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Abstract 

 

Challenges in the power balance (Norwegian: effektbalanse) occur during peak load hours in the morning 

(07-11) and in the afternoon (17-19) during the coldest winter days (Thema Consulting, 2022). Hydropower 

offers significant flexibility in adapting to electricity market conditions, such as the power balance, but the 

introduction of the Norwegian high-price contribution (Norwegian: høyprisbidraget), or HPC for short, 

potentially complicates this flexibility.  

The HPC is a 23% tax on the portion of the spot price above 0.7 NOK/kWh. The tax took effect for large 

hydropower producers on the same day it was announced, 28 September 2022. By being levied on only 

high-price hours, the tax reduces the relative profitability of producing during these hours. Given the 

uncertainty of future prices, this could change the allocation of hydropower production over time. Therefore, 

the HPC could lead to reduced electricity production in the hours with challenges to the power balance. 

This study investigates the impacts of the HPC on the daily allocation of reservoir hydropower production. It 

specifically aims to answer the research question, “How does the Norwegian high price contribution affect 

the allocation of reservoir hydropower production throughout the day?” Given the modest size of the HPC 

and its monotonic characteristics, the hypothesis suggests a relatively small impact on production allocation.  

The research utilises hourly data on production plans from the Norwegian Energy Regulatory Authority 

(RME), controlling for reservoir- and temperature levels, maximum installed capacity, futures electricity prices 

and European gas and -carbon prices. The study obtains estimates on hourly production using a standard 

Tobit model, with interaction terms between hourly dummies and the HPC.  

The results indicate lower hourly allocation for daytime hours after the HPC came into effect compared to 

before it was introduced. The results align with our hypothesis and indicate that the allocation of 

hydropower production over different hours of the day is altered as an effect of the HPC. The result is useful 

for policymakers in understanding the implications of fiscal measures on energy production. This thesis 

contributes to the field by taking an econometric approach to the operational dynamics of hydropower 

under distributional tax measures, a topic with sparse previous literature. 

 

 

Keywords: allocation, water, electricity, hydropower, reservoir, high, price, contribution, høyprisbidraget, 

production, excise, tax, hour.  
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1. Introduction 

 

Challenges in the power balance1 (Norwegian: effektbalanse) occur during peak load hours in the morning 

(07-11) and in the afternoon (17-19) during the coldest winter days (Thema Consulting, 2022). Deficits in the 

power balance may be more difficult to cover with imports in the future as more variable renewable energy 

is added to the European grid following the European Union (EU) ambitious climate targets (Retrieved 

07.05.2024). Reservoir hydropower, which makes up a large part of power production in Norway, is often the 

most cost-effective alternative to provide supply-side flexibility (IEA, 2021). The Norwegian policy, the high-

price contribution (Norwegian: høyprisbidraget), or HPC for short, might alter this flexibility, resulting in lower 

electricity production when it is most needed.  

The HPC is a 23% tax2 on the portion of the spot price above 0.7 NOK/kWh. The tax took effect for large 

hydropower producers on the same day it was announced, 28th September 2022. By being levied on only 

high-price hours, the tax reduces the relative profitability of producing during high-price hours. Given the 

uncertainty of future prices, this could shift hydropower production away from these high-price periods. In 

Norway's demand-driven power market, high prices usually indicate high demand hence, a necessity for 

production. Therefore, the HPC could lead to reduced electricity production when it is most needed. This 

makes investigating the effect of the HPC on hydropower production of uttermost importance for making 

informed policy decisions that are fit for the future electricity grid. 

The main objective of this study is to investigate the effect of the HPC on Norwegian hydropower 

production. The thesis aims to answer the research question, “How does the Norwegian high price 

contribution affect the allocation of reservoir hydropower production throughout the day?” to which the 

thesis hypothesises production during load-peak hours to be lower after the introduction of the HPC than 

before. However, as the size of the HPC is small and its transformation is monotonic3, the hypothesis is that 

the effect is relatively small. The thesis focuses on changes in reservoir hydropower production from a 

production-shifting perspective. To achieve this, the thesis implements measures to isolate and remove the 

effects of long-term impacts, such as investment behaviour. 

This thesis starts by describing background information that is relevant to the later analysis on topics such as 

the Norwegian electricity system, hydropower production and hydropower policies. Then it introduces 

relevant literature before it delves into the theory behind hydropower production allocation and stating the 

thesis research questions. After this the data sources used and the process for attaining them are described, 

followed by the econometric approach taken. Results are presented and discussed before the thesis 

concludes with an examination of the research questions. 

 

  

 

1 Thema defines power balance as an equilibrium between production and consumption during peak load 

hours on cold days in the winter. 
2 Excise duty (Norwegian: særavgift) 
3 A monotonic transformation is where the order among the elements is preserved through the 

transformation. Here this means that if the price in one hour is less than the price in another hour, it will still 

be less than the other after the HPC. 
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2. Background 

This section provides background information to the Norwegian electricity market and the role of 

hydropower within this market. In addition, it explains the policy in questions: the Norwegian high price 

contribution (HPC), as well as looking into other factors that might affect the analysis of the thesis. The goal 

of the chapter is to provide the information relevant to assess the attributes of the HPC. 

 

2.1. Electricity in Norway 

Power on the gird follows the laws of least, which makes it impossible to distinguish different power 

deliveries from each other. This makes electricity a relatively homogeneous good – fulfilling one of the 

conditions for a perfect market. However, one could argue that the primary energy source of the electricity, 

whether it be coal or renewable hydropower, affects willingness to pay. Electricity’s differential from other 

goods is that it cannot easily be stored. Therefore, there must always be an exact balance between 

generation and consumption. 

Transmission capacity  

The balance between production and consumption must be true for the entire synchronous grid area, which 

Norway shares with Sweden and parts of Denmark. This means that the power system throughout this area 

has the same frequency (which is decided by the relationship between production and consumption).  

In Norway, the state-owned company Statnett is the transmission system operator (TSO). The grid is divided 

into transmission-, regional and local distribution grids, typically with different voltage (Norwegian: 

spenning) levels (Ministry of Energy, Retrieved 07.05.2024 a). Norway's electricity market is divided into five 

bidding areas: NO1 (East), NO2 (South), NO3 (Central), NO4 (North) and NO5 (West). These zones are 

designated to account for variations in electricity generation, consumption, and transmission across different 

regions, giving variations in prices between each area. However, towards the north of the country the grid 

suffers from low transmission capacity and different voltages in the transmission grid compared to the rest of 

the country.  

The capacity of the grid refers to the maximum amount of power that an electrical grid can reliably deliver to 

consumers at any given time. This means that the total capability of the grid infrastructure is decided by the 

one hour of the year with the largest transmission. In 2024 Norway has a transmission capacity abroad of 

about 9000 MW (Ministry of Energy, Retrieved 07.05.2024 a). This amounts to about 50% compared to the 

average hourly production in a normal year4. The transmission capacity corresponds to a theoretical 

potential of 80 TWh power transmission per year, but its utilization in practice is much lower (Ministry of 

Energy, Retrieved 07.05.2024 a). The capacity was significantly increased in the summer of 2021 when new 

cables to UK and Germany came into operation.  

Norwegian power markets 

For a long time, the Norwegian electricity market was subject to heavy political regulation, where the 

government determined the electricity price, based on the costs of production. In 1991, market-based 

principles for power sales were introduced. This started a deregulation of the Norwegian power market 

(NOU, 2023). A liberalized electricity market prevailed with competition between power producers and the 

possibility of trading power.  

 

4 A normal year amounts to 156 TWh production (Ministry of Energy, Retrieved 07.05.2024 b). 
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The most defining characteristic of the power market is that supply must be equal to demand at each point 

in time to avoid outages. In Norway, electricity is traded in several different markets. The power market can 

be divided into the wholesale and end-user market. In the end-user market, purchases are made between 

small consumers and power suppliers. In the wholesale market the power suppliers trade on behalf of these 

typically small individual consumers, only here aggregated into larger volumes. Large industrial customers 

can also trade on behalf of themselves. Sellers to the wholesale markets are typically power producers. The 

wholesale market includes the day-ahead/spot market, intraday market, and balancing markets (Ministry of 

Energy, Retrieved 07.05.2024 d).  

The day-ahead market is the electricity market with the largest volumes traded. Here, participants make bids 

and offers between 8-12h each day for delivery of power hour-by-hour the next day. Prices for each hour 

of the following day are made public between 12-13h. The price is calculated for each bidding area based 

on all the purchase and sell orders received and the transmission capacity available in each bidding area. 

After the day-ahead auction closes changes in weather forecasts and other unforeseen events can still 

happen, making actual production or consumption change from its position in the day-ahead market. This is 

where the intraday market comes in. Here, contracts are continuously traded up to one hour before the 

operation hour. Day-ahead and intraday trading takes place on the Nord Pool power exchange. Unforeseen 

weather events can still take place, and bottlenecks might occur. This implies that some imbalances cannot 

be handled in the intraday market. These must be taken care of in the reserve (/balancing) market. The 

balancing market is run by Statnett, the Transmission System Operator (TSO) and includes several different 

markets (Statnett, Retrieved 07.04.2024 a). The reserve markets are currently under structural changes and 

will not be described in detail here.  

In addition to the electricity markets mentioned above market participants may also make financial/bilateral 

contracts for a specific volume and price for delivery of electricity in an agreed period. This includes options, 

future and forward contracts and electricity price area differentials (EPAD). These are often traded in larger 

European markets. Norway remains closely integrated with other Nordic and the wider European power 

market through transmission lines. Also, Norway are members of the European Economic Area (EEA), 

ensuring close cooperation with the EU. Because of this interconnectedness, the Norwegian power market 

must be analysed keeping in mind EU energy policies. 

Electricity prices 

As explained, the Norwegian bidding areas represent a geographical area. The price in the spot market is 

decided for the different markets by the supply and demand in each bidding area. When the supply 

decreases, the price increases, everything else equal. The same is true for higher demand. Spot prices do not 

necessarily need to differ between areas, but historically they have differed. The underlying cause of this is 

that the power situation differs from one region to another (NOU, 2023, s. Ch. 8), and bottlenecks in the grid 

between areas can stop the power from flowing from one area to another. Price differences between 

bidding areas give incentives for power to move to where it is most needed.  

Power prices seen by end-users can be based on the spot price, fixed-price contracts, or something in 

between. In Norway, the share of each type depends on the type of consumer. Power-intensive industries 

typically use fixed-price contracts, while most households have power prices dependent on spot prices 

(Statistics Norway, Retrieved 07.05.2024). In addition to the power price end-user prices must account for 

grid tariffs, electricity tax, value-added-tax (VAT), and electricity certificate prices.  

During the fall of 2021, electricity prices experienced a rapid increase resulting in higher prices, especially in 

the southern bidding areas. This trend is described for spot prices in greater detail in the section on “Day-

Ahead Electricity Prices”. As explained in the Official Norwegian Report (2023) the new price situation 

created a shift in the distribution of income/cost for different groups. This was the foundation for the 

introduction of the power price subsidies, as explained in the section on “Other policies”.  
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Demand-Driven Power Market 

The Norwegian power market can be described as a demand-driven power market where the market 

output is actively adapted to consumption patterns, rather than by the supply side. This is often 

characterized by low price elasticity in the demand for electricity and relatively higher elasticity of the supply 

side. Electricity is a necessity in modern societies, and numerous studies point to the low flexibility in the 

electricity demand. Electricity supply in Norway is highly dominated by reservoir hydropower which because 

of its storing ability is relatively more flexible in the short run than the electricity demand. In the long run, 

however the flexibility of reservoir hydropower supply is low as the total production is decided by the inflow 

to the reservoirs.  

Because of the demand-driven power market the hours with high electricity prices are also the hours with 

the highest demand for electricity. That is, the hours with high prices are the hours where the need for 

electricity is the largest, and therefore the hours where production is most needed. If a policy has an effect of 

lowering production in these exact hours, the power system run the risk of not having enough production to 

meet demand, creating instability in the grid. 

Thema Consulting (2022) states that challenges in the power balance5 (Norwegian: effektbalanse) occur 

during peak load hours in the morning (07-11) and in the afternoon (17-19) during the coldest winter days 

and follows consumption peaks from households and commercial buildings. They also expect the issues with 

the power balance to occur more often towards 2050 due to a tighter energy balance6 (Norwegian: 

energibalanse).  

 

2.2. Hydropower production in Norway 

Hydropower as a source of electricity 

Hydropower, also known as hydroelectric power, is a renewable and primary energy source that generate 

electricity by converting the kinetic energy of water into electrical energy through generators. Hydropower 

can be divided into different types, based on the plant’s operations. Reservoir hydropower is a type of 

hydropower generation that involves large dams storing water, which is released to flow through turbines to 

generate electricity. Run-of-river (ROR) hydropower generates electricity through turbines using the natural 

flow of rivers. Pumped storage hydropower plants pump water from a reservoir to another reservoir at 

higher elevation during times of low electricity prices, making the foundation for higher production from the 

higher reservoir. Other types of hydropower include tidal and wave power. This thesis mainly focusses on 

reservoir hydropower. 

An important distinction between different types of energy sources is whether it is regulated or variable, 

which refers to how controllable the output from these energy sources is. Regulated energy sources can 

adjust output based on market conditions, such as demand. Variable energy sources are less controllable as 

their output depend on other factors, such as environmental conditions. Reservoir hydropower is considered 

as a regulated energy source, while ROR is placed in the group of variable energy sources along with wind 

and solar power. 

Hydropower is based on water driving turbines again generating electricity. This makes electricity production 

from hydropower highly dependent on the water cycle where inflow vary, both from one year to another 

 

5 Thema defines power balance as an equilibrium between production capacity and consumption during 

peak load hours on cold days in the winter. 
6 Thema defines energy balance as the balance between energy production and consumption year by year. 
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and between seasons. Water inflow is highest when the snow melts during spring/early summer make up 

the majority yearly reservoir filling. The inflow normally declines towards the end of summer but increases 

again during the autumn. In the winter months inflow is generally very low (Ministry of Energy, Retrieved 

07.05.2024 b). This sets restrictions on the supply of hydropower and are factors which is difficult to alter 

using policies. In practice, this means that total production long-term cannot be changed from the high-

price contribution (HPC). Therefore, short-term allocation of production is a more interesting focus for this 

thesis. 

Reservoir hydropower as a source of electricity 

Unlike variable energy sources, reservoir hydropower is easily turned on and off from changing market 

conditions at low costs. This allows for flexibility in when to produce, making the elasticity of hydropower 

production relatively more flexible, thereby making it an interesting energy source for this thesis. Because of 

this ability to regulate production producers need to decide on when to produce based on the value the 

production gives for each point in time: the water value. 

The main advantage of reservoir hydropower e is its natural storing capacity. Reservoirs allow a transfer of 

water from high-inflow periods to lower-inflow periods. However, like batteries, reservoirs have a limit on 

how much water and potential power they can contain. This constraints production and can alter the optimal 

decision to produce for hydro plants. If the reservoir is full, it runs the risk of running over, meaning that no 

electricity is produced from the overflowing water, providing no income. 

Also, other constraints could be set on the production of electricity. E.g. water takes time to transport, and 

one might not be able to produce at full capacity instantly. Today reservoirs often exist linked through rivers 

with several other reservoirs, meaning that the production at one plant affects downstream plants. This is not 

accounted for in this analysis. 

 

Hydropower in Norway 

Norway's topography and numerous rivers make the country well-suited for hydropower production. The 

country has a long history of harnessing water resources for electricity generation dating back to the late 

1800s when the first hydropower plant was built in Telemark (Norwegian Government, Retrieved 07.05.2024 

a). The construction of hydropower plants in Norway accelerated during the first half of 19-hundreds. Many 

of the hydropower plants are in the western part of the country where the terrain is mountainous, and the 

water resources are abundant.  

Production Capacity 
Installed (production) capacity refers to the maximum amount of electricity that can be generated at any 

given time under optimal conditions. At the beginning of 2023, the Norwegian power supply had a total 

installed (production) capacity of 39 703 MW, of which 33 691 MW came from hydropower plants (Ministry 

of Energy, Retrieved 07.05.2024 b). The number of hydropower plants in Norway at the same point in time 

amounted to 1 769, of which more than 1240 is storage reservoirs. 

Hydropower, and especially that from reservoirs makes up a large storing capacity in both Norway and 

Europe, providing flexibility to the grid in when to produce. Almost 50% of European reservoir capacity is in 

Norway (Statkraft, Retrieved 07.05.2024 a). Total reservoir capacity corresponds to 70% of annual Norwegian 

electricity consumption and the 30 largest reservoirs provide about half the storage capacity in Norway 

(Ministry of Energy, Retrieved 07.05.2024 b). As the world transition towards a greener economy the flexible 

characteristics of hydropower will be crucial as more intermittent energy is added onto the grid.  

Much of the potential (production) capacity of hydropower in Norway is already exploited (NVE, Retrieved 

07.05.2024 c). Also, much of the remaining hydropower potential is protected. This means that few new 
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hydropower plants will be added to the grid in the period analysed in this thesis: 2021-2023. However, most 

of the reservoirs were constructed before 1990 (Ministry of Energy, Retrieved 07.05.2024 b) providing some 

potential for Norway to increase its hydropower capacity through upgrading existing hydropower plants to 

increase efficiency. In fact, installed capacity, has been slowly increasing over the past couple of years, as 

shown in Figure 2-1 below. The increase in production capacity can reflect increasing investments in the 

hydropower sector, which is not the focus of this analysis. Therefore, the analysis must take account for this 

in the analysis such that our data on production does not reflect the increase in installed capacity.  

 

Figure 2-1. Installed capacity among Norwegian 
hydropower producers (blue area) for 2019-2024. 
Source: (Elhub, Retrieved 12.05.2024 a) 

 

 

 

 

 

 

 

 

 

Hydropower Production 
Today, hydropower is the most important source of electricity generation in the Norwegian electricity sector. 

Norway has the highest relative production of electricity from hydropower in the world. Production by 

hydropower plants is about 136 TWh in a normal year, which makes up about 88% of all Norwegian power 

production (156 TWh) (Ministry of Energy, Retrieved 07.05.2024 b). Globally, 16% of the total supply of 

electricity comes from hydropower (International Hydropower Association, 2022, s. 6). Together, this implies 

that changes in hydropower production are likely to alter overall electricity production in Norway, potentially 

having effects on the entire electricity market. 

Hydropower production in Norway varies within a year. Figure 2-2 below shows the production of electricity 

from hydropower production and the net7 consumption of electricity, per month, in Norway from 2019 to 

2023. The figure shows how hydropower production follows the same seasonal pattern as net consumption 

of electricity. This emphasises the role of hydropower in meeting national consumption of electricity, and 

hence the severity of changes in the production of hydropower. 

 

7 Net consumption of electricity is by SSB defined as “the sum of all measured electricity consumption for 

primary industries, secondary industries, tertiary industries and households”. 
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Figure 2-2. Production of electricity from hydropower production and net consumption of electricity, Norway, monthly, 
2019-2023. (Statistics Norway, Retrieved 07.05.2024, s. Table 12824) 

 

Size of Norwegian Plants 
Table 2-1. Size and number of Norwegian hydropower plants. (NVE, Retrieved 07.05.2024 h). 

Category (MW) Number Maximum output (MW) 

(norwegian: ytelse) 

Average annual 

production ability 

(TWh)8  

< 1 582 191 0.7 

1-10 838 3114 11.1 

10-100 265 10 021 43.6 

≥ 100 84 20 404 81.8 

TOTAL 1769 33 730 136,9 

    

Pumps 32  -0.3 

 

In Norway, most of the electricity production from hydropower plants comes from few, but large plants. 

