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Abstract 

 

The capital asset pricing model (CAPM), Arbitrage Pricing Theory (APT), and Fama & 

French’s three-factor model (FF3F) all assume a positive linear risk-return relationship. 

Findings of the contrary are deemed anomalous. In this thesis, I use portfolio sorts of 

short-term, long-term, and trade-weighted implied volatilities and their corresponding 

realized volatility as the main methodological framework. I investigate: i) the presence 

of a low-volatility anomaly, and whether it can be exploited. ii) Difference in risk-return 

relationship between realized and implied volatility, and iii) the predictive power of the 

call-put implied volatility spread and volatility risk premium on future stock returns. To 

my knowledge trade-weighted implied volatility has not been used before in such 

analysis, and my analyzed sample-period of 2009-2023 provides an update of previous 

findings on these topics. I find that i) the low-volatility anomaly is present but cannot 

be exploited. ii) Trade-weighted implied volatility gives the most theoretically consistent 

risk-return relationship out of all measures analyzed, and iii) the call-put implied 

volatility spread of short-term options predicts future stock returns. 
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1. Introduction 
 

1.1 Motivation and background 
 

Financial theory is essentially built upon the assumption of a positive risk-return trade-

off typically based on some variation of a utility function arguing that an investor wishes 

to maximize their utility dependent on the factors expected return and expected risk 

(Markowitz, 1952; Tobin, 1958; Sharpe, 1964). This notion of a positive risk-return 

trade-off is the background of linear factor models such as CAPM by Sharpe (1964) 

and Lintner (1965), Ross’ (1976) Arbitrage Pricing Theory, and Fama & French’s 

(1993) three-factor model. These models not only assume a positive risk-return trade-

off but also a linear relationship of risk and return. Findings of the contrary is deemed 

anomalous, such as the “low-volatility anomaly”. 

 

There has been research done on the low-volatility anomaly and its variations. Most 

prominently Haugen and Heins (1972) discovered that low-beta portfolios 

outperformed high-beta portfolios. In 2017 Pim van Vliet and Jan de Koning published 

a book called “High returns from low risk: a remarkable stock market paradox” which 

further perpetuates the notion that low risk portfolios outperforms high risk portfolios, 

or that “the tortoise beats the hare”. In the book van Vliet and de Koning (2017) claims 

that the anomaly still persists when using realized volatility instead of beta as risk 

metric. Additionally, Ang et al. (2006) finds that portfolios containing low idiosyncratic 

volatility stocks outperform portfolios made up of high idiosyncratic stocks.  

 

These three findings of different versions of the low-volatility anomaly all use ex-post 

risk measures. A market participant could perceive the stocks as low risk based on 

their previous volatility history, however market participants would often heuristically 

assign the level of volatility to a stock based on many factors outside of historic figures. 

News, general economic situation, and reports are examples of factors that shape a 

market participant’s perception of risk. If a market participant suddenly feels that the 

price of an asset is about to change in either direction, it would probably not stem from 

historical data alone. Therefore, when testing the low-volatility anomaly it arguably 

makes sense to use ex-ante risk measures, as that is the one supposedly containing 
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market expectation based on current information. Option-implied volatility is an 

example of forward-looking volatility due to the contracts giving the right to buy or sell 

an asset in the future, meaning that the implied volatility derived from option prices 

contains beliefs about the future underlying price.  

 

Additionally, using option-implied metrics instead of historical metrics comes with 

additional information. For example, the volatility risk premium is often proxied by the 

spread between the implied and realized volatility (Bali & Hovakimian, 2009; Cremers 

& Weinbaum, 2010; Bollerslev et al., 2009). Moreover, the price of a call and an 

otherwise equal put contract does not have to be equal in the market. The spread 

between the call and put implied volatilities of an otherwise equal contract may very 

well have information on the anticipated upside and downside volatility.  

 

The recurring way of proving or disproving the low-volatility anomaly is by using 

portfolio sorts, where portfolios are ranked based on the volatility metric, then the 

returns of each portfolio are compared to each other. A simple enough exercise is by 

doing the exact same portfolio sort but instead of ranking on realized volatility, the 

ranking is done on implied volatility. 

 

So, does the tortoise beat the hare? Can the excess information be used to further 

predict stock market returns? 
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1.2 Research question and objectives 
 
The objective of this thesis is threefold: 

 

i) Investigate whether a low-volatility anomaly is present in the American equity 

market, and whether it can be exploited. 

 

ii) Assessing whether the risk-return relationship of option-implied volatility is 

more theoretically consistent than of realized volatility. 

 

iii) Exploring whether the excess information contents of option-implied volatility 

over realized volatility have predictive power of future stock returns. 

 

The cumulative results will be used to answer the following research question: 

 

Is option-implied volatility theoretically superior to realized volatility in terms of linear 

risk-return relationship, and does its excess information content predict future stock 

returns? 

 

1.3 Structure 

 
The thesis is divided into seven sections. Section 2 consists of the theoretical 

background and is split in two parts; the first part being a historical and theoretical 

recollection of risk-return relationship, or “ex-post” part. The second part is a theoretical 

explanation of implied volatility and its information content, or “ex-ante” part. Section 3 

outlines the data gathered, while section 4 covers the methodological framework as 

well as preparation and use of data in this thesis. Section 5 is a presentation of the 

results obtained corresponding to each objective in chronological order, which are 

subsequently discussed in section 6. Lastly, section 7 concludes the findings of the 

thesis and answering the research question.  
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2. Theoretical background 

2.1 Part 1 (ex-post) 
 

2.1.1 Risk-return trade-off 

 

Markowitz (1952) introduces the “E-V rule”, a rule of investment behavior when 

selecting a portfolio, that the investor should consider “expected return a desirable 

thing and variance of return an undesirable thing” (Markowitz, 1952, p.77). In other 

words, the investor would choose a portfolio that maximizes its expected return and 

minimizes the variance of return. The expected returns of portfolios will differ, as will 

the variance of return. One can choose a portfolio with a higher expected return, at the 

cost of undertaking higher variance and oppositely minimize variance by trading off 

expected return (Markowitz, 1952). This implies a theoretical risk-return trade-off. The 

portfolios with the best possible expected relationship between variance and return 

can be plotted, forming the “efficient frontier”. 

 

2.1.2 Capital asset pricing model (CAPM) 

 

Sharpe (1964) carries the theory of Markowitz further, extending it to capital asset 

pricing. Sharpe (1964) introduces a “capital market line” which is the efficient boundary 

of risk and return. Assets with an optimal risk-return relationship will be invested in, 

while assets not on the optimal line will not be invested in. This uneven distribution of 

investments will cause changes in prices of those assets, so that the price of “optimal” 

assets increases, while the price of sub-optimal assets decreases. This shift in price 

makes other combinations of assets optimal, which in turn leads to changes in prices. 

Therefore, under the assumption of rational investing, the price of assets is related to 

its risk-return relationship (Sharpe, 1964). The slope of the capital market line is equal 

to the Sharpe ratio of the optimal portfolio, and if more than one portfolio lies on the 

capital market line, then they all must have identical Sharpe ratios (Sharpe, 1965). 
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2.1.3 Critique of CAPM 
 
While the notion that undertaking more risk will give higher expected return, i.e the 

existence of a risk-premium is intuitive, there are findings which do not support this 

theory. Haugen and Heins (1972) critiques the CAPM and its assumption of a risk-

return trade-off in the following ways: firstly, the impossible problem of testing the 

CAPM empirically is that ex-post values are used to determine ex-ante expectations. 

Secondly, the timing of the sample could skew the results depending on the market 

situation of the time sampled. Thirdly, the sample could be biased towards survivors, 

meaning that assets used in the sample period have survived for the whole period, 

while excluding “terminated operations” (Haugen & Heins, 1972). Haugen and Heins 

(1972) try to solve the latter two problems by selecting stocks listed on NYSE in 1926, 

and if a stock is de-listed, then another stock will be introduced to the sample. The time 

period of the sample used is 46 years, divided into 5-year periods which may or may 

not be biased towards bullish or bearish markets. They find that over the long run, the 

portfolios with the lowest beta (risk) have had greater return than the portfolios with 

higher beta (risk) (Haugen & Heins, 1972). 

 

2.1.4 Low-volatility anomaly 
 
Haugen and Heins’ (1972) findings were in regard to the risk-return relationship 

postulated by the CAPM, which uses the beta as risk measure. Since then, Frazzini 

and Pedersen (2014) created a betting against beta model based on the assumption 

that when leveraged equally, low beta assets outperforms high beta assets. An 

anomalous risk-return relationship has not only been found in regard to beta. Findings 

from Blitz and van Vliet (2007) suggest the existence of another low volatility anomaly, 

this time based on the realized volatility rather than beta. Using a trailing 3-year trailing 

standard deviation of weekly returns, they find the existence of a low volatility anomaly 

globally, and for the US, European, and Japanese markets separately. Baker and 

Haugen (2012) find a similar result using 2-year trailing standard deviation of monthly 

returns in 33 markets. De Carvalho et al. (2015) also find evidence of the low volatility 

anomaly for several markets, even within sectors using 2-year trailing standard 

deviation of monthly returns. Additionally, Ang et al. (2006) find a low idiosyncratic 

volatility anomaly in the US market using one-month trailing idiosyncratic volatility of 

daily returns.   
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The presence of low volatility anomaly has been found for beta, total volatility, and 

idiosyncratic volatility using different calculations, over different time periods, for 

different markets, and different sectors. This has created a rise in popularity for low 

volatility investing, causing MSCI and S&P to construct their first minimum volatility 

indices in 2008 and 2011 respectively, with at least 70 more indices globally that are 

tracked by exchange-traded funds (ETF) (Baronayan & Rothbarth, 2019). 

