑉𝑜𝐼𝐼 =  𝑂𝑏𝑗.𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ― 𝑂𝑏𝑗.𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
274

275 Finally, to meet the second research objective, we studied the changes in the VoII for different values 

276 of the periodic income target and risk coefficient 𝜆. 

277 3. Results

278 The obtained VoII varied between the four studied inventory approaches (Fig. 3). These values 

279 represent the percentage of the optimal value reduction in the objective function value compared to 

280 a case with information of better quality (reference harvester data in this study). From these results, 

281 we can infer that semi-ITC and ABA-DD demonstrated very similar results and outperformed the two 

282 other inventory approaches across all targets and values of the risk coefficient 𝜆. On the other hand, 

283 ABA-MV and ITC showed a clearly weaker performance. 
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284 Interestingly, the VoII varied with changes in the periodic income targets (700, 1100, and 1500 € per 

285 ha) and the value of the risk coefficient 𝜆. The VoII for semi-ITC and ABA-DD was rather low and stayed 

286 under 9% for the low and middle targets, and it was under 6% for the high target. A slight increase in 

287 the VoII was observed at intermediate values of 𝜆, where the optimization model aimed to balance 

288 the 𝔼(𝑁𝑃𝑉) maximization and CVaR minimization objectives. Similar trends were observed with ITC; 

289 however, it performed considerably worse at intermediate values of 𝜆, where the VoII almost reached 

290 30% for the low and high targets. On the other hand, the trends observed in ABA-MV were 

291 considerably different. ABA-MV exhibited a substantial increase in the VoII at the low and middle 

292 targets when the optimization objectives shifted towards the 𝔼(𝑁𝑃𝑉) maximization problem (𝜆 

293 approaching 1). At the high target, the importance of accurate data remained high and relatively 

294 consistent at all values of the risk coefficient. Finally, it is important to note that ABA-DD, ITC, and 

295 semi-ITC performed equally well in the case of a pure 𝔼(𝑁𝑃𝑉) maximization problem (𝜆 = 1); in the 

296 case of a pure CVaR minimization problem (𝜆 = 0), all four approaches performed equally well at the 

297 low and middle targets. This highlights that the VoII highly depends on the decision-maker’s targets 

298 and risk-aversion preferences.  
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299

300 Fig. 3. The value of improved information at different values of the risk coefficient 𝜆 obtained for the 

301 four inventory approaches, area-based diameter distribution (ABA-DD), area-based mean values 

302 (ABA-MV), individual tree crown (ITC), and semi-individual tree crown (semi-ITC), for three periodic 

303 income targets. 

304 Although our analysis focused on the outcome of applying management decisions obtained from 

305 stochastic programming optimization models with the inventory data compared to the reference 

306 dataset (Fig. 4, applied output), the difference between these results and the anticipated outputs from 

307 the optimization models (Fig. 4, model output) is worth noting. This difference demonstrates the 

308 accuracy of the models’ predictions. It shows that semi-ITC and ABA-DD were the closest to the 

309 expected outcomes of the use of the generated solution on the reference dataset, followed by ABA-

310 MV and ITC. It is also interesting to highlight certain differences between the anticipated models’ 

311 outputs. Although a direct comparison between them is not possible, their discrepancies offer 
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312 valuable insights, highlighting how different the expectations of the decision-maker would be when 

313 applying each of the inventory approaches. 

314 When analyzing the obtained values of 𝔼(𝑁𝑃𝑉) and the CVaR after applying the generated 

315 management plans to the reference dataset (Fig. 4, applied output), a certain inference can be made. 