From the Norwegian Water Resources and Energy Directorate (NVE, Retrieved 07.05.2024 h) the numbers 

for the size of the Norwegian hydropower plants are obtained, summarized in English in the table above. 

The table shows statistics of existing hydropower plants as of 31/03/2023. Notice that even though there are 

few hydropower plants in the largest size span (≥ 100), this group stands for about 60% of both maximum 

output and average annual production ability. Also, the plants in the two categories <10 MW account for 

80% of the plants (number), but they make up only 8,5 % of average annual production ability and 10% of 

maximum output. 

Lastly, observe that 32 pumps were registered, with an average annual production ability of -0.3 TWh, which 

is only 0,2% when compared to the total average annual production ability. The table shows that the average 

annual production ability of pumped hydropower is relatively small. This fact is supported by the monthly 

statistics from (Statistics Norway, Retrieved 07.05.2024, s. Table 12824) when measuring electricity 

consumption from pumped storage against hydropower production. 

 

8 Estimated based on water influx in the period: 1991-2020. (Norwegian: Midlere årsproduksjon) 
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As of September 2023, 88% of all hydropower plants in Norway are owned by the public, which mainly 

consists of the state-owned Statkraft (NVE, Retrieved 07.05.2024 a). Other large suppliers are Hafslund, Å 

Energi and Norsk Hydro. 

Environmental concerns 

The environmental concerns of hydropower, and regulations following from these are not accounted for in 

the analysis of this thesis. Hydropower is the renewable energy source which causes most deaths around the 

world per unit production (Our World in Data, 2020) and the most emission intensive energy source among 

the renewable energy sources. However, hydropower production emits substantially lower GHG emissions 

than non-renewable energy sources, but this factor plays a minor role as almost all Norwegian electricity 

production is renewable. More relevant for Norway is that hydropower production can affect biodiversity of 

areas of production as it alters water levels. Also, the transportation of hydropower in the electricity market 

causes large interventions of nature. Several regulations address these concerns and limit the negative 

impact on biodiversity. Thereby these regulations can affect the production levels of hydropower producers. 

 

2.3. The Norwegian high-price contribution (HPC) 

Following the spot price increase in the fall of 2021 the Norwegian government introduced a tax to 

redistribute more of the extra ordinarily high income from power production (Ministry of Finanace, 2022, s. 

18). The tax, namely the high-price contribution (HPC) (Norwegian: høyprisbidraget) is a 23% tax9 on the 

portion of the spot price above 0.7 NOK/kWh. The below presentation of the HPC builds on the explanation 

by the Norwegian Tax Administration (Retrieved 07.05.2024 b). 

The HPC was announced as part of the presentation on the state budget on 28 September 2022 (Norwegian 

Government, Retrieved 07.05.2024 c), and took effect from and including that date for hydropower stations 

that own generators with a rated power output of 10,000 kVA or more (large producers). From 1 January 

2023, it also included hydropower stations of at least 1 MW and licensed wind power plants. The policy is 

designed as an excise duty authorized under the regulation on excise duties (Regulation on excise duties, 

2001). When introduced it was estimated, with a great degree of uncertainty, that the proposed tax will 

increase tax revenues by around NOK 16 billion annually. 

Specifically, for power traded in the spot market, the HPC is 23% of the monthly average of price that 

exceeds 0.70 NOK per kWh. The average price is calculated based on income from power production per 

month, divided by the power production in the same month. The basis for the duty is the portion of the 

power price that exceeds NOK 0.70 per kWh. The specific formula for calculation is shown below.  

𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑘𝑊ℎ
− 𝑠𝑡𝑟𝑖𝑘𝑒 𝑝𝑟𝑖𝑐𝑒 ∗ 𝑡𝑎𝑥 𝑟𝑎𝑡𝑒 ∗ 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑘𝑊ℎ 

By taking this monthly average calculation, the HPC can give incentives to produce at either very low prices 

or very high prices to optimize their income, thereby changing their bids to the spot market. However, 

undergoing market manipulation is not allowed under today’s regulation and giving bids that does not 

reflecting firms marginal cost of production is an example of such market manipulation. To clarify this issue 

the Norwegian Energy Regulatory Authority (RME) provided an instruction for bidding under the HPC stating 

that “it may involve market manipulation, or attempts at market manipulation, to adapt bidding in order to 

optimize income within the calculation period for the high price contribution” (RME, Retrieved 07.05.2024 c, 

 

9 Excise duty (Norwegian: særavgift) 
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s. translated). Because of this clarification the thesis do not especially account for the above-mentioned 

changes to bidding strategies in this thesis. 

The duty is calculated separately for electricity valued at the spot market price, licence power, and power in 

accordance with withdrawal rights and own power (Norwegian: egenstrøm). Other contracts and 

agreements relating to power are calculated as one. If the enterprise subject to the HPC owns several power 

plants in different pricing areas, the calculation is made per bidding area and then aggregated for the 

enterprise. Volumes are allocated to the bidding area where the power has been supplied. 

Introducing a tax on production during high-price hours changes relative prices between hours and thus 

give lower economic incentives to produce during high-price hours. As the tax base is the share of the price 

exceeding 0,70 NOK/hour, the transformation caused by the tax is monotonic, meaning that the policy alone 

does not change what hour gives most revenue under no uncertainty. This implies that the economic 

incentives to produce are still the largest in the high-price hours, compared to low-price hours. Still, the 

relative difference in price between hours over time is altered, meaning that the allocation of production 

over time can be changed if there is a presence of uncertainty.  

Along with the voting on the state budged the parliament decided on 14 December 2023 to terminate the 

high-price contribution with effect as of 1 October 2023 (Norwegian Tax Administration, Retrieved 

07.05.2024 a). Power producers must still submit special tax notices for October and November, but the tax 

authorities will refund the tax paid for these two months. The discontinuity between the day of the vote and 

the publication date of the change makes the ending of the tax difficult to analyse. As explained in the 

section on “Specifics of the High-Price Contribution” this thesis takes steps to account for this issue. 

The Norwegian state-owned company Statkraft, Europe’s largest distributor of renewable energy, warned 

that the HPC changes water values, thereby reducing incentives for sound disposal of hydropower. This was 

stated by Julie Wedege, Director for policy and ownership at Statkraft, as highlighted in a news-article in 

EnergiWatch (2023).  

 

2.4. Other policies 

In addition to the high-price contribution (HPC) the Norwegian government has introduced other policies 

affecting the electricity market. Here, some of them are introduced. Information on policies not mentioned 

here that hydropower plants are subject to, is available at the website of the Norwegian Tax Administration 

(Retrieved 07.05.2024 d) or at the Ministry of Energy (Retrieved 07.05.2024 c). 

Power Price Subsidies 

As a reaction to the price increase during the fall of 2021 and spring 2022, the Norwegian government 

introduced power price subsidies in December 2021 (Norwegian Government, Retrieved 07.05.2024 d). The 

subsidy applies to households with consumption below 5 000 kWh per month per meter. The amount is set 

as a percentage of the price difference between 0,7 NOK/kWh (excluding VAT) and the monthly average 

price at the power exchange. This percentage was 55% from December 2021 (inclusive), changed to 90% 

from 1 September 2022, and 80% from April 2023 (inclusive). From September 2023, the electricity subsidy is 

90% and based on the average electricity price hour by hour in the local bidding area. The subsidy is paid by 

the grid company. In addition to the policy for consumer, there are several other support mechanisms 

towards the high electricity price – a full overview can be found on the website of Norwegian Government 

(Norwegian Government, Retrieved 07.05.2024 b). 
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Climate Policy 

Energy systems are closely linked with climate policy, especially in the form of carbon pricing. One example 

is the effect of the EU Emission Trading System (ETS) on the Norwegian electricity network, to which 

hydropower is closely linked. The EU ETS is a tradable quota permit system for GHG emissions. This means 

that it sets a maximum quantity of allowed CO2 (equivalents) emissions for certain sectors within the EU and 

lets sector actors trade permits. This results in setting a price on carbon emissions, heightening production 

costs for actors with emissions in the affected sectors – resulting in lower profitability in the affected sectors.  

Lower profitability in emission intensive sectors makes it relatively more attractive to invest in the renewable 

sectors.  As hydropower is a substitute to this energy, this can shift demand from non-renewable sources to 

hydropower. This higher demand again drives up the water value, yielding higher profits in the hydro sector. 

In the longer run this results in more hydropower producers. 

Resource Rent Tax 

Resource rent refers to the surplus profit earned from having exclusive access to the extraction of natural 

resources. That is, access above what would be earned in a competitive market. Resource rent tax aims to 

capture a portion of this surplus for the government and is typically imposed on the profits generated by 

companies engaged in resource extraction activities. Thereby, it is levied on the revenue earned from selling 

the extracted resources minus allowable deductions for expenses related to extraction. 

In Norway, a resource rent tax (Norwegian: grunnrenteskatt) on hydropower production was first introduced 

in 1997 (Norwegian Tax Administration, Retrieved 07.05.2024 c). The tax applies to hydropower stations that 

own generators with a rated power output of 10,000 kVA or more in the income year. The rate of the 

resource rent has been adjusted upwards over time, lowering the profitability of hydropower facilities. From 

and including the 2021 income year, the ground resource rent tax was converted to a cashflow tax. The 

most recent change was in 2022 (inclusive), where the effective tax rate was increased from 37% to 45%. In 

addition to the resource rent tax, the hydropower plants must pay a natural resource tax (Norwegian: 

naturressursskatt) to the municipality and state governor.  

While both the resource rent tax and the HPC relate to natural resource extraction, a resource rent tax is a 

form of taxation on profits generated from resource extraction, whereas the HPC is a tax on the revenues of 

resource extraction alone during periods of high electricity prices. Thereby, the HPC does not consider the 

costs of production. By also accounting for costs, the resource rent tax makes investments that were 

profitable before the tax also profitable after the tax, thereby considered as a neutral tax in theory if the tax 

rate is fixed for the entire lifetime of the investment. However, when the rate of the resource rent tax varies, 

the tax might lead to some changes in investments to the sector. As explained further up, this thesis takes 

measures to account for changes in investments to hydropower plants. Because of this, it can be concluded 

that it is not necessary to account for changes in the resource rent tax specifically in the analysis.  
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3. Literature review 

The purpose of this section is to provide insight into previous research and analysis on the topic of taxing 

hydropower production. Few previous studies have been conducted on the topic of the effect of taxes on 

hydropower production, but a wide literature exist on describing the supply of hydropower. 

 

3.1. Tax on Hydropower Production 

The Norwegian electricity system is unlike any other electricity network in the world. One reason is that an 

exceptionally high share of total energy consumption comes from electricity (electric heating and electric 

cars/transportation). Few other countries have the same reliance on electric energy. Also, as in the 

background section, most of Norway’s electricity production comes from hydropower. To the authors 

knowledge, no other countries rely as heavily on hydropower as Norway. The authors have not found other 

instances where a similar production tax on hydropower production is implemented. Hence, as few countries 

have these types of taxes, there is also close to no analysis on the topic of taxes on hydropower production. 

One idea would be to look at taxes on other energy sources. However, the results would not be applicable, 

as the characteristics of reservoir hydropower do not resemble other energy sources. Not having supporting 

literature to look to has been a challenge when writing this thesis.  

Excise Taxes 

A study conducted by Thema Consulting (2022) on behalf of KS investigated the economic consequences of 

the tax proposal of the resource rent tax and the high-price contribution for municipal and county owners. 

They find that the tax proposal directly affects both the yield and indirectly the equity value of the owner 

municipalities /counties. The tax proposal is estimated to reduce the total capital by 24% of the equity value, 

amounting to 70 billion, of which NOK 22 billion results from the high-price contribution (HPC). They expect 

the dividend level to fall 25-30% due to the tax proposal. 

The NOU (2019) on taxation of hydropower plants also provides some useful information in this context. 

The main task of the report is to assess whether the current hydropower taxation is an obstacle to 

economically profitable measures for society in the power sector. They divide taxes into two general groups: 

profit-based and gross taxes, which refer to the tax’s dependence on profitability. They place production 

taxes in the second group. They state that production taxes can be designed as a value-based tax or as a 

quantity tax, of which the high-price contribution would fall in the first category (NOU, 2019, s. 87). They 

state that gross taxes result in the companies will assess investment and operating decisions differently with 

tax than in a situation without.  

Amundsen, Andersen, & Sannarnes (1992) investigate rent taxes on Norwegian hydropower generation. 

They analyse the effects of six different tax systems on hydropower plants, including an excise tax like the 

high-price contribution (HPC). They find that using excise taxes helps avoid problems with cost-

consciousness. However, they are not very neutral to investments, as they directly affect the revenues earned 

from production without differentiating on the economic rent generated by each power plant.   

 

3.2. Explaining hydropower supply 

Førsund (2015) in the book "Hydropower Economics", provides a comprehensive examination of the 

economic aspects related to hydropower production. The author addresses various economic factors tied to 

hydropower generation, including cost structures and allocation of water across periods. He also addresses 

how technical and environmental considerations impact the economics of hydropower. The book provides a 
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theoretical framework for analysing hydropower supply from an economic perspective, which the thesis 

utilises and explain in greater detail in the Theory-chapter. 

Jahns, Podewski & Weber (2020) divides the literature on modelling the operation/bidding behaviour of 

hydro reservoirs into four groups: 1) simple parametric functions, 2) econometric approaches, 3) stochastic- 

and 4) deterministic optimisation approaches. The literature is vast, and this thesis will only mention parts of 

the knowledge available. As the goal of the thesis is to explain the relationship between variables, and not 

on optimising production or bids ahead of time our focus in this section is more on the econometric side. 

However, elements from stochastic optimal approaches must be included to explain the relationship. This 

chapter only investigates research from Norway or the Nordic setting to limit the search. 

Econometric approaches 

Among studies with econometric approaches, the article by Birkedal & Bolkesjø (2016) explains how various 

economic factors influence the weekly dispatch of regulated hydro in Norway. The authors analyse the 

question using a simple OLS model, including the explanatory variables hydrological balance, inflow, 

temperature, power prices, price expectations, and short-run marginal costs (SRMC) for coal power 

generation. Upon finding signs of endogeneity between Norwegian power prices and hydropower 

production, they expand the OLS into a 2SLS model, using German electricity prices as an instrument 

variable (IV) for Norwegian electricity prices. Results indicate a significant impact on short-run hydro supply 

of hydrological balance, inflow, temperature, SRMC of coal power generation, and power prices. Thereby, 

the findings suggest that a few predictable determinants can explain a substantial portion of the variation in 

weekly hydro supply. Model results for the entire sample show that a 1 % increase in the power price would 

increase the supply by 16,8 GWh. By coupling the estimated model (in a simpler OLS-version) with observed 

values of hydropower generation, they find an average absolute deviation of 13,6 % but conclude that 

adding a lag structure to the model can improve the model's predictive power further. 

Jahns, Podewski, & Weber (2020) develop different econometric approaches and combine them with 

fundamental models. They investigate the supply curves for hydro reservoirs in Norway. The paper 

formulates four different hypotheses for the supply curves of hydropower. They test these empirically using 

different model specifications. By estimating the various model variants to Norwegian data from 2016 to 

2018, and then testing them on 2013 data, they confirm their hypotheses’. They find that the water value 

depends on the deviation from the seasonal equilibrium reservoir filling level and the variable costs of coal-

fired power plants. 

The master’s thesis by Løfgren & Ingstad (2023) investigates the development of water values for 

hydropower production as a result to the 2021 energy price shock. They estimate water values using a 

double censored Tobit model, including reservoir filling, the TTF day-ahead gas price, the European carbon 

spot price, European gas storage and temperature deviations from a historical mean. 

 

Stochastic optimisation approaches 

Stochastic dynamic programming (SDP) and stochastic dual dynamic programming (SDDP) are both 

stochastic optimisation approaches. These approaches are often well used for modelling energy systems 

while accounting for uncertain variables like inflow, but frequently entail considerable computation time. A 

widely used SDP approach used in the Nordic context is Samkjøringsmodellen. Wolfgang et al. (2007) for 

SINTEF on behalf of the Ministry of Energy (ED), investigates the reservoir disposal before and after the 1991 

deregulation (Norwegian Energy Act). They use “Samkjøringsmodellen” to solve their electricity market 

model (EMPS) optimisation problem. SINTEF by Wolfgang, Naversen, & Mo (2022) on request from the ED, 

performed a similar model in their assessment of the power situation in 2021-2022. Using 

Samkjøringsmodellen to investigate optimal reservoir water use in the last half of 2021, they found that 
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hydropower producers (HPPs) underestimated both prices and the water value. The consequence of this was 

higher production than was socially optimal. 

Aasgård et al. (2017) present a methodology for price-taking hydropower producers to optimise bids to the 

Nordic spot market. They do this by setting up a stochastic model in which hydropower producers optimal 

production schedules are found by maximising 1) the short-term revenues from selling power and 2) the 

value of water left in the reservoirs at the end of the horizon, 3) less the costs related to start-ups. Also, they 

point out that other stochastic parameters such as load, maintenance and prices in different markets may be 

included in the model in the future. They investigate how uncertainty in inflow can affect bid curves using 

stylised inflow uncertainty. Results show that the production strategy is affected by inflow uncertainty making 

bids better reflect the true opportunity costs. They also state that flexibility among downstream reservoirs is 

reduced by having multiple reservoirs along one riverbed. 

Gjerden et al. (2015) investigated hydrothermal scheduling in Norway using stochastic dual dynamic 

programming (SDDP), where each hydro reservoir is modelled individually. By comparing the results of an 

SDDP model with the results of an aggregation/disaggregation model, they found SDDP to be 

computationally heavy and disadvantageous for system simulation when using historical inflow. 
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4. Theory 

This thesis investigates how the high-price contribution (HPC) alters hydropower-producing companies’ 

(HPPs) production decisions. To do this, the thesis describe how production decisions are made. Second, the 

concept of taxes on electricity production is introduced, then analyse how such taxes affect the production 

decisions. Any analysis of hydropower production decision needs to be founded on the physical 

characteristics of hydropower. The chapter takes base in the explanations in Førsund (2015, s. 15). 

An alternative approach to investigating this is to ask HPPs to see their optimisation mechanisms or explain 

how decisions are altered. However, this is often highly confidential information, and there is often a 

discrepancy between communication and what is happening in the marketplace. Therefore, this thesis takes 

the approach of first building a theoretical argument and then testing the hypothesis empirically. 

 

4.1. Hydropower Producers’ Production Decisions 

Profit Function 

The goal of economists is often to maximise the social welfare 

of a market. That is, the sum of consumer benefits (CB) and 

producer benefits (PB), as shown in Figure 4-1. However, the 

focus of this thesis is not on social welfare, but on the producer 

surplus as this is the variable of interest for hydropower 

producers. By making this simplification the focus of the analysis 

is described in a simplified manner as the purple area in Figure 

4-1. 

Figure 4-1. Simple illustration of supply and demand for electricity 
from hydropower. Here, p is the price and e is the hydropower 
produced for that period. 

 

As discussed in the background section, the majority of hydropower producers are owned by the 

government in some form. However, most are registered as commercial firms and, for all practical purposes, 

act like private companies. From this, it can be assumed that HPPs maximise the producer benefits in the 

form of production profits. Profits at time 𝑡 are described as revenues minus costs, both at time 𝑡 =

1, 2, . . . , 𝑇. 