 

2.1.5 Realized volatility 

 

The aforementioned different risk measures have been used to prove the existence of 

different low volatility anomalies. Although the three ex-post volatility measures 

themselves are just that, measures of volatility, they convey different information. The 

beta is the systematic risk of an asset, which is the volatility of the asset in relation to 

a benchmark most often the market. This risk is non-diversifiable (Sharpe, 1964). The 

idiosyncratic volatility can be thought of as the complement to the beta, as it is the 

volatility that is not correlated to the market. This volatility measure can be diversified 

away, as each asset’s unsystematic component of returns will even out through optimal 

portfolio management (Sharpe, 1964). 

 

The realized volatility, often used interchangeably with historical volatility, is an ex-post 

estimate of the volatility. The realized volatility can be thought of as an estimate of the 

total volatility, containing both the systematic and the idiosyncratic volatility. A common 

way of calculating realized volatility is to take the standard deviation of however many 

trailing periods, then multiply it by the square root of the number of time periods. For 

example, if one has daily returns and wants to compute the annualized volatility, the 

standard deviations of the 1-day returns are multiplied by the square root of the number 

of trading days in a year, most commonly: √252 (Diebold et al., 1998). Diebold et al. 

(1998) laments such use of scaling for high-frequency asset returns. The reason is that 

for the square root of time rule to hold, the data has to be independent and identically 

distributed, which high-frequency returns are not. The use of square root of time rule 

to scale volatility for non-i.i.d data will either under- or overstate the actual volatility, 

while temporal aggregation should in actuality dampen the fluctuations of volatility over 
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time (Diebold et al., 1998). These potential measurement errors can introduce 

complications when analyzing the realized volatility’s relationship with returns. 

 

2.2 Part 2 (ex-ante) 
 

2.2.1 Implied volatility 

 

Haugen and Heins’ (1972) “impossible problem” of using ex-post values to determine 

ex-ante expectations is indeed impossible to circumvent as we cannot know what the 

investors’ expectations are, and instead assume this to regress to the mean. However, 

by using option implied metrics instead of historical metrics we have a proxy for the ex-

ante, or forward-looking measure of future volatility. This is because the price of an 

option should be determined by the options contract’s attributes such as volatility, 

underlying price, time to maturity et cetera (Mayhew, 1995). As the price of an option 

depends on a volatility parameter among others, and is forward looking in nature, a 

pricing model for options can be used to reveal the market’s expected future volatility 

of the option’s underlying. This means that for options with one month to maturity, the 

implied volatility during the time period t will represent the average volatility of the 

options remaining time to maturity (Mayhew, 1995). Whether or not implied volatility is 

a good predictor of future volatility is heavily researched and contended, of which the 

answer is not directly concerning the objectives of the thesis. 

 

Implications from options contracts have been used before to find a risk-return 

relationship that is close to linear, and therefore congruent to asset pricing models 

such as the CAPM. Buss and Vilkov (2012) use the thought-process that a forward-

looking measure of volatility is desired to test the risk-return relationship the CAPM 

posits, in an attempt to resolve Haugen and Heins’ (1972) “impossible problem”. What 

they found is that using their calculated implied betas, a more linear risk-return 

relationship emerges in line with Sharpe’s (1964) CAPM, compared to using standard 

rolling-window betas (Buss & Vilkov, 2012). However, the problem is that implied 

volatility is not a forward-looking beta. Buss and Vilkov (2012) have to construct implied 

betas by making modeling choices that may or may not be a correct representation of 

the market’s anticipation of beta. When testing the existence of a low realized/total 
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volatility anomaly and not the CAPM, the need for modeling and intermediate 

calculation is drastically lessened, though not fully removed. 

 

2.2.2 Options 

 

Black and Scholes (1973) define an option contract as “a security giving the right to 

buy or sell an asset, subject to certain conditions, within a specified period of time” 

(Black & Scholes, 1973, p. 637). To further explain what an option contract is, I will 

provide explanations using definitions from The Options Industry Council (OIC, n.d.) of 

the most relevant terminology and attributes. 

 

An option contract specifies the asset which can be bought or sold if exercised. This 

asset is called the “underlying”. The contract also specifies at what price the underlying 

will be bought or sold for if the option is exercised, i.e the “strike”. If the contract gives 

the owner the right to buy the underlying, it is a “call” option. Conversely, if the contract 

gives the owner the right to sell the underlying, it is a “put” option. The contract’s 

lifespan is denoted by its “expiration date” or “maturity”, which is the last day at which 

the contract can be exercised. The contracts themselves can be bought or sold; the 

buyer is called a “holder” while the seller is called a “writer”.  

 

Options can be described in different ways depending on their intrinsic or extrinsic 

value. The intrinsic value is the value of an option if exercised. Considering a call 

option, if the strike price is below the current underlying price, then one could buy the 

underlying for cheaper than the asset’s current price by exercising the option. One 

could then sell the asset at the current price, meaning one would make a profit. The 

intrinsic value is therefore the difference in strike price and underlying price. If an 

options contract has intrinsic value, then the options is in-the-money (ITM). The 

extrinsic value or “time value” of a call option is whatever the contract is worth apart 

from its intrinsic value. A call option with a strike price above the current price has no 

intrinsic value and is therefore out-of-the-money (OTM). However, the contract is not 

worthless, as the underlying price can change in the remaining time to maturity. The 

price of the option is then made up purely of time value. If an option has a strike price 

equal to the underlying price, then it is at-the-money (ATM) (OIC, n.d).  
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Rewriting Black and Scholes’ (1973) definition above, “one can hold or write an option 

that gives the right to buy (call) or sell (put) the underlying for the strike price within the 

contract’s expiration date”.  

 

There are several styles of option contracts, however the most common are “American” 

and “European”. The difference between the two styles is that the “American” style 

contract can be exercised whenever in the lifespan of the contract. “European” 

contracts can only be exercised at maturity, when the lifespan of the contract runs out 

(Black & Scholes, 1973). The implied volatilities analyzed in this paper are from 

American style options only. 

 

2.2.3 Cox-Ross-Rubinstein binomial model (BOPM) 

 
The binomial option pricing model (BOPM) was developed by Cox, Ross and 

Rubinstein (1979) as an alternative of pricing options that is less mathematically 

advanced than the famous Black-Scholes model (Cox et al., 1979). Additionally, the 

model allows for more correct pricing of American options, meaning the model 

accounts for dividend yield and early expiration, which the Black-Scholes model 

cannot. 

 

Cox et al. (1979) describes the main idea behind this pricing model, which is to create 

a binomial tree in which the stock price has probabilities of either moving up or down. 

By assuming riskless arbitrage is impossible, the price of the option on the underlying 

stock can be calculated. Considering a stock with the price 𝑆, the price can move up 

(𝑆𝑢) or down (𝑆𝑑) with probabilities 𝑞 and 1 − 𝑞 respectively. Similarly, to value a call 

(𝐶) or put (𝑃) option, the option price can move to 𝐶𝑢 and 𝐶𝑑with probabilities 𝑞 and 

1 − 𝑞 respectively (Cox et al., 1979). If a call option is in-the-money, the difference 

between the strike price (𝐾) and the stock price has to be positive. If not, then the 

contract is out-of-the-money and is worthless if exercised.  

 

The value of a call option is therefore: 

 

 𝐶 = max (0,𝑆 − 𝐾) {1} 
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Inversely, the value of a put option is:  

 

 𝑃 = max (0,𝐾 − 𝑆) {2} 

 

Furthermore, the model takes the risk-free interest rate into account as it assumes no 

riskless arbitrage. Additionally, as the previously mentioned probabilities 𝑞 and 1 − 𝑞 

are subjective perceived probabilities, these are instead replaced by risk-neutral 

probabilities denoted by 𝑝.  

 

To calculate 𝑝, one would need the upward movement 𝑢 and downward movement 𝑑, 

as well as the one-plus risk-free interest rate 𝑟:  

 

 𝑝 =  
𝑟 − 𝑑
𝑢 − 𝑑         and        1 − 𝑝 =

𝑢 − 𝑟
𝑢 − 𝑑 {3} 

 

This gives the following equation for valuing a call option one period before expiration: 

 

 𝐶 = [𝑝𝐶𝑢 + (1 − 𝑝)𝐶𝑑]/𝑟 {4} 

 

So far, the risk-free interest rate, as well as the upward movement and downward 

movement are fixed for one unit of calendar time. To allow for valuation of options over 

smaller time intervals, these need to be modified to properly scale with the risk-neutral 

probabilities. Otherwise, the probability of up or down movement in prices in the span 

of some minutes can end up being the same as the span of a couple months. 

Considering a length of ℎ in which prices change, 𝑡 being fixed time intervals, and 𝑛 

being number of periods of length ℎ, then ℎ = 𝑡/𝑛. To make the risk-free interest rate 

dependent on time intervals, the risk-free interest rate is expressed as �̂� = 𝑟
𝑡
𝑛. 

Additionally, to make the price movements dependent on number of periods 𝑛; 𝑢 =

 𝑒𝜎√𝑡/𝑛 , and 𝑑 = 𝑒−𝜎√𝑡/𝑛. Since 𝑑 is the same as 𝑢, however in the negative power, 

then 𝑑 = 1/𝑢. 
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Accounting for dividend yield (𝛿), the stock owner will receive dividend of 𝛿𝑆𝑢 or  𝛿𝑆𝑑. 

This means that the stock price ex-dividend will be 𝑢(1 − 𝛿)𝑣𝑆 or 𝑑(1 − 𝛿)𝑣𝑆, where 

𝑣 = 1 if the date is ex-dividend and 𝑣 = 0 if else.  