316 Specifically, the analysis indicates that ABA-MV provided the lowest values of 𝔼(𝑁𝑃𝑉) at high values 

317 of the risk coefficient 𝜆 and lower CVaR values relative to the other studied inventory approaches in 

318 most cases. Semi-ITC and ABA-DD demonstrated the highest values of 𝔼(𝑁𝑃𝑉); however, ABA-DD 

319 showed a slightly higher CVaR. Finally, at lower values of the risk coefficient 𝜆, ITC tended to produce 

320 solutions with the lowest values of 𝔼(𝑁𝑃𝑉) and slightly higher values of the CVaR. However, as 𝜆 

321 approached 1, the ITC approach showed similarly high values of 𝔼(𝑁𝑃𝑉) compared to semi-ITC and 

322 ABA-DD, and also the highest values of the CVaR among all approaches.

323
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324 Fig. 4. Anticipated optimization model outputs (model output) for the expected net present value and 

325 average periodical conditional value at risk obtained with inventory data from the four inventory 

326 approaches (area-based diameter distribution (ABA-DD), area-based mean values (ABA-MV), 

327 individual tree crown (ITC), and semi-individual tree crown (semi-ITC)) compared to the outputs of 

328 applying the management plans obtained with model outputs to the reference dataset for three 

329 periodic income targets (applied output). The risk coefficient 𝜆 is lowest (𝜆 = 0) on the left side of each 

330 graph and increases towards the right side of each graph (reaching 𝜆 = 1).

331 The incorporation of the CVaR minimization goal as part of the stochastic programming objective 

332 function allowed the even flow of periodic incomes to be ensured (Table 3). With CVaR minimization 

333 as the main priority, it was possible for all inventory approaches to meet the low- and middle-level 

334 income targets. At the high target, semi-ITC and ABA-DD were able to assure periodic incomes in close 

335 proximity to the target value, whereas ABA-MV and ITC exhibited more significant reductions in 

336 incomes for period 1. This indicates that not all trees were detected when the ITC approach was used, 

337 and as a result, timber volumes were underestimated. In the case of ABA-MV, the underestimation 

338 was likely due to the application of the diameter distribution model. 

339 At 𝜆 = 0.5, i.e., when the model gave 𝔼(𝑁𝑃𝑉) maximization and CVaR minimization the same 

340 importance, the model tended to harvest more in the first period. Additionally, it ensured that target 

341 objectives were met until period 5 or 6 for all approaches, except ITC, where the target was not met 

342 after period 4. After that, incomes remained below the target value until the end of the planning 

343 horizon. This held true for all except the low target, where all four studied approaches reached the 

344 target again at period 8 and also at period 9 for ABA-MV and ITC. Finally, when the optimization model 

345 focused on 𝔼(𝑁𝑃𝑉) maximization, most of the available volume was harvested at period 1 with all 

346 inventory approaches. This was followed by very low or no harvests until period 8, where a new peak 

347 was observed for all targets. For the high target, ABA-MV was the only approach for which the peak 

348 at period 8 did not reach the income target value. 

Page 19 of 36 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

O
PEN

 A
C

C
ESS: This w

ork (the A
uthor’s A

ccepted M
anuscript) is licensed under a C

reative C
om

m
ons A

ttribution 4.0 International License (C
C

 B
Y

 4.0), w
hich perm

its unrestricted use, 
distribution, and reproduction in any m

edium
, provided the original author(s) and source are credited.



20

349 Table 3. Expected periodic incomes, expected net present value E(NPV) and conditional value at risk (CVaR) per hectare generated with the use of management decisions from the four inventory 
350 approaches: area-based diameter distribution (ABA-DD), area-based mean values (ABA-MV), individual tree crown (ITC), and semi-individual tree crown (semi-ITC).