𝜋 = 𝑝 𝑒 − 𝐶𝑒        ( 1 ) 

Profits depend on 𝑝 , electricity prices at time t, multiplied with 𝑒 , the electricity produced from regulated 

hydropower at time t (flow variable). Note that 𝑝  is here the equilibrium price in the market at the relevant 

period, not the inverse demand function giving consumers marginal willingness to pay. The production of 

electricity from regulated hydropower, 𝑒 ,  is measured in MWh and can be described as a function of the 

release of water during one period, 𝑟 , measured in cubic meter(𝑚 ), and the gross head of the reservoir, 

which is “the vertical height from the upper level of the dam to the outlet of water from the turbine” 

(Førsund, 2015). The head is again affected by the release of water for production itself, but this is not 

accounted for in this analysis. To simplify the statement that the produced electricity from regulated 

hydropower is equal to the release of water during the same period can be made. That is:  𝑒 = 𝑟 , which 

implies that 𝑀𝑊ℎ = 𝑚 . Each reservoir also has a production capacity, �̅�, which gives an upper limit on the 

electric energy (MWh) that can be produced at each point in time. The capacity is decided either by 1) the 

maximal water flow of the feeding pipe, 2) the turbine capacity or 3) the transmission capacity from the 
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plant, of which point two is often the most restrictive. This analysis assumes that the production capacity 

constraint 𝑒 < �̅� is not binding. 

Total costs are described as production (𝑒 ) multiplied with marginal costs (𝐶). Hydropower production have 

high initial investment, but low marginal costs as production is easy to turn on and off. The expression above 

assumes that capacities are present and fixed, meaning that only variable costs (costs that vary with the level 

of output) should influence current operations. This is a reasonable assumption as the time horizon of 

question for the analysis is short, and there is taken steps to leave HPPs with capacity improvements out of 

the data used for the thesis. Also, most of the potential for hydropower in Norway is already exploited as 

previously explained. In this analysis the input to production is water, which is not bought on a market but 

given to us as a natural renewable resource. Førsund (2015) states that empirical information indicates that 

variable costs can be neglected in an analysis on hydropower production as the input to production, such as 

number of employees and maintenance, do not depend on the output. Following Førsund’s this thesis 

assumes that there are zero variable costs and remove the cost term from the equation, leaving the profit 

function: 

𝜋 = 𝑝 𝑒      ( 2 ) 

Production over time 

Hydropower producers cannot control inflow into the reservoirs and must take this as given in the analysis. 

This means that the key question in hydropower production, made possible by storage capacity and 

flexibility in when to produce, is the time-aspect, whether to produce the available water in the reservoir 

now or later. Producers allocate production (choose 𝑒 ) such that Π, the net present value (NPV) of all 

single-period profits, is maximized. This thesis will focus on a finite two-period setup: the now and the 

future. That is 𝑡 = 1 represents the present time-period while 𝑡 = 2 represents the future. In this setup 

discounting can be disregarded for simplification. This analysis use discrete time as all practical applications 

of hydro production takes place within discrete time units. With this the maximization problem can be 

written as in formula 3 below. The formula rests on several conditions that will be explained in the following 

sections. 

𝑀𝑎𝑥 ,  𝛱 =  𝑀𝑎𝑥 ∑ 𝜋  =  𝑀𝑎𝑥 ∑ 𝑝 𝑒  =  𝑀𝑎𝑥 { 𝑝 𝑒 + 𝑝 𝑒  }        ( 3 ) 

Regulated hydropower has an opportunity cost, named its water value, as “production today means 

sacrificing the potential to use the same water for production in the future” (Førsund et al., 2005). These are 

the profits companies forgo in the future by choosing to produce today. The water value can also be 

regarded as the increase in producer surplus of getting one more unit of water. Observe that the expression 

above is a function of only 𝑝  and 𝑒 . This means that future profit depends on the electricity prices in the 

future. When looking at the spot market this means that the water value is affected by the bidding area in 

which the production takes place, and again factors that affects that bidding area. In a market without 

market power, each producer is not able to affect the price in that market. That is, the price is outside the 

control of the HPP. However, two recent master’s thesis find indications of market power among Nordic and 

Norwegian HPPs (Øien, 2019) (McDermott, 2020). The water value also depends on todays and tomorrows’ 

production, which again is dependent on the weather, and where in the waterway they are located. 

 

Constraints 

The maximization problem is only constrained by the total inflow during the period., the way it is displayed  

here. This is that the sum of production in all periods (T) cannot be higher than the total inflow during the 

same period. 

∑ 𝑒 ≤ 𝑊      ( 4 ) 
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In a two-period setting this is that the production in period one, 𝑒 , and the production in period two, 𝑒 , 

together cannot exceed the total inflow during all periods, 𝑊. 

𝑒 + 𝑒 ≤ 𝑊 

If the constraint is not binding, i.e., 𝑒 + 𝑒 < 𝑊, the Lagrange multiplier must be equal to zero. That is, if the 

amount of water increases, the producer surplus wouldn’t get any higher. In this simple setup with overflow 

of water and no costs related to wasting water, the price in both periods must be equal to zero when there 

is abundance of water.  

Reservoir constraints 
There are several other constraints that explain the allocation of water over time more realistically. Still, the 

topic of this thesis is not to explain the allocation of hydropower production over time to great detail, but 

how the allocation is changed due to the high-price contribution (HPC). This allows us to take a simplistic 

format when explaining the setup around the changes. 

The setup does not consider that the quantity available for production in one period depends on the water 

in the reservoir. The amount of water in the reservoir is dependent on several different factors: inflow, rainfall 

over the reservoir, evaporation, seepage (infiltration losses) and overflow (spillway). Inflow is again affected 

by the weather and other reservoirs upstream in the same waterway. In a cold country like Norway, it does 

not need to specially account for evaporation, and seepage and rainfall are neither considered. This analysis 

assumes that the production of electricity is efficient (i.e. no overflow), as it is not economically rational if 

prices are positive. Also, the water in the reservoir today depends on past production. 

We can mathematically express the water in the reservoir at the end of period t, 𝑅  (stock variable), as a 

reservoir constraint. That is, 𝑅  must be equal or less than the reservoir level at the end of the period before, 

𝑅 , plus inflow in the current period, minus the release of water for production during the current period, 

𝑟 . As it is assumed that 𝑒 = 𝑟  the constraint becomes: 𝑅 ≤ 𝑅 + 𝑤 − 𝑒 . An inequality in the equation 

would imply that there is overflow. Here, 𝑤  is the inflow during one period. 

Also, it could be considered adding the condition that the reservoir filling must also be below the known 

maximum reservoir capacity due to physical reasons. That is: 𝑅 ≤ 𝑅 . In such a constraint id would be 

important to consider both < and =, that is, if the constraint may be binding (we would like to save more, 

but not possible) or it may not be binding (capacity is more than big enough).  

Lastly, reservoirs can be required to keep a minimum level minimum reservoir capacity due to environmental 

and security reasons. That is, 𝑅 ≤ 𝑅 . 

 

Uncertainty 

Until now the feature of uncertainty in the modelling of the optimal production problem have been 

neglected. Equation 3 showed that allocation of production is highly dependent on prices today and in the 

future. However, the production decision is made in the current period while the future price is known only 

by predictions. This uncertainty of price affects the production decisions. The best option in the current 

period is to formulate an optimal production plan by maximising the expected sum of producer surpluses. 

Below, the decision problem is reformulated, evaluated in period one under uncertainty. Here, 𝐸 is the 

expectation and 𝑝  is the stochastic price in the second period.  𝑝  is assumed to have a known distribution 

that is period specific. In the setup bellow the price in the current period is regarded as known. As described 

later in the section on data sources the price today is also uncertain as the market electricity price is 

obtained only after all bids are received. This uncertainty is disregarded for the sake of simplicity here.  

𝑀𝑎𝑥 ,  𝛱 = 𝑀𝑎𝑥 { 𝑝  𝑒 +  𝐸(𝑝 ) 𝑒  }        ( 5 ) 
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The sources of price uncertainty are many. Weather conditions can change rapidly, affecting power demand 

through the temperature or the power supply through the inflow. The situation in other countries might also 

affect demand through our transmission lines. Uncertain weather can also affect other production sources 

such as wind and solar directly, and the transmission system itself through storms creating fallouts and 

changing the maximum capacity of the network. To simplify the calculations to the topic at hand this thesis 

focus only on price-uncertainty, thereby not explicitly accounting for the fundamental reasons behind the 

uncertainty. 

 

4.2. How is production changed from the high-price contribution? 

To now the thesis has looked at how HPPs make production decisions. Now the thesis investigates how are 

hydropower-producing companies’ (HPPs) decisions about production altered because of the high-price 

contribution.  

Intuition behind taxes 

To understand how the high-price contribution affects hydropower production one first need to understand 

how the tax works. As explained in section 2.3, the high-price contribution (HPC) is a tax on production in 

hours where the price is 0,7 NOK/kWh or higher per hour. By reducing the marginal revenue from 

production to supplier the policy reduces the profitability of producing in high-price hours. By reducing the 

profitability of production, it overall also reduces the profitability of investments in hydropower production. 

Especially, it disincentivises investments that upscale generators so that the maximum production per hour is 

larger, that is, investments that can increase �̅�. These last two effects are stronger the longer the policy is in 

place, but they are not the focus of this thesis. 

The changes to the market for one hour are illustrated for a static setup in Figure 4-2, as if the producers of 

electric energy consisted of only hydropower producers. The supply curve looks different to the earlier 

presented figure because here HPPs consider the water value when deciding production bids. The original 

supply is illustrated with the dark blue line. After the HPC is introduced, there are no changes to supply while 

the price is below the 0,7 threshold. However, when the price exceeds 0,7 NOK, the supply curve pivot as 

the marginal revenue seen by producers is lower than before the HPC was introduced. In the market this 

results in a steeper supply curve and a lower quantity of electricity from hydropower is supplied for the same 

price, ceteris paribus.  

Adding the demand curve to the market, which here can be thought of as the residual demand for 

hydropower, one can see that there is no change to the equilibrium if the price is below the 0,7 threshold. 

However, when the demand crosses the supply curve above 0,7 the equilibrium shifts to a lower quantity 

supplied at a higher price. The size of these shifts will depend on the elasticity of the two curves. As shown in 

the background section, the short-run elasticity of demand for electric energy is inelastic, and the 

production of hydropower is relatively flexible in the short run. This can lessen the effects of the reduced 

production. The size of the tax is the distance between the two blue lines. The tax is zero when the price is 

below 0,7 NOK. The figure explains changes in the full market for hydropower. However, each single 

producer makes up only a small part of this market. For the individual producer the supply curve will be 

approximately horizontal up to the production capacity where it will be approximately vertical. For the 

individual suppliers it can be optimal to produce zero (corner solutions) for singular hours. 
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Figure 4-2. Effects in the market for hydropower electricity resulting from the high-price contribution. Left: low residual 
demand. Right: High residual demand. D: demand curve. S0: original supply curve. S1: new supply curve. The figure 
assesses the effect of HPC ceteris paribus and does not consider other policies e.g. the power price subsidies. 

The setup above shows the effect in a market of production from hydropower and for the residual demand 

for hydropower for one period. The effects for the electricity market in total are probably not as strong, but 

it is reasonable that some of the same effects on the quantity supplied and the price will be observed as 

hydropower makes up a large part of the total electricity production in Norway. The figure displays the 

market for hydropower as only one period, while in the electricity market the electricity markets of different 

periods must be evaluated together. That is, higher production today leaves less water to produce 

tomorrow. 

In the optimization problem 

Section 4.1 expressed the maximization problem for optimal production for one hydropower producer, in 

two periods under uncertainty of future prices and inflow. Here, this formula is updated to also capture the 

effect of the high-price contribution as described in the section above. The goal is to observe if the optimal 

allocation of production between the two periods changes as a result of the HPC. The section derives the 

production allocation under four different scenarios. First looking at the case with no uncertainty, then with 

price uncertainty. In both circumstances, the case where the HPC is present and where it is not is compared. 

The different setups can be illustrated using Figure 4-3. 

 

Figure 4-3. Illustration 
of the different 
situations considered 
when investigating the 
effect of the high-price 
contribution on the 
allocation of production 
over time. 

 

 

We set up the optimisation problem thinking of period one as the current price which set to be below the 

0,7 threshold (𝑃) for simplicity, that is 𝑝 < 𝑃. Period two is the future where there is a possibility that the 

price is above 0,7 NOK. The price in the current period is known, but there exists uncertainty of the future 

price. This uncertainty gives two different possible outcomes for the formula. If the price is above 0,7 
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NOK/hour the HPC reduces the price seen by producers per unit produced. That is, only 1 − 𝑡𝑟 (100% minus 

the tax rate) of the part of the price above 0,7 NOK is attained by producers. The tax does not consider the 

costs of production and included on the revenue side of the of the maximisation problem. The expression 

can be written as bellow, where 𝑡𝑟 = 0,23 and 𝑃 = 0,7.  

𝑀𝑎𝑥 ,  𝛱 =  𝑀𝑎𝑥 { 𝑝 𝑒 + (𝑃 + (1 − 𝑡𝑟)(𝑝 − 𝑃))𝑒  }    ( 6 ) 

If the price is below the 0,7 NOK/hour the HPC does not apply, and the profit function is as before. 

𝑀𝑎𝑥 ,  𝛱 = 𝑀𝑎𝑥 { 𝑝 𝑒 + 𝑝 𝑒  }         ( 7 ) 

Without uncertainty 

Following the logic of the policy from above the updated maximization problem is explained here. For the 

setting under no uncertainty, the thesis takes the assumption that the price in period two is higher than that 

of period 1 to visualize allocation. That is, under no uncertainty 𝑝 < 𝑝  is true for all possible values of 𝑝 . 

This can be because there might be the case when there is abundance of other intermittent energy sources 

in the first period, e.g. because of seasonal variations. 

Without HPC 
When HPC is not present the maximization problem is the same for both high and low prices in the second 

period and 𝑝  is denoted without its H/L subheading. 

𝑀𝑎𝑥 { 𝑝 𝑒 + 𝑝 𝑒  } 
Where 𝑝 , 𝑝  is known and we have the constraint: 𝑒 + 𝑒 ≤ 𝑊 

This gives us the Lagrange function: 

𝐿 = 𝑝 𝑒 + 𝑝 𝑒 − λ(e + e − W) 
We obtain the first order conditions (FOCs): 

1. 𝐿 ≤ 0   {= 0 𝑖𝑓 𝑒 > 0} 

2. 𝐿 ≤ 0   {= 0 𝑖𝑓 𝑒 > 0} 

3. 𝐿   ≤ 0   {= 0 𝑖𝑓 𝜆 > 0} 
As we look at only the two-period setting it will be economically optimal to produce all the water. Hence, 

we assume that 𝜆 > 0. This gives: 𝐿 = 0.  

We get: 

𝑝 − 𝜆 ≤ 0 
𝑝 − 𝜆 ≤ 0 
𝑒 + 𝑒 = 𝑊 
In our simple setup it will be optimal to produce all the water in one of the periods. The reason for this is 

our lack of reservoir constraints. As there are no restrictions on when we produce, HPPs will chose to 

produce everything when the price is highest. In this two-period setup the water value is decided by the 

period with the highest marginal revenue. 

 

Now, an interior solution (𝑒 , 𝑒 > 0) would imply: 

𝑝 = 𝜆 = 𝜆 = 𝑝  
𝑝 = 𝑝  

 

However, from above we have that 𝑝 < 𝑝  indicating that 𝑒 = 0. If 𝑒 = 0 we must have that 𝑒 > 0 

from the third FOC. Specifically, we get that 𝑒 = 𝑤. Here, the water value is higher than the price in the 

first period and HPPs will choose to save all the water.  

 

For example, 𝑝 = 0,69 and 𝑝 = 0,71 (𝑝 < 𝑝 ) both in NOK/kWh, Under no reservoir constraints 

producers will choose to allocate all production to the period with the highest marginal revenue. Hence, 

all production will be allocated to the second period. 
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With HPC 
After the introduction of HPC there are two possible outcomes; either the price is above the threshold P, or 

it is below. The maximization problem for a price bellow P is explained by equation 7 above. This is the same 

maximization as in the case without the HPC, yielding the same production. Hence, without uncertainty of 

future prices the allocation is the same as without HPC. However, when the price is above P the 

maximization problem becomes: 

𝑀𝑎𝑥 { 𝑝 𝑒 +  (P + (1 − 𝑡𝑟)(𝑝 − 𝑃))𝑒  } 
Where 𝑝 , 𝑝  is known, 𝑃 is the threshold for the tax (0,7) and we have the constraint: 𝑒 + 𝑒 ≤ 𝑊  

This gives us the Lagrange function: 

𝐿 = 𝑝 𝑒 + (P + (1 − 𝑡)(𝑝 − 𝑃))𝑒 − λ(e + e − W) 
Working with the FOCs described above we get: 

𝑝 − 𝜆 ≤ 0 
(P + (1 − 𝑡)(𝑝 − 𝑃)) − 𝜆 ≤ 0 
𝑒 + 𝑒 = 𝑊 
An interior solution (𝑒 , 𝑒 > 0) would imply: 

𝑝 = 𝜆 = 𝜆 = (P + (1 − 𝑡𝑟)(𝑝 − 𝑃)) 
𝑝 = (P + (1 − 𝑡𝑟)(𝑝 − 𝑃)) 

 

Setting in 𝑡𝑟 = 0,23 and 𝑃 = 0,7 we get: 𝑝 = 0,7 + 0,77 (𝑝 − 0,7) 

From above we have that 𝑝 < 𝑝 . We don’t know the exact relationship between p1 and p2, but we will 

have that  𝑝 < 0,7 + 0,77 (𝑝 − 0,7) as long as 𝑝 < 𝑝 . This again results in all production being 

allocated to the first period, leaving 𝑒 = 0.  

 

Taking the extreme example 𝑝 = 0,69 and 𝑝 = 0,71, both in NOK/kWh, we get the relationship: 0,69 <

0,7077. Hence, all production is still allocated to the second period. 

 

We observe that under no uncertainty the optimal allocation of water in the two periods does not change 

neither when the price in the second period is below OR above the 0,7 threshold of the high-price 

contribution. One condition for this is that the relationship between the prices stay the same, that is 𝑝 < 𝑝  

and 𝑝 < 𝑃. This highlights the monotonic characteristic of the tax. 

 

With uncertainty 

Following the logic of uncertainty and the policy from above we have the maximization problems below. 

Without HPC 
𝑀𝑎𝑥 { 𝑝  𝑒 +  𝐸(𝑝 ) e  } 

Where 𝑝 , is known and we have the constraint: 𝑒 + 𝑒 ≤ 𝑊 

This gives us the Lagrange function: 

𝐿 = 𝑝 𝑒 +  𝐸(𝑝 )𝑒 − λ(e + e − W) 
Working with the FOCs described above we get: 

𝑝 − 𝜆       ≤ 0 
𝐸(𝑝 ) − 𝜆 ≤ 0 
𝑒 + 𝑒 = 𝑊 
In this case, the allocation of water depends on the relationship between the marginal revenue from the 

two periods, 𝑝  and 𝐸(𝑝 ), but now the price for period 2 is uncertain. To find the expected value of a 

discrete random variable, 𝑋, we simply multiply each value of the random variable, 𝑥,with its probability, 

𝑃(𝑥). Then we add these products for each of the value of the random variable. That is: 

𝐸(𝑋) = ∑𝑥𝑃(𝑥) 
 

For simplicity we assume that there are two possible values of the random variable, 𝑝 , with equal 

probabilities. This gives: 
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𝐸(𝑝 ) = 0,5 𝑝 + 0,5 𝑝  
 

Taking one example, if 𝑝 = 0,69 and 𝑝  has two possible outcomes: either 𝑝 = 0,80 or 𝑝 = 0,60 (all 

prices in NOK/kWh). From this we get that: 𝐸(𝑝 ) = 0,5 ∗ 0,6 + 0,5 ∗ 0,8.  

Which gives: 0,69 = 𝑝 < 𝐸(𝑝 ) = 0,7. and HPPs choose to produce everything in the second period. 