 

Altogether, the value of a call option for 𝑖 periods before maturity is (Cox et al., 1979): 

 

 𝐶(𝑛, 𝑖, 𝑗) = max 𝑢𝑗𝑑𝑛−𝑖−𝑗(1 − 𝛿) (𝑛,𝑖)𝑆 − 𝐾,
[𝑝𝐶(𝑛, 𝑖 − 1, 𝑗 + 1) + (1 − 𝑝)𝐶(𝑛, 𝑖 − 1, 𝑗)]

�̂�  

for  𝑗 = 0,1,2,… , 𝑛 − 𝑖 

{5} 

 

To value a put option, one simply has to reverse the difference between the strike price 

and stock price at every 𝑛 in the binomial framework (Cox et al., 1979). 

  

2.2.4 Deriving Implied volatility from the BOPM 

 
The binomial option pricing model (BOPM) calculates option prices using the following 

inputs: 

 

𝑆 = Stock price 

𝐾 = Strike price 

𝑝 = Risk-neutral probability calculated using 𝑢, 𝑑, and �̂� 

𝑢 = Upside movement with respect to volatility (𝜎), time (𝑡) and number of periods (𝑛) 

𝑑 =  Downside movement with respect to volatility (𝜎), time (𝑡) and number of periods 

(𝑛) 

�̂� =  Risk-free interest rate with respect to time (𝑡) and number of periods (𝑛) 

𝛿 = Dividend yield if applicable 

 

All variables in the formula are observable, however the volatility (𝜎) is not. This means 

that accurately pricing options would mean knowing the implied volatility, or ex-ante 

knowledge of the volatility. The best one could do when pricing options with this model 

is therefore merely an estimate of the implied volatility. This also means that by using 

this model to observe the implied volatility, one would need the market price of the 

option. 
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There are multiple ways of deriving implied volatility numerically from option prices, but 

an efficient approach is the Newton-Raphson method (van der Hoek & Elliott, 2006). 

The general idea behind the method is to compare the option prices calculated through 

the binomial option pricing model to the market prices of the option. If there is a 

difference in prices, then the volatility variable is changed in the BOPM until equal 

prices are obtained. The volatility that makes the two prices equal is the estimated 

implied volatility. 

 

2.2.5 What drives implied volatility? 

 
When pricing options with a model such as the BOPM, the theoretical option prices 

calculated will have all but one variable efficiently priced in, as only the implied volatility 

is unobservable. Additionally, option prices and implied volatility have a monotonic 

relationship (Rodriguez et al., 2015). This means that option prices should equal its 

difference from the theoretical price multiplied by the implied volatility’s effect on the 

price, Vega. Because deriving the implied volatility numerically is estimated by 

comparing the option’s theoretical price to the market price, the implied volatility can 

be seen as a “fudge factor”. One could then argue that the observed implied volatility 

means nothing at all and is simply a measure of the BOPM’s mispricing. Or is it the 

market options that are mispriced? 

 

Continuing this train of thought, at least a part of the implied volatility of an option can 

be seen as a reflection of supply and demand. Haug and Taleb (2011) argues that 

option traders rely on “sophisticated heuristics” instead of option pricing models when 

pricing options. Additionally, Gârleanu et al. (2009) finds a relationship between an 

option’s end-user demand and its “expensiveness”, or implied volatility, indicating that 

implied volatility is a reflection of supply and demand. If the supply and demand of an 

option changes, the bid-ask spread of the option change as well, since the writers can 

take a higher price or be willing to take a lower price depending on the change. This 

shift in price will perturb the estimated implied volatility. However, the changes of an 

option’s supply and demand must obviously stem from investors’ anticipation of 

movement in the underlying price, hence implied volatility being a parameter of the 

market’s anticipated volatility.  
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By this rationale, different implied volatilities of options can say something about 

market sentiment. This is especially relevant when considering a put and a call option 

of equal maturity, underlying and strike. The put-call parity is a no-arbitrage relationship 

which holds for European options, but not for American options. In relation to implied 

volatility, the put-call parity states that a call and a put option otherwise equal will have 

the same implied volatility (Cremers & Weinbaum, 2010). Because the equity options 

in the data used in this paper are American, the put-call parity itself will not be 

discussed extensively, as deviations from this occurs frequently in practice (Cremers 

& Weinbaum, 2010). However, these deviations are an effect of pricing, so the implied 

volatilities do not only contain information about the anticipated movement of the 

underlying price, but perhaps also in which direction when accounting for put-call 

differences in implied volatility.  

 

The observed implied volatility is a function of the option price as shown earlier. There 

is a sort of a “chicken or the egg” conundrum when it comes to implied volatility. Is the 

market price affected by the market’s anticipation of future volatility, or is the implied 

volatility affected by the market price of the option in question? A well-known use of 

options is for hedging. As a basic example, one can buy a stock then take the opposite 

position in the form of a put option at a certain strike price to reduce the potential losses 

should the stock price fall. When people buy this put option, the demand for this option 

increases, causing the price of these options to increase. This results in an increased 

observed implied volatility. The problem with this effect on implied volatility is that 

hedging one-self this way is not reflecting the hedger’s anticipation of future volatility, 

but rather as an insurance policy to reduce the downside risk. These are acts driven 

by the aversion to risk, rather than the anticipation of risk. The CBOE volatility index 

(VIX) uses implied volatility to convey the overall anticipated market risk, but it is 

colloquially called the “fear index” perhaps appropriately due to the role of options in 

hedging strategies.  

 

2.2.6 Call-put implied volatility spread 

 

The call-put implied volatility spread (CPIV) is the spread between a call option’s 

implied volatility and a put option’s implied volatility with otherwise equal specifications 

such as strike, maturity, and underlying. As previously mentioned, the put-call parity 
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states that the implied volatility of such contracts should be equal for European options. 

This parity does not hold for American options due to possibility of earlier exercise, as 

well as taxes, transaction costs, borrowing rate inequal to lending rates, and margin 

requirements (Cremers & Weinbaum, 2010). Because of all these factors, deviations 

from the put-call parity exist and contain information on the underlying asset.  

The formula for the call-put implied volatility spread for asset 𝑖 at time 𝑡 is: 

 

 𝐶𝑃𝐼𝑉𝑖,𝑡 =  𝐼𝑉𝑖,𝑡𝐶 − 𝐼𝑉𝑖,𝑡𝑃𝑢𝑡 {6} 

 

Considering the observed implied volatility is derived from market prices of options, a 

call and put option with the otherwise same specifications but different implied 

volatilities is a result of one being more expensive than the other. Applying the logic of 

supply and demand and assuming implied volatility is the market’s anticipation of future 

volatility, if the put option in question has a higher price and subsequently a higher 

implied volatility, then the market anticipates a shift in the underlying price accordingly. 

The implied volatility supposedly conveys the probability of future price movement, and 

I hypothesize that the call-put implied volatility spread provides further information 

about the direction of the movement as well.  

 

Cremers and Weinbaum (2010) find that the call-put implied volatility spread contain 

information about future stock returns in their sample period of 1996-2005. They also 

find that a positive spread gives economically significant positive returns, while 

negative spread gives negative returns. This relationship seems to decline over time 

as these findings are less significant in their second subperiod, crediting this to reduced 

mispricing over time, decrease in trading costs, and hedge fund capital growth 

(Cremers & Weinbaum, 2010). Similar findings are also found by Bali and Hovakimian 

(2009).  

 

2.2.7 Implied-realized volatility spread/Volatility risk premium 

 

The implied-realized volatility spread is the difference between the implied volatility and 

the realized volatility. As the implied volatility reflects expectations of the future 

volatility, while the realized volatility is calculated using past values, the realized 
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volatility during time period 𝑡 should be comparable to the implied volatility during the 

period of time 𝑡 − 1. Thus, the formula for the implied-realized volatility spread for asset 

𝑖 during the time period 𝑡 is:  

 

 𝐼𝑉𝑅𝑉𝑖,𝑡 = 𝐼𝑉𝑖,𝑡−1 − 𝑅𝑉𝑖,𝑡 {7} 

 

The implied-realized volatility spread can be considered a proxy for the volatility risk 

premium (Bali & Hovakimian, 2009; Bollerslev et al., 2009). Considering options 

serving as insurance, and observed implied volatility being derived from market prices 

of options, then a positive implied-realized volatility spread reflects the premium the 

options writers demand for undertaking the risk. Eraker (2021) finds that on average 

across the market, there is a substantial annualized volatility risk premium of 3,3%. 

The information content in the volatility risk premium is in what degree the options 

writers are anticipating a price shift in either direction. The writers of the options profit 

off of little to no movement in price, meaning they will charge a higher price to hedgers 

if they believe there to be a higher probability of a significant price movement before 

expiration.   

 

Bollerslev et al. (2009) find that stock returns are predictable by the volatility risk 

premium, however using different methods of estimating implied and realized volatility. 

They also find that this predictability is significant for horizons of up to six months 

(Bollerslev et al., 2009). Bali and Hovakimian (2009) find that portfolios containing 

assets with low (high) “inverse” volatility risk premium give high (low) returns. They do 

however subtract the implied volatility from realized volatility, hence being an “inverse” 

volatility risk premium.   
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3. Data 
 

All the data used in this thesis come from Refinitiv Eikon’s Datastream. The universe 

consists of 513 stocks listed on NYSE and NASDAQ in the time period of June 1st, 

2008 until and including January 1st, 2024.  

 

The reason for this specific start date is due to unavailability of options data before 

June 2008. The availability of the options data is therefore deciding what stock data is 

used. For many stock options, there are lacking implied volatilities at some periods due 

to the time series often being scrapped if the company is acquired or changes name. 

So even though the total return index and price index may have available data for the 

entire period, the options data of the same company might be shorter. One could find 

inactive, or “dead” options data chains for the company up until the beginning of the 

now active, or “new”, options data chains and splice them together. However, that 

would be too time-consuming and the risk of matching some faulty data is high, 

considering much of the “dead” data are probably inactive for a reason, such as a 

change of company ownership or mergers. As a result of this, the majority of implied 

volatility data are on “popular” or successful companies. In this universe, 471 out of the 

513 companies are included in the S&P 500 as of January 2024. This might be a 

problem of survivorship bias, as some of the current S&P 500 companies were growth 

stocks in 2008, and in hindsight are sure-to-succeed companies. The remaining 42 

companies are not included in the current S&P 500, and some are even delisted 

companies. 

