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Abstract
This thesis proposes methods for estimating the stored kinetic energy within the Nordic
power system using both a stochastic modeling of frequency to estimate a regional inertial
constant and a Long Short-Term Memory (LSTM) model that directly estimates stored
kinetic energy within the power systems. The stochastic model uses a linear model to estimate
kinetic energy stored within the power system from regional inertial constant and aggregate
power produced in the region. This approach relies on modeling frequency behavior as an
Ornstein-Uhlenbeck process and using the diffusion coefficient to estimate a regional inertia
constant.

The attempted estimation using the diffusion and LSTM models to estimate kinetic
energy based on steady-state frequency measurements has shown promising results. The
model’s accuracy was evaluated using various metrics, including the Mean Absolute Per-
centage Error (MAPE) and the R2 score. For the year 2020, the diffusion model achieved a
MAPE of 4.2% and an R2 score of 0.837, and the LSTM model achieved a MAPE of 3.1%
and an R2 score of 0.917. Both results indicate a high ability to replicate the transmission
system operator’s(TSO’s) estimation of kinetic energy stored in the power system, which was
used as ground truth.

These findings highlight the potential of using stochastic models or LSTM networks
for the estimation of kinetic energy in power systems. The two models display different
tendencies during periods of low kinetic energy stored in the power system, with the LSTM
model favoring underestimations and the diffusion model favoring overestimations. While the
study suggests that the models are effective for the Nordic power system, their applicability
might vary across different regions, necessitating further validations within these regions
to ensure their generalizability and practical relevance on a global scale. Similar models
could be utilized to improve the operational efficiency of the power grid, allowing for more
rapid electrification of the Nordic power system and aiding in reaching the goal of net zero
emissions.
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Sammendrag
Denne master oppgaven foreslår metoder for å estimere lagret kinetisk energi i det Nordiske
kraftsystemet ved bruk av både stokastisk modellering av frekvens for å estimere en regional
treghetskonstant, og en Long Short-Term Memory (LSTM) modell som direkte estimerer
lagret kinetisk energi i det Nordiske kraftsystemet. Den stokastiske modellen bruker en lineær
modell for å estimere lagret kinetisk energi i kraftsystemet fra en regional treghetskonstant
og samlet kraftproduksjon per produksjon type i regionen. Den stokastiske estimeringen
er basert på å modellere frekvensoppførsel som en Ornstein-Uhlenbeck-prosess og bruk av
diffusjonskoeffisienten for denne prosessen til å estimere en regional treghetskonstant.

Bruken av diffusjons- og LSTM-modellene for å estimere kinetisk energi basert på målinger
av steady-state frekvens har vist lovende resultater. Modellens nøyaktighet ble evaluert ved
hjelp av ulike målemetoder, inkludert Gjennomsnittlig Absolutt Prosentvis Feil (MAPE)
og R2-score. For året 2020 oppnådde diffusjonsmodellen en MAPE på 4,2% og en R2-score
på 0,837, og LSTM-modellen oppnådde en MAPE på 3,1% og en R2-score på 0,917. Begge
resultatene indikerer en høy evne til å reprodusere TSOs estimering av lagret kinetisk energi
i kraftsystemet, som ble brukt som fasit.

Disse funnene fremhever potensialet for bruken av stokastiske modeller eller LSTM-modeller
for estimering av kinetisk energi i det Nordiske kraftsystemet. Estimatene fra de to modellene
viser ulike tendenser for lav inertia situasjoner i det Nordiske kraftsystemet. LSTM modellen
har en tendens til å underestimere inertia for disse periodene, mens diffusjons modellen har
en tendens til å overestimere inertia for de samme periodene. Selv om oppgaven antyder at
modellene er effektive for det nordiske kraftsystemet, kan deres anvendelighet variere på tvers
av forskjellige regioner, noe som nødvendiggjør videre forskning innen disse regionene for å
sikre at funnene generaliserer til andre kraftsystemer med ulike oppbygging. Lignende modeller
kan potensielt benyttes for å forbedre driftseffektiviteten til det Nordiske kraftnettet, noe som
kan tillate raskere elektrifisering av det Nordiske kraftsystemet og bidrar til å nå målet om
nullutslipp raskere.
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1 Introduction
1.1 Background and scope
Industrialization was the driving force when the Nordic power system and power generation in the Nordic
region were built. From the 1960s and onwards, it became a collaboration between several countries [1]
with the introduction of cross-border transmission lines. The cross-border cooperation has expanded and
given rise to a Nordic synchronous region, as shown in the figure 1.

Figure 1: A map showing the Nordic synchronous region. It comprises the Norwegian, Swedish, Finnish,
and a part of the Danish power systems, the DK2 price area. These regions share a common grid frequency
of 50 Hz to facilitate the easy exchange of power within the region. Taken with permission from [2].

Within this region, the countries operate with a shared grid frequency of 50Hz to easily facilitate the
power exchange within the region. However, the challenges related to the environmental crisis we face to-
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day demand a change to the power system. Norway’s power system operator Statnett’s long-term market
analysis (LMA) states that the installed effect of inverter-based renewable energy (IBRE) in Norway will
increase from around 5GW to 25GW by 2050 [3]. Furthermore, LMA indicates that the other Nordic
countries will develop similarly towards 2050. Despite the positive impact IBRE has on the environment,
the intermittent and disrupted nature of this production type poses new problems for transmission sys-
tem operators (TSO) of power systems. The TSO is responsible for ensuring the operational security of
the power system. One critical aspect is maintaining the power grid frequency within a predefined range
of 48–52Hz [4]. If there is a trip of a single large power generator, i.e., a nuclear power plant or a large
cross-border transmission line, large frequency deviations can occur due to the sudden mismatch between
produced and consumed power. If not corrected, the frequency deviations can trigger safety features that
lead to the disconnection of other production units and loads, which can lead to a cascading effect and
possibly result in power outages. The kinetic energy stored in large synchronously connected generators
causes the power system to resist these sudden changes in frequency [5]. However, IBRE is starting to
displace the synchronous generation in the Nordic region. Most modern IBRE systems interface to the
power grid using power electronics in such a way that their generation frequency is independent of the
power-grid frequency, causing this type of production not to contribute kinetic energy to the power sys-
tem. The expected increase in IBRE production would change the relative contribution from IBRE to the
power produced in the Nordic power system [3], resulting in a larger share of power coming from these
production types. Additionally, the focus on renewable energy production in the Nordic region [3] also
causes thermal power plants to spend less time synchronized to the power system, further reducing the
kinetic energy available in the power system.