Inventory approach ABA-DD ABA-MV ITC Semi-ITC
Periodic income target (€/ha) 700 700 700 700
Risk coefficient λ = 0.01 λ = 0.5 λ = 0.99 λ = 0.01 λ = 0.5 λ = 0.99 λ = 0.01 λ = 0.5 λ = 0.99 λ = 0.01 λ = 0.5 λ = 0.99
E(NPV) (€/ha) 13533 14693 15109 13575 14232 14740 12584 14455 15109 13555 14709 15112
CVaR (€/ha) 0 2347 5600 1 1250 3256 0 2049 5600 0 2230 5072
Income Period 1 (€/ha) 6633 9752 12146 6079 7080 8363 4655 8157 12146 6481 9568 11848
Income Period 2 (€/ha) 2527 934 0 3062 2930 2951 2202 1943 0 2754 1159 385
Income Period 3 (€/ha) 862 869 0 1082 1124 1391 1568 1434 0 881 861 0
Income Period 4 (€/ha) 817 793 0 978 974 209 1416 1264 0 780 768 0
Income Period 5 (€/ha) 823 598 0 841 759 0 1270 0 0 813 711 0
Income Period 6 (€/ha) 827 0 0 731 709 0 1172 0 0 814 0 0
Income Period 7 (€/ha) 857 0 0 718 0 0 1132 545 0 873 0 0
Income Period 8 (€/ha) 934 1588 2338 894 1089 1336 773 1231 2338 914 1540 2194
Income Period 9 (€/ha) 700 422 0 700 700 902 722 700 0 700 426 151
Income Period 10 (€/ha) 724 140 0 743 152 38 953 224 0 749 145 0
Periodic income target (€/ha) 1100 1100 1100 1100
Risk coefficient λ = 0.01 λ = 0.5 λ = 0.99 λ = 0.01 λ = 0.5 λ = 0.99 λ = 0.01 λ = 0.5 λ = 0.99 λ = 0.01 λ = 0.5 λ = 0.99
E(NPV) (€/ha) 12037 14288 15110 12130 13586 14740 10419 14133 15109 12011 14155 15113
CVaR (€/ha) 0 3595 8603 0 2218 5454 3 3955 8800 0 3005 7886
Income Period 1 (€/ha) 4881 8093 12028 4357 6260 8362 1112 6665 12146 4747 7663 11621
Income Period 2 (€/ha) 1369 1451 150 1823 1784 2951 2303 2377 0 1432 1596 674
Income Period 3 (€/ha) 1281 1335 0 1563 1571 1391 2449 2147 0 1344 1328 0
Income Period 4 (€/ha) 1191 1204 0 1404 1480 210 1776 1801 0 1191 1186 0
Income Period 5 (€/ha) 1225 1259 0 1333 1322 0 1110 0 0 1243 1227 0
Income Period 6 (€/ha) 1261 42 0 1244 1131 0 1347 0 0 1235 658 0
Income Period 7 (€/ha) 1303 0 0 1140 550 0 1664 532 0 1304 0 0
Income Period 8 (€/ha) 1203 1210 2290 1112 892 1336 1600 998 2338 1221 1115 2099
Income Period 9 (€/ha) 1209 556 50 1117 532 902 1365 828 0 1216 549 252
Income Period 10 (€/ha) 1160 208 0 1144 217 38 1575 300 0 1180 202 0
Periodic income target (€/ha) 1500 1500 1500 1500
Risk coefficient λ = 0.01 λ = 0.5 λ = 0.99 λ = 0.01 λ = 0.5 λ = 0.99 λ = 0.01 λ = 0.5 λ = 0.99 λ = 0.01 λ = 0.5 λ = 0.99
E(NPV) (€/ha) 10204 14009 15118 10110 12679 14728 9482 14107 15110 10158 13966 15096
CVaR (€/ha) 6 5585 11281 1006 3346 8026 820 6788 11803 6 5439 10664
Income Period 1 (€/ha) 1519 6914 11743 505 3668 8362 784 5679 12028 1517 6629 11346
Income Period 2 (€/ha) 1735 1790 527 2304 2429 2834 1518 3243 150 1576 1968 995
Income Period 3 (€/ha) 1702 1743 0 2086 2027 1516 1516 2910 0 1740 1789 0
Income Period 4 (€/ha) 1608 1637 0 1926 1901 210 2309 1512 0 1621 1633 0
Income Period 5 (€/ha) 1652 1516 0 1755 1837 0 1424 0 0 1686 1520 0
Income Period 6 (€/ha) 1620 0 0 1718 1530 0 1511 0 0 1659 192 0
Income Period 7 (€/ha) 1635 0 0 1557 1326 0 1513 0 0 1655 0 0
Income Period 8 (€/ha) 1651 994 2147 1526 439 1336 1713 885 2290 1676 935 2004
Income Period 9 (€/ha) 1621 640 202 1533 641 896 2053 1110 50 1648 654 353
Income Period 10 (€/ha) 1599 282 0 1533 279 38 2088 217 0 1613 285 0