 

Additionally, the one-month US treasury bill rate for the same period is gathered from 

Refinitiv Eikon’s Datastream to proxy for the risk-free rate. 

 

For calculating returns and realized volatility, the total return index of each stock was 

obtained. All the different implied volatilities of the 513 stock options were already 

available and are calculated in-house by Datastream using the BOPM, as all the equity 

options are American. The different implied volatilities (IV) obtained are:  

 

1M = Constant one-month maturity of at-the-money strike (30 days)  
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1Y = Constant one-year maturity of at-the-money strike (360 days) 

TW = Trade-weighted IV across all strikes by trading volume, with a maturity of the 

nearest contract. 

 

For all the different implied volatility metrics, the average of the call and put implied 

volatilities will be calculated to determine the single “stock IV”. 
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4. Methodologies 
 

4.1 Introduction 
 
The first objective of the thesis requires establishing whether a low-volatility anomaly 

is present in this data universe. This will be done following the method of previous 

literature.  

 

Subsequently, the same analysis will be done by using different volatility metrics 

implied by the options to assess the second objective of the thesis. To assess the 

theoretical consistency of the different volatility metrics in terms of risk-return 

relationship, a test for monotonic relationship will be conducted as well as analysis of 

the portfolios’ Sharpe ratios.  

 

Furthermore, to explore the information content of options, portfolios will be 

conditionally double sorted based on the implied volatility and their corresponding call-

put implied volatility spread as well as their implied-realized volatility spread. 

Additionally, long-short portfolios will be created by sorting on the call-put implied 

volatility spreads, as well as weighted by the same spreads to test the hypothesis of 

the spread having directional predictability of returns. That is, whether or not going long 

a positive call-put implied volatility spread gives positive returns and going short a 

negative spread gives positive returns.  

 

All the analysis will be performed on the full sample period of July 2009 throughout 

December 2023, as well as two sub-periods of July 2009 throughout September 2016 

and October 2016 throughout December 2023 for robustness. 

 

4.2 Preparation of data 
 

4.2.1 Realized volatility 

 
There are differences in the data used to calculate the realized volatility. In the book 

“High returns from low risk” de Koning and van Vliet (2017) uses a trailing three-year 
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standard deviation of monthly returns to establish the stock volatilities. Ang et al. (2006) 

as well as Bali and Hovakimian (2009) use one month of daily returns. Blitz and van 

Vliet (2007) use three years of weekly returns, while Baker and Haugen (2012) use 

two years of monthly returns to compute the realized volatility. 

 

Considering this paper aims to look at the differences between using option-implied 

volatility metric instead of realized volatility to potentially exploit a possible low-volatility 

anomaly, the availability of the implied volatilities dictates the use of data for calculating 

the realized volatility. The chosen implied volatilities in this paper are therefore the 

constant one-month maturity, the constant one-year maturity and lastly the trade-

weighted by volume with a maturity equal the nearest contract.  

 

The constant one-month maturity reconciles both the period used in some previous 

literature and the availability obstacle. The one-year constant maturity is chosen as 

comparison to a longer horizon of realized volatility, although the most prominent 

articles regarding low-volatility anomaly seem to prefer a longer horizon than one-year 

trailing realized volatility, the longest horizon available for implied volatilities is one 

year. Lastly, the trade-weighted implied volatility is measured using the contracts 

nearest maturity. The equity options of different underlying usually expire on the same 

date, which is the third Friday of the month, with some exceptions (CBOE, n.d.). This 

means that the expiration day of the month is different for each month. This then also 

means that the trade-weighted implied volatilities have different information content for 

each period, however, they should be comparable across equities in the same periods. 

The reason for including the trade-weighted implied volatility is due to the desire of a 

correct stock implied volatility. As the implied volatility reflects the market’s ex-ante 

perception of volatility, and if the most popular strike is not at-the-money, then the 

implied volatility of the most traded strikes reflects more of the market sentiment and 

should therefore be weighted more. As all the implied volatility data are captured on 

the first day of every month, the nearest month option maturity is approximately three 

weeks ahead. To more correctly compare the trade-weighted implied volatility with its 

realized counterpart, a trailing three-week realized volatility is constructed. 

 

The realized volatilities used in this paper are therefore trailing one-month of daily 

returns, trailing one-year of monthly returns, and trailing three-weeks of daily returns. 
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These realized volatilities are annualized as the implied volatility is by default 

expressed annually. The scaling will be done using the square-root of time rule. 

Although there might be unwanted implications explained by Diebold et al. (1998), it 

seems to be the general standard practice.  

 

4.2.2 Implied volatility 

 
As previously mentioned, all the implied volatilities gathered are all computed in-house 

by Refinitiv Eikon’s Datastream using the BOPM. The implied volatilities obtained are 

the call and put implied volatilities for each underlying at either one-month constant 

maturity, one-year constant maturity, and trade-weighted by volume. Considering the 

computation of implied volatilities for call and put options, ceteris paribus, the implied 

volatilities will be the same if the two contracts also have the same price. For some 

options and periods in this data universe, the price difference is negligible, however for 

others there are distinct differences. This causes differences in the call and put implied 

volatilities. A higher put implied volatility might indicate that the market anticipates a 

downward price movement, relative to the belief of an upward price movement. To 

reconcile the two beliefs in the direction of price movement, an average of the call and 

put implied volatilities is calculated to determine the individual stock implied volatility. 

This follows Bali and Hovakimian’s (2009) methodology and partly the calculation of 

the CBOE volatility index (VIX) (Mayhew, 1995).  

 

4.2.3 Risk-free rate 

 

The one-month US treasury bill is used to proxy the risk-free rate. The risk-free rate 

will only be used when calculating the Sharpe ratio of the portfolios. The one-month 

US treasury bill rate is expressed annually, so to calculate the portfolio return in excess 

of the risk-free rate, the rate is converted into a monthly interest rate.  

 

4.2.4 Equalizing data 

 
To further ensure that the different volatility metrics are comparable, the datasets will 

be equalized. There are lacking data at different periods and for different stocks for the 
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six volatility metrics analyzed. The empty data in each dataset will decide the empty 

data in the other datasets. If there is a stock at period 𝑡 that contains no data in one 

dataset, then the data in the other datasets are removed as well. Conclusively, the six 

different datasets will have the exact same amount of data. For example, the constant 

one-year maturity implied volatility starts in July 2009, therefore all other datasets used 

will start in July 2009 as well for more correct comparison between the different 

volatility metrics.  

 

4.2.5 Call-put implied volatility spread (CPIV) 

 

The implied volatilities of all options are for both the call and put. To calculate the call-

put implied volatility spread, the implied volatility of the put option is subtracted from 

the implied volatility of the corresponding call option.  

 

4.3 Part 1: Differences in realized volatility and implied volatility 
 
The difference in periods between implied and realized volatility is illustrated as follows: 

 
Figure 1: Illustration of corresponding periods of implied and realized volatility 
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4.3.1 Implied-realized volatility spread (IVRV) 

 

When using different implied and realized volatility metrics to assess the risk-return 

relationship, the results will obviously be the same if there are no differences between 

the volatility metrics. Although differences are expected, they have to be quite different 

to give a completely contrasting result. A way to evaluate the potential result 

differences beforehand is to calculate the difference between the implied volatility and 

the realized volatilities for each stock at each time. Because the implied volatility is 

forward-looking, while the realized volatility is backward-looking, the implied-realized 

volatility spread at time 𝑡 will be calculated by subtracting the realized volatility during 

the time period 𝑡 from the implied volatility during the time period 𝑡 − 1.  

 

4.3.2 Correlation 

 
Additionally, the correlation of each stock’s implied volatility and their realized volatility 

will be calculated. The implied-realized volatility spread alone cannot say anything 

about potential result differences as long as they are both highly positively correlated. 

Hypothetically, if one finds the presence of a low-volatility anomaly using realized 

volatility, then to expect the complete opposite result when using implied volatility 

would suggest having negatively correlated realized and implied volatilities. Therefore, 

the correlations of all implied volatilities to their corresponding realized volatilities are 

calculated. Once again, the implied volatility is ex-ante, while realized volatility is ex-

post, meaning the correlations will be calculated accordingly.  

 

4.3.3 Portfolio sorts 

 
After getting an indication of the potential result differences, I will employ the standard 

procedure of checking for presence of a low-volatility anomaly by forming decile 

portfolios sorted on the volatility metric for the period of July 2009 throughout 

December 2023. The portfolios are ranked from low to high volatility, meaning portfolio 

1 contains the least volatile stocks, and portfolio 10 contains the most volatile stocks. 

The portfolio returns are calculated using equal weights, allowing no shorting of stocks. 

The amount of stocks sorted into portfolios differ from the data universe due to 
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differences in available data. Each option-implied volatility metric and corresponding 

realized volatility is equalized in the way that empty data in either dataset are the same. 

This results in fewer stocks than initially gathered are being sorted throughout the 

whole period. 

 

On average, the amount of stocks sorted from July 2009 to December 2023 is 384, 

going from 268 at the minimum, to 486 at maximum. 

 

To begin with, I will perform the sorting of the stocks based on the realized volatility to 

assess whether or not the low-volatility anomaly is present in this data universe. At the 

beginning of each month, stocks are sorted based on their trailing one-month, or one-

year, or three-week standard deviation. The portfolios will be rebalanced each month, 

and the captured returns on each portfolio are the returns measured at the same time. 