The Nordic region also faces rapid electrification of many sectors in an attempt to reach the sustainabil-
ity goals proposed by United Nations [6] causing an increasing need for electrical power [3, 7]. To meet
the growing demand for electrical power, power system operators must operate the power system closer
to their operational limits [8]. Utilizing more of the power system’s capacity will, together with faster
frequency dynamics resulting from increased production from IBRE [9], make power system operation
more challenging. Historically, when the Nordic power system mainly consisted of synchronous genera-
tion, an assumption of adequate and almost constant inertia in the power system was satisfactory for
frequency stability. This assumption is not necessarily valid for a power system with sufficient penetration
of IBRE [9]. To operate the Nordic power system closer to operating limits, accurately forecasting inertia
in real-time becomes essential [8]. The current methods employed by the Nordic transmission operator for
real-time inertia estimation are described and outlined in the report Future System Inertia by Ørum et
al. [5]. This method uses information about what power plants are connected to the power grid, from
now on referred to as circuit breaker position closed, together with the following equation,

Ek,sys =

K∑
i=1

SniHi, (1.1)

where Ek,sys is the stored kinetic energy in the power system, K is the total number of generators, Sni is
the rated apparent power of generator i, and Hi is the inertial constant of generator i. When the circuit
breaker is closed, the generator’s stored kinetic energy is available to the power system. Information re-
garding Sn,i and Hi is available to the individual TSOs for each of the four countries, and they calculate
the inertial contribution of their respective regions. These estimations also use information on production
units and rotating condensers [5].

The increased volatility from more IBRE is expected to reduce the accuracy of the current inertia estima-
tion method used by the Nordic TSOs [8] because the increase in IBRE changes the amount of controllable
production capacity. Historically, the production capacity of the Nordic power system was located in large
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hydro and nuclear power plants; these types of power plants give a high degree of control over production
capacity. With the increase of IBRE, more production capacity is located in smaller, less controllable
power generation in the form of wind turbines and photovoltaic cells. The accessibility of energy resources
extracted from wind turbines and photovoltaic cells has significant variability and needs to be utilized
when available. It is anticipated that this will decrease the precision of the projected production capacity
of other production types, leading to less accurate circuit breaker information for synchronous generation.

Previous works have proposed a top-down approach for inertia estimation [10, 5] using production data
per production type, i.e., wind, hydro, nuclear, etc., and linear regression machine learning models to
estimate power-system inertia for the Nordic power system. A notable limitation of this approach is the
lack of accurate ground truth for the kinetic energy stored within the power system, and this method used
estimations from the TSO as ground truth [10]. Also, this estimation method relies on the linear relation
between kinetic energy stored in the power system and exogenous variables in the model. A method to
estimate regional inertia constant outlined in the report Future system Inertia [5] is the estimation of re-
gional inertia constants using disturbances. This method can accurately find the regional inertia constant
within a short period using the swing equation (2.7) together with the frequency response right after the
disturbance. However, this method cannot accurately estimate regional inertia constants for the power
system for moments outside of the disturbance. Previous work in creating time series data for simulation
by Rydin Gorjão et al. [11] has shown that the characteristics of power-grid frequency can be recreated
using stochastic modeling. The approach is a data-driven stochastic model, where the model’s parame-
ters are estimated using data-driven analysis tools and an approach based on the Fokker-Planck equation.

To improve inertia estimations in future power systems, it could be beneficial to examine nonlinear rela-
tionships between the production and consumption of electrical power in the power grid and the kinetic
energy stored in the synchronous generators within the power grid. Memory cell-based Long Short-Term
Memory (LSTM) [12] machine learning algorithms have been used to analyze other dynamical systems,
like spot price, through multivariate time series analysis [13]. These models can find complex nonlinear
relationships in data [13], which can be hard or impossible to find with conventional models.

1.2 Motivation
The increasing need for accurate estimations and predictions of kinetic energy stored within the power sys-
tem demands new approaches for analyzing available data to have more reliable results. The report Future
System Inertia [5] by the European Network of Transmission System Operators (ENTSO-E) describes a
disturbance-based method for estimating the regional inertia constant. However, this method suffers from
the fact that large-scale disturbances needed for the estimations are rare within stable power systems,
such as the Nordic power system. A more reliable method for estimating regional inertia constants could
rely on information measured during a steady-state operating period within the power system, which is
more common for stable power systems.

The current state-of-the-art models for kinetic energy estimation, also outlined in ENTSO-E report [5],
only have the ability to capture linear relationships within the data. A model capable of capturing
nonlinear relations could utilize more of the currently available information in the data to estimate the
stored kinetic energy in a power system.
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1.3 Research objectives
Objective 1 Propose a method of estimating a regional inertial constant for the Nordic power system us-
ing steady-state power-grid frequency measurements together with a stochastic model of frequency behavior
in the power grid.

Objective 2 Examine the ability of a simple LSTM neural network to perform multivariable analysis
of production, load, and power-grid frequency data to predict the stored kinetic energy within the Nordic
power system.
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2 Theory
The theory section is structured around three topics: power systems, stochastic processes, and machine
learning. The segment on power systems begins with an overview of the fundamentals of the Nordic power
system. Then, it explains how the swing equation can be applied to model frequency. Finally, it explains
the concept of inertia within a power system. The segment on stochastic processes covers the basics of the
Fokker-Planck equation and introduces a special case of the Fokker-Planck equation, called the Ornstein-
Uhlenbeck equation. Then, it covers the Nadaraya-Watson estimator and how the estimator can be used
to estimate the drift and diffusion coefficients for processes described by a Fokker-Planck equation. The
segment on machine learning covers the fundamental goal of machine learning and methods to introduce
non-linearity to the learning process. It continues explaining how recurrent neural networks can be used
for sequential analysis and explains a modified recurrent neural network cell called a long-short-term
memory cell. Finally, the pipeline from unprocessed input data to the trained model is outlined.

2.1 The Nordic power system
The power system in Norway is a part of the Nordic power system, which includes Norway, Sweden,
Finland, and the eastern part of Denmark, corresponding to the DK2 price region. Figure 1 shows a map
of the price regions that make up the Nordic synchronous region. Within the shared Nordic synchronous
region, the Nordic TSOs chose the frequency of the AC power out of a synchronous generator connected
to the power system to be 50 Hz [1]. The power grid frequency is dictated by synchronous generators
connected to the power grid. Therefore, the frequency of the Nordic power system becomes 50 Hz. The
shared grid frequency facilitates easy exchange of power within the region because the synchronous
power producers/consumers can exchange power directly by changing the relative rotor angle between
synchronous machines. Figure 2 depicts the conceptual reasoning behind a shared power grid frequency.
In the figure, the power grid is represented as a collection of synchronous machines, the red circles, with a
common power angle, δ, often chosen to be zero. When the synchronous machines operate with a common
frequency, any change to the power angle relative to the common power angle induces an exchange of
power. In figure 2, this is represented with a change of the power angle, (δ+θ), of the leftmost synchronous
machine, which leads to the power flow P .

Figure 2: Physical interpretation of the power grid as a collection of pendulums connected by springs.
Because the leftmost pendulum oscillates with a different initial angle, a force from the pendulum goes
into the system. This force from the pendulum into the system is analogous to the power flow from a
synchronous machine into the power grid with a rotor angle greater than the average rotor angle of the
power grid.
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2.2 The swing equation
A natural place to start when creating a model of frequency behavior is the swing equation. The swing
equation is derived from Newton’s second law of rotation and relates the acceleration of a synchronous
generator or turbine to the imbalance of mechanical- and electrical torque. The following derivation
follows closely from the book [14]. For a single synchronous generator, Newton’s second law gives

J
∂ωm

∂t
= τm − τe, (2.1)

where J is the moment of inertia for the turbine, shaft and generator combined, given in [kgm2], ωm

is the mechanical angular frequency of the generator measured in [rad/s], τm is the mechanical torque
given in [Nm], and τe is the electrical torque given in [Nm]. For applications in power system analysis,
it is useful to express the swing equation (2.1) in terms of power and not torque. At the same time, it
is beneficial to convert the equation into a per-unit system. Expressing the equation in terms of per-unit
power is done by multiplying with the mechanical angular frequency, ωm, and divided by rated apparent
power, Srated

Jωm

Srated

∂ωm

∂t
= Pm,pu − Pe,pu, (2.2)

where Srated = Pmax/pf is the rated apparent power of the generator with pf denoting the power factor
of the generator, Pm = ωmτm is the mechanical power from turbine into generator and Pe = ωeτe is the
electrical power from generator to grid. Both Pm and Pe are given in [W].