351 Note: Solutions obtained within one inventory approach but with different targets should be treated as separate problems, due to the E(NPV) and CVaR normalization parameters being 
352 individual for each target.
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353 4. Discussion

354 To evaluate and compare the VoI of the different inventory approaches, we developed a framework 

355 that incorporates stochastic programming and assesses the quality of the solution derived from the 

356 inventory data. The inventory approaches contained various errors in the number and dimensions of 

357 tree stems. With this information, we were able to determine the cost efficiency of the forest 

358 information. The efficiency strongly depends on the management preferences of the decision-maker. 

359 In this case, we explored the trade-off between maximizing economic profitability and minimizing the 

360 risk of negative deviations from a stated periodic income target, measured using the CVaR. 

361 Through an analysis of the VoI obtained with different inventory approaches, we could assess the 

362 usefulness of the given inventory data for decision-making. The VoI studied in the framework of 

363 stochastic programming is often expressed as the expected value of perfect information (EVPI), which 

364 assumes the availability of accurate information at some time in the future (Chapter 4 of Birge and 

365 Louveaux, 2011). For this study, we calculated the difference between less accurate information 

366 obtained with inventory approaches and the reference dataset as the VoII. The reference data we 

367 used were obtained using a harvester with precise positioning, which produced high-quality (but not 

368 perfect) information. To reflect these higher-quality data, we included a much smaller source of 

369 uncertainty for this dataset. 

370 The sources of potential errors in the predictions of each inventory approach varied. Regression 

371 models used when predicting forest attributes using ABA-MV and ABA-DD could lead to 

372 overestimation of small values and underestimation of large values, since models tend to flatten the 

373 regression line (Ståhl et al. 2024). For the ITC approach, a single tree is allowed for each crown 

374 segment, leading to understory trees to be undetected (Solberg et al. 2006). Semi-ITC compensates 

375 for this by accounting for trees otherwise missed. The forest values predicted by studied inventory 

376 approaches were used as input for the forest simulator. The simulator consists of several regression 

377 models predicting amongst other aspects growth, ingrowth, and mortality. Due to the interactions, it 
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378 is difficult to assess how the errors from these models propagate for the different inventory 

379 approaches. However, for ABA-DD and Semi-ITC having both a similar and close fit to the reference 

380 data, the errors should propagate in the same way. 

381 The stochastic programming model applied can be interpreted from a risk preference perspective. In 

382 this case, we assessed risk as the negative deviations from a specific periodic income target, allowing 

383 the decision-maker to determine their risk-aversion preferences to obtain the specific periodic 

384 income. The parameter 𝜆 in the objective function (Equation 1) allows the evaluation of a risk-averse 

385 solution (minimizing 𝐶𝑉𝑎𝑅,  𝜆 = 0), a risk-neutral solution (maximizing 𝔼(𝑁𝑃𝑉),  𝜆 = 1), or any 

386 permutations between these extreme cases. Our optimization model utilizes the outcomes of these 

387 extreme cases as normalization factors. In earlier work, Eyvindson and Cheng (2016) applied a similar 

388 risk coefficient without normalization. This created the perception of linearly increasing VoI with the 

389 increasing value of the risk coefficient. However, when the CVaR could not be further reduced, the 

390 actual outcomes remained unchanged, and the improvement in the VoI resulted solely from an 

391 increase in the value of the risk coefficient. 

392 Using the CVaR to meet the stated periodic income targets was demonstrated to be an effective way 

393 of including a soft even-flow constraint. The decision-maker could interpret the average periodic value 

394 of the CVaR (Fig. 4) as an average periodic loss (i.e., negative deviation from the target) for the worst 

395 scenarios. The use of the CVaR can be compared to alternative downside risk measures. For instance, 

396 Eyvindson and Kangas (2016) evaluated the total negative deviations from the periodic targets, using 

397 shadow prices to weigh the importance of the timeliness of the income. The shadow prices were used 

398 to reflect a risk-neutral decision-maker; however, they were estimated from the deterministic 

399 equivalent. This could lead to inappropriate suggestions for risk-neutral decision-makers.  