This is a practically infeasible sorting, as the realized volatility is measured using ex-

post values and cannot be replicated as a strategy as the future realized volatility is 

unknown. A potential presence of the low-volatility anomaly has to be interpreted as 

whether or not the low-volatility stocks have had greater returns than high-volatility 

stocks looking backwards. I will not do the same procedure for the implied volatilities, 

as these do not have a measurement period of ex-post values unlike the realized 

volatilities. Therefore, one cannot employ the same logic of the stocks that have had 

the lowest or highest implied volatility have simultaneously earned the most returns, 

because the implied volatility has not been measured alongside the return.  

 

Instead, I perform the same sorting of portfolios for both the option-implied side and 

the realized side with the notion of whether or not the potential low-volatility anomaly 

can be exploited by either volatility metric. At the beginning of each month, stocks are 

sorted based on their current implied and realized volatilities, and the captured returns 

on each portfolio are instead the returns measured over the following month. 

Subsequently I will compare the risk-return relationship of the six different volatility 

metrics. 

 

 

 

 



 24 

4.3.4 Sharpe ratio 

 
To evaluate the risk-return relationship for the different portfolio sorts, the returns 

excess of the risk-free rate of each period will be calculated along with the portfolio’s 

total excess return and the standard deviation of the excess returns. The Sharpe ratio 

of each decile portfolio gives an indicator of their performance accounting for both 

return and risk. For example, a portfolio can have a higher return, yet unproportionate 

to the amount of risk needed to attain this return. A simple linear regression model of 

Sharpe ratios on the portfolio index is run. This effectively creates just a trendline of 

the Sharpe ratios across portfolios, and the slope of this line as well as their residual 

standard error will be evaluated to determine which volatility metric gives the most 

linear and therefore “theoretically” consistent risk-return relationship. Consider the 

efficient frontier and the capital market line (CML); the slope of this line is the same as 

the Sharpe ratio. The optimal portfolio in terms of risk-adjusted return theoretically lies 

on this line. If all portfolios lie on this line, then the volatility metric used to sort these 

portfolios is the most “theoretically” consistent in terms of risk-return relationship, as 

one is sufficiently compensated per unit of risk is undertaken. Consequently, a slope 

coefficient of zero with minimal residual standard error is desired. 

 

4.3.5 Monotonicity 

 
In addition to the Sharpe ratio, each portfolio sort will be evaluated on their monotonic 

relationship, as Buss and Vilkov (2012) did when investigating their implied betas. The 

test of monotonic relationship will be Patton and Timmermann’s (2010) nonparametric 

test. The test will be done on quintile portfolio sorts rather than decile portfolio sorts as 

advocated by Romano and Wolf (2013). Running the test on quintile portfolios should 

ensure sufficient power of the test (Romano & Wolf, 2013). To evaluate the different 

portfolio sorts, the test will be subsequently run on both sides, that is assuming an 

increasing and a decreasing monotonic relationship. To tell which of the volatility 

metrics is most concurrent with a linear risk-return relationship, a rejection of 

decreasing monotonic relationship and simultaneously failing to reject an increasing 

monotonic relationship is desired. 
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4.4 Part 2: Excess information content of implied over realized volatility 
 

4.4.1 Double sorts 

 
To explore the excess information content of option-implied volatility over realized 

volatility, the portfolios will be sorted as before based on their implied volatility. 

Additionally, these portfolios will be sorted conditionally (hierarchically) based on either 

a positive or negative call-put implied volatility spread. The results will show in which 

way the spread contributes to the volatility portfolios’ returns. The excess returns that 

the positive spread gathers over the negative spread will be subjected to a t-test with 

a confidence level of 0,95 to assess whether or not these average excess returns are 

statistically different from zero. 

 

The same procedure will be performed using the implied-realized volatility spread, to 

assess its contributions to the volatility portfolios’ returns. The returns that the positive 

spread earns in excess of the negative spread will also be subjected to a t-test with a 

confidence level of 0,95. 
 

4.4.2 Long-short portfolio sorts 

 

Lastly, long-short portfolios will be created by ranking on the spread, while 

simultaneously weighting based on a positive or negative spread. This is done to test 

the hypothesis of the call-put implied volatility spread being a predictor of increase or 

decrease in the underlying price. The portfolios will have equal weights, however some 

negative and some positive. 
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5. Results 

 
The results presented in this section is for the full sample period of July 2009 

throughout December 2023 only. The results for the two sub-periods of July 2009 

throughout September 2016 and October 2016 throughout December 2023 will be 

referenced throughout this section but will be found in the appendix section to avoid 

clutter.  

 

5.1 Correlations and volatility risk premium  

 
The table below shows median and mean correlation coefficients and implied-realized 

volatility spread between the implied and realized volatility metrics. As mentioned 

earlier, the calculations are done using implied volatility during the time period 𝑡 − 1 

and realized volatility during the time period 𝑡. The results show a positive correlation 

between the implied and realized volatility, yet not a very high correlation. The least 

amount of correlation is found between the trade-weighted implied and three-week 

realized volatility, while the highest correlation is found between the one-year implied 

and realized volatility. Additionally, the implied-realized volatility spreads are all 

positive as expected, and in line with Eraker’s (2021) findings of a positive average 

volatility risk premium. These findings indicate that there will not be substantial 

differences when comparing the risk-return relationship of realized and implied volatility 

later on.  

 

Table 1: Correlations and IVRV spread 

Vol metric 
Median Mean 

Correlation IVRV spread Correlation IVRV spread 

1-month 0,54 2,33 0,50 4,03 

1-year 0,62 1,20 0,51 1,65 

3-week 0,38 6,82 0,34 9,68 
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5.2 Portfolio sorts 
 

5.2.1 Realized volatility and returns over the time period 𝒕 
 
When looking at the decile portfolio’s performance from 2009-2023, both sorting on 

realized volatility and capturing returns during the time period 𝑡, there is a clear pattern 

of low-volatility anomaly. The portfolios containing the least volatile stocks have been 

outperforming the most volatile portfolios. This pattern of a low volatility anomaly is not 

as apparent in the realized volatility using one-year trailing standard deviation, where 

it looks quite flat. This is however looking back on both the measurement period of 

volatility and returns, which has to be interpreted as the least volatile stocks have 

simultaneously had greater returns than the more volatile stocks. If one were to exploit 

this phenomenon, one would need to know the realized volatility beforehand. Similar 

pattern of a low-volatility anomaly can be found for both the two subperiods; see 

Figures 8 and 9 in the appendix. 
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Figure 2: Portfolio sorts of realized volatilities 2009-2023, capturing returns at same month 

 

5.2.2 Realized and implied volatility, returns over the following period 
 
The implied volatility is supposedly the anticipated future volatility. Therefore, portfolios 

are now sorted and rebalanced using implied volatilities during the time period 𝑡 − 1, 

while still capturing returns over time 𝑡. This is done to assess whether one could 

exploit the low volatility anomaly by using the implied volatility of equity options as a 

predictor of the next months realized volatility. As seen in the figure below, the pattern 

is now completely different. For all three implied volatilities, there is a clear trend in 
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high volatility gathering higher returns in the period of 2009-2023. Additionally, the 

portfolios are sorted and rebalanced using realized volatilities during the time period t, 

capturing returns over 𝑡 + 1. The possible low-volatility anomaly observed previously 

cannot be exploited using either volatility metric in this data universe. The same trend 

can be found in the two sub-periods; see Figures 10 and 11 in the appendix. 

 

Looking closely at the returns gathered for the decile portfolios, it is clear the portfolios 

sorted on different implied volatility metrics have the largest gap between the highest 

and lowest volatile portfolios. The least volatile portfolio for all three implied volatility 

metrics has lower returns than their realized counterpart. Moreover, the most volatile 

portfolios sorted on implied volatilities has the highest returns. 

 

Even though portfolios sorted on implied volatility give higher returns for higher 

volatility, the risk-return relationship as portrayed by the Sharpe ratios in the dashed 

lines below shows that the excess volatility undertaken in the portfolios is not always 

compensated sufficiently by greater returns. For portfolios sorted on both one-month 

realized or implied volatility, the best performing portfolios in terms of risk-return 

relationship is portfolio 2 and 3 respectively. Both being relatively low volatility 

portfolios. For portfolios sorted on one-year realized volatility, the best performing 

portfolio is portfolio 6, which is slightly volatile. For the one-year implied volatility sort, 

portfolio 3 has the best risk-return relationship. The largest difference between the 

realized and implied volatility metric in terms of Sharpe ratio comes in the three-week 

realized, and the trade-weighted implied volatility. For the three-week realized volatility, 

the Sharpe ratio is generally decreasing after its peak at portfolio 3, yet for the 

corresponding trade-weighted implied volatility the Sharpe ratio is generally increasing 

at least up until its peak at portfolio 7. 

 

The peak Sharpe ratios are different in the two sub-periods, where the period of 2009-

2016 have their peak Sharpe ratio in low volatility portfolios except for the trade-

weighted implied volatility. In the period of 2016-2023 all volatility metrics have a peak 

Sharpe ratio in a high volatility portfolio; see Figures 10 and 11 in the appendix. 
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Figure 3: Portfolio sorts of realized and implied volatilities 2009-2023, capturing returns at following month 

 

Looking more closely at the trendline for the portfolio Sharpe ratios of each volatility 

metric, we see that the implied volatilities all have slightly higher slope coefficients than 

their realized counterpart, which are all negative. The slope of one-month and three-

week realized volatility is statistically different from zero (marked with an asterisk) with 

a confidence level of 0,95. However, the residual standard errors are also larger for all 

implied volatilities than their realized counterpart.  
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The statistical significance of the slope coefficients being different from zero is even 

stronger and applies for one-year realized volatility as well in the first sub-period. In the 

second sub-period, only the slope coefficient of one-year realized volatility is 

statistically different from zero; see Tables 8 and 9 in the appendix. 