Generators can vary considerably in rated apparent power and moment of inertia, therefore a normalized
inertia constant is used. This inertia constant is defined as

H =
1

2

Jω2
m

Srated
, (2.3)

Equation (2.3) is a function of the mechanical angular frequency, which entails that the H constant does
change with the angular frequency of the generator. However, a synchronous generator needs to generate
electrical power with a frequency matching the frequency of the power grid. So, for all practical purposes,
one uses a fixed ωm such that the frequency of the generated power matches the grid frequency. Since the
H-constant is normalized by rated apparent power, it typically falls within a narrow range of 1-10s [14].
This gives an advantage over using the moment of inertia because one can easily compare different-sized
generators.

Using equation (2.3) and equation (2.2) the swing equation can be written as,

2H
ωm

ω2
m,syn

∂ωm

∂t
= Pm,pu − Pe,pu, (2.4)

where ωm,syn is the synchronous mechanical angular frequency, Pm,pu is the mechanical power into the
generator, and Pe,pu is the electrical power out of the generator. Equation (2.4) is given with mechanical
angular frequency. When using the swing equation to model grid frequency response, the electrical angular
frequency is of more interest than the mechanical angular frequency. Converting from mechanical to
electrical angular frequency follows the following relation:

ω =
µ

2
ωm, (2.5)

where µ is the number of poles in the generator. To further simplify the swing equation, the per-unit
angular frequency, ωpu, is defined in the following manner.

ωpu =
ωm

ωm,syn
. (2.6)
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Using equations (2.6) and (2.5), equation (2.4) can be rewritten using the electrical angular frequency
instead of the mechanical angular frequency,

2H

ωsyn
ωpu(t)

∂ω(t)

∂t
= Pm,pu(t)− Pe,pu(t), (2.7)

where ωpu is the per-unit angular frequency, ω is the electrical angular frequency. The equation above
represents an idealized frequency response of a generator. To better represent a real-world generator, it
is often added a term to represent the dampening torque applied on the generator when it deviates from
synchronous speed, and a second term can also be added to represent frequency deviations resulting from
noise. A more realistic swing equation, taking both noise and dampening into account, can be described
as

2H

ωsyn
ωpu(t)

∂ω(t)

∂t
= Pm,pu(t)− Pe,pu(t)−D

ω(t)− ωsyn

ωsyn
+ βϵ(t). (2.8)

The equation now contains a dampening factor, D, a noise factor, ϵ, and the strength of the noise β.
The dampening term represents the natural dampening of oscillations in the power grid, and the noise
term represents the natural fluctuations in power grid frequency. For smaller-scale power generation,
voltage dynamics are often included in the swing equation to give a more realistic representation of
frequency dynamics. At the transmission grid level, voltage is approximately constant, given that the
TSO regulates voltages in an attempt to make it constant. Since the frequency dynamics being studied
are at the transmission grid level, the voltage dynamics are not considered; therefore, the swing equation
as described in equation (2.8) is the most complex representation of frequency dynamics addressed in the
thesis.

2.3 Inertia and kinetic energy in power grids
The inertial constant of a power grid can be expressed as a sum of the inertial contributions of all the
synchronous machines in the system. Considering N synchronous machines, the total inertial constant,
Hsys, is given as

Hsys =

∑N
i=1 Si,nHi∑N
i=1 Si,n

, (2.9)

where |Si,n| and Hi are the rated apparent power and inertial constant of generator number i. Synchronous
machines refer to synchronously connected turbine generators and motors and should be included sim-
ilarly. The TSOs in the Nordic power system do not measure a total system inertial constant but the
kinetic energy stored in the synchronously rotating generators connected to the power system. The kinetic
energy stored in the system is closely connected to the inertia constant of the power system. Rewriting
equation (2.9), the system kinetic energy Ek,sys, measured in [Ws], can be expressed as

Ek,sys = SsysHsys =

N∑
i=1

Si,nHi, (2.10)

where Ssys is the total rated apparent power and Hsys is the total inertia constant for the power system.
This equation is only valid for synchronous machines that deliver power to the grid. A modified version
of equation (2.10) takes the state of the circuit-breakers into account,

Ek,sys = SsysHsys =

N∑
i=1

Si,nHiKi, (2.11)
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where Ki is the state of the circuit breaker. The circuit breaker state can be expressed as

Ki =

{
1, grid connected,
0, not grid connected.

(2.12)

When Ki = 1, the synchronous machine i is connected to the power grid and can supply kinetic energy,
and when Ki = 0, the synchronous machine i is not connected to the power grid, and the kinetic energy
is no longer accessible to the power grid. Note that from a power system perspective, a synchronous
generator might not be actively providing/withdrawing power but still provides inertia to the system. In
this thesis, the terms inertia and kinetic energy are used interchangeably to refer to the stored kinetic
energy within the power system. When referring to the inertial constant, denoted H, the term inertia
constant is used.

2.4 Fokker-Planck equation
The evolution in time for many dynamic systems in power engineering, such as the swing equation, is
described deterministically by differential equations. Then, a stochastic term is added to represent random
fluctuations of a value, as in equation (2.8). The Fokker-Planck (FP) equation is a partial differential
equation that describes the evolution of a probability distribution function over time and space and has
been utilized to model other dynamical systems containing a stochastical component, notably within the
fields of physics and finance. The general FP equation for one variable x is given as [15].

∂W (x, t)

∂t
=

[
− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

]
W (x, t), (2.13)

where W is the probability distribution function, D(1)(x) is the drift coefficient and D(2)(x) is the diffusion
coefficient. Solving the FP equation yields a distribution function as a function of space x and time t. The
drift D(1)(x) and diffusion D(2)(x) are the first and second-order Kramers-Moyal coefficients. The j-th
order Kramers-Moyal coefficients can be estimated using the forward derivative definition of Kramers-
Moyal coefficients, which is defined as [16]

D(j) =
1

j!
lim
τ−→0

1

τ
K(j)(x, t, τ) =

1

j!
lim
τ−→0

1

τ
⟨[x(t+ τ)− x(t)]j⟩

∣∣∣
x(t)=x

, (2.14)

where K(j)(x, t, τ) is the conditional moment and τ represents a small increment in time. Using the
general Kramers-Moyal equation (2.14), the drift, D(1)(x), and the diffusion, D(2)(x), are defined as

D(1)(x, t) = lim
τ→0

1

τ
K(1)(x, t, τ), (2.15a)

D(2)(x, t) =
1

2
lim
τ→0

1

τ
K(2)(x, t, τ). (2.15b)