400 The results of this study highlighted that risk-aversion preferences and the stated periodic income 

401 targets of the decision-maker would determine the choice of an inventory approach (Fig. 3). When the 

402 focus of the decision-maker was to maximize the 𝔼(𝑁𝑃𝑉), ABA-DD, ITC, and semi-ITC performed 
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403 equally well, while ABA-MV demonstrated much poorer results. When the decision-maker’s focus was 

404 to minimize the CVaR at low- and middle-level targets, there were no large differences between the 

405 approaches. However, for the highest targets, semi-ITC and ABA-DD were preferred. Substantial 

406 differences in the VoII were observed between the extreme values of 𝜆, demonstrating that semi-ITC 

407 and ABA-DD should provide the best solutions when balancing the objectives. 

408 The results for the extreme case with solely NPV maximization were in accordance with previous work 

409 by Bergseng et al. (2015), highlighting that ITC, semi-ITC, and ABA-DD outperform ABA-MV in terms of 

410 potential economic losses due to sub-optimal management decisions. As pointed out by Kangas et al. 

411 (2018), this must result from additional error that was introduced with the diameter distribution 

412 simulation step for ABA-MV. This is because other inventory approaches provide tree lists as input for 

413 the forest simulator, whereas ABA-MV provides only mean values per stand. Consequently, the 

414 simulator must first simulate the tree list based on the mean values before simulating the 

415 development of the forest holding, which likely will not reflect the actual diameter distribution.

416 The lack of differences between the inventory approaches observed in the extreme case of solely 

417 minimizing the CVaR with low targets can be attributed to the size of the specified targets. When the 

418 target is achievable according to the specific applied dataset, the model can still achieve the periodic 

419 even-flow income. This was the case for ITC, when the data severely underestimated the timber 

420 volume in the forest holding. Therefore, to simply assure consistent periodic incomes, less precise 

421 inventory approaches could be sufficient. However, such approaches may not guarantee the 

422 maximum possible income and optimal NPV, as shown in Fig. 4. 

423 Planning for a single management objective is likely too simplistic for most forest planning cases. 

424 Multi-objective forest management could ensure the increased simultaneous production of multiple 

425 ecosystem services (Díaz-Yáñez et al. 2021). However, this requires decision-makers to be able to state 

426 management goals and risk preferences, which might be very challenging. For cases when decision-

427 makers are unsure of their preferences, there can be substantial value in providing flexibility in the 
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428 decision-making process. Thus, the availability of more precise inventory data provides decision-

429 makers with increased flexibility, ensuring that even if objectives or risk preferences change, the data 

430 will provide high-quality decision support. 

431 The best overall results were observed for semi-ITC and ABA-DD. Both approaches have been reported 

432 to provide inventory information with high accuracy, with semi-ITC providing slightly better results 

433 (Rahlf et al. 2015; Kandare et al. 2017). However, the inventory costs for the two approaches are 

434 substantially different. Single-tree approaches benefit from high-point-density ALS data (10 points m-

435 2 in comparison to 1 point m-2 used for ABAs), causing the acquisition costs to increase by nearly two 

436 times compared to area-based approaches. Therefore, given the difference in the inventory costs and 

437 the small difference in the VoII for forest planning, ABA-DD seems to be favorable. 

438 The focus of this study has been to evaluate the improvements various data acquisition approaches 

439 provide to the decision-maker. An improved data quality improves the solution quality; however, the 

440 specific properties of the data lead to more appropriate applications in specific use cases. Our 

441 assessments were not compared to perfect information but rather compared to the best possible data 

442 available. This allowed a direct assessment of the inventory approaches while recognizing the 

443 potential for further data improvement. 