 

Table 2: Linear regression of Sharpe ratios (trendline) 2009-2023 

Vol metric Intercept Slope coefficient 
Residual standard 

error 

1-month RV 2,24 -0,05* 0,18 

1-month IV 2,05 -0,02 0,24 

1-year RV 2,00 -0,01 0,27 

1-year IV 1,91 0,01 0,28 

3-week RV 2,26 -0,05* 0,16 

Trade-weighted 

IV 

1,88 0,02 0,20 

* statistically distinguishable from zero 
 

As expected from looking at the previous plots, we can never reject the null hypothesis 

of an increasing monotonic relationship for portfolio returns sorted on any volatility 

metric. On the other hand, we can reject the null hypothesis of a decreasing monotonic 

relationship for portfolio returns sorted on trade-weighted implied volatility at a 1% 

significance level. Other than for the three-week horizon, there are seemingly not much 

difference in monotonic relationship of portfolio returns between the realized and 

implied volatility metrics. Similar results are found in the first sub-period; see Table 10 

in the appendix. 

 

In the second sub-period, we reject only the p-values of a decreasing monotonic 

relationship for portfolio returns sorted on one-year and three-week realized volatility; 

see Table 11 in the appendix. 
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Table 3: Monotonicity test: p-values 2009-2023 

Vol metric 𝐻0: increasing 𝐻0: decreasing 

1-month RV 0,98 0,08 

1-month IV 0,99 0,10 

1-year RV 0,95 0,08 

1-year IV 0,65 0,23 

3-week RV 0,82 0,07 

Trade-weighted IV 0,45 0,01 

 

 

5.3 Excess information content in implied volatility 
 

5.3.1 Double sort of IV and CPIV 

 
When performing a conditional double sort of implied volatilities and their call-put 

implied volatility spread, the results show differences between the horizons. For one-

month implied volatility a positive call-put implied volatility spread gives higher returns 

than a negative spread. This applies across all volatilities, and the largest return 

difference between the spreads is in the most volatile portfolio. However, for the one-

year horizon, there really is not much of a pattern. In the first, fourth, and last portfolio, 

the positive spread gives higher returns. For portfolio 2 and 3, a positive spread 

performs worse than a negative one. Lastly, for the trade-weighted implied volatility, a 

negative spread performs the best across all volatilities. This effect does however 

seem to dampen as the volatility is increased, since the difference in returns between 

the spread seemingly decreases as the volatility increases. 

 

The excess returns gathered by the positive spread are subjected to a t-test with a 

confidence level of 0,95 to assess whether the results are statistically different from 

zero.  

 

As seen in Table 4 below, a positive call-put implied volatility spread gathers on 

average positive excess annual return of the negative spread for the one-month and 

one-year implied volatility. The average excess returns gathered by the one-month 
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implied volatility is statistically distinguishable from zero. This does not apply for the 

one-year implied volatility. 

However, a negative excess return is found for the trade-weighted implied volatility. 

This negative excess return is also statistically distinguishable from zero. These 

excess returns are obtained through effectively going long the stocks with a positive 

call-put implied volatility spread, and short the stocks with negative spread. 

 

Table 4: Excess returns gathered by positive CPIV 2009-2023 

Vol metric Mean excess returns 
𝐻0: Indistinguishable from 

zero (p-value) 

One-month IV 2,32% 0,04 

One-year IV 0,99% 0,32 

Trade-weighted IV -1,47% 0,03 

 

 

In the first sub-period, there are no clear pattern of positive spread outperforming 

negative spread for any implied volatility metrics, as well as no significant mean excess 

returns; see Figure 12 and Table 13 in the appendix.  

In the second sub-period, there is a clear pattern of positive spread outperforming 

negative spread for one-month and one-year implied volatilities, both their mean 

excess returns are statistically different from zero; see Figure 13 and Table 14 in the 

appendix. 
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Figure 4: Double sorts of implied volatilities and call-put implied volatility spread 2009-2023 

 

5.3.2 Long-short portfolios 

 

Furthermore, to investigate whether or not the call-put implied volatility is a good proxy 

for anticipated increase or decrease in underlying price, long-short portfolios sorted on 

the spread as well as weighted by the spread are constructed. The higher (lower) call-

put implied volatility spread generally earns higher (lower) returns. This applies to the 
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call-put spread of all three implied volatility metrics. Similar results are found for the 

two sub-periods; see Figures 14 and 15 in the appendix. This result indicates predictive 

power of a positive spread signaling increase in underlying price, however not a 

negative spread signaling decrease in underlying price. If the call-put implied volatility 

spread was a good proxy of anticipated movement of both directions in underlying 

price, then the results should have shown a smile pattern. 

 

 
Figure 5: Portfolios sorted and weighted by call-put implied volatility spread 2009-2023 

  



 36 

5.3.3 Double sort of IV and volatility risk premium 

 

Double sorting on implied volatility and their implied-realized volatility spread reveals 

no clear pattern of predictability of returns for all three horizons across volatilities. 

Effectively going long the stocks with a positive spread and short the stocks with a 

negative spread gives an average annual return of 0,43% for one-month implied 

volatility, 0,07% for one-year implied volatility, and lastly -0,73% for trade-weighted 

implied volatility. These returns are inconsistent across volatilities, and are all not 

statistically different from zero, with p-values of 0,71, 0,94, and 0,55 respectively. 

Similar results are found for the two sub-periods; see Figures 16 and 17, and Tables 

15 and 16 in the appendix. 

 
Figure 6: Double sort on implied volatilities and volatility risk premium 2009-2023  
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6. Discussion 
 

6.1 Part 1: Data  
 

Haugen and Heins (1972) had three main critiques to testing of the CAPM and how 

the models assumes a positive risk-return relationship. Although the CAPM is not of 

interest in this paper, a positive risk-return relationship is still a widely accepted theory, 

hence a negative risk-return relationship being called anomalous. The first of their 

critiques were the “impossible problem” of using ex-post values to determine expected 

values. The purpose of using implied volatility instead of realized volatility is indeed to 

circumvent this “impossible problem”. The implied volatility is supposedly an ex-ante 

value of future volatility, but the question of whether or not it does a good job of that 

remains. When running cross-correlation between implied and realized volatility for all 

stocks in the dataset, the result is that an overwhelming majority of the highest 

correlation is at lag 0, and not at lag -1 as it theoretically should be considering implied 

volatility anticipates future volatility. It seems that implied volatility still is heavily 

dependent on lagged realized values. Apparently, the implied volatility is not leading 

the realized volatility. On the contrary, the realized volatility is leading the implied 

volatility. 

 

Table 5: Cross-correlations 2009-2023 

Volatility metric 
Amount of highest correlations 

Lag 0 Lag -1 

1-month IV - RV 361 88 

1-year IV - RV 199 138 

Trade-weighted IV - 3-week RV 361 40 

 

Regarding Haugen and Heins’ second critique, the sample timing might be skewed 

due to the market situation of that time period. My dataset contains values from 2009 

throughout 2023. This includes the aftermath of the financial crisis of 2008, which was 

generally bullish up until the COVID-19 pandemic of 2020, and the stock market 

decline of 2022.  I also have divided the sample period into two sub-periods of July 

2009 to October 2016 and October 2016 throughout 2023 for robustness. These two 

periods are almost equal in terms of percentage growth for the S&P 500 index; 
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however, the second sub-period includes two major stock market declines of 2020 and 

2022 (SPX, 2024). Although both periods have been generally bullish in total, the 

second sub-period has been more volatile, which may be the reason for differences in 

the results for the two periods.   

 

Lastly, the third critique of Haugen and Heins (1972) is that the data has bias towards 

survivorship. Considering my dataset contains mostly S&P 500 stocks, it obviously 

suffers from this bias. Many of the stocks that are now included in the S&P 500 were 

not in the S&P 500 in 2009. Therefore, these stocks in question were destined to 

succeed. There are however some “dead” stocks in my data universe, and the option 

data suffer more than stock data when it comes to missing data. Because I equalize 

all the data, there certainly should be some of the S&P 500 constituents that are 

effectively “dead” at different points during the period of 2009 and 2023. All in all, the 

sample does probably suffer of survivorship bias which might skew the results. 

However, had the data deliberately consisted of more “dead” companies and less 

popular stocks, the implied volatilities might have been less correct in the context of an 

anticipated future volatility. This is because a high traded volume is important in order 

for the data to contain the most information as possible. Consider a hypothetical where 

ten people bid on an options contract, and the market price is settled giving an 

observed implied volatility. This implied volatility would theoretically only be an 

anticipated future volatility by those ten people. If this anticipation is irrational or 

incongruent with the market, this would of course be arbitraged away in the end 

reflecting the market’s anticipation. However, how much input is needed to sufficiently 

proxy the market’s anticipation? Extrapolating Roll’s (1977) critique of asset pricing 

theory tests, one would need to know the true market’s anticipation, that is effectively 

the aggregate anticipation of every single person. Either way, traded volume is in this 

case effectively a measurement of “shared opinions” of future anticipation. 

 

6.2 Part 2: Low-volatility anomaly and risk-return relationship 
 

The first result from sorting realized volatility during the time period 𝑡, and capturing 

returns during the same time period found a presence of a low-volatility anomaly in this 

data universe. Conversely, sorting realized volatility during the time period of 𝑡 and 

capturing returns over the time period 𝑡 + 1 found the opposite. This shows that while 
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the least volatile stocks have simultaneously earned higher returns, the same stocks 

will not earn higher returns over the following month. This begs the question of whether 

the stocks with the higher returns will have lower volatility, or whether it is the least 

volatile stocks that gather the highest returns. Either way, trying to exploit the low-

volatility anomaly by betting on the currently observed least volatile stocks, which is 

measured by the past period, does work. Neither does betting on the current implied 

volatility, as this supposed forward-looking metric seems to be biased towards lagged 

measurement of realized volatility. 