 

With HPC 
𝑀𝑎𝑥 { 𝑝 𝑒 +  𝐸(𝑝 )𝑒  } 

Where 𝑝 , is known and we have the constraint: 𝑒 + 𝑒 ≤ 𝑊 

This gives us the Lagrange function: 

𝐿 = 𝑝 𝑒 +  𝐸(𝑝 )𝑒 − λ(e + e − W) 
Working with the FOCs described above we get: 

𝑝 − 𝜆 ≤ 0 
𝐸(𝑝 ) − 𝜆 ≤ 0 
𝑒 + 𝑒 = 𝑊 
In this case, the allocation of water depends on the relationship between the marginal revenue from the 

two periods, 𝑝  and 𝐸(𝑝 ), but now the price for period 2 is uncertain. Everything is as the case as for the 

uncertain case without the HPC so far. Following the same calculations, only that now the marginal 

revenue from the high-price outcome for period two is (P + (1 − 𝑡𝑟)(𝑝 − 𝑃)). This gives: 

𝐸(𝑝 ) = 0,5 𝑝 + 0,5 (P + (1 − 𝑡𝑟)(𝑝 − 𝑃)) 
 

Taking the same example where 𝑝 = 0,69 and 𝑝  has two possible outcomes: either 𝑝 = 0,80 or 𝑝 =

0,60 (all prices in NOK/kWh) we get that: 𝐸(𝑝 ) = 0,5 ∗ 0,6 + 0,5 ∗ (P + (1 − 𝑡𝑟)(0,8 − 𝑃)) 

Setting in 𝑡𝑟 = 0,23 and 𝑃 = 0,7 gives: 𝐸(𝑝 ) =  0,5 ∗ 0,6 + 0,5 ∗ 0,7 + (1 − 0,23)(0,8 − 0,7)  

Which gives: 0,69 = 𝑝 > 𝐸(𝑝 ) = 0,6885. Hence, our allocated production change and the HPP will 

choose to produce everything in the first period. 

 

In total, we have observed that under uncertainty, the allocation of production over time can be changed 

due to the high-price contribution. The setup shows the case where 𝑝 < 𝑃 – that is, the price in the first 

period is below the threshold for the HPC.  

This section investigates how the allocation over time changes at the introduction of the high-price 

contribution, both under certain future prices and uncertainty. In this simplified model without a reservoir 

constraint the resulting outcomes are corner solutions, with all available water being allocated to one of the 

periods. In a real- life electricity market there will be reservoir constraints that can halt production allocation 

to be subject to corner solutions. By not allowing production to move freely between periods water values 

will be affected when the reservoir constraint is binding. There are also multiple other factors which are not 

considered in this analysis because of its simplifying assumptions. 
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5. Research Question and Hypothesis 

This section describes the research questions (RQs) and the hypothesis of this thesis. As discussed earlier in 

the “Background” chapter electricity production in Norway is to a large extent adapted to demand, which 

makes it crucial to have enough production when demand is high. The flexibility of electricity production is 

possible by the large share of storable reservoir hydropower. If hydropower production is affected by new 

policies, this can reduce this flexibility in production. Because of the demand-driven power market electricity 

prices are driven by the demand, meaning that hours with high prices most often reflect high demand. The 

high-price contribution (HPC) affects exactly these high-price hours.  

 

5.1. Basis for Research Question 1 

When deciding when to produce, hydropower producers estimate the expected marginal revenue from 

producing one unit in a specific hour, and the water value of producing one unit of water later. The setup in 

the analysis of Aasgård et. al. (2017, s. 260) describes the objective behind allocation of water over time as a 

maximization problem. Maximizing quantity is the “revenues from selling power within the short-term 

horizon plus the value of water left in the reservoir at the end of the horizon”. This can be translated to the 

simplified theoretical discussion above by assessing the short-term can translate to today (t=1) and the value 

of water at the end of this horizon to be the water value (𝜆).  

It follows from the maximization problem that hydropower producers (HPPs) will choose to produce when 

the marginal revenue from selling power now is higher than the water value. The effect of the HPC on hourly 

allocation of hydropower can be separated into two effects resting on the same argument: the effect of the 

HPC on the marginal revenue today and the effect on water values. This section starts by explaining the 

marginal revenue effect, keeping the water value constant.  

Before the HPC was introduced the marginal revenue was the price of electricity. After the introduction of 

the HPC, the hours with a price higher than 0,7 NOK has a marginal revenue of the price minus the tax. This 

means that the marginal revenue is lower in hours with a price over 0,7 NOK after the introduction of HPC, 

compared to before its implementation. Because of this reduced marginal revenue, we in the theory section 

showed that the HPC lowers the expected marginal revenue of producing under uncertainty. It is the hours 

where at least parts of the price probability range go over the 0,7 NOK threshold that are affected by this 

effect. In cases where the whole probability range is below 0,7 NOK, the tax will not affect the expected 

income from production. 

As explained in the theory section, the HPC performs a monotonic transformation of the marginal revenue. 

This means that when there is no uncertainty the price is highest in the same hours before and after the 

introduction of the HPC. This indicates no changes to the allocation of water over time. However, HPPs do 

not know for certain what hours will have the highest price when making their bids – that is, there is an 

uncertainty of price which affects their production decision. As HPPs receive a penalty for not producing in 

line with their bids into the spot market, production plans are highly dependent on the production bids. In 

the bidding process, the spot price is still unknown but is revealed shortly after. This means that when 

making the bids, and in reality, deciding the production plan, there is still uncertainty about what the price 

will be. Production plans can also reflect participation in the intraday market, an effect that is not accounted 

for in this analysis. 

Because of the uncertainty described above, for hours whose probable price-range goes over 0,7 NOK, the 

expected marginal revenue will be relatively less after HPC than before the HPC was introduced. Therefore, 

there is reason to believe that the same hours will be allocated less production, when keeping the water-
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value constant. The theory-section displays the corner solution example of this. That for one plant all 

production will be allocated away from the period with a probable price-range going over 0,7 NOK. 

Looking at historical data on average prices for the years 2021, 2022, and 2023, in Figure 5-1 below we see 

that the price is generally higher for some hours of the day than others. We observe that the trend in what 

times of the day with high average prices follow the trend of peak consumption in household and tertiary 

services. These peaks are mainly driven by daily energy consumption habits in private households, as stated 

in the background section. The figure shows that the price in load peak hours often surpass the 0,7 NOK 

threshold historically. It is reasonable to assume that HPPs consider such historical trends when making 

production decisions. Based on this and the arguments of high-price hours above, one can expect 

production during load-peak hours to be lower after the introduction of the HPC than before. However, as 

the HPC is set only as a share of the price exceeding 0,7 NOK, we expect the effect to be rather small. 

 

Figure 5-1. Average spot price and -consumption for different hours of the day, all bidding areas in Norway, 2021-2023. 
Source: Day-ahead spot price (NOK/kWh) (left axis) is described in section 6.3. Electricity consumption is the sum of the 
consumption in household and tertiary services (kWh) (right axis) is retrieved from Elhub (Elhub, retrieved 07.05.2024 c). 

Now over to the second effect of the HPC on hourly allocation through the water value. The argument from 

above states that the HPC can alter allocation between hours of the day when price is uncertain, due to 

differences in marginal revenue. The price has also varied through the year historically, with lower prices in 

the summer and higher during winter. The Figure 5-2 shows the average price for hours in the day, for each 

season. The figure represents data from 2021, 2022 and 2023. We observe that even during the summer the 

average price is above 0,7 NOK for the peak hours. For the winter almost all hours have an average price 

above 0,7 NOK. The graph shows us that even though price levels vary between seasons there is still a 

within-day variation on average. We do note however that the mid-day descend does not seem to be as 

large for the winter season, for which also the nigh drop seems to be even more distinct than for other 

seasons. 
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Figure 5-2. Average spot price for different hours of the day, for different seasons, all bidding areas, Norway, 2021-
2023. Source: Day-ahead spot price (NOK/kWh) is described in section 6.3. 

The potential change in marginal revenue of production due to the HPC affect both the marginal revenue of 

producing the current hour and the water value which it compares against. This can lead to other 

adjustments in addition to the first effect. The two main factors for the water value are the expected 

marginal revenue in future periods and the size of the reservoir for each HPP. The reservoir size is seen as 

constant in this analysis, but the expected marginal revenue on the other hand is affected by the HPC with 

the same logic as explained above and in the theory section. 

As shown above, winter months have historically a higher average price. These level differences reflect 

changes in demand, mainly driven by temperature changes. Lower temperatures lead to more building 

heating, not the daily habits as in the case of daily peaks. Water values are often higher during the fall, due 

to the approaching winter season, which most likely have higher average price. This incentives HPPs to save 

water for future periods. However, as more of the hours during the winter season are subject to the HPC, 

the tax will also be present in a larger share of the hours. Hence, the HPC decreases the expected marginal 

revenue for the winter season. This reduces water value during the autumn creating lower incentives to save 

for the winter season, resulting in higher autumn production. Therefore, the HPC can shift the allocation of 

production between seasons in addition to the within-day effect. As prices still vary between hours of the 

day a change to the water value described above can lead to higher/lower production in marginal hours, 

thereby affecting allocation of production for hours in the day in the long run. 

Water values are based on forecasts of future prices. These forecasts are often highly uncertain and based 

on some aggregate time-level, and granularity on the hourly level is unlikely. From this, it is a reasonable 

assumption that the water value is the same for all hours of the day. Changes to the water value between 

seasons affect the level for the whole day, but this seasonal effect due to temperature changes does not 

eliminate the hourly differences driven by daily habits. 

 

5.2. Basis for Research Question 2 

Also, the second research question is based on the same argument as above. Figure 5-3 shows the average 

prices for hours of the day across different bidding areas in the period 2021-2023. From the figure the 

average prices are below the 0,7NOK/kWh threshold for all hours of the day for the bidding areas NO3 and 

NO4, while it is above for NO1, NO2 and NO5. There is a clear distinction in the average price for different 

hours over the bidding areas. The HPC is connected to high prices. When prices differ between bidding 
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areas it is reasonable to hypothesis that also the effect of the HPC on hourly allocation of production stated 

for the first research question will differ across the same areas. 

 

Figure 5-3. Average spot prices for hours of the day across different bidding areas, 2021-2023. Source: Day-ahead spot 
price (NOK/kWh) is described in section 6.3. 

 

5.3. Research Questions 

Based on the arguments above we want to answer the following research questions (RQs): 

RQ1. How does the Norwegian high price contribution affect the allocation of reservoir hydropower 

production throughout the day? 

RQ2. Is the effect from RQ1 dependent on the general price level in different bidding areas? 

The RQs can be answered using econometric methods estimating production before and after the 

introduction of the HPC. If the factors relevant for deciding the production of hydropower are included in 

the model we have controlled for all relevant variables, in theory leaving only the effect of the high-price 

contribution left. The RQs could also be answered using a dynamic modelling approach, but such an 

investigation would be outside the scope of this thesis. 

It is not certain which of the effects explained above (marginal revenue or water value) that dominates the 

total effect on hourly load of the HPC. This thesis might not be able to distinguish where the effect on shifts 

in production between hours comes from empirically. However, it is reasonable to assume the effect through 

the water values is the strongest as there is greater uncertainty of future prices than of tomorrows. The goal 

of the thesis is the total average effect on hourly differences in production levels, not the singular effects of 

the policy on water values and marginal revenue separately. 

Also, for both effects on hydropower production due to the HPC it can be the case that changes to the 

production leads to different market prices. As foreign power production is not subject to the HPC a change 

in the Norwegian market price might increase trade. Increased trade can again increase the price, which 

again increases national production. In total the presence of trade can distinguish the effect on prices of the 

HPC, which again can reduce the effects on production over time. This will not be accounted for in this 

analysis.  
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6. Data sources 

The section explains how the thesis collects information on the variables included in the analysis. The thesis 

takes an empirical approach, using data from several sources to answer the research questions. Data on 

planned hydropower production, maximum installed capacity and day-ahead electricity prices is retrieved 

from the Norwegian Energy Regulatory Authority (RME), futures electricity prices from Macrobond and 

Euroepan gas- and carbon prices from Montel. Also, weather data on reservoir filling and temperature data 

is retrieved from the Norwegian Water Resources and Energy Directorate (NVE) and the Norwegian 

Meteorological Institute (MET) respectively. All data is for the Norway market unless otherwise specified. For 

each variable descriptive statistics and explanations on how data is treated is provided 

 

6.1. Production Plans 

The thesis retrieves data on production plans per hour per station group from the Norwegian Energy 

Regulatory Authority (RME). The data is obtained for the full years of 2021, 2022 and 2023. 

Choice of Production Variable 

Information on hydropower production can be obtained both in the form of planned production and the 

actual measured production, and choosing the right variable is an important for the analysis. As opposed to 

data on actual production, production plans do not include changes in production due to participation in 

the reserve/balance markets (Statnett, Retrieved 07.05.2024 b) for electricity, or unexpected weather events 

or grid fallouts. Such events can result in changes in the actual production that are not easily accounted for 

in the analysis, resulting in more systematic noise in the data, which can make it more difficult to obtain valid 

estimates. Production plans do not entail this noise, and therefore provides an advantage when analysing 

how the hydropower plants alter their optimal allocation of production over time.  

Station groups are required to report on net planned production, meaning that the data includes 

information on the consumption of electricity for pumped storage, resulting in negative planned production. 

The reason for this is that the net planned production includes the additional consumption meters from 

pumped storage while actual production measures only production. This is one possible downside of using 

production plans instead of actual production. However, as shown in the background section, pumped 

storage is small relative to actual production. Also, production plans are seen as more sensitive information 

than actual production and can therefore be more difficult to obtain information on. In total, data on 

planned production is seen as a more beneficial variable of input to the analysis than actual production. 

Origins of Production Plans 

To gain access to trade in the wholesale market, operators are required to have a direct balance agreement 

with Statnett, the system operator (SO). Market participants can either balance on their own behalf or have 

an agreement with a balance responsible party10 (Norwegian: balanseanvarlig) to settle their imbalances for 

them (Elhub, Retrieved 07.05.2024 b). 

Production plans, along with available reserves and system data, are reported by the balance responsible 

parties to the SO by 16:00 each day for the next 24 hours (Statnett, 2023). Changes to the production plan 

and system data must be reported continuously as they occur, and generally no later than 45 minutes 

before the operating hour. This information is used by the SO to be able to handle bottlenecks in the grid. 

 

10 Statnett is currently working on splitting the role of the balance responsible into two separate roles, but 

this change is not relevant for our period in question. 
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Production plans are required to be in line with the bids to the spot and intraday markets and the SO follows 

up major and/or repeated deviations from the production plan (Regulation on the system responsibility in 

the power system, 2002, s. § 8). This means that the production plans are decided by the bids placed in the 

spot and intraday market. 

Production plans are recorded per station group, a collection of several production plants. The station group 

is decided by the system operator in agreement with the relevant operator. The division into station groups 

is first based on already existing station groups. Second, a station group must be located within one fixed 

area (Norwegian: fastområder) but can include production plants in several bidding areas. Statnett have 

defined 8 fixed areas that are used for consumption forecasts which should remain unchanged to ensure 

comparability over time (Statnett, 2018). For the data used, all station groups have reported production in 

only one bidding area. Lastly, production in the same station group generally has the same production type. 

Usually, only one actor owns all the plants in one station group, but there exist station groups (and plants) 

with several owners. One power producer can have several station groups. Also, one station group is 

normally (but not always) located along one riverbed, but there might be several station groups along the 

same riverbed, and there are rules for how station groups along one riverbed must communicate to prevent 

flooding. Because plants within one station group is often along one riverbed, data on this aggregation level 

compared to singular plans can reduce the effect of a hydropower producer's optimization being altered 

among generators along one riverbed. 

In addition to the reporting per station groups, all singular power stations with a total output (Norwegian: 

samlet ytelse) ≥ 50 𝑀𝑉𝐴 rated power (Norwegian: merkeeffekt) must report production plans and system 

data for each unit (Norwegian: aggregat). The data is submitted and updated with the same procedure as 

for data at station group level. Information on the collection of data from production plans can be found at 

the pages of Statnett (Retrieved 07.05.2024 d) 

 

Process of Attaining Data 

Both data on the production of electricity per plant and station group data on production plans (and total 

installed capacity) is regulated under the authority of the Public Administration Act (Norwegian: 

forvaltningsloven) (1970, p. §13). This is because it is company sensitive information that can provide detailed 

information about the producing unit that can be used for harming business’ activity. This has made it 

difficult to obtain the appropriate data for use in this thesis. 

The first alternative to attaining data would be to retain data from public sources. Elhub (retrieved 

07.05.2024 c), NVE (Retrieved 07.04.2024 i) and Statnett (Retrieved 07.05.2024 c) all publish data on 

production of hydropower. Also, the transparency regulation (Norwegian: transparensforordningen) requires 

the reporting and publication of actual produced power (n: effect) for generation units with 100 MW or 

more installed production capacity and is published by the European Network of Transmission System 

Operators for Electricity (ENTSO-E) (Norwegian Government, 2017) and (RME, Retrieved 07.05.2024 b). 

These public sources have a too high time resolution, have data at a level of aggregation giving few 

observations, as it is not possible to distinguish only regulated hydropower from pumped storage 

hydropower. Together, this makes it unlikely that it is possible to draw conclusions on the research questions 

of statistical significance from these sources. Another alternative could be to contact hydropower producers 

directly and ask for the data of their plants. However, this would require a large coordination process – a 

work that is deemed to time intensive for the scope of a thesis. 

In October 2023, a coordination process started to find at what granularity production data is available from 

different institutions. Contact was made with both Elhub, RME and Statistics Norway (SSB). SSB stores 

electricity data on monthly basis only, which is not sufficient to analyse the research questions of the thesis. 
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Elhub and RME both have data on actual production of hydropower per hour. RME in addition has data on 

hourly production plans. Of RME and Elhub, the preference for data collaboration was on RME as it was 

possible to obtain information on planned production and the time-horizon for attaining the data was 

perceived as shorter. Also, Elhub is restricted by the EU General Data Protection Regulation (GDPR) to store 

the data for no more than three years, possibly making it a challenge for data analysis. 

Specifications of the data 

Ideally, data would be available per plant to match production data with other relevant confounding 

variables about business characteristics. However, a necessary condition for attaining the data was to 

aggregate the production plans into groups with information such that each plant is not recognizable. Under 

advice of RME, the variable of aggregation is station groups as this is the aggregation for which production 

plans are reported. Data quality might be an issue when aggregating the data from the granular level. 

Testing the quality of the data for unrealistic values is only possible with access to the metadata of each 

metering point. That is, the approximately the range of the production level that is realistic for one 

production plant is known. However, for data on station groups, the range of realistic values becomes much 

wider as it aggregates over several plants. Hence, it is more difficult to assess what observations that give 

unrealistic values. However, the data quality is assessed by RME as part of their regulatory tasks, providing 

some quality assurance. 

Some metadata is available for each station group: bidding area and total installed capacity. The data on the 

station group is anonymised, with a randomly assigned station group ID assigned to each station group. This 

means that further information on geographical location or the number of plants in each station group is 

not available, providing difficulty matching the data with variables from other sources. Also, with respect to 

privacy concerns, station groups with total installed capacity lower than 50 MW are excluded from the 

dataset. 

Before aggregation, RME has ensured that that the plants in each station groups entails some characteristics. 

First, for each station group it is ensured that only power production defined as reservoir power is included. 

However, the definition of reservoir power might not always be accurate, as it can be difficult to accurately 

distinguish between reservoir and run-of-river hydropower. E.g. very small reservoir might be defined as 

reservoir power, but in practice it can function like unregulated run-of-river hydropower as the storing 

capacity is small. This is not accounted for in the analysis.  