444 Further avenues of research are possible to assess the required data quality for effective decision-

445 making. This work only explored timber harvesting operations and did not take other ecosystem 

446 services into consideration. The incorporation of additional ecosystem services and the quantification 

447 of their associated uncertainties are currently of high interest to forest stakeholders (De Pellegrin 

448 Llorente et al. 2023). By including those ecosystem services, we could ensure that the proposed 

449 methodology effectively identifies the best data collection approach, enabling the design of a 

450 management plan that will meet diverse environmental and societal needs. Furthermore, our 

451 assessment only accounted for uncertainty in the initial inventory data, without considering other 

452 sources of uncertainty, such as growth models and future timber prices. For instance, growth model 
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453 uncertainty can be incorporated into the simulation process using an auto-regressive function (Pietilä 

454 et al. 2010), and timber price uncertainties could be estimated based on approximation from historical 

455 datasets with the use of forecasting approaches (Diebold 2001). In our study, due to the acquisition 

456 of the reference data by harvester during harvesting operations, the inventory consisted of mature 

457 forest stands. This may have been a limiting factor in the choice of the optimal management option. 

458 Consequently, future research should focus on forest holdings with a more diversified age structure. 

459 Finally, the future development of the proposed VoII assessment method should incorporate the 

460 option to transform it into an interactive assessment tool. This tool would assist decision-makers in 

461 evaluating whether gathering more precise data is necessary to achieve their specific management 

462 goals.

463

464 5. Conclusions

465 The assessment of the value of information of data acquired using different inventory approaches 

466 offers valuable insight into the usefulness of the data for effective forest management. A reference 

467 dataset used for comparing inventory approaches does not have to provide perfect data; it simply 

468 needs to provide data of higher quality in comparison to the existing information. Stochastic 

469 programming is an effective tool for VoI analysis that allows the incorporation of different uncertainty 

470 scenarios into the decision-making process. By simultaneously considering the two management goals 

471 of NPV maximization and CVaR minimization with the inclusion of the decision-maker’s risk preference 

472 parameter, it is possible to obtain optimal solutions for various risk-aversion levels. Less accurate 

473 inventory approaches may offer sufficient data quality for decision-making when the management 

474 objective is focused on one extreme goal only. However, more precise methods could guarantee more 

475 flexibility for the decision-maker, ensuring optimal management decisions when multiple goals and 

476 different risk aversion preferences are considered. 

477
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1 Appendix: Inventory data collection and predictions

2 A1. Harvester data

3 The harvester was equipped with a real-time kinematic Global Navigation Satellite System (GNSS) that 

4 gave cm-accurate positioning. The GNSS, in conjunction with sensor hardware that measured the 

5 crane position, recorded the harvested trees' locations with a planimetric accuracy of approximately 

6 1 meter (for details, see Noordermeer et al. (2021)). Additionally, the harvester data contained data 

7 on species, diameter at breast height (dbh), and the stem profile. Because stem profiles only contained 

8 data on the processed part of the stem, the total tree height was predicted from the stem profile using 

9 taper models (Hansen et al. 2023).

10 Polygons of harvested areas were generated as unary unions of buffers around the positions of 

11 harvested stems. The polygons were then tessellated into regular grid cells of 250 m2, and stands were 

12 defined as clusters of grid cells with a minimum total size of 0.2 ha. The minimum size of 0.2 ha 

13 conformed to the typical minimum size of forest stands in commercial Norwegian forest inventories.

14 A2. ALS surveys

15 The harvested stands were covered by four ALS surveys which were acquired in 2013, 2016, 2017 and 

16 2019 using different instruments and acquisition parameters. All ALS data were acquired under leaf-

17 on conditions. Flying altitudes ranged from 1150-2900 m, footprint diameters from 0.25-0.73 m, and 

18 pulse densities from 5-30 m-2. Different areas were covered by the ALS data, which overlapped in some 

19 places. The elapsed time between harvesting and ALS acquisition varied from zero to eight years, with 

20 a mean of five years. The raw ALS data were processed, whereby laser echoes were classified as 

21 ground or non-ground by the contractors Blom Geomatics AS and Terratec AS. For each harvesting 

22 operation, the most recently acquired ALS data were used  for tree crown segmentation and 

23 computation of ALS metrics (for details, see below). Digital terrain models were constructed as 

24 triangulated irregular networks (TIN) from the laser echoes classified as ground, using the lidR package 
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25 (Roussel et al. 2020) in R. The ALS data were then normalized by computing the height relative to the 

26 terrain height of the TIN for all echoes.