There are several special cases of the general FP equation where drift and diffusion have special properties.
One of these is the Ornstein-Uhlenbeck process. In an Ornstein-Uhlenbeck process the drift coefficient,
D(1)(x) = −θx, is a linear function of x, and the diffusion coefficient, D(2)(x) = D, is a constant. The
FP equation for an Ornstein-Uhlenbeck process can then be expressed as

∂W (x, t)

∂t
=

[
θ
∂

∂x
x+D

∂2

∂x2

]
W (x, t). (2.16)

The Ornstein-Uhlenbeck process can also be described as a Langevin equation [15]. The Langevin repre-
sentation of the Ornstein-Uhlenbeck process is

dx(t)

dt
= −θx(t) + αΓ(t), (2.17)
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where x is the variable that behaves according to the Ornstein-Uhlenbeck process, θ is a constant denoting
the strength of the change related to x(t), Γ(t) is assumed to be a Gaussian random variable with zero
mean and δ correlation, i.e., ⟨Γ(t + t′)Γ(t)⟩ = δ(t, t′) [15], and α is a constant denoting the strength of
Γ(t). Using the definition of the Kramers-Moyal expansion coefficients [15] the drift coefficient and the
diffusion coefficient can be related to θ and α in the following way

D(1)(x, t) = −θ x, (2.18)
D(2)(x, t) = α2. (2.19)

Importantly, equation (2.17) only works on processes that have a mean of zero. For processes with a mean
different from zero, subtracting the mean value from the process allows the equation to be applied.

2.5 Nadaraya-Watson Estimator
To estimate the drift and diffusion coefficients empirically from a non-stationary time series [16], the
Nadaraya-Watson (NW) estimator can be utilized. For a non-stationary time series, the Kramers-Moyal
(KM) coefficients have the potential to be time-dependent and KM coefficients for the entire time series
can be hard to attain. The NW estimator allows the estimating of ‘local’ KM coefficients in each time
step [16]. The method is based on estimating a conditional averaging, ⟨Y |X = x⟩, for the KM coefficients
using a kernel. The conditional averaging, ⟨Y |X = x⟩, of the joint probability distribution functions,
p(x, y), can be defined as [16]

⟨Y |X = x⟩ =
∫
yp(x, y)dy∫
p(x, y)dy

=

∑n
i=1 kx(x− xi)yi∑n
i=1 kx(x− xi)

, (2.20)

where kx(x) is a kernel, x ∈ X is value from set X at the current time step, xi ∈ X and yi ∈ Y represents
the value of set X, and Y at time step i. The KM conditional moments can be expressed on the form
⟨Y |X = x⟩ where Y ≡ (x(t+τ)−x(t))n∀n ∈ {1, 2, ...}. Using this expression for KM conditional moments
together with equation (2.20), the j-th order KM conditional moments can be expressed as [16],

K(j) =
1

τ
⟨(x(i+1)τ − xiτ )

j |xi=x⟩ =

∑n
i=1 k

(
xiτ − x

h

)(
x(i+1)τ − xiτ

)j
∑n

i=1 k

(
xiτ − x

h

)
τ

, (2.21)

where h is the bandwidth of the kernel k(x). The kernel can be any smooth function satisfying,∫
x2k(x)dx < ∞, k(x) ≥ 0,

∫
k(x)dx = 1,

∫
xk(x)dx = 0. (2.22)

The most common kernels include the Gaussian kernel k(x) = 1√
2
exp(−x2/2) and the Epanechnikov

kernel k(x) = 3
4 (1− x2), x ∈ [−1, 1]. Using equation (2.21) and (2.14), the j-th order KM coefficient can

be estimated using the following equation,

D(j)(x, t, τ) =
1

j!
lim
τ−→0

1

τ
K(j)(x, t, τ) =

1

j!
lim
τ→0

1

τ


∑n

i=1 k

(
xiτ − x

h

)(
x(i+1)τ − xiτ

)j
∑n

i=1 k

(
xiτ − x

h

)
 . (2.23)

2.6 Machine learning fundamentals
Machine learning methods comprise three main parts: data, model, and loss function. Data is a collection
of data points. A data point is a unit of information, as an example in a time series a timestep is a data
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point and represents a unit of information. The data can be described with features and labels. Features
are often denoted by x and represent measurable quantities such as temperature, pixel values, text, etc.
Labels are often denoted with the letter y and represent more complex facts or quantities associated with
a given data point, for example, categorization such as dog or cat, the sentiment of a text, quantities
resulting from a combination of features, etc. Considering an ML model with a feature space X and a
label space Y the goal of the model is to learn a mapping h : X −→ Y such that

h(x) = ŷ ≈ y ∀ x ∈ X , (2.24)

where h is a transformation from the feature space X to the label space Y [17]. ŷ is the label estimated
by the ML model for data point x, and y is the true label of data point x. The entire space of possible
h(x) maps is called a hypothesis space and is denoted by H. For the machine learning model to learn
the best h(x) mapping for a given problem, a loss function is used to find the discrepancy between the
estimated ŷ and target y. The loss function L(h, x, y) can be generalized as a map

L : X × Y ×H → R : ((x, y), h) → L((x, y), h). (2.25)

with the h mapping, x features, and y labels as inputs and the numerical value L((x, y), h) as output. The
objective of a machine learning algorithm is to minimize the loss function, thereby having the smallest
difference between the predicted values and the actual values and thereby finding the best h map from
X to Y. There are many different approaches to designing the model architecture, the one used in this
thesis is a version of a recurrent neural network feeding into a fully connected feed-forward network also
called a dense layer.

2.7 Activation functions
In machine learning, activation functions can be used to allow neural networks to learn nonlinear rela-
tionships in data by transforming the input data from linear space into nonlinear space. Two activation
functions used in this thesis are the sigmoid and tanh functions. The sigmoid function is defined as

f(x) =
1

1 + e−x
, (2.26)

where x is the input variable and e is Euler number. The tanh function is expressed as

f(x) =
ex − e−x

ex + e−x
. (2.27)

As shown in figure 3, the sigmoid and tanh functions output nonlinear values between [0, 1] and [−1, 1],
respectively. In machine learning algorithms, the activation functions can go from linear input to nonlinear
output. Allowing the models to learn nonlinear relations in data.

−5 0 5
x

0.00

0.25

0.50

0.75

1.00

f(
x)

Sigmoid

−5 0 5
x

−1.0

−0.5

0.0

0.5

1.0

f(
x)

Tanh

Figure 3: Two activation functions commonly used in machine learning: sigmoid and tanh. They both
take an input vector,x = [x1, x2, ..., xn], and create a non-linear output, f(x), for the sigmoid function
the output is between [0, 1], and for tanh it is between [−1, 1]. The activation functions allow a neural
network to learn nonlinear relations in data.
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2.8 Fully connected feed-forward network
A fully connected feed-forward network, referred to as a multilayered perceptron (MLP), is a neural
network consisting of nodes and weights. How the nodes and weights are connected is shown in figure 4.
The nodes are the colored circles, and the weights are the lines connecting them.