 

As sorting on both implied and realized volatility and capturing returns over the 

following month gave similar return structure across portfolios, the question of which 

volatility metric is more “theoretically” consistent in terms of risk-return relationship 

remains. As the portfolios are using total volatility as “risk” metrics, the risk-return 

relationship is measured by the Sharpe ratio (unlike Jensen’s alpha, it does not depend 

upon an asset pricing model such as the CAPM). For both the one-month volatilities 

the peak Sharpe ratio is in a low-volatility portfolio, suggesting that a low-volatility 

anomaly can technically be attributed to this sample, as these portfolios had greater 

risk-adjusted returns. This cannot be said for the one-year volatility metrics, as the 

Sharpe ratio peaks at different degrees of volatile portfolios. For the three-week 

realized volatility, the peak Sharpe ratio is in a low volatility portfolio and declines as 

the volatility increases. Conversely, for the trade-weighted implied volatility, the Sharpe 

ratio kept increasing up until the semi-volatile portfolio 7. However, the peak Sharpe 

ratio does not accurately explain which of the volatility metrics provide the most 

“theoretically” consistent risk-return relationship. The Sharpe ratios of portfolios sorted 

on one-month and trade-weighted implied volatility metrics had a higher and more 

neutral slope coefficient than their realized equivalent, which on top of that were 

statistically non-zero. The slope coefficient of the one-year implied and realized 

volatility were both statistically indifferent from zero and had similar residual standard 

error.  

 

The monotonicity test of portfolio returns fails to reject the null hypothesis of an 

increasing monotonic relationship for all volatility metrics. The same applies for the null 

hypothesis of a decreasing monotonic relationship assuming a confidence level of 

0,95, with the exception of trade-weighted implied volatility. Although the p-values of 
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monotonic relationship for the other implied volatility metrics are generally “less 

statistically significant” than their realized equivalent, it is incorrect to declare them as 

such. The test is concerning a hypothesis, and whether to reject or fail to reject the 

null. Whether one is “more” statistically significant than the other is unknown. 

 

Combining the results from the Sharpe ratios and the test of monotonic relationship, 

there are no clear differences in the risk-return relationship between realized and 

implied volatility metrics across the board, as has been found in previous literature. 

Buss and Vilkov (2012) concluded that their constructed option-implied betas give a 

positive and monotone risk-return relationship, that is significantly better than the 

historical betas in this regard. Additionally, Mateus and Kongsilp (2014) find that 

implied idiosyncratic volatility is the best predictor of stock returns among the volatility 

metrics they tested. Based on this we may expect the total implied volatility, which 

should be made up of the hypothetical implied beta and implied idiosyncratic volatility, 

to give similar results. Yet, my results suggest the implied volatility metrics are not 

altogether “better” than realized volatility in terms of risk-return relationship. However, 

because the implied beta and implied idiosyncratic volatility are both modelled and not 

directly observed, then perhaps these two modelled metrics combined still leave out 

an unexplained piece of information.    

 

Looking at each volatility metric separately instead of categories of implied and realized 

volatility, there are some statistically significant differences. The implied volatility is 

more consistent to a traditional risk-return relationship at least for the shorter 

measurement and implied periods as shown by the slope coefficients of the Sharpe 

ratio regression. As argued in section 4.2.1, the trade-weighted implied volatility was 

assumed to be the most precise stock implied volatility, as it is interpolated between 

different strikes, rather than observed at-the-money. This is the only metric that rejects 

a decreasing monotonic relationship, results in a peak Sharpe ratio in a volatile 

portfolio, and in addition gives a preferred risk-return relationship in regard to the 

regression line of Sharpe ratios. 
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6.3 Part 3: Excess information of implied over realized volatility 
 

6.3.1 Call-put implied volatility spread 
 

The individual stock implied volatilities were calculated as the average of the call and 

put implied volatilities. These are not always identical, which by averaging them out 

may leave out important information about future stock returns. This begs the question 

of whether simply averaging the call and put implied volatility is the best way of 

determining individual stock implied volatility. Consider a case where a call and put for 

one stock option both have 30% implied volatility, while another stock option has a call 

and put implied volatility of 35% and 25% respectively. The average implied volatility 

for both stock options would be 30%, however the call-put implied volatility spread 

would be 0% for the first case, and 10% for the latter case. Perhaps a low average 

implied volatility with a near-zero spread between the call and put should be classified 

as low volatility, while the same average implied volatility however with a large spread 

should be classified as more volatile. The general standard practice seems to just be 

averaging the call and put implied volatility, however the information lost in the process 

has been shown to contain additional predictions of stock returns.  

 

Cremers and Weinbaum (2010) found that the degree of predictability by the call-put 

implied volatility spread has decreased over time due to reduced mispricing, trading 

costs, and increased hedge fund capital. They used a sample period of 1996-2000 and 

2001-2005, while my sample period goes from 2009-2023. Extrapolating from Cremers 

and Weinbaum (2010), the degree of predictability should be insignificant for my 

sample period.  

 

What I find in the double sort is that for one-month implied volatility, a positive call-put 

implied volatility spread outperforms the negative spread across all volatilities. The 

return difference between the spreads are statistically significant. The degree of 

predictability is even stronger for the second sub-period, suggesting that the degree of 

predictability may be stronger in times of market decline.  However, the same cannot 

be said for the one-year implied volatility, as this return difference is not statistically 

significant for the full period, nor is it consistent across volatilities. The call-put implied 

volatility spread was hypothesized as a proxy for anticipated directional movement in 
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price. Presumably, the spread has less predictive power for the one-year implied 

volatility, because anticipating a full year of stock price movement is significantly more 

uncertain than for one month only. Following this logic, one can assume that people 

that do anticipate stock price movement, do so for as short of a period as possible. 

This logic is in accordance with findings from Eaton et al. (2022), that retail option 

traders prefer buying short-dated and out-of-the-money calls and writing long-dated 

puts. 

 

The trade-weighted implied volatility is implied of a shorter period than a month, so 

why does a positive spread not predict an increase in stock price? Why does the 

negative spread predict the increase in stock price better than the positive spread? 

The probable answer is because the implied volatilities are trade-weighted and 

interpolated between strikes. This means that the call implied volatility of a contract 

can effectively be for a completely different strike than the put implied volatility. The 

put-call parity does not hold for contracts of different strikes, which means that the call-

put implied volatility spread for the trade-weighted metric is not deviation of the put-call 

parity, it is instead expected. Using this spread when researching anticipated increase 

or decrease in stock price is therefore futile.  

 

6.3.2 Long-short portfolios 

 

Looking at the long-short portfolio sort, where the stocks are ranked as well as 

weighted based on their call-put implied volatility spread, there is no indication of a 

smile pattern of the portfolio’s returns. Considering the results of the double sort, 

accompanied by the results of the long-short portfolio, it seems that the positive spread 

predicts future stock returns. However, this does not go both ways. The negative 

spread should have predicted negative returns, meaning that shorting these stocks 

would yield positive returns. Yet my results suggest that using a negative spread to 

predict negative returns does not work. 

 

6.3.3 Volatility risk premium 
 
Using the square-root of time rule to annualize the standard deviation, or realized 

volatility, amplifies the fluctuation of realized volatility (Diebold et al., 1998). This 
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suggests that the raw difference of implied and realized volatility is not what it “should” 

be. For example, a stock can be considered to have a negative (positive) spread, 

however the “real” spread may be positive (negative). Therefore, the raw difference of 

implied and realized volatility may not be a good proxy for the volatility risk premium. 

Bollerslev et al. (2004) briefly mentions that this raw difference is very noisy, but I have 

not accounted for this noise in my analysis as it would entail using “model-free” volatility 

metrics. This is outside the scope of this thesis. 

 
Both Bali and Hovakimian (2009) as well as Bollerslev et al. (2009) found that the 

implied-realized volatility spread, or the volatility risk premium predicts future stock 

returns. Despite these previous results, the implied-realized volatility spread did not 

seem to predict stock returns in my data universe.  

 

Bali and Hovakimian (2009) did use a different calculation of the spread than what I 

presented. First off, they subtracted the implied volatility from the realized volatility, 

which just inverts the results. Secondly, they calculated the volatility risk premium using 

realized and implied volatility both during the time period 𝑡. I have argued in section 

2.2.7 that the realized volatility during the time period 𝑡 is comparable to the implied 

volatility during the time period 𝑡 − 1. This is due to the realized volatility being 

measured over the previous period, while the implied volatility is implied over the 

following period. The volatility risk premium is supposed to reflect the premium option 

writers demand to offset the potential risk of stock price movement. If the option writers 

and buyers knew the realized volatility in advance, then there would be no premium. 

No one would pay for insurance that they knew would never be claimed.  

 

Bollerslev et al. (2009) recognizes this, and instead forecasts the future realized 

volatility using a heterogeneous autoregressive model. Because of this forecast, they 

are able to capture returns at time 𝑡, leading to a result of higher (lower) volatility risk 

premium earning higher (lower) returns.  

 

I instead use the observed realized volatility at time 𝑡 and the implied volatility at time 

𝑡 − 1, meaning that to use the volatility risk premium as a strategy, the returns have to 

be captured at 𝑡 + 1. This is two periods ahead of the implied volatility, and presumably 

whatever information the volatility risk premium had over the period of 𝑡 − 1 to 𝑡 should 
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already be priced in before the period of 𝑡 to 𝑡 + 1. Not surprisingly, the results show 

no pattern with respect to returns.  

 

Had I instead captured returns at time 𝑡, which would correspond to an infeasible 

trading strategy, then the results would have been similar to what is found by Bollerslev 

et al. (2009): 

 
Figure 7: Portfolio sort of one-month volatility risk premium 2009-2023, capturing returns at time t 
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7. Conclusion 
 
This thesis aims to answer a main research question, containing three objectives. This 

thesis has investigated whether a low-volatility anomaly is present in the American 

equity market, and whether it can be exploited by either implied or realized volatility 

metrics. Additionally, the risk-return relationship of implied and realized volatility 

divided into a total of six different volatility metrics has been studied and compared. 