Second, only station groups where all plants with rated power output (Norwegian: påstemplet merkeytelse) 

of 10,000 kVA or more is included in the dataset. That is, for the included station groups the high-price 

contribution (HPC) was introduced for all plants on 28 September 2022 as explained in section 2.3. As the 

high-price contribution is introduced for all units at the same time as a control group for the analysis is not 

available. One possible solution to this difficulty, would be to find similar plants above/below to the 

threshold of 10,000 kVA and analyse differences in adaption. This is possible as the HPC was not introduced 

for power plants below 10,000 kVA and higher than at least 1 MW until January 2023. This has not been 

possible in this thesis because of the aggregation. 

Lastly, the number of hydropower plants may change over time, reflecting overall profitability in the industry 

and general development in the electricity market. Higher electricity prices over time can result in larger 

investments in hydropower, leading to the establishment of new producers. This can again lead to a higher 

total production of hydropower. The opposite is true for changes negatively affecting the profitability of the 

industry, such as taxes on the production of hydropower. The effect of changed profitability over time is not 

the focus of this thesis. This makes it important to exclude additional and shut-down producers from the 

analysis. If not, the analysis would also catch the change in overall hydropower production due to new (or 

retired) producers. The dataset used in the thesis shows only the BRPs and station groups that have not had 

changes in their organisation in the period 2021-01-01 to 2023-12-31. Information on new power 
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production can be found at an aggregate level at RME’s webpages (RME, Retrieved 07.05.2024 a). Also, 

station groups with changes in production capacity above 10 MW to at least one its generators are excluded 

from the analysis. This means that when the definition of the station group is changed to include new plants, 

or remove old ones, these station groups are excluded from the data set. However, small upgrades to 

existing plants might be included in the data set. 

Data Quality Issues 

For all three datasets, the dates of January 25., 26., 28. and 30. 2022 are no available from RMEs website. 

The dataset on production plan also misses one hour for every winter backward time-zone shift. Also, 

several station groups have the same station group number in different bidding areas. RME does not have 

exact answers for what the reason for the overlap is. The issue with unique identifiers is solved by creating a 

new identifier containing the station group number and the bidding area.  

Variable Statistics 

Figure 6-1 bellow shows summary statistics for production plans (measurement in MW): a histogram of the 

production plans (top left), a table summarizing descriptive statistics of the variable (top right) and a plot of 

the monthly average of production plans over time (bottom).  

Looking at the top left panel notice a high share of zero values. This is what is called corner solution 

responses, a concept described in larger detail in the methodology chapter. Also, observe that for some of 

the observations, the production plans are negative. This happens because production plans are reported 

on net planned production. In other words, consumption from pumped storage is higher than the total 

production from the station groups. In some cases, one might see that station groups are producing at the 

same time as consuming for pumped storage, but the probability that pumped storage is profitable at the 

same time as it is optimal to produce a lot is low. Because of this, hours with negative production plans are 

removed in our analysis. 

In the econometric model, production plans are used as the dependent variable without taking any 

transformation (log, squared). The reasons for this lie mainly in that it increases the interpretation of the 

estimates obtained, a large advantage when communicating findings. Also, in the python packages available 

for estimation, it was not possible to set the censoring level at another than zero. 
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Figure 6-1. Summary 
statistics of the 
production plan 
variable. Top left: 
histogram. Top right: 
descriptive statistics. 
Bottom: development 
over time, monthly 
average, 
measurement in MW. 

 

 

 

 

 

 

 

 

 

 

6.2. Maximum Installed Capacity 

Maximum installed capacity (MaxEffect for short) reflects the technical maximum production capacity at one 

station group. That is, it affects only the upper bound, but not the lower band of the production plans. 

Intuitively, the MaxEffect tells us something about the size of the station group. As this is the only 

information available on the station group outside of the bidding area it lies within, this is an important 

variable to include to reduce unobserved effects of each station group.  

Information of maximum installed capacity (measured in MW) is obtained from RME along with the data on 

production plans. RME report that the variable values are uncertain and might be prone to measurement 

error. If these errors are systematic this might induce bias to our regression. However, if the measurement 

error is random/not systematic this measurement error does not entail bias, only increase our variance.. Of 

privacy concerns summary statistics of the MaxEffect is not included in the thesis. However, it has been 

checked that the variable is relatively constant through the entire period of question. In the econometric 

model MaxEffect are used as an independent variable without taking any transformation (log, squared). 

 

6.3. Day-Ahead Electricity Prices 

As stated in the chapter on the conceptual framework, the hydropower producers evaluate the relationship 

between the water value and the expected marginal revenue when making the production decision. As the 

most important factor behind the expected marginal revenue, expected electricity prices are important to 

control for in any analysis of hydropower production. The observed electricity prices can work as a proxy for 

expected electricity prices. As there exists several markets for electricity, there are different options for what 
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electricity price to use in the analysis. The spot market is the market where most of the volume of electricity 

is traded and it’s the main base the high-price contribution takes. Hence, this thesis utilises the spot-prices. 

The hourly spot prices are traded at the NordPool marketplace, and they are known a little after noon the 

day before the operating hour. The marketplace is open all days of the year. 

Production plans must be in line with commitments from participation in the spot and intraday markets. The 

spot price is not known when giving the bids to the spot market, but the equilibrium price is decisive for the 

volume producers are committed to deliver. That is, the equilibrium price has a direct effect on what bids are 

“activated”. It is the activated bids in the spot and intraday market that are reflected in the production plans, 

our variable of analysis. Hence, the spot price of that hour of one day have a direct effect on the production 

plan of the same day, leading to simultaneous causality which is explained in more detail in the section on 

“Latent Explanatory Variables”. Because of this issue, the electricity price which is included in the model is 

lagged by 24 hours for each production plan observation.  

Data on the hourly spot price of electricity per bidding area in Norway is retrieved from RME, who have 

attained the data from ENTSO-E, a publicly open database. The unit of price is originally given in EUR/MWh 

but is converted to kWh and to the local currency, NOK, using the same daily exchange rate which is used 

by Nord Pool in conversions. The price is used in EUR, not NOK, in the statistical analysis to maintain 

consistency between different price currencies, but NOK values are utilised for descriptive statistics and for 

creating other variables as the high-price contribution is set based on NOK prices. Time is given in UTC+1 

during wintertime and UTC+2 in summertime. In other words, it reflects local time in Norway.  

Figure 6-2 below shows summary statistics for current electricity price (measured in NOK/kWh): a histogram 

of the production plans (top left), a table summarizing descriptive statistics of the variable (top right) and a 

plot of the monthly average of the variable over time for different bidding areas (bottom). For some 

observations in the dataset, negative electricity prices are obtained. These amount to about 2% of the 

observations. As removing these do not highly affect our regression results, the observations are kept in the 

dataset. However, one implication of this is that a log-transform of this variable cannot be made in the 

estimation. 

From the top right panel notice that for half of the observations, prices are less than 0,49 NOK/kWh, with 

75% being bellow 1 NOK/kWh. However, at least one extreme observation of 8,22 NOK/kWh is observed. 

From the bottom panel observe the earlier mentioned trend of rising prices from the fall of 2021. First notice 

that electricity prices look overlapping for NO1 and NO5. Monthly prices in these two bidding areas are 

extremely similar for the period in question, but they are not exactly the same (for most periods). Monthly 

values of NO1 and NO5 are checked against NoordPools public data (NordPool, Retrieved 07.05.2024). Also 

from the bottom panel, notice that NO3 and NO4 did not experience as extreme price increases as the 

other bidding areas during the period. 
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Figure 6-2. 
Summary statistics 
of the spot price 
variable. Top left: 
histogram. Top 
right: descriptive 
statistics. Bottom: 
development over 
time for each 
bidding area, 
monthly average, 
measured in 
NOK/kWh. 

 

 

 

 

 

 

 

 

 

6.4. Futures Electricity Prices 

As discussed in the section on the Research Question and Hypothesis the water value depends on 

expectations of future revenues from production of hydropower. Future revenues are highly dependent on 

the future price of electricity. Using the actual future price of electricity (futures prices) is one way of 

reflecting the future prices, but this would require HPPs price expectations to be very precise. A better 

indicator of the expected price in the future is the futures prices, which to larger degree reflect the market 

expectations for the electricity price in the future. When assessing the price in the future electricity markets, it 

is often divided between futures and forward markets. Birkedal & Bolkesjø (2016) states that many 

stakeholders in electricity markets treat futures and forward markets as an unbiased estimator for futures 

prices, given that the markets are liquid. Futures prices refer to the agreed-upon prices for the delivery of 

electricity on a specified future date. These prices are determined on futures markets, where buyers and 

sellers enter contracts to either purchase or sell electricity at a future point in time. Forward contracts on the 

other hand are traded over the counter (OTC), meaning that the contracts are negotiated and traded 

directly between two parties. This setup entails greater uncertainty for the public on the terms of the trade 

compared to futures markets. Because of this uncertainty, this thesis utilizes futures electricity markets. 

Futures markets contracts can be tied to spot prices (down on each bidding area) or to system prices 

(synchronous grid areas). Futures markets for individual bidding areas have historically been assessed to 

have low liquidity, we use a futures price dependent on the Nordic system price in this thesis. Specifically, we 

obtain data on the ICE Nordic Power Financial Base Futures from Macrobond. The price is for 2nd positions, 

that is contracts for delivered electricity two months forward in time. The price is delivered in daily closing 

price for EUR/MWh. The marketplace is closed during weekends and public holidays. Each production plan is 
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matched with the last available futures price. However, as the marketplace does not close until 6pm 

(Intercontinental Exchange, Retrieved 07.04.2024 b) the futures prices is available for spot market bidding 

the day after closing and reflected for production plans for operating hours the day after that again. Hence 

the futures price is lagged by two days in our dataset and log transformed for the analysis. 

Figure 6-3 below shows summary statistics for future electricity price (measured in EUR/MWh): a histogram 

of the production plans (top left), a table summarizing descriptive statistics of the variable (top right) and a 

plot of the monthly average of the variable over time (bottom). Observe that the development of future 

price over time follows much of the same trends as those seen in the current electricity price as shown 

above. However, the future electricity does not see the same September-maximum that we saw in the 

southern bidding areas in Norway. Instead, the max for the future price is in January 2023. Also notice no 

negative values and a somewhat flatter curve than the distribution of Norwegian electricity prices. 

 

Figure 6-3. Summary 
statistics of the future 
system price variable. 
Top left: histogram. Top 
right: descriptive 
statistics. Bottom: 
development over time, 
monthly average, 
measured in EUR/MWh. 

 

 

 

 

 

 

 

 

 

 

6.5. Futures European Gas Price 

In a closed economy, the electricity price in Norway would be decided by national supply and demand. 

However, our transmission network is closely connected with both other Nordic countries, and Norway have 

an enormous transmission capacity abroad. Because of this, the energy situation in our trading economies 

also affect Norwegian prices. As a result, the analysis must control for variables important for the European 

electricity prices. Also, gas makes up a large part of the European electricity production and the gas price is 

likely to affect the European and hence the Norwegian electricity prices. Because of the above arguments 

the European gas price is included as a variable in this analysis. 

Daily gas price data is also obtained from Montel on the ICE Endex TTF natural gas price (Intercontinental 

Excange, Retrieved 07.05.2024 a). TTF stands for the Dutch marketplace Title Transfer Facility, one of the 
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largest trading hubs for natural gas in Europe. The price often serves as a benchmark for the European 

natural gas market (European Comission, 2022). Specifically, the TFM closing price in EUR/MWh is obtained.  

Following the same argument from the futures prices the gas price is lagged by two days in our dataset and 

log transformed for the analysis.  

On the TFM market multiple contract times are available, from month, quarter, season, and year. This makes 

the TFM a futures price for gas. One might also expect European gas prices to affect Norwegian electricity 

prices today, not just the water value in the future. However, the futures gas price and the current gas price 

is probably highly correlated. Therefore, this thesis does not collect data on more current gas prices11. For 

the remains of the text the European futures gas price is referred to as gas price.  

Figure 6-4 below shows summary statistics for gas price (measured in EUR/MW): a histogram of the 

production plans (top left), a table summarizing descriptive statistics of the variable (top right) and a plot of 

the monthly average of the variable over time (bottom). Observe that the development of future price over 

time follows much of the same trends as those seen in the current electricity price, although the 

development for 2023 does not resemble the current price as closely as the future electricity price. Also, 

notice no negative values. 

 

Figure 6-4. Summary 
statistics of the gas price 
variable. Top left: 
histogram. Top right: 
descriptive statistics. 
Bottom: development 
over time, monthly 
average, 2021-2024, 
measured in EUR. 

 

 

 

 

 

 

 

 

 

 

6.6. European Carbon Price 

As stated in the section above, the Norwegian and European electricity prices are highly connected and we 

must control for variables in the European electricity price when assessing Norwegian production of 

 

11 An appropriate day ahead gas price for current prices could be the TTF TFE day-ahead (DA). 
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electricity, which highly follows the price. Fossil energy types stands for more of the electricity generation in 

Europe than it does in Norway. The price of generating electricity from fossil fuels is highly affected by the 

European Emissions Trading System (EU ETS) as stated in the section on “Climate Policy”. Because of this 

argument the European carbon price is included as a variable in our analysis. 

Data on daily carbon prices of the European Energy Exchange (EEX) EUSP European Carbon Spot is 

obtained from Montel. The daily closing price is given in EUR/t. Following the same argument from the 

futures prices the carbon price is lagged by two days in our dataset and log transformed for the analysis. 

Figure 6-5 below shows summary statistics for carbon price (measured in EUR/t): a histogram of the 

production plans (top left), a table summarizing descriptive statistics of the variable (top right) and a plot of 

the monthly average of the variable over time (bottom). Unlike the Nordic futures elecitricity price and the 

European gas price the carbon price does not follow the same time-trend. The reason for this can be many, 

but the price is closely connected to the size of the quota for the EU ETS. Neither here any negative prices 

are seen, and the histogram’s distribution is more skewed to the right. 

  

Figure 6-5. Summary 
statistics of the carbon 
price variable. Top left: 
histogram. Top right: 
descriptive statistics. 
Bottom: development 
over time, monthly 
average, 2021-2024, 
measured in EUR/t. 

 

 

 

 

 

 

 

 

 

 

6.7. Reservoir Filling 

A crucial factor for hydropower production is that there is available water to produce, which is reflected in 

the hydrological balance. Weather data is important to provide information on the uncertainty of supply and 

demand. A crucial factor for hydropower plants to consider when determining the water value is the 

reservoir filling. To represent the hydrological data the thesis makes use of reservoir filling. 

NVE provides information on hydrological data per week, per bidding area, in the form of reservoir filling 

(NVE, Retrieved 07.04.02024 e) and hydrological balance (NVE, Retrieved 07.05.2024 d). These variables are 
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not available at lower time resolution because of the measuring methodology. Also, as observations on 

station groups are anonymized data on such granularity is not possible to match with station groups. As 

mentioned in the handbook for the reservoir statistics the reservoir filling value are observed every week 

Sunday evenings 24:00 (NVE, 2019). This is the date of the weekly hydropower data. However, 

measurements are made public Wednesday at 13:00, meaning that the information is available for 

Thursdays bidding, and reflected in production plans on Friday the earliest. Because of this we will in the 

analysis lag the observation of one week’s reservoir filling with five days. 

Figure 6-6 below shows summary statistics for reservoir filling (measured in percentage, %): a histogram of 

the production plans (top left), a table summarizing descriptive statistics of the variable (top right) and a plot 

of the monthly average of the variable over time for different bidding areas (bottom). From the top right 

panel, see that for some observations the reservoir filling is above 1, that is, the reservoirs in the bidding 

area are filled more than 100%. This might indicate that there is overflow in several reservoirs, but as there 

are regulations against wasting water, which is perceived as little plausible to be the case for the entire 

bidding area as a whole. From this it can be concluded that these observations might be the case of 

measurement error and removed from the dataset used for analysis. 

From the bottom panel observe a clear seasonal pattern in the reservoir filling, like mentioned in the 

background chapter. Do note however, that the seasonal pattern seems to vary between the bidding areas, 

e.g. the filling level for NO1 and NO5 seems to be lower at the minimum value compared NO2 and NO4 for 

all three years. The lowest reservoir filling was 8% for NO1 in May 2022. 

 

Figure 6-6. Summary 
statistics of the reservoir 
filling variable. Top left: 
histogram. Top right: 
descriptive statistics. 
Bottom: development 
over time for each 
bidding area, monthly 
average, measured in %. 
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6.8. Temperature 

Temperature is the main driving factor the demand for electricity, especially during the winter months. 

Hence, it is a crucial factor to include to determine the variation in demand which affect the expected 

current electricity price. For this thesis average hourly air temperature in degrees Celsius is retrieved from the 

Norwegian Meteorological Institute (MET), FROST API. The temperature is retrieved in degrees Celsius in 

time UTC+1 (wintertime)/UTC+2 (summertime). Data is collected for all weather stations with available 

observations for the time-period (2021, 2022 and 2023) for one municipality in each bidding area. The 

municipalities chosen are:  

- NO1 – Eastern Norway – Oslo 

- NO2 – Southern Norway – Kristiansand  

- NO3 – Central Norway – Trondheim  

- NO4 – Northern Norway – Tromsø  

- NO5 – West Norway – Bergen  

The municipalities were chosen after discussion with NVE, and what they make public in their own reports.  

One might argue that including Stavanger as a city for NO2 and Alta for NO4 would have been an even 

better approximation. One might also imagine that adjusting for the population in the different cities may be 

beneficial if one were to include multiple cities within one bidding area.  

Other approaches were tried to obtain temperature data. To get a better picture on the temperature in the 

entire bidding area it was originally tried to obtain estimates for all weather station within the entire bidding 

area, represented by a polygon. A polygon for the price area is retrieved from the database Temakart from 

NVE (Retrieved 07.05.2024 g), then used to retrieve an average temperature over all weather stations in the 

area within the polygon. Data on this is available both through the NVE API (Retrieved 07.05.2024 b) and the 

MET FROST API. However, the approach did not succeed because of difficulties with the polygon becoming 

too large for the APIs to handle. 

Temperature is known instantly, and often well forecasted ahead of time. That means the temperature for 

the given hour is used, not its lagged value. However, the effect of temperature on the electricity network is 

not a simple function. For cold temperatures, households will turn up heating making electricity consumption 

high (which again reflects in price). On the other side consumption for cooling during summer months are 

almost no households but driven by businesses (Ericson & Halvorsen, 2008). 

Figure 6-7 below shows summary statistics for temperature (measured in degrees Celsius): a histogram of 

the production plans (top left), a table summarizing descriptive statistics of the variable (top right) and a plot 

of the monthly average of the variable over time for different bidding areas (bottom). Also here, see a clear 

seasonal pattern, with NO4 showing the lowest monthly average for most months which is unsurprising as it 

is also the northernmost bidding area. 

Low temperatures are connected to higher electricity use for household heating, which is driving much of 

electricity consumption during winter months. However, at higher temperatures household heating is a small 

share of the consumption mix heating tends to be excessive during warm months. In these months the 

consumption mix is to larger degree other consumption groups, which may have increased consumption for 

higher temperatures dues to a need for cooling systems. This may indicate that temperatures should have 

another functional form than a linear. This thesis has tested squared and log-transformed versions of the 

temperature to try to catch this effect but have decided to not include it in the final model out of concern for 

out-of-sample performance. When keeping the linear functional form of temperatures, it can be expected 

the effect of cold months to be dominating. That is, in total it can be expected higher temperatures to have 

a negative effect on production plans. 
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Figure 6-7. 
Summary statistics 
of the temperature 
variable. Top left: 
histogram. Top 
right: descriptive 
statistics. Bottom: 
development over 
time for each 
bidding area, 
monthly average, 
2021-2024, 
measured in 
degrees Celsius. 