Simple MLP architecture

am

a1

a0

hm

h1

h0

Om

O1x1

xm

ŷ

Output
layer

Input
layer

hidden
layer

Figure 4: A simple graph representation of an MLP. The nodes are the colored circles, and the weights
are the lines connecting them. Thea0 and h0 nodes represent the bias of the input and the hidden layer,
respectively. The other node represents the activated information from the previous layer. x is the input
features and ŷ is the estimated label for the model. Figure inspired by [18]

Mechanisms must be introduced to facilitate information flow from input data to the estimation of labels.
To go from input data to input layer the basis ao is added to the feature vector, X = [x1, ... , xm], in
order to create the A = [a0, x1, ... , xm]. The flow of information from the input layer to the hidden
layer is can be computed using

h = ϕh (AWah) . (2.28)

Where h is the activated hidden layer, A is the input layer, Wah is a matrix containing all the weight
between the input and the output layer, ϕh is the activation function of the hidden layer. In the same
manner, the activated output layer, O, can be computed using

O = ϕo (hWho) , (2.29)

where ϕo is the activation function for the output layer, and Who is the matrix containing all the weights
from the hidden layer to the output layer. From the activated output layer the label estimation ŷ can
be calculated and used to evaluate the loss function against the true label. To make the MLP capable
of learning, the weight matrices must be updated based on the loss function. This is achieved by using
backpropagation [18]. In backpropagation, the gradient of the loss function is calculated with respect to
the different weights in the MLP. The weight connecting the output and hidden layers can be calculated
using

∂L

∂Who
= hT δout, (2.30)

where L is the loss function used to evaluate the predictions of the MLP and δout is the error outputted
after evaluating the prediction using the loss function. For the weights connecting the hidden layer and
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the input layer, the gradient is calculated using

∂L

∂Wah
= AT

(
δout(Who)

T ⊙ ∂ϕhzh
∂zh

)
, (2.31)

where zh = AWah is the unactivated hidden layer and ⊙ represents a elemt-wise multiplication.

2.9 Recurrent neural networks and Long Short-Term Memory
models

When analyzing time series data, the order of the features matters as they are not independent of each
other. Therefore, when applying machine learning models to time series, it is important that the model
can retain the sequential information in the time series. Recurrent neural networks (RNNs) are a type of
machine learning architecture useful for analyzing sequential data because they can extract and retain
the sequential information found within the time series. A simplified visualization of the basic RNN
architecture can be seen in figure 5.

Simplified RNN architecture

O(t)

h(t)

x(t)

Output

Hidden
State

Input

O(t−1)

h(t−1)

x(t−1)

O(t)

h(t)

x(t)

O(t+1)

h(t+1)

x(t+1)

Output

Input

Output

Input

Output

Input

Figure 5: Representation of a simple RNN. The figure to the left is a compacted representation showing
the flow of information from the input layer, x(t), to the hidden layer, h(t), to the output layer, O(t).
The loop from h(t) to h(t) has been expanded in the figure to the right and represent a movement of
information in time. The flow of information from h(t−1) to h(t) is the part of the RNN that allows for
the retention of sequential information. Figure inspired by [18].

Remembering the goal of machine learning is to learn a mapping h : X −→ Y from the input data to the
output data such that equation (2.24) is satisfied. To do this, there needs to be a way for the information
to propagate through the system. For neural networks, this is achieved using linear algebra and activation
functions. Looking at figure 5 the flow of information from the input layer, x(t), to the hidden layer, h(t),
can be described with

h(t) = Φh

(
wxhx

(t) + whhh
(t−1) + bh

)
, (2.32)

where Φh is the activation of the hidden layer, wxh is the weight matrix connecting the input and the
hidden layer, whh is the weight matrix connecting the precious hidden layer with the current hidden layer,
and bh is the bias vector for the hidden units. From this the output layer, O(t), can be computed using

O(t) = Φo

(
whoh

(t) + bo

)
, (2.33)
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where Φo is the activation function of the output layer. The loss function can now be evaluated and used
to adjust the weight matrices. The learning process used to adjust the weight matrices for the hidden
layers in an RNN is called backpropagation through time. In backpropagation through time, the gradient
of the total loss for the model is used to update the weight matrices. The total loss is the sum of all the
losses at all the timesteps and can be expressed as

L =

T∑
t=1

L(t). (2.34)

L is the total loss for the RNN, T is the total number of time steps, and L(t) is the loss at time step
t. To update the weight matrix, the gradient of the loss function with respect to the hidden weights is
calculated. The gradient can be calculated using the following equation [18],

∂L(t)

∂whh
=

∂L(t)

∂O(t)

∂O(t)

∂h(t)

(
t∑

k=1

∂h(t)

∂h(k)

∂h(k)

∂whh

)
, (2.35)

where O(t) is the activated output layer, h(t) is the activated hidden layer, h(k) represents the previous
hidden layers, and L(t) it the loss at hidden layer number t. The gradient of the hidden layer being
evaluated, h(t), with respect to the previous hidden layers, h(k), can be expressed as

∂h(t)

∂h(k)
=

t∏
i=k+1

∂h(i)

∂h(i−1)
. (2.36)

This multiplication factor introduces one of the challenges of learning time dependencies in long time
series using RNN, namely the vanishing and exploding gradient problems. It arises from the fact that
the partial derivative of the current hidden layer h(t) with respect to the previous hidden layer h(k)

in equation (2.35) can be expressed using equation (2.36). This shows that ∂h(t)

∂h(k) has t − k number of
multiplications. The weights between the hidden layers are denoted whh. If whh < 1, this factor becomes
very small when t− k is large, leading to the vanishing gradient issue. If the whh > 1 this factor becomes
very large when t− k is large, leading to the exploding gradient issue. Ideally, whh ≈ 1. In a Long short-
term memory (LSTM) cell, a whh ≈ 1 is accomplished by creating a cell state with this property and
controlling the flow of information into and out of the cell state with three gated cells. A representation
of an LSTM cell is shown in figure 6. There are three types of gates in the LSTM layer: the forget-, input-
and output- gates.
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Figure 6: An LSTM layer is based on the gated units: forget-, input-, and output gates. The goal of the
forget gate is to take the combined hidden and input states and determine what information in the cell
state should be forgotten. The input gate determines what information should be added to the cell state.
The output gate creates a new hidden state using data from the cell state and the current hidden state.
The + represents piecewise addition, and × represents piecewise multiplication of matrices. The red and
blue circles represent the application of the sigmoid and the tanh activation functions, respectively. Figure
inspired by [13].

Forget gate
The purpose of the forget Gate is to determine what information can be removed from the cell state.
To achieve this, the importance of the information from the previous hidden state is evaluated using
the sigmoid activation function, where information with a value closer to zero is deemed less important,
and a value closer to one is deemed more important. The resulting information matrix is then piecewise
multiplied together with the cell state. Thus, less important information for long-term dependencies is
removed from the cell state.

Input gate
The input gate determines what information should be added to the cell state. First, the importance
of the input information is decided using a sigmoid function. Then, the input information is normalized
using the tanh activation function. The importance of the information and the normalized information
are added together with piecewise multiplication. After this, the information is added to the cell state
with piecewise addition.