27 A2.1. Tree crown segmentation

28 Canopy height models were generated for all stands as rasterized values of maximum ALS height with 

29 a spatial resolution of 0.5 m. Trees in the canopy height models were located using a local maximum 

30 filter following methods demonstrated by Popescu et al. (2003). Trees were segmented from the 

31 canopy height model using a segmentation algorithm proposed by Dalponte and Coomes (2016). The 

32 height and coordinates (x,y,z) of the highest laser echo within each crown segment were computed. 

33 The tree crown polygons represented the spatial extents of the tree crowns and included the 

34 coordinates of the treetops that were detected in the ALS data.

35 A2.2. Airborne laser scanner metrics

36 ALS echoes were extracted from within ABA grid cells and tree crown segments and used to compute 

37 ALS metrics from all echoes. ALS metrics, including the maximum height (Hmax), mean height 

38 (Hmean), standard deviation (Hsd), skewness (Hskew), and kurtosis (Hkurt) were computed. The 

39 percentage of echoes above the mean height and 2 m (Habovemean, Habove2, respectively) and the 

40 normalized Shanon diversity index (Hentropy, van Ewijk et al. 2011) were also computed. Echo heights 

41 at the 10th, 20th, …, and 90th percentiles of the height distributions (H10, …, H90) as well as the 95th 

42 percentile (H95) were computed. Lastly, the height range between the lowest canopy point >2 m and 

43 H95 was divided into 10 fractions of equal height, and canopy density metrics (D0, D1, …, D9) were 

44 computed as the proportion of echoes above each fraction divided by the total number of echoes.

45 A3. Prediction of stand attributes

46 Stand attributes were predicted following the methods of Noordermeer et al. (2023). For the ABA-DD, 

47 ITC, and semi-ITC approaches, tree lists were imputed for each target observation using nearest 
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48 neighbor imputation, while for the ABA-MV approach, values of N, Dgm and Hgm were imputed. 

49 Three-fold cross-validation was used to obtain predictions for all stands.

50 Distance matrices were used to identify the k nearest neighbors for each target observation based on 

51 selected ALS metrics and the Euclidean distance metric. The similarities between each target 

52 observation and the selected k nearest neighbors were computed as the inverse of the distance 

53 matrices. For the ITC, semi-ITC and ABA-DD approaches, stem frequencies within diameter classes of 

54 2,4, …, 80 cm were imputed for each target unit and for each tree species separately following the 

55 methods described by Packalén & Maltamo (2008). Then for each diameter class, the corresponding 

56 tree height was predicted using a height-diameter model with the form of the Näslund function 

57 (Näslund 1936). For the ABA-MV approach, species-specific values of N, Dgm and Hgm were imputed 

58 for each target observation as averages of corresponding values of nearest neighbors, weighted with 

59 the similarity based on the Euclidean distance. Imputed values of N were then summed for each 

60 species within each stand. Stand-level mean values of Dgm and Hgm were computed for each species 

61 as corresponding mean values imputed for all grid cells, weighted by the proportion of ALS echoes 

62 with a height >2 m). 

63 In a preliminary analysis, possible co-location errors between harvester and ALS data were found, 

64 where maximum ALS heights within tree crown segments and ABA grid cells differed substantially 

65 from the heights of harvested trees located within those tree crown segments and ABA grid cells. Such 

66 observations were excluded from the reference data prior to the imputation. Specifically, a simple 

67 linear regression model was used, with the maximum tree height from the harvester data as the 

68 response variable and the 95th percentile of ALS height as the predictor variable, to label those 

69 observations with a Cooks distance > 0.5 of the mean Cooks distance as erroneous. Observations 

70 labeled as erroneous were only removed from the reference data, not the target data, before fitting 

71 the kNN model in each fold.

72
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