 

 

 

 

 

 

 

 

 

6.9. Time- and Unit Specification 

Data on production plan are obtained per hour. The data is retrieved UTC but converted to local time 

(CET/CEST). For simplicity all other data sources are made to match this setup. However little of the data for 

merging is at such a granular time specification. Where differing, the time measurement of data other 

sources (gas, carbon and futures electricity price, reservoir filling) is adjusted to match the time measurement 

of the production data. That is, all data sources is set with a time aggregation higher than that of the 

production data as a constant for all the relevant observations.   

The production plan data is collected per station groups, but all observations are anonymous, making it 

difficult to merge with other sources. Hence, for data sources where the entity is at more aggregate level 

(per bidding area or for the entire country) the observation is set as a constant for all station groups.  
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6.10. Specifics of the High-Price Contribution 

The HPC was introduced the same day as it was announced, not giving producers a chance to prepare for 

the new policy. This means that for a period, it is likely that producers had not yet adjusted the future water 

value, taking in the effects from the policy. It is not set in stone how long this grace period should be. The 

HPC itself is not a complicated tax, but the monthly average calculation might introduce some thought into 

assessment. Also, as the RME guidelines mentioned in the background chapter is an instance there was 

some uncertainty of what would be allowed within the regulation. This analysis work with a grace period of 

one week. That is, the one week of observations is removed from the dataset before analysis. 

Also, on 6. October the HPC was announced to be terminated with retroactive effect from and including 1. 

October. However, the change was not passed in parliament before 14. December 2023, along with the rest 

of the state budged for the following year. Still, there was reasonably certainty that the suggestion would be 

passed as announced. However, power producers still had to report and pay the HPC to the Norwegian Tax 

Authorities for October and November according to the then current rules but would be corrected in the tax 

report after the parliament's decision. This uncertainty of when the policy was fully terminated makes the 

period after the announcement of the termination prone to uncertain effects. Keeping this in mind this 

period is excluded from the analysis. This exclusion and the one mentioned in the paragraph above leaves a 

dataset with two parts, pre-HPC (absent) and post HPC (inEffect). An overview of the time-periods 

mentioned is shown in Figure 6-8. 

 

Figure 6-8. Overview of the timeline of the high-price contribution.  
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7. Methodological Approach 

This chapter explains and gives reasons for the econometric approach used to investigate the research 

questions. The thesis uses statistical inference methods to investigate how the Norwegian high price 

contribution (HPC) affects the allocation of reservoir hydropower production throughout the day. Also, the 

chapter discusses some important issues with the data set. 

To estimate shifts in production plans through the day resulting from a production tax is complex, but not 

impossible. Previous research on the effects on production taxes on electricity from hydropower is sparse, 

which makes it difficult to look to previous research for good approaches to model the situation at hand. 

However, the topic of modelling supply of hydropower has a lot of previous research. This thesis utilizes the 

fact that there are sound econometric approaches for modelling the general hydropower supply by keeping 

production plans to be the dependent variable, controlling for variables that are known to affect hydropower 

supply from previous studies. 

 

7.1. Econometric Approach 

This thesis estimates the supply of hydropower production using a left-censored standard Tobit model 

(Tobin, 1956). This model is chosen because of the presence of a corner solution responses as introduced in 

the section on “Production Plans”. The reasoning behind the choice of model is discussed in more detail in 

the following sections. The standard Tobit model, also called the type I Tobit model, is a way to rectify the 

issue of corner solution responses but can also be used for dealing with censored variables. The model splits 

the production decision into two parts: first weather to produce and second, how much to produce given 

that you are already producing.  

The Tobit model assumes that there is a latent variable, 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗, that follows a normal distribution. Here, 

𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗ is a concept for the underlying process of deciding how much to produce given that you are 

already producing. The observed dependent variable, 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛, is a combination of 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗ and the 

corner solution process. Simply put, when 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛 > 0 the actual planned production which follows the 

distribution of 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗, but when 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛 < 0 it is optimal to produce zero and 0 is observed instead 

of 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗. The observe production plans can be explained as follows: 

𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛 = max{0, 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗} 

It can be described to be a function of a set of explanatory variables as in the equation below. 

𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗  = 𝛼 + 𝛼 𝑀𝑎𝑥𝐸𝑓𝑓𝑒𝑐𝑡 + 𝛼 𝑙𝑛(𝑓𝑖𝑙𝑙𝑖𝑛𝑔) + 𝛼 𝑙𝑛(𝑃𝑟𝑖𝑐𝑒 ) + 𝛼 𝑃𝑟𝑖𝑐𝑒 + 𝛼 𝑇𝑒𝑚𝑝

+ 𝛼 𝑙𝑛(𝑃𝑟𝑖𝑐𝑒 ) + 𝛼 𝑙𝑛(𝑃𝑟𝑖𝑐𝑒 ) + 𝛼 𝑚𝑜𝑛𝑡ℎ + 𝛼 𝐻𝑃𝐶 + 𝛼 ℎ𝑜𝑢𝑟

+ 𝛼 𝐻𝑃𝐶𝑥ℎ𝑜𝑢𝑟 + 𝛼 𝑙𝑎𝑔(𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛 ) + 𝑢  

Table 7-1 below gives a more detailed overview of the variables included in the model. In the equation 𝛼  is 

the regression intercept and 𝑢  represents the error term. 𝛼  represents the partial effect of the variable, 

herein referred to as variable estimate. The explanatory variables include maximum installed capacity of the 

station group (𝑀𝑎𝑥𝐸𝑓𝑓𝑒𝑐𝑡), reservoir filling (𝑓𝑖𝑙𝑙𝑖𝑛𝑔), futures electricity price (𝑃𝑟𝑖𝑐𝑒 ), current electricity 

price (𝑃𝑟𝑖𝑐𝑒 ), temperature (𝑇𝑒𝑚𝑝), European gas price (𝑃𝑟𝑖𝑐𝑒 ) and European carbon price (𝑃𝑟𝑖𝑐𝑒 ).  

In addition, 𝑚𝑜𝑛𝑡ℎ  represent eleven dummy variables for the different months of the year, using January 

as the reference value. The general effect of the high-price contribution (𝐻𝑃𝐶) as a binary variable which 

equals 0 before the HPC was introduced and 1 for the period the HPC was in effect. ℎ𝑜𝑢𝑟 represents a 

dummy for each hour of the day in local time, using the zero-hour as default. Also, interaction terms 

between 𝐻𝑃𝐶 and ℎ𝑜𝑢𝑟  is added to estimate the difference in hourly allocation of production before and 
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after the HPC was introduced. Lastly, 𝑙𝑎𝑔(𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛 ) represents the 3-month rolling average of production 

plan for the station group. 

Table 7-1. Overview of variables included in the model. 

Symbol Short Explanation Data source 

𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛 Production Plans for each station group. Unit: MW. RME 

𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗ Latent variable of the process for planned production given 

that Y>0. 

- 

𝑀𝑎𝑥𝐸𝑓𝑓𝑒𝑐𝑡 Maximum installed effect of each station group.  

Unit: MW. 

RME 

ln(𝑓𝑖𝑙𝑙𝑖𝑛𝑔) Reservoir filling for the bidding area. 

Lagg and log-product. Unit: percentage. 

NVE 

𝐻𝑃𝐶 Binary variable indicating if the high-price contribution 

(HPC) is absent (HPC=0) of in effect (HPC=1). 

Calculated 

ℎ𝑜𝑢𝑟 Dummy for each hour of the day in local time (CET/CEST). 

The number represents the start of the hour, that is, 0 

represents the hour from midnight to 00:59. 

Calculated 

𝑚𝑜𝑛𝑡ℎ Dummy for each month of the year. Calculated 

ln(𝑃𝑟𝑖𝑐𝑒 ) ICE Nordic Power Financial Base Futures (expected future 

electricity price). 2nd position (contracts 2 months forward in 

time). Daily closing price. Lagged by two days and log 

transformed. Unit: EUR/MWh. 

Macrobond. 

𝑃𝑟𝑖𝑐𝑒  Nordpool hourly spot price for electricity of each bidding 

area. Lagged by one days and log transformed. Unit: 

EUR/MWh. 

RME 

𝑇𝑒𝑚𝑝 Hourly average air temperature of all weather stations with 

available time series for one major city in each bidding area. 

Unit: degrees Celsius. 

MET 

ln(𝑃𝑟𝑖𝑐𝑒 ) Futures European gas price. ICE Endex TTF gas price (NDX 

TFM). Daily closing price. Lagged by two days and log 

transformed. Unit: EUR/MWh. 

Montel 

ln(𝑃𝑟𝑖𝑐𝑒 ) EEX EUSP European Carbon Spot (carbon price). Daily 

closing price. Lagged by two days and log transformed. 

Unit: EUR/t. 

Montel 

ln(𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛) Variable representing the 3-month rolling average of 

production plan for the station group. 

Calculated 

. 

The standard Tobit model uses a Maximum Likelihood Estimation method (MLE) approach (Wooldridge J. , 

2010) to obtain parameter estimates. MLE is generally asymptotically more efficient than the best GMM 

estimator but relies heavily on an assumption of conditional normality of the latent dependent variable. If 

this assumption is not fulfilled, there is a risk of obtaining inconsistent variable estimates. Also, 

homoscedasticity12 is an important assumption. 

The data analysis is conducted in Python. There have been difficulties finding appropriate packages for the 

Tobit model in this programming language. A package developed and supplied by professor O. Bergland 

(NMBU) is utilised in the thesis. The code for the data treatment and analysis is not provided out of concern 

of showing data for specific station groups, which would break with the agreement with the Norwegian 

Energy Regulatory Authority (RME) mentioned in the Preface section. 

For the second research question the model above is fitted separately for the five different bidding areas. 

 

12 Constant variance for different levels of the dependent variable. 
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7.1. Latent Explanatory Variables 

The Tobit model presented above, model production decisions and investigates the effect of the HPC on 

these production decisions. The chapter on “Research Question and Hypothesis” stated that the decision to 

produce depends on the water value and the price today. The water value is again determined in part by the 

expectations of the future electricity price, for which Birkedal & Bolkesjø (2016) state that the futures 

electricity price is used as an unbiased estimator among many hydropower producers. Therefore, futures 

electricity prices are included as a variable in the model. In addition to the futures electricity price, the futures 

European Gas price is utilised for reasons stated in the section on “Futures European Gas Price”.  

As explained in section on “Production Plans”, current electricity prices are not known at the time of making 

bids to the spot price market. This means that the expected price is decisive for production decisions. As 

hydropower producers´ expected price is latent information, a proxy to model the current electricity price is 

needed.  

One possible proxy is the actual electricity price of that hour (electricity price for short) as it turned out to be. 

However, this would imply that hydropower producers’ expected price is 100% accurate, which is unlikely. 

Also, the electricity price affects the production of hydropower, but the production of electricity from 

hydropower also affects the market price. This is because the price is jointly determined by bids for supply 

and demand through the equilibrium mechanism for each bidding area in the spot market. This describes 

the presence of simultaneous causality bias which results in an endogeneity in the electricity price of our 

model. That is, the electricity price is correlated with the error term of the structural equation. This thesis 

tested including the actual electricity price as a proxy for the expected future price, handling the simultaneity 

bias by standard Tobit with the two-step approach (Wooldridge J. , 2010, s. 531). However, the author did 

not manage to find exogenous instruments for doing so and attained better model accuracy for approaches 

using other variables as proxies for the expected electricity price. One instrumental variable that is not tested 

in this thesis is the German current electricity prices as utilised in Birkedal & Bolkesjø (2016) applying this 

approach might be a possible improvement of the analysis. 

The section on “Day-Ahead Electricity Prices” stated that the spot price of the day before the hour in 

question is known when making the production decision. As yesterday’s prices are decided before the bids 

of production today are delivered, they cannot be affected by todays’ production. Therefore, these do not 

suffer from simultaneous causality bias. As this is the latest information available to producers at the time of 

making bids for production, it is reasonable that they utilise this information when making production 

decisions. Therefore, the thesis includes the lagged current electricity price, as described in the section on 

“Day-Ahead Electricity Prices”, in our estimation. In addition, the section on “European Carbon Price” argued 

that European carbon prices can affect Norwegian electricity prices. Demand is an important driver of the 

price as previously explained, but it cannot be included directly as it affects several of the other explanatory 

variables. Instead, the temperature is included as a proxy. To account for differences in peoples’ habits and 

changing business cycles through the year hourly and monthly dummies were added to catch some of this 

variation. 

 

7.2. Corner Solution Outcomes 

As mentioned in the data-section, data on production plans shows clear signs of corner solution responses. 

Corner solution responses is a type of limited dependent variable (LDV). An LDV is broadly defined as a 

dependent variable whose range of values is substantively restricted (Woolridge). A variable subject to 

corner solution responses if it is “zero for a nontrivial fraction of the population but is roughly continuously 

distributed over its positive values” (Wooldridge J. , 2019, s. 571). A presence of corner solution responses 

does not imply any issues with data observability, rather the distribution of responses. 
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In this case, the null responses come from that it is economically optimal to produce nothing in certain 

hours. However, the condition is decided by the relationship between the marginal revenue and the water 

value, which is latent. Simply put, it will be optimal to produce zero if the water value is higher than the 

marginal revenue of producing now. This means that for many hours it will be economically optimal not to 

produce.  

This results in that the distribution of the dependent variable piles up at zero resulting in no conditional 

normal distribution of the dependent variable. This means that assumptions of the linear model are not 

fulfilled. Also, piling the dependent variable around zero probably leads to heteroscedastic variance. When 

not accounting for this in the linear model this can result in obtaining negative fitted values for the 

dependent variable, which does not make sense for the sake of this analysis. Also, showing coefficients in a 

linear fashion as having a constant partial effect on E(y|x) can be misleading. However, the linear model 

might still be a good fit around the mean values of Y. 

 The issue of corner solution outcomes can be dealt with by fitting a model which splits the production 

decision in two parts: first whether or not to produce and second, how much to produce given that you are 

already producing. Both the standard Tobit model and double hurdle take this approach. Double hurdle 

involves a two-stage decision-making process allowing for different variables to affect the participation 

decision and the production decision while the Tobit does not. In this case, the relationship between price 

and water value will affect both decisions and it can be concluded that the standard Tobit model will be the 

most correct representation of our data. 

 

7.1. Model Assumptions 

A systematic walk-through of all model assumptions can be found in the appendix. The standard Tobit 

model relies on the assumptions of heteroscedasticity and normal conditional mean of the latent dependent 

variable. If these assumptions are broken, the Tobit estimations  𝛽 are inconsistent for 𝛽 (Wooldridge J. , 

2010, s. 533). However, in our corner solution problem the 𝛽 is not of interest, but rather the partial effect of 

𝐸(𝑦|𝑥), which can be similar with and without presence of heteroscedasticity. The thesis finds the conditional 

distribution of the latent dependent variable not to be normally distributed, although it is symmetrical 

around zero. For the second research question the NO2 and NO3 models are even less normally distributed 

than the overall model. Also, our errors show signs of heteroscedasticity, another assumption of which our 

model relies on. This might introduce model results with a wrongly specified variance. Data filtering also 

introduces breaks to the assumption of random sampling. Lastly it is probable that there is a presence of 

unobserved effects, described in the next section. Still, the estimation approach presented and utilised in this 

thesis is the approach of highest accuracy of all methodologies tested. 

 

7.2. Serial Correlation 

Serial correlation is an issue to discuss in all data with observations over time. There is a presence of serial 

correlation when the value of your dependent variable is dependent on past observations. That is, it occurs 

when the regression errors of different time-periods are not independent of each other. Serial correlation 

can happen due to various reasons, including incorrect model specification, or omitted variable bias (OVB). 

Omitted variables can be due to several reasons, but this thesis likely has unobserved effects tied to the 

station group that are not accounted for in the analysis. Station group-specific variables are not possible to 

match with the data as it is anonymized. This leads to dependence in the distribution of production plans for 

different time-periods. 
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The standard Tobit model is designed to handle cross-sectional data and deals with the issue of corner 

solution response, but it does not specifically account for serial correlation. Hence, the approach taken in this 

thesis does not specifically address the presence of serial correlation as it fits the model to the entire dataset 

as one large cross-sectional dataset of size NT (NT= 592 402). A presence of serial correlation does not 

cause bias in the regression coefficient estimates, but it increases Type I errors (rejecting the null hypothesis 

when it is true). In other words, we are more likely to reject the null hypothesis when it is true, which we must 

take into consideration when assessing model results. 

To reduce the presence of serial correlation the thesis includes a lagged dependent variable  

(𝑙𝑎𝑔(𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛 )) in the form of a 3-month rolling average of production plan for the station group. This 

was added on the foundation that Birkedal & Bolkesjø (2016) concluded that adding a lag structure to their 

model could improve the predictive power of the model. High past production affects the reservoir levels for 

each single reservoir today. Therefore, serial correlation from this omitted variable (reservoir level of each 

station group) might be reduced by including this lagged dependent variable. 

One way of dealing with serial correlation is fitting a panel Tobit model as the methodology allows for serial 

dependence (Wooldridge J. , 2010). However, this would require advanced variance specification, but the 

author has not been able to locate a variance specification that is valid for the context at hand (T>N) in the 

literature available. Also, such variance specification is not currently available in the packages used for 

estimating the Tobit model. In total, we deem that accounting for serial correlation in this manner is outside 

the scope of a thesis.  

Panel data methods are known to be used to obtain estimates on unobserved effects that are constant over 

time, thereby reducing serial correlation. It is known that when T is large (which is the case here), and 

especially when N is small, one must exercise caution in using the fixed effects (FE) estimator, excluding this 

as an option. However, panel data methods do not deal with the presence of corner solution responses, 

meaning that the estimates of such a model would have the right sign on the coefficient, but be inconsistent. 

Also, the author was not able to find panel data methods that are computationally possible for a 

specification for hourly dummies, which is a fundamental requirement following the research question.  

 

7.3. Other Data Issues 

The model runs all bidding areas as one and does not specifically address that different bidding areas are 

affected by different factors. This means that it might be factors specific for each bidding area that can affect 

the production, e.g. grid bottlenecks or the mix of consumers on the demand side. Also, the European 

carbon and gas price as instruments might not be of large importance in the northern bidding areas. 

Second, there is an unequal number of station groups in each area, making the different bidding areas non-

equally represented in the analysis.  

 

7.4. Model Performance 

This thesis does not put much weight on evaluating 𝑅  for assessing model performance. The tobit model 

finds its estimates by using a maximum likelihood (ML) approach whose goal is not maximize 𝑅  unlike least 

squares estimators. For ML types of estimators, 𝑅  is therefore not a good measure of the model fit. In 

general, 𝑅  is solely a measure of in-sample performance, which might not be a good indicator of the 

methods prediction accuracy. To measure out of sample performance a K-fold validation (K=4) is performed 

to split the data into random training and testing datasets. It then fits the model on the training dataset and 

measures the mean squared error (MSE) on the testing dataset. MSE is the average of the squared distance 
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between the actual observed dependent variable in the test dataset and the predicted value of the same 

observations given the parameters obtained from the training dataset. The K-fold validation then takes the 

average MSE across the K folds. This is a much-used technique for measuring out-of-sample performance 

of an estimation method. 

 

7.5. Estimates from the Tobit model 

This thesis wants to investigate the changes to allocation for hours in the day. In the model above these 

hourly effects are represented as a set of dummies for each hour of the day. The change to the hourly 

allocation is included in the form of interaction terms between hours and the HPC. 