Output gate
The output gate creates a new hidden state for the next iteration. To create a new hidden state, the
sigmoid function is applied to the previous hidden state to determine what information is important.
Information from the cell state is normalized between [-1,1] using the tanh function and piecewise mul-
tiplied with the matrix resulting from applying the sigmoid function to the hidden state. This creates a
new hidden state from the cell state while emphasizing the important features found in the hidden state.
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2.10 Overfitting and underfitting of models
Some common problems in machine learning are overfitting or underfitting of models. Assuming that Y is
the target label and f̂ is the model, the expected square error for the point X, Err(x), can be expressed
as [19]

Err(x) = E

[(
Y − f̂(x)

)2]
, (2.37)

where E is the expected value operator. The error can be further broken down into three parts: bias,
variance, and fixed error. The error can then be expressed as

Err(x) =
(
E[f̂(x)]− f(x)

)2
+E

[(
f̂(x)− E[f̂(x)]

)2]
+ σ2

e , (2.38)

Err(x) = Bias2 + V ariance+ Fixed error, (2.39)

where f(x) is the correct value at point x and σ2
e is a measure of the noise in the data. The bias contains

information about the difference between the average prediction of the model and the target value it
is trying to predict [19]. Variance tells something about the variability of predictions for a given data
point. Overfitting and underfitting occur when a model fails to strike the right balance between bias and
variance, resulting in increased error. For supervised learning, underfitting occurs when a model can not
capture the underlying relations in the data. Typically, these models have high bias and low variance.
Often, this can be a result of model complexity being too low for the given task. Overfitting occurs
when a model pays too much attention to the training data, capturing the underlying noise in the data
together with the relations. Typically, these models have low bias and high variance. Often, this can be
a result of model complexity being too high for the given task. In order for the model to have the best
performance possible, it is important to find the right balance between bias and variance. The model
needs to have enough complexity to learn the patterns in the data without including the noise, giving the
best performance on unseen data. Figure 7 shows the error of a machine learning model as a function of
the model complexity.
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Figure 7: Trying to create the correct model for a given task is important to avoid over or underfitting
the model. An attempt at visualizing when over/underfitting occurs is depicted by plotting error as a
function of learning capacity, with learning capacity on the horizontal axis and error on the vertical axis.
The training error is the blue dotted line, and the test error is the green whole line. The underfitting
zone contains low complexity models that are incapable of learning the relations present in the dataset
and, therefore, have high errors on both test and train data. The overfitting zone contains models with
two high levels of complexity for the given task. These models can fit all data points in the training data
perfectly but cannot generalize this information to unseen data. This leads to a large discrepancy between
the training and generalization errors, shown in the figure as the generalization gap. The model with the
optimal complexity minimized the overall generalization error. Taken with permission from [20]

Increasing model complexity is a good way to combat underfitting. There are several methods to combat
or safeguard a model against overfitting; some of them are covered below.

2.10.1 Test-train split
A common way to check if a model is overfitting is the test-train split. The data containing features is
split into two datasets: one for training and validating the machine learning model and one for testing
the model’s ability to generalize on unseen data. The model’s performance on the test data gives a good
indication of how well it is expected to perform on new unseen data.

2.10.2 Cross validation
Cross-validation is a method for ensuring that the validation data selected is representative of the training
data. Cross-validation is done by separating the data into different sections and picking a random part of
the section to be the validation data. If the validation data was just picked as a single part of the data,
it could be the case that the validation data is not representative of the data set. This would cause the
model to be wrongly adjusted during the training process, leading to overfitting toward data points in
the validation data.

2.11 Supervised learning
Supervised learning can be applied to create the mapping described by equation (2.24). The process from
raw data to prediction can be described using a four-step process.
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Step 1: Preprocessing
Data needs to be preprocessed before being used as input features in a machine-learning model. Pre-
processing can include extraction, scaling, selection of features, dimensional reduction, sampling, and
elimination of nan values. This ensures that the model has no prior bias regarding feature importance,
meaning all features start as equally important. After the preprocessing, the data is usually split into
training and test data.

Step 2: Training
The next step is using the training data to train the model. During training, the model learns the
underlying relations in the data by applying the model to the input data, evaluating the given prediction
against the actual target using the loss function, and updating the model weights using backpropagation.
Techniques including model selection, cross-validation, and hyperparameter tuning can be used during
training to ensure that models are well suited to the given task.

Step 3: Evaluation
After the model is trained, its performance is evaluated on the test data created in Step 1 by applying a
chosen performance metric. The goal is for the model to achieve the best possible result on the test data.
If the performance on the test data is much worse than on the training data, the usual procedure is to
go back to step 2 and develop the model further.

Step 4: Prediction
When steps 2 and 3 have been repeated many times, and the results in step 3 are adequate, the model
can be applied to new data. The predictions can now be used in practical applications, such as forecasts.

2.12 Evaluation metrics
Four evaluation metrics were used to evaluate the performance of models in this thesis. These are root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and
R2 score. RMSE and MAE can be mathematically described as [18]

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 , (2.40)

MAE =
1

n

n∑
i=1

|yi − ŷi| , (2.41)

where yi is the actual target, ŷi is the predicted target, and n is the number of predictions. Both RMSE
and MAE measure the residuals between the predicted and actual targets. They are scale-dependent
errors, meaning that the error calculated from the metrics needs to be seen in relation to the scale of the
targets. MAPE and R2 scores are, on the other hand, scale-independent errors and can be mathematically
described as

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

× 100%, (2.42)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
. (2.43)
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MAPE is a scale-independent version of MAE and is given as the average percentage error of residual,
|yi−ŷi|, with respect to the targets. The R2 score measures the proportion of the variance in the dependent
variable, label, that is predictable from the independent variables, features. When R2≈ 1, the regression
model almost perfectly explains the variability in the dependent variable, and the model fits the data
almost perfectly. If R2= 0, the regression model captures none of the variability around the mean and
performs as well as using the mean of the dependent variable as the model prediction for all observations.
R2 can also take negative values. When R2 < 0, this indicates a model that fits the data worse than a
model that simply predicts the mean value for all of the observations, regardless of the input features [21].
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3 Data and use of artificial intelligence
This section covers the use of artificial intelligence and the different datasets used in the thesis.

3.1 Use of generative artificial intelligence within the thesis work
and writing

The generative model Chat.GPT 4.0 was used to assist in improving code for the data processing and
displaying figures. Chat.GPT 4.0 and Grammarly were used to assist with spellchecking the text in the
thesis.

3.2 Data Description
This section covers the data used in the thesis. Table 1 shows from what organization the data was
obtained for different datasets, the units in which the data is recorded, and the time resolution of the
data are also presented.

Table 1: Data and sources in this thesis, with their respective resolutions, units, and governmental agencies
that provide them.