Lastly, the thesis researches the possible predictability of the excess information 

content of implied volatility over realized volatility.   

 

To answer these questions the implied and realized volatility as well as the returns of 

513 stocks in the American equity market during the period of 2009-2023 has been 

gathered and analyzed as described in section 4.  

 

To begin with, the thesis concludes that portfolios sorted on stocks with the lowest 

volatility has simultaneously earned the most returns. Yet, the anomaly cannot be 

exploited using either implied or realized volatility as forecasts of future volatility. 

 

Secondly, the thesis concludes that sorting portfolios on implied volatility does not give 

a more theoretically consistent risk-return than portfolios sorted on realized volatility 

overall. However, out of the six total volatility metrics, sorting portfolios on trade-

weighted implied volatility gives the most theoretically consistent risk-return 

relationship. This is concluded due to its Sharpe ratio regression’s slope coefficient is 

consistently indistinguishable from zero, and it is the only metric which rejects a 

decreasing monotonic relationship of risk and return for both the full sample period and 

sub-sample period of 2009-2016. However, the three-week realized volatility seems to 

be better in this regard when major stock market declines constitutes a larger portion 

of the time period. 

 

Lastly, the thesis concludes that the call-put implied volatility spread of one-month 

options contracts predicts future stock returns in the American market. The 

predictability is also stronger when major stock market declines constitutes a larger 

portion of the time period. However, positive spread does predict positive future stock 
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returns, while negative spread does not predict negative future stock returns. The 

thesis found no predictability of the volatility risk premium proxied by the implied-

realized volatility spread for any period or implied volatility metric.  

 

Finally, to answer the main research question: 

 

Is option-implied volatility theoretically superior to realized volatility in terms of linear 

risk-return relationship, and does its excess information content predict future stock 

returns? 

  

The trade-weighted implied volatility generally gives the most theoretically consistent 

risk-return relationship out of the six metrics analyzed, and the call-put implied volatility 

spread of one-month options contracts does predict future stock returns. The proxy 

used for volatility risk premium does however not predict future stock returns.  
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Appendix 
 
Table 6: Portfolio annualized returns % 2009-2023 

Vol 

metric 

Portfolios  

1 2 3 4 5 6 7 8 9 10 10-1 

RV1M 8,23 10,46 10,82 10,61 10,43 11,47 11,37 10,75 15,14 15,21 6,98 

IV1M 8,09 8,35 11,54 10,27 10,37 11,88 10,12 11,93 14,47 17,99 9,90 

RV1Y 7,00 9,86 9,82 10,88 9,71 13,33 11,74 11,47 14,01 16,72 9,72 

IV1Y 6,57 8,31 11,13 11,40 10,71 10,50 11,52 14,83 12,76 17,23 10,66 

RV3W 9,03 9,11 11,60 10,10 11,56 11,36 11,81 11,02 13,11 15,57 6,54 

IVTW 7,20 9,62 8,78 11,41 10,36 11,70 13,89 13,06 12,83 16,10 8,90 

 
Table 7: Standard deviation of portfolios 2009-2023 

Vol 

metric 

Portfolios 

1 2 3 4 5 6 7 8 9 10 

RV1M 3,56 4,03 4,44 4,67 5,17 5,46 5,77 6,02 6,88 7,64 

IV1M 3,53 4,01 4,31 4,75 5,16 5,41 5,75 6,11 6,65 8,17 

RV1Y 3,82 3,94 4,23 4,55 5,24 5,25 5,61 6,00 6,78 8,17 

IV1Y 3,70 3,89 4,31 4,70 5,18 5,29 5,68 6,01 6,88 8,25 

RV3W 3,56 4,04 4,50 4,89 4,91 5,50 5,70 6,06 6,65 7,61 

IVTW 3,63 4,09 4,57 4,86 5,13 5,32 5,74 6,00 6,80 7,22 

 

 

Table 8: Portfolio Sharpe ratios 2009-2023 

Vol 

metric 

Portfolios 

1 2 3 4 5 6 7 8 9 10 

RV1M 2,05 2,36 2,22 2,07 1,83 1,93 1,81 1,63 2,06 1,86 

IV1M 2,03 1,85 2,45 1,96 1,83 2,02 1,60 1,80 2,03 2,08 

RV1Y 1,59 2,26 2,10 2,18 1,67 2,35 1,92 1,75 1,92 1,92 

IV1Y 1,53 1,90 2,36 2,22 1,88 1,80 1,86 2,30 1,71 1,97 

RV3W 2,27 2,02 2,37 1,87 2,16 1,89 1,91 1,66 1,83 1,92 

IVTW 1,73 2,12 1,72 2,15 1,83 2,02 2,25 2,02 1,74 2,09 
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Realized volatility and returns over the time period 𝒕 

 
Sub-period 1: 2009-2016 
 

 
Figure 8: Portfolio sorts of realized volatilities 2009-2016, capturing returns at same month 
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Realized volatility and returns over the time period 𝒕 

 
Sub-period 2: 2016-2023 
 

 
Figure 9: Portfolio sorts of realized volatility 2016-2023, capturing returns at same month 
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Realized and implied volatility, returns over the following period 
 
Sub-period 1: 2009-2016 
 

 
Figure 10: Portfolio sorts of realized and implied volatility 2009-2016, capturing returns at following month 
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Realized and implied volatility, returns over the following period  
 
Sub-period 2: 2016-2023 
 

 
Figure 11: Portfolio sorts of realized and implied volatility 2016-2023, capturing returns at following month 
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Sharpe regression 
 
Sub-period 1: 2009-2016 
 
Table 9: Linear regression of Sharpe ratios (trendline) 2009-2016 

Vol metric Intercept Slope coefficient 
Residual standard 

error 

1-month RV 4,06 -0,17* 0,45 

1-month IV 3,60 -0,10 0,54 

1-year RV 3,86 -0,14* 0,45 

1-year IV 3,67 -0,11 0,45 

3-week RV 4,30 -0,21* 0,32 

Trade-weighted 

IV 

3,27 -0,04 0,41 

* statistically distinguishable from zero 
 
Sub-period 2: 2016-2023 
 
Table 10: Linear regression of Sharpe ratios (trendline) 2016-2023 

Vol metric Intercept Slope coefficient 
Residual standard 

error 

1-month RV 0,99 0,03 0,20 

1-month IV 0,95 0,03 0,22 

1-year RV 0,72 0,07* 0,21 

1-year IV 0,71 0,07 0,39 

3-week RV 0,87 0,05 0,22 

Trade-weighted 

IV 

0,91 0,04 0,32 

* statistically distinguishable from zero 
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Monotonicity 
 
Sub-period 1: 2009-2016 
 
Table 11: Monotonicity test: p-values 2009-2016 

Vol metric 𝐻0: increasing 𝐻0: decreasing 

1-month RV 0,91 0,30 

1-month IV 0,96 0,31 

1-year RV 0,97 0,38 

1-year IV 0,70 0,33 

3-week RV 0,54 0,38 

Trade-weighted IV 0,72 0,05 

 
 
Sub-period 2: 2016-2023 
 
Table 12: Monotonicity test: p-values 2016-2023 

Vol metric 𝐻0: increasing 𝐻0: decreasing 

One-month RV 0,91 0,13 

One-month IV 0,77 0,11 

One-year RV 0,77 0,04 

One-year IV 0,27 0,12 

Three-week RV 0,76 0,03 

Trade-weighted IV 0,46 0,20 
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Double sort of IV and CPIV 
 
Sub-period 1: 2009-2016 
 
Table 13: Excess returns gathered by positive CPIV 2009-2016 

Vol metric Mean excess returns 
𝐻0: Indistinguishable from 

zero (p-value) 

One-month IV 1,73% 0,31 

One-year IV -0,77% 0,58 

Trade-weighted IV -0,97% 0,52 

 
 

 
Figure 12: Double sorts of implied volatilities and call-put implied volatility spread 2009-2016 
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Double sort of IV and CPIV 
 
Sub-period 2: 2016-2023 
 
Table 14: Excess returns gathered by positive CPIV 2016-2023 

Vol metric Mean excess returns 
𝐻0: Indistinguishable from 

zero (p-value) 

One-month IV 2,94% 0,05 

One-year IV 2,67% 0,01 

Trade-weighted IV -1,90% 0,23 

 
 

 
Figure 13: Double sorts of implied volatilities and call-put implied volatility spread 2016-2023 
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Long-short portfolios 
 
Sub-period 1: 2009-2016 
 

 
Figure 14: Portfolios sorted and weighted by call-put implied volatility spread 2009-2016 
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Long-short portfolios 
 
Sub-period 2: 2016-2023 
 

 
Figure 15: Portfolios sorted and weighted by call-put implied volatility spread 2016-2023 
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Double sort of IV and volatility risk premium 
 
Sub-period 1: 2009-2016 
 
Table 15: Excess returns gathered by positive IVRV 2009-2016 

Vol metric Mean excess returns 
𝐻0: Indistinguishable from 

zero (p-value) 

One-month IV 1,50% 0,49 

One-year IV 1,29% 0,68 

Trade-weighted IV 2,43% 0,14 

 
 

 
Figure 16: Double sort on implied volatilities and volatility risk premium 2009-2016 
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Double sort of IV and volatility risk premium 
 
Sub-period 2: 2016-2023 
 
Table 16: Excess returns gathered by positive IVRV 2016-2023 

Vol metric Mean excess returns 
𝐻0: Indistinguishable from 

zero (p-value) 

One-month IV -0,85% 0,66 

One-year IV -1,22% 0,58 

Trade-weighted IV -3,99% 0,18 

 
 

 
Figure 17: Double sort on implied volatilities and volatility risk premium 2016-2023 
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