Differences in production between hours of the day could be modelled in other ways. First, a similar 

technique for obtaining hourly estimates before and after the HPC was introduced, is to estimate the supply 

of hydropower production separately on the two parts of the datasets explained in section 6.10: pre-HPC 

and post-HPC. A result of this is that no variable for the high-price contribution (HPC) is explicitly included in 

the model equation, which is the reason why this approach is not utilised in this thesis. However, the effect of 

the HPC is implicitly included as the difference in estimates between the two parts of the dataset, but such 

results are more difficult to interpret. Another alternative is to make production plans some sort of 

difference-variable between hours in the day. Our conclusion is that this would remove much information as 

only one estimate is obtained and there are many hours in the day. 

Partial Effects 

From the model explained above it is important to note that the variable estimate, 𝛼 , is not the standard 

variable coefficient as we know it from standard ordinary least squares. Instead, they are the partial effects of 

the explanatory variables on the dependent variable 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛𝑠. For simplicity it is referred to the 𝛼 -s as 

variable estimates in the rest of this thesis.  

What of the estimates from the Tobit model to obtain depends on the fundamental reason for using the 

model to begin with. The setup can be utilised for both censored and corner solution outcomes, of which 

the last is applicable to our situation. For data censoring interest would typically be in the model determining 

the latent y-variable 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛𝑠∗, that is, the expectation of the latent variable given the explanatory 

variables 𝐸(𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛𝑠∗|𝑥) = 𝑥𝛽. For corner solution responses on the other hand, one wants to investigate 

the total effect on production from the HPC, that is 𝐸(𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛𝑠|𝑥). The reason for this is that the latent 

variable 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛𝑠∗ does not have any meaningful interpretation in the given context. What is of interest 

for the electricity system is not the production in a certain hour after removing null observations, it is the 

total production in those hours. Oppositely to 𝐸(𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛𝑠∗|𝑥), the partial effects on 𝐸(𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛𝑠|𝑥) are 

non-linear in its form. These are obtained by multiplying the beta estimates with an adjustment factor. This 

makes the variable estimates roughly comparable to OLS estimates. The adjustment factor is computed by 

average partial effect (APE). The calculation is performed differently for continuous and discrete (including 

binary) explanatory variables, like stated in Wooldridge (2019). 
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8. Results 

8.1. Results – RQ1 

This section reports on results for the first research question. That is, how does the Norwegian high price 

contribution (HPC) affect the allocation of reservoir hydropower production throughout the day? The 

chapter starts by investigating the research question with descriptive statistics, looking at the difference in 

production before and after the HPC was introduced. Then, results from the statistical inference methods 

described in the section on “Econometric Approach” is shown. 

RQ1 Descriptive Statistics 

Figure 8-1 looks at the overall difference in the density of production plans before and after HPC. As the 

period before the implementation of HPC will be longer than that after resulting in different sample sizes, 

the figure ensures that the density for each group is normalized separately, showing the actual density of 

each 'HPC' state without affecting each other. This is useful for comparing distributions whose samples may 

vary in magnitude. In the figure it looks like the production levels are below zero – this is not the case for the 

real distribution, but a function of the density function. Observe that the two distributions are relatively 

similar but have some variations in the lower production levels. A somewhat larger part of the pre-HPC data 

is centred around zero and the interval 100-150, compared to post-HPC data. The post-HPC data on the 

other side lies over the pre-HPC data for production levels between 20-60 MW. 

 

Figure 8-1. Density plot of production levels for different states of the high-price contribution normalized separately. 
Here, “absent” marks pre-HPC levels and “inEffect” marks post-HPC levels. Production levels are measured in MW. 

This paragraph investigates the cross-sectional distributions for different hours. Figure 8-2 below shows the 

average hourly planned production for hours of the day, before the HPC was introduced (absent) and while 

it was in effect (inEffect). Observe that average planned production between 21h and 6h is higher when the 

HPC was in effect than before. The opposite is true between 6h and 20h, where average planned production 

was higher before HPC was introduced compared to after. This is in line with our hypothesis for the change 

to daily load resulting from HPC. It is also in line with the result from Figure 8-1 above, that the share of 

observations among the very lowest production levels is lower when HPC was in effect, compared to before. 
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To summarise, the average production for the different hours is flatter after the HPC took effect, than before 

it was introduced. Production plans during night-time (21 -06) hours are on average higher than before 

HPC was introduced, and the opposite is true for day-time hours. 

 

Figure 8-2. Average production plans for different hours of the day, for different states of the high-price contribution. 
Here, “absent” marks the period before HPC was introduced and “inEffect” represent the period while the policy was in 
effect. Production levels are measured in MW. 

 

RQ1 Regression Results 

This section provides estimates for the partial effects and significance of the included variables on the 

planned production. Look to the section about “Partial Effects” on how to interpret the results. To make the 

results easier to digest for the reader the section split up the results in three paragraphs: hourly dummies, 

other explanatory variables, and monthly dummies. 

Hourly Dummies 
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Table 8-1. Variable estimates for hourly dummies from the standard left censored Tobit model described in section 7.1. 
Columns marked with hours show the “pure” hourly estimates while columns marked with interactions displays the 
results of the interaction terms between the same hours and HPC. 

We start the chapter off with the results of our variable of interest, the hourly estimates, show in Table 8-1. 

The table displays partial effects (variable estimates) and p-values for two sets of variables: the “pure” hourly 

estimates, and the interaction terms between the same hours and the HPC. The pure hourly estimates 

(column 2) are the partial effect on production plans in the respective hour, when comparing with the 

reference hour (00:00-00:59). The reference state refers to the situation when all other time-dummies of 

that variable is set to zero. The interaction term estimates (col 4) can be interpreted as the partial effect on 

production in the respective hour due to the HPC, compared to the reference hour. Simply put, it is the 

change to allocated production due to HPC in that hour, compared to the midnight hour. 

We observe that the pure hourly estimates are significantly different from zero at the 1% level (at least) for all 

variables except h5 which is not significant. For the interaction terms on the other hand results are not so 

certain. Here, variable estimates are significantly different from zero at the 1% level for the hours 6-22, and 

significant at the 5% level for 4h and 23h. These results indicate that there is a statistically significant 

difference in hourly allocation after the HPC came into effect. Observe that this is mainly the daytime hours. 

To simplify the illustration of the partial effects from the table above they are displayed graphically in Figure 

8-3. In the figure the pure hourly estimates are displayed in blue. The partial effects of the interaction terms 

(orange) are displayed as deviation from the pure hourly estimates. Simply put, the interaction estimate is 

subtracted from the pure hourly estimate for the respective hour.  

First commenting on the overall trend, observe that HPC-interaction estimates lie lower for all hours of the 

day than the pre-HPC estimates. For the day-time hours this is in line with our hypothesis and with the 

descriptive statistics presented further up in this chapter. Observe a clear negative deviation from the pure 

hourly estimates. This indicates that during day-time hours the hourly trend becomes less decisive for 

production plans when the HPC is in effect than when its absent. That is, it indicates a more even production 

through the daytime hours after HPC than before. 

The section on “Demand-Driven Power Market” stated that challenges in the power balance (Norwegian: 

effektbalanse) occur during peak load hours in the morning (07-11) and in the afternoon (17-19) during the 

coldest winter days (Thema Consulting, 2022). Observe that the interaction terms of the hours experiencing 

troubles with the power balance mentioned by Thema all have statistically significant estimates. This indicates 

that the HPC induces lower production in the hours of the day where the power balance is most likely to 

occur, creating possibly harmful effects for the electricity system. 

However, the largest partial effects on the interaction terms are at and around 12h. This result does not 

provide a clear answer of which of the two effects mentioned in the section on “Research Question and 

Hypothesis” that is the strongest, but it is reasonable to assume the effect through the water values is the 

strongest as there is greater uncertainty of future prices than of tomorrows’.  

For the night-time hours the trend is more difficult to explain, and not in line with the descriptive statistics 

further up in this chapter. Here, the results indicate that production during night-time hours is lower when 

the HPC is in effect compared to when HPC is absent, when controlling for other variables.  

This could indicate that the overall production in the year after the HPC was introduced have a total lower 

quantity of water available to production had if reservoir filling and the HPC variable was not controlled for. 

Still the reservoir filling is for each bidding area and not for the specific station groups, possibly introducing 

some omitted variable bias in our results. The reservoir filling not explaining the full variation of that factor is 

an example of the included explanatory variables included not explaining the variation they are supposed to. 
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Another example might be the temperature which is lower during nigh-time hours and is only included for 

one municipality in each bidding area.  

Also, variables not included in the analysis that are correlated with the nigh-time hours can affect these 

results. Temperature is the only variable included for explaining price variations from demand. However, the 

felt temperature might be a more appropriate indicator for demand, which is affected by factors such as 

wind and daylight. These can be vary depending on the hour of the day. 

Another explanation could be that the guidelines on market manipulation set by RME, explained in section 

2.3 are not followed. However, keep in mind that the interaction terms during nigh-time hours are not 

significant, and one cannot draw the conclusion that this is the overall trend. The lacking significance is a 

natural result of partial effects being closer to zero. 

 

Figure 8-3. Variable estimates for hourly dummies from the standard left censored Tobit model described in section 7.1. 

Other Explanatory Variables       

 

Table 8-2. Estimation results for continuous variables from the standard left censored Tobit model described in section 
7.1. 

Table 8-2 above show the variable estimates and p-values of all continuous explanatory variables. The 

coefficients can roughly be interpreted as the partial effect on production plans from a one-unit increase in 

the explanatory variable. First observe that the continuous variable estimates are all statistically significant 

different from zero at least at a 1% significance level. Intuitively, the installed capacity tells us something 

about the size of the station group. Larger station groups can be expected to produce more electricity, 

resulting in a positive variable estimate. This is in line with our result. The size of the estimate might seem 
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small compared to other variable estimates, but keep in mind that installed capacity is not log-transformed 

in this analysis.  

Also as expected, the log-transformed reservoir filling obtains a positive variable estimate. Intuitively, a 

higher degree of reservoir filling in the bidding area indicates that inflow is generally higher, leaving more 

water available for production. Thereby, the water value is lower, and it becomes optimal to produce more 

today. Although the reservoir filling might not represent each station group in the entire bidding area well, 

one would still expect the sign of the reservoir filling variable to be positive, as observed.  

As stated in the section on “Temperature” lower temperatures are expected to increase production plans in 

total, when assessing a linear functional form of the temperature variable. That is, a negative estimate on the 

temperature variable, which is exactly what is observed in the variable estimates. The temperature is not log-

transformed in this analysis. 

Intuitively, the lagged current electricity prices are expected to have a positive sign. This is because a high 

electricity price yesterday is often connected with a higher price today, and hence also higher expected price 

of today. This results in higher production plans, which is in line with our finding. Keep in mind that the 

lagged current electricity price is not log-transformed following from the discussion in the section on “Day-

Ahead Electricity Prices”. 

The section on “Data sources” showed that development in the gas prices and future electricity prices are 

similar over time. This can lead to the estimator not being able to distinguish from which variable to assign 

the effect, possibly resulting in variable estimates that are not intuitive. However, the two variables do not 

suffer from perfect multicollinearity and their p-values are low indicating that they have sufficiently distinct 

effects on production plans. Therefore, both variables are allowed to be in the estimation. Intuitively, a 

higher future spot price should result in higher water values resulting in a decrease in today’s production 

plans. Thereby, one expects a negative estimate. In the table above, observe that the estimates for the future 

electricity price do not have the expected sign.  
One reason for this might be that the futures electricity price is often connected with the current electricity 

price, which moves in the opposite direction. However, in the thesis data does not show a strong correlation 

between current electricity prices and futures electricity prices, which are lagged by one and two days 

respectively. Another explanation for this coefficient might be that it reflects more aggregated tax adaptions; 

that the HPC result in future electricity price being valued differently. This is difficult to conclude as the 

variable is estimated based on both the HPC-absent and the HPC-inEffect period. It can be concluded that 

the variable estimates on the futures electricity price indicate that our results should be regarded with 

caution.  

Following from the discussion in the section on “Futures European Gas Price” one expects the future gas 

price to have a negative sign. This is because higher future gas prices result in higher future electricity prices, 

increasing water value and lower production today. This is in line with our finding above. There is high 

correlation between the future gas price and the carbon price, but this does not seem to cause large issues 

in our model as can be observed here. The carbon price is expected to have a positive sign as higher carbon 

prices tend to drive up the electricity price in Europe, further increasing the current Norwegian electricity 

price. This is also in line with our results. 

Observe the partial effect of the HPC variable, which is positive. As mentioned in the section on the hourly 

estimates indicate an overall trend in production plans being higher for HPC-absent than HPC-inEffect. Such 

an effect is reflected in the HPC variable, as it is positive in the results of this thesis. However, as the analysis 

does not control for all time-varying variables this positive estimate can simply reflect that there are time-

trends that are not accounted for in the analysis. Also, the seasonal effects of the HPC might result in this 

average total effect. 
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Intuitively, the lagged production plan should have a negative sign, as it reflects higher production in the 

past, leaving less water to produce today, but a strong positive sign is observed. This can indicate that the 

production level itself is correlated with past production levels, e.g. that the production level of a station 

group has a max production capacity at which it produces for a share of the observations. Also, the lagged 

production plan is strongly correlated with the installed capacity. In total, this indicates that the lagged 

production plan controls for some of the unobserved effects mentioned in the section on “Model 

assumptions”. 

Monthly Dummies 

 

Table 8-3. Variable estimates for monthly dummies from the standard left censored Tobit model. 

Our estimator obtains estimates for monthly dummies. For our monthly estimates January is set as the 

reference. From Table 8-3 observe that all monthly estimates, except October and December obtains 

estimates that are statistically significant different from zero at a 1% significance level. To observe the trend 

more clearly between the variable estimates they are portrayed in Figure 8-4 below. These are also the two 

months with partial effects closest to zero. 

Overall, there seems to be a clear seasonal trend with some variations. First, observe the highest estimates in 

July and August, with local maximum in April and November. Lowest estimates are obtained for February. 

The estimates observed may be due to differences in household activity and business cycles as the estimator 

already controls for temperature differences, reservoir filling, and price variations through the year. The 

monthly dummies might also reflect other seasonal factors. E.g. the HPC was introduced in October 2022, a 

month where a dip in production can be observed. This might indicate that the changing market conditions 

could have led to uncertainty of the new policy resulting in low production plans. Overall, it can be 

concluded that estimates of our monthly variables can be caused by several factors, making results 

uncertain. 
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Figure 8-4. Variable estimates for monthly time-dummies from the standard left censored Tobit model described in 
section 7.1. 

 

8.2. Results – RQ2 

The second part of the chapter report on results for the second research question. That is, “Is the effect from 

RQ1 dependent on the general price level in different bidding areas?”, RQ1 being how the allocation of 

reservoir hydropower production between hours in the day affected by the Norwegian high price 

contribution (HPC). The section widely follows the same structure of the chapter above but display results for 

each bidding area.  

RQ2 Descriptive Statistics 

We start the section looking at differences in hourly allocation of production before and after the 

introduction of HPC for different bidding areas, displayed in Figure 8-5. First, notice that the average 

production plans for hours of the day is relatively similar before and after the introduction of HPC for NO4, 

only nigh-time hours lying lower for HPC-inEffect. Only NO2 follows the same pattern as in Figure 8-2, with 

HPC-absent higher than HPC-inEffect production during night hours for then to swich for daytime hours. 

NO3 follows a somewhat similar trend, only here HPC-absent production plans are higher than HPC-inEffect 

for the entire day. Lastly, NO1 and NO5 follows similar patterns with the HPC-absent production being 

higher for all hours of the day. This is in line with Figure 5-3 further up where very similar average hourly 

prices for NO1 and NO5 was seen. Keep in mind that the differences between the bidding areas here might 

be due to differences in explanatory variables who are not controlled for in these descriptive statistics. 
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Figure 8-5. Average production plans for different hours of the day, for different states of the high-price contribution, 
split on the different bidding areas. Here, “absent” marks the period before HPC was introduced and “inEffect” represent 
the period while the policy was in effect. 

 

RQ2 Regression Results 

This section gives variable estimates when controlling for other explanatory variables, using the 

methodology explained in the section on “Econometric Approach” run on the different bidding areas 

separately, shown in Figure 8-6. In doing so each model estimate is run on much less data, providing less 

secure estimates. The section only displays results only for the hourly estimates, but information on other 

variable estimates can be found in the appendix. The estimates represent the partial effect of the hour 

compared to the midnight hour (0h), when controlling for other explanatory variables. In the figure the pure 

hourly estimates are displayed in blue. The partial effects of the interaction terms (orange) are displayed as 

deviation from the pure hourly estimates. 

From Figure 5-3 showed that average spot prices are generally lower for all hours of the day in NO3 and 

NO4. Observe that the same bidding areas, NO3 and NO4, have resembling variable estimates in the 

regression results with estimates for the interactions being lower than the pure hours estimates during nigh-

time hours. However, for the daytime hours both the relationship between the pure hour estimates and the 

interactions estimates differ between NO3 and NO4, with interactions being slightly positive for NO4 and 

slightly negative for NO3.  

Figure 5-3 also showed that average spot prices are above the 0,7 threshold for all hours of the day in NO1, 

NO2 and NO5. From Figure 8-6 below observe that both NO1 and NO2 obtain quite similar results with 

HPC-absent estimates being around the same level or lower than the HPC-inEffect estimates, with the 

difference being larger for peak-hours. This trend is like that of the overall model. NO5 follow a similar 
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pattern as NO1 and NO2, only here the interaction estimates are more clearly positive than the pure hourly 

estimates for night-time hours. Also, the divergence during day-time hours is not as large as for NO1 and 

NO2. Notice that NO1 and NO2 followed widely different patterns in Figure 8-5, while their trends are more 

similar here. This indicates that much of the variation in these bidding areas can be explained by the other 

variables controlled for.   

The partial effects are significant at the 1% level for NO1 and NO2 in the hours 6-22 (inclusive), and at the 5% 

for 23h. No partial effects of interaction terms are significant for NO3 and NO4. For NO5 the partial effects 

are statistically significant from zero at the 5% level for the hours 7-10 and 19-20. All variables that are not 

time dummies obtain significant results at the 1% level, similarly to the overall model.  

These results can be due to bidding-area specific factors which are not accounted for in the analysis. There 

are few observations of station groups in NO1, but if this affected results it should be represented in the p-

values of our coefficients. The consumption mix in NO1 is also known for largely consisting of households. 

Also, especially NO2 is more closely connected to the European electricity grid.  

When it comes to the variables that are not time-dummies all variables have the same sign as in the overall 

model, with two exceptions. The HPC variable is negative for NO3, and the futures electricity price is 

negative for NO1, NO2 and NO3. As discussed for the first research question a negative sign of the futures 

electricity price is intuitive. Therefore, these results indicate that the results of NO4 and NO5 should be 

regarded with caution. It is large variation in the coefficients of the monthly dummies. This can just indicate 

that different consumption groups are present to different degree in the different bidding areas, thereby 

representing real differences in business and household cycles. However, the significance of monthly 

dummies are overall noticeably lower in NO1 than in the other bidding areas. 

The results indicate that the effect of the HPC on hourly allocation of production do depend on the general 

price level. NO1, NO2 and partly NO5, all high-price bidding areas, shows a significant reaction in hourly 

allocation during day-time hours similar to that of the overall results. The results for NO3 and NO4, the 

northern low-price bidding areas, is inconclusive. 
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Figure 8-6. Variable estimates for hourly dummies from the standard left censored Tobit model described in section 7.1, 
split on the different bidding areas. 
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9. Discussion of the Methodology 

This chapter discuss the results presented in the past chapter, potential shortcomings of the analysis, and 

what measures might be taken to account for these issues.  