Data type Organization Unit Time resolution Years Reference
Production ENTSO-E MW 1 Hour 2020-2023 [22]

Load ENTSO-E MW 1 Hour 2020-2023 [22]
Frequency Fingrid Hz 0.1s 2020-2023 [23]

Inertia Energinet GWs 1 Hour 2020-2023 [24]

3.2.1 Production and load data
The production and load data used to estimate the kinetic energy in the power grid was gathered from
ENTSO-E, using the ENTSO-E API [22] in combination with the python library entsoe-py [25]. The
dataset gathered is time series data with a duration of one hour. The measured values are the active
power produced by different production types in the Nordic regions of Norway, Sweden, and Finland.
Production from Denmark denoted DK2 for the equivalent electricity market bidding zone, was omitted
as the quantity is not comparable to the other regions [24]. This data was combined into a single data
frame showing the active power produced by different production types for the whole Nordic region. Data
was gathered for 2020–2023 and contained some variations in the production types, but the production
types with the highest power contributions in the Nordic regions remain available. The production types
contributing around 90% of the Nordic region’s total power are present in all the 2020–2023 datasets.
Norwegian and Swedish hydropower, together with Finnish and Swedish nuclear power, compose around
70% of the power production in a given year. Figures showing the contributions of all the generation
types for the years 2020–2023 can be found in Appendix B. The production types seen as synchronous
and used to estimate kinetic energy with the linear models are thermal, nuclear, hydro, and wind power.
The hydropower production type consists of five columns from the production data and is summarized
in table 2
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Table 2: Columns in the production data corresponding to hydroelectric production in the Nordic power
system, what country they come from, and their unit of measure (SE for Sweden, NO for Norway, FI for
Finland).

Country Name of column Unit
Norway Hydro Pumped Storage, Hydro Run-of-river and poundage MW
Sweden Hydro Water Reservoir_SE MW
Finland Hydro Run-of-river and poundage_FI MW

The nuclear power generation data consists of two columns, with country, name, and unit of measure in
table 3.

Table 3: The columns in the production data corresponding to nuclear production in the Nordic power
system, what country they come from, and their unit of measure.

Country Name of column Unit
Sweden Nuclear MW
Finland Nuclear_FI MW

The data concerning wind power generation consists of three columns in the generation data, shown in
table 4.

Table 4: The columns in the production data corresponding to wind production in the Nordic power
system, what country they come from, and their unit of measure.

Country Name of column Unit
Norway Wind Onshore_NO MW
Sweden Wind Onshore_SE MW
Finland Wind Onshore MW

Thermal generation in the Nordic power system is represented using 13 columns, shown in table 5 with
country, unit of measure, and column name.

Table 5: The columns in the production data corresponding to thermal production in the Nordic power
system, what country they come from, and their unit of measure.

Country Name of column Unit
Norway Fossil Gas, Other_NO MW
Sweden Other_SE MW
Finland Gas_FI, Fossil Hard coal, Fossil Oil, Fossil Peat, Waste_FI, Biomass, Other renewable, Other MW

The load data for all years gathered contain three features: load in Norway, Sweden, and Finland. Load
refers to the total active power, in MW, consumed within the region, and the load data is a time series
with a time resolution of one hour. A modified version of the production and load data is utilized for
the application in the LSTM model. This dataset contains the columns present in all the production and
load data from 2020 to 2023; the first five rows of this dataset can be found in the apendix B

3.2.2 Frequency data
This dataset contains the local frequency measured in Finland by Fingrid, the Finish TSO, for 2020–
2023. The data was gathered from Fingrid’s open data platform [23]. The dataset is a time series with
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a temporal resolution of 0.1 seconds. It has only one feature, the power-grid voltage frequency, given in
Hz. It is also assumed that the single frequency value from Fingrid represents the frequency for the entire
Nordic power system.

3.2.3 Inertial data
To validate how well the different methods described in this section work, an existing data set containing
information about power system inertia, measured as kinetic energy in GW·s, was used as a best guess.
Data was available for the years 2020–2023. The data was gathered from Energy Data Service API [24].
The data set is a time series with a temporal resolution of one hour. It contains six features: the total
kinetic energy in the Nordic power system, kinetic energy in Norway, kinetic energy in Sweden, kinetic
energy in Finland, kinetic energy in the Danish price region DK2, and time of the recordings. All the
values for kinetic energy are given in GW·s.
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4 Methods of kinetic energy estimation
The following section proposes four models for estimating the kinetic energy stored in the Nordic power
system. The first three models are based on the same linear regression models for estimating kinetic
energy, with different methods of finding the Nordic power system’s regional inertial constant. The last
model is a non-linear machine-learning model used to estimate the kinetic energy stored in the power
system directly from data containing production, load, drift, diffusion, and oscillation point data.

4.1 Inertia estimation using generic H constants
The goal of the model using generic H constants for estimation is to see what type of behavior should
be expected when modeling kinetic energy in the power system from aggregate production data together
with inertia constants. The results of this model are then further used to modify the diffusion model to
account for some of the expected errors resulting from the choice of model converting inertia constants
into kinetic energy estimations. The inertia constants used in the generic H model are gathered from the
ENTSO-E report [5] and can be found in the table (6).

Table 6: Inertia constants used for estimating kinetic energy in the ENTSO-E report [5]. The Inertia
constants represent the average inertia constant of a generator within a production type.

Production Type H[s]
Nuclear 6.3

Other thermal 4
Hydro conventional 3
Hydro small scale 1

Wind 0

The values in table 6 represent average values for inertia constants for generators by their production
type [5]. The method by which these average values are calculated is not explicitly stated in the report.
Still, it is assumed for this thesis that the values of the H constant in table 6 are the average value of the
inertia constants for all generators within the respective production types that the TSOs have information
about. A modified version of equation (2.11) is used to estimate the kinetic energy in the power system
from aggregate production and average H constants. The equation used for estimation is given as

Ek,sys =

N∑
m=1

SmHm =

N∑
i=1

Pm

pf
Hm, (4.1)

where Pm is the total active power generated and Sm is the total apparent power generated by production
type m. Hm is the average inertial constant and pf is the power factor. The production that is used as
synchronous for this estimation can be found in table 2, 3, 4. Since aggregated values for production were
used, a single value for hydro was deemed sufficient, and only the conventional hydro constant was used
for estimation.

The modified equation was chosen because information about the circuit breaker state, Ki, and rated
apparent power, Si, used in equation (2.11) are not publicly available and proved challenging to acquire.
The inertial estimation used a power factor of 0.9 for all production types, following the report by ENTSO-
E [5]. The use of aggregated active power produced is expected to lead to underestimations of the kinetic
energy in the power system. It allows the inertial contribution per production type, production type m,
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to take any value between Ek,m ∝ [0, P0,max] in a continuous manner, not taking into account the binary
nature of inertia. Meanwhile, the TSO estimation only allows discrete increases or decreases in the inertia
contribution from production type m, which is related to the circuit breaker state of the generators in
production type m.

4.2 Estimation of inertia from Kramers-Moyal coefficients
This section explains the estimation of a regional inertial constant using the drift and diffusion coefficients
estimated from Fingrid’s frequency data. The goal is to estimate the regional inertial constant of the
Nordic power system with a time resolution of one hour. From table 1, the time resolution of the frequency
data is 0.1 s. For an hourly estimation of the inertial constant, a single drift and diffusion coefficient must
accurately describe the frequency behavior within an hour. It is therefore assumed that within an hour
of steady-state operation of the power system, where ∆P ≈ 0, the frequency behavior can be described
using an Ornstein-Uhlenbeck process (2.17). If this is the case, the Langevin expression of the Ornstein-
Uhlenbeck process (2.17) is used to evaluate the frequency change. Removing the mean value from the
frequency data, the equation governing the frequency behavior.

dω(t)

dt
= θ(ωsyn − ω(t)) + αΓ(t). (4.2)

Evaluating the equation in relation to the realistic swing equation (2.8), with ωpu = 1, yields the equality,

θ(ωsyn − ω(t)) + αΓ(t) = − D

2H
(ω(t)− ωsyn) + ωsyn

βϵ(t)

2H
. (4.3)

It stands to reason that if the Ornstein-Uhlenbeck process and swing equation can be used as the governing
equation for frequency dynamics, they should describe the same behavior. This would indicate that the
two dampening terms describe the same dampening behavior, and the two noise terms describe noise
with similar properties. Together with the estimated drift and diffusion coefficients, this is used in the
following section to propose estimation processes for the regional inertial constant. The estimations of
local conditional moments described by equation (2.23) are done using the function kmc() from the python
package kramersmoyal [26]. The kmc() function takes one hour of frequency data, a chosen bandwidth,
a chosen number of bins, and how many powers of local conditional moments should be in the outputs.
For the estimations of local conditional moments, the bandwidth was set to the resolution of the time
series 0.1 s, the number of bins was chosen to be 5000, and the function was set to output the first and
second local conditional moments for every point in the times. To go from local conditional moments to
drift and diffusion coefficients, the relations

D(1) =
K(1)

τ
, (4.4)

D(2) =
K(2)

2τ
, (4.5)

are used on the first and second-order local conditional moments calculated by the kmc() function. With
τ begin equal to the time resolution of the time series, 0.1 s.

4.2.1 Estimation using drift
The hourly estimations of an inertial constant are based on the assumption that the Ornstein-Uhlenbeck
process (2.17) governs frequency dynamics for an hour of steady-state operation. As a result of this, only
hours were the drift coefficient, D(1) = −θω(t), is a linear function of angular frequency can be used
for the estimation. To evaluate this for an hour, the kmc() function was used to estimate the first-order
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local conditional moment, described in equation (2.21), for every timestep in the frequency data. Then, a
first-order polynomial fit was done on the first-order local conditional moments using the np.polyfit()
function from the python package numpy [27], this resulted in a single global value representing the first-
order conditional moment for the hour being analyzed. The single value for the first-order conditional
moment was evaluated against the first-order local conditional moments using the R2 score. The R2 score
was created by evaluating a line where the slope is equal to the global value against the time series of first-
order local conditional moments. For all hours having an R2 score > 0.8, the first-order global conditional
moment was deemed sufficient to describe the behavior of the first-order local conditional moments for
the whole hour. Using the relations from equation (2.15a), (2.18) together with equality (4.3) the inertia
constant for the Nordic power system can be related to the drift coefficient using the following relation

θ =
D

2H
. (4.6)

Solving equation 4.6 with respect to the inertial constant, H, gives an expression for the inertial constant
for one hour of steady-state operation for the Nordic power system

H =
D

2θ
. (4.7)

The TSOs do not have publicly available information regarding the regional inertial constant. However,
they have information regarding the stored kinetic energy in the power system. Considering this, a simple
linear model was used to create estimations for stored kinetic energy in the Nordic power system from
the regional inertial constants. These estimations were then evaluated against the TSO’s estimations of
stored kinetic energy in the Nordic power system. The equation used to estimate the kinetic energy is

Ek,drift =
P

pf

D

2θ
, (4.8)

where P is the total active power produced by synchronous generators. It is important to note that
P =

∑
Pm where Pm is a specific production type. pf is a universal power factor set to 0.9 following the

report [5]. The constant D was found by finding the best fit of equation (4.8) for the evaluated year. To
find the best fit, the function curve_fit from the scipy.optimize [28] package was used with the initial
guesses of D0 = 0.05. The initial value for D0 was found in the thesis [29]. Equation (4.8) is a modification
of the one used by the TSO (1.1) because the ENTSO-E datasets contain information about active power
produced per production unit, not the rated apparent power of every generator. One of the drawbacks of
this method is that the inertial contributions per production type can take any value to take any value
between Ek,m ∝ [0, P0,max]. When this is seen together with the TSO estimation, that only allows a
single value for the possible contribution from generator i, Ek,i = Sn,iHi, equation (4.8) is expected to
underestimate the kinetic energy stored in the power system. The production used as synchronous is the
same for this estimation as for the generic H estimation.

4.2.2 Estimation using diffusion
The hourly estimations of an inertial constant are based on the assumption that the Ornstein-Uhlenbeck
process (2.17) governs frequency dynamics for an hour of steady-state operation. As a result of this, only
hours with a diffusion coefficient, D(2) = α, is approximately constant can be used in this estimation. To
evaluate this for an hour, the kmc() function was used to find the second-order local conditional moment,
described in equation (2.21), for every timestep in the frequency data. Then, a zero-degree polynomial
fit was done on the second-order local conditional moments using the np.polyfit() function from the
python package numpy [27], this resulted in a single global value representing the conditional moment
for the hour being analyzed. This global second-order conditional moment was evaluated against the
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second-order local conditional moments using the MSE score. For the hours assessed using the R2 score
mentioned in the previous section, the MSE from evaluating the constant line defined by α against the
time series of the second-order local conditional moment never exceeded 3.969× 10(−12). This value was
deemed sufficiently small for the assumption of constant diffusion to be valid for the hours in the time
series.

Assuming that Γ(t) and ϵ(t) in equation (4.3) have the same properties, it is reasonable that α can
related to the inertia in a similar fashion to the noise term in equation (2.8). α can then be related to the
diffusion coefficient and the inertial constant using the relations from equation (2.15b),(2.19) together
with equality (4.3). This results in the following relation

α =
√
D(2) =

C

H
, (4.9)

where C is a constant. Solving equation 4.9 with respect to the inertial constant, H gives an expression
for the inertial constant for one hour of steady-state operation for the Nordic power system as

H =
C

α
. (4.10)

Following the same reasoning as above for the drift estimation, a simple linear model was used to evaluate
the diffusion-based estimated regional inertial constant by using them to estimate the stored kinetic
energy in the Nordic power system. These estimations were then evaluated against the TSO’s estimations
of stored kinetic energy in the Nordic power system. The equation used to estimate the kinetic energy is

Ek,diffution =
P

pf

C

α
+Υ, (4.11)

where P is the total active power produced by synchronous generators, pf is a universal power-factor, set
to 0.9 following the report [5]. C is a constant, and Υ represents an offset. They were estimated by finding
the best fit via least squares for the evaluated year. The offset parameter was added to address modeling
errors found for the generic H model. A proposed cause for the error being corrected can be found in
section 4.1. To find the best fit, the function curve_fit from the scipy.optimize [28] package was used
with the initial guesses of C0 = 1.4/3× 10e− 3, Υ0 = 100. The initial values for Υ0 and C0 were found
by a manual fitting of equation (4.11) to the Energinet inertia target for the year 2020. Equation 4.11
is a modification of the one used by the TSO (1.1). This model suffers from the same issues as the drift
model discussed above. The same production data is used as synchronous production for the diffusion
model as for the previous models.

4.3 Estimation using LSTM
The inertia of the power system was also estimated using a machine-learning regression model based on
an LSTM layer. The model was created using the package tensorflow.keras [