 

9.1. The Data 

As our study takes place in a real-life market and not a controlled experiment any conclusion on causal 

effects is difficult. However, having a control group in the data could have been an advantage for better 

distinguishing the effects of the high-price contribution (HPC). This has been tried obtained,but was not 

possible due to data privacy concerns. The author recommends that institutions with the relevant access 

utilise this by looking at specific power plants right bellow and right above the threshold to observe their 

response to the implementation of the HPC. An alternative approach might be to use production in other 

Scandinavian countries or the northern bidding areas as control groups.  

The HPC was active for one year only, resulting in only one observation for each season, after its 

implementation. This produces difficulties for the estimation as the electricity system is highly affected by 

seasonal patterns. As mentioned in the chapter “Research Question and Hypothesis” distinguishing weather 

the within-day and seasonal effects of the HPC dominates the total production for a specific hour of a day 

can be difficult. Due to the few observations on seasonal dependencies as the HPC was only present for one 

year, giving only one observation for each season, one can here confirm that distinguishing these effects is 

difficult. This was solved in the thesis by focusing on hourly differences in production levels, and not 

investigating the seasonal effects of the policy. 

Lastly, data on production plans are retrieved for only reservoir hydropower. However, the reservoirs might 

be so small that they in practice operate like run-of-river plants. This might introduce error to our analysis 

which is not possible to control for with the dataset utilised. 

 

9.2. The Econometric Setup 

This thesis investigates the research questions by adding interaction terms between the HPC and hourly 

estimates. An alternative to the approach of estimating the effect of the HPC on hourly allocation would be 

to run two separate models with only hourly dummies, then comparing the result of the model on the two 

datasets. Such an approach would allow for all partial effects to vary between the two models but would not 

provide variable estimates for the HPC effect on hourly allocation specifically.  

Second, the thesis uses the futures prices of electricity and -gas as proxies for the water value, and lagged 

current electricity prices, carbon prices and temperature as proxies for the expected current price. It is not 

certain that this specification controls for all relevant variables, or that the included explanatory variables 

reflect the full variability in the factor it is measuring. This might result in omitted variable bias (OVB). The 

chosen setup does not control for European gas storage, which might indicate future electricity prices in 

Europe, and current European gas prices are not included. Neither do the thesis obtain data on the reservoir 

filling in the specific station group. Also, other weather factors outside of the temperature might affect 

demand, and thereby explain more of the expected current electricity price. Further improving the model 

specification might be a possible improvement of the analysis. 

Also, OVB might be present in the form of unobserved effects. That is, there are factors specific to each 

single station group that is not obtained data on such as the reservoir size and the production capacity. Also, 

one might imagine that different owners have different technological solutions for optimizing production 
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plans or differing requirements from their board which might affect production strategies. Even if this 

information was obtained, one would not be able to match it with our dataset as station groups are 

anonymized. However, data on the maximum installed capacity of each station group is obtained, which 

reflects the general size of the station group. Still, this does not account for all station-group specific effects. 

Both the above-mentioned types of OVB can result in a presence of serial correlation in our estimation. That 

is, our error term in one period not being independent on the error term from previous periods. This bring 

us over to the next issue regarding the model at hand - that our general estimator might not be the correct 

specification. The standard Tobit model utilised in this thesis corrects for the presence of corner solution 

responses in our dependent variable, but it does not specifically account for a presence of serial correlation. 

However, if does try to reduce the presence of serial correlation by including a lagged dependent variable as 

an explanatory variable. Serial correlation does not cause bias in the regression variable estimates, but it 

increases type I errors (rejecting the null hypothesis when it is true). In other words, our standard error will be 

too small. This means that the significance level of our variables should be regarded with caution. 

One might reduce serial correlation in the form of unobserved effects using panel data methods, but these 

would not take into account corner solutions. Therefore, choosing between panel data approaches and the 

Tobit model becomes a tradeoff – panel data methods reduce the variance issues introduced by serial 

correlation but is inconsistent due to missing handling of corner solution responses while the Tobit model 

handle the corner solution responses but does not account for serial correlation. Using a panel Tobit model 

is a method for better handling serial correlation simultaneously as accounting for corner solution outcomes. 

However, this would require a highly advanced variance specification which is outside the scope of a thesis. 

Better handling of this serial correlation in our data is one suggestion for future research on the topic at 

hand. 

The standard Tobit model is highly reliant on the assumptions of a normal conditional mean of the latent 

dependent variable. Results show that this distribution is not especially normally distributed, although it is 

symmetrical around zero. Also, our errors show signs of heteroscedasticity, another assumption of which our 

model relies on. This might introduce inaccurate standard errors in our results. Still, the estimation approach 

presented and utilised in this thesis is the approach of highest accuracy of all methodologies tested. For the 

second RQ, the bidding areas NO2 and NO3 obtained residuals of the latent underlying variable that are 

even further from being normally distributed than the overall model, possibly providing issues for our 

estimator. 

For the RQ2 estimates the model fitted is the same for all bidding areas. This was done to ensure that it was 

not differences in the included variables that led to differences in estimates. Different bidding areas might be 

affected by different factors, and this is not accounted for in our analysis. Still, low importance of a variable 

for the specified bidding area is reflected in the estimate of that variable. However, one opportunity for 

further research is to investigate possible adjustments of the included factors to the respective bidding area.  

 

9.3. Other Factors Affecting Production 

This thesis has tried to include moments of all main factors affecting the production of hydropower. 

However, it is possible that the thesis does not specifically account for all factors affecting production.  

First, this thesis investigates the effects only on the production itself resulting from the introduction on HPC, 

and disregards changes to investments by keeping only station groups that have not had changes in station 

group organisation and no changes to installed capacity during the period in question. However, 

information on changes in station groups is not easily accessible, and some changes might not have been 

excluded. Further investigating the investment effects of the policy could be an interesting development on 

the topic. 
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The analysis disregards the fact that the hydropower producers may also participate in the intraday- market 

as one cannot distinguish what market the different parts of the production are assigned to. This is a 

possible source of error. One advantage of using production plans as our data foundation is that 

participation in most balancing markets is not included in the data. This reduces the potential bias from 

participation in other markets. 

Transmission capacity abroad was significantly increased in the summer of 2021 when new cables to UK and 

Germany came into operation. This happened during the period of our analysis but is not explicitly 

accounted for. One possible implication of this is that the variable estimates of European variables, such as 

the carbon price, and especially the gas prices might not have the correct specification as the variables’ 

effect might have changes through the period in question. 

Other policies can also have affected the production of hydropower without having been accounted for in 

the analysis. The resource rent taxes, power price subsidies and grid tariffs have all been changed through 

the period in question. However, one might expect that parts of the effects of the resource rent tax will be 

omitted by investigating the production itself, and not investments. Also, it is reasonable to expect that parts 

of the variation by power price subsidies and grid tariffs will be reflected in the partial effect of the current- 

and future electricity price. 

Lastly, hydropower optimization can be affected by other restraints than those considered in the model. 

There might be environmental considerations that affects the maximum and minimum levels allowed for 

production, production can be restricted due to its position along a riverbed, or the area transmission 

capacity can be restrained.  

 

9.4. The Question at Hand 

One of the key questions regarded in the work of the thesis is what time-aspect that is of interest to 

investigate when it comes to the HPC. This thesis chose to investigate the distribution between hours in the 

day to provide information on the power-balance. This can be relevant to system operators’ routines for 

handling these kinds of production policies. However, several other time-aspects might be interesting to 

investigate. It could be interesting to take an event study approach for the introduction of the HPC – looking 

at the power market effects in the first days, weeks and months following the introduction of the HPC. This 

has not been the focus in this analysis. Another aspect is more directly investigating the production in the 

high-price hours themselves, or the few hours of the year with the largest demand.  
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10. Conclusion 

 

Challenges in the power balance (Norwegian: effektbalanse) occur during peak load hours in the morning 

(07-11) and in the afternoon (17-19) during the coldest winter days (Thema Consulting, 2022). Hydropower 

offers significant flexibility in adapting to electricity market conditions such as the power balance, but the 

introduction of the Norwegian high-price contribution (Norwegian: høyprisbidraget), or HPC for short, 

potentially complicates this flexibility.  

The HPC is a 23% tax13 on the portion of the spot price above 0.7 NOK/kWh. The tax took effect for large 

hydropower producers on the same day it was announced, 28th September 2022. By being levied on only 

high-price hours, the tax reduces the relative profitability of producing during these hours. The theory 

section showed that given the uncertainty of future prices, this could change the allocation of hydropower 

production over time. Following from this the thesis answers the two research questions (RQ): 1: How does 

the Norwegian high price contribution affect the allocation of reservoir hydropower production throughout 

the day? 2: Is the effect from RQ1 dependent on the general price level in different bidding areas? 

To answer the research questions, the thesis takes an empirical approach, using data from several sources to 

answer the research questions. Data on planned hydropower production, maximum installed capacity and 

day-ahead electricity prices is retrieved from the Norwegian Energy Regulatory Authority, futures electricity 

prices and Euroepan gas- and carbon prices. Also, weather data on reservoir filling and temperature data is 

retrieved from the Norwegian Water Resources and Energy Directorate and the Norwegian Meteorological 

Institute (MET) respectively. The study obtains estimates on hourly production using a standard Tobit model, 

with interaction terms hourly dummies and the HPC. The methodology has some drawbacks in that it does 

not account for serial correlation and there might be a presence of omitted variables.  

Descriptive statistics on the first RQ shows that the average production for the different hours is flatter after 

the HPC took effect, than before it was introduced. That is, production plans during night-time (21 -06) 

hours are on average higher than before HPC was introduced, and the opposite is true for day-time hours. 

Looking closer at the same question with statistical methods the same trend for the daytime hours is found, 

while the result is inconclusive for night-time hours. The results indicate that there is a statistically significant 

lower hourly allocation after the HPC came into effect for daytime-hours, compared to before it was 

introduced. 

On the second RQ the answer is not as clear-cut. Here, a similar trend as the results from the first RQ for the 

bidding areas of NO1, NO2, and a similar result for NO5 can be seen. For NO3 and NO4, the two most 

northern areas, the model is inconclusive. The results indicate that the effect of the HPC on hourly allocation 

of production do depend on the general price level. NO1, NO2 and partly NO5, all high-price bidding 

areas, shows a significant reaction in hourly allocation during day-time hours similar to that of the overall 

results. The results for NO3 and NO4, the northern low-price bidding areas, is inconclusive. 

The tax differentiates between hours bellow and above the 0,7 NOK/kWh threshold. As this thesis argue this 

is the attribute of the tax that gives the change in allocation of production over time. One policy implication 

of this is that setting an equal tax rate for all prices would not lead to the harmful allocation of production 

implied by the thesis results. Such a tax design would affect the expected marginal revenue for the whole 

range of probable prices, thereby forgoing the allocational responses to the tax seen here. Also note that 

the tax’s’ monotonic characteristics reduces these harmful effects.  

 

13 Excise duty (Norwegian: særavgift) 
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Appendix: Standard Tobit Model Assumptions 

This appendix explains the model assumptions for the standard Tobit model used in this thesis, and how 

these are tested for. Also, results on these tests are presented. Wooldridge states the model assumptions of 

the standard Tobit model (2019, s. 572). That is, the latent variable, in our case, 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗, must satisfy the 

classical linear model assumptions. In particular, the assumptions of normal distribution and homoscedastic 

errors are of especial importance. The consequence of breaking these last assumptions is explained in 

Wooldridge (2010, s. 533). The first four assumptions are discussed for the full dataset at these are 

connected to the dataset itself, while the last two assumptions are discussed for each model obtained for the 

second research question as well. 

 

Linear in the Parameters 

The assumption of a linear model states that there must be a linear relationship between the independent 

variables and the underlying latent variable. The assumption is examined using scatterplots between the 

underlying latent variable and the different independent variables. These plots are not displayed here out of 

space considerations. However, with many observations the assumption is difficult to assess and data show 

congestions of observations at different production levels, which again underlines the coefficient of the 

lagged dependent variable and a presence of unobserved effects. 

Transmission capacity abroad was significantly increased in the summer of 2021 when new cables to UK and 

Germany came into operation. This happened during the period of our analysis but is not explicitly 

accounted for. One possible implication of this is that the variable estimates of European variables, such as 

the carbon price, and especially the gas prices might not have the correct specification as the variables’ 

effect might have changes through the period in question. 

To obtain a clearer linear relationship some variables were log-transformed. However, the lagged electricity 

variable was not log-transformed due to it containing negative and null-values. In retrospect this could have 

been adjusted for by replacing null-values with a small constant. 

 

Random Sampling 

This assumption requires that the data utilised in the thesis is obtained by random sampling from the cross 

sections. A potential threat to the criteria is that there is a selection bias in how cross-sections are obtained. 

The dataset utilised in this thesis is the full population of station groups, with some exceptions: Out of privacy 

concerns, station groups with total installed capacity lower than 50 MW are excluded from the dataset. 

Second, only station group including power production from other hydropower types than reservoir power 

is included. This can result in station groups consisting of other types of hydropower production being 

excluded from the dataset, possibly resulting in non-random sampling. Third, only station groups where all 

plants with rated power output (Norwegian: påstemplet merkeytelse) of 10,000 kVA or more is included in 

the dataset. Lastly, the dataset used in the thesis shows only the balance responsible parties and station 

groups that have not had changes in their organisation in the period 2021-01-01 to 2023-12-31. In total, 

these filtrations can lead to non-random sampling of the population Especially, station groups consisting of 

smaller plants, and smaller station groups, tend to fall out of the dataset. These were necessary adjustments 

to attain access to data in this thesis but can result in non-random sampling. 
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No Perfect Collinearity 

Perfect collinearity, also known as perfect multicollinearity, occurs when two or more independent variables 

in a regression model are perfectly correlated. This means that one independent variable can be expressed 

as a perfect linear function of the others. Breaking the assumption can result in problems separating the 

effects of the perfectly multicollinear variables. 

The assumption can be tested a correlation table of the included variables. Here all “other variables” are 

included, while hourly, interaction and monthly dummies are not included out of interpretability. However, 

when including these dummies, it can be observed some correlation between monthly dummies and the 

weather variables reservoir filling and temperature, a result that is in line with discussion in section on 

“Hydropower as a source of electricity”.  

Observe that no correlation is above 0,8 meaning that perfect multicollinearity is not an issue in our model. 

However, do assess high correlation between the following sets of variables carbon price and gas price, 

lagged production plans and installed capacity (MaxEffect_MW), gas price and future electricity price, and 

lastly production plans and lagged production. The correlation table does not show signs of perfect 

multicollinearity. Also, their low p-values in the regression results in Table 8-2 indicating that they have 

sufficiently distinct effects on production plans. 

 

Table 0-1. Correlation table of selected variables. 

 

No Omitted Variable Bias 

The assumption of no omitted variables, also called the zero conditional mean assumption, imply that the 

independent variables included in the model are exogenous. That is, they are not correlated with the error 

term in the same model. When this is not the case, one can have a presence of Omitted Variable Bias (OVB). 

OVB can be due to several reasons, but in our case, this analysis likely has unobserved effects tied to the 

station group that are not accounted for in the analysis. Station group-specific variables are not possible to 

match with the data as it is anonymized. This is because the thesis obtains panel data, but our standard 

Tobit model treats all observations as one long cross-sectional dataset. This leads to dependence in the 

distribution of production plans for different time-periods. 

It is also possible that OVB is present by not including all variables that affect production decisions, e.g. 

current gas price and gas storage as mentioned in the section above. As stated in the section on “Futures 

European Gas Price” the day-ahead gas price might also be of importance in estimating the expected 

current electricity price, but it was not included because of a high expected correlation between the futures 

gas price and the day-ahead gas price. This might cause omitted variable bias (OVB) in our estimation. One 
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possible solution to this would be to include the current gas price and rather include European gas storage 

as (Løfgren & Ingstad, 2023).  

Also, OVB can result from one of the included variables only partly explaining the variation from a relevant 

factor. Temperature for example is a proxy for the demand of electricity, but temperature alone cannot 

explain all variation in demand. To account for differences in peoples’ habits and changing business cycles 

through the year hourly and monthly dummies were added to catch some of this variation. Also, different 

functional forms of temperature were tested to account for very cold temperatures to have a stronger effect 

on demand than the temperatures not as extreme. However, these did not show improvement to model 

accuracy on test-data. Seasonal interaction terms were not tested, which could have been a possible 

improvement of the model specification. Second, the thesis obtains data on the bidding area reservoir filling 

level, not on the reservoir level for each station group. This might result in the full effect of the reservoir level 

not being controlled for, resulting in OVB. A related, but not the same issue is that of possible simultaneous 

causality of reservoir filling as it depends on the previous production. However, the reservoir filling which is 

included is lagged by five days. Meaning that the production plan today cannot affect past reservoir filling 

levels. Because of the lagging, the analysis do not consider simultaneous causality bias to be a problem in 

connection with the reservoir filling. 

 

Homoscedasticity 

Homoscedasticity implies that the variance of the error terms is constant across different levels of the 

predictor variables. The assumption can be examined using scatter plots of the residuals against the 

predicted values (here, 𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗), as shown in  

Heteroscedasticity plots are similar for the results of the five bidding areas and are therefore not included. 

 

Figure 0-1. The results show a clear pattern in the predicted vs residuals. Heteroscedasticity is tested using a 

Breusch-Pagan test. The null hypothesis is rejected and find a presence of heteroscedasticity. From the 

figure observe a clear decreasing pattern. The results indicate that our variance should be cautious of the 

standard errors, and hence the p-values of our regression results. 

Heteroscedasticity plots are similar for the results of the five bidding areas and are therefore not included. 

 

Figure 0-1. Scatterplot of residuals 
against fitted values, both of the 
latent underlying variable, 
𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗. RQ1 model. 
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Normally Distributed Errors 

The Tobit model, rely heavily on the latent underlying variable being normally distributed and independently 

and identically distributed (IID). The normality assumption can be examined plotting the residuals of the 

latent underlying variable (𝑃𝑟𝑜𝑑𝑝𝐿𝑎𝑛∗) and a quantile-quantile (Q-Q) plot. The results are shown in Figure 

0-2. From the right panel very volatile Q-Q plots can be observed. Hence, the latent underlying variable is 

far from being normally distributed. However, from the left pane observe that the latent underlying variable 

is approximately symmetric around zero. The results indicate that our errors are not identical distributed, 

possibly resulting in biased estimates. 

QQ plots are similar to the RQ1 model for all RQ2 models. Also, the residual histogram is similar to the RQ 

model for both NO1, NO4 and NO5. Residual histograms for NO2 (left) and NO3 (right) are displayed in 

Figure 0-3. Observe that the distributions are even less normally distributed than the other models. 

 

Figure 0-2. Left: histogram of residuals of the latent underlying variable (𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗). Right: QQ plot of residuals. RQ1 
model. 

  

Figure 0-3. histogram of residuals of the latent underlying variable (𝑃𝑟𝑜𝑑𝑃𝑙𝑎𝑛∗). Left: NO2 model. Right: NO3 model. 



Elise Johannessen 

76 

Appendix: Model Results of Research Question 2 

This appendix displays the model results for the second research question. Look to the section on “Partial 

Effects” for interpretation of model results. 

 

Monthly dummies 

 

Table 0-1. Variable estimates for monthly dummies from the standard left censored Tobit model described in section 
7.1., split on each bidding area. 

 

Hourly dummies 

 

Table 0-2. Variable estimates for hourly dummies from the standard left censored Tobit model described in section 7.1., 
split on each bidding area. 
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Interaction dummies 

 

Table 0-3. Variable estimates for hourly interaction dummies from the standard left censored Tobit model described in 
section 7.1., split on each bidding area. 

 

Other variables 

 

Table 0-4. Estimation results for continuous variables from the standard left censored Tobit model described in section 
7.1, split on each bidding area. 



 

 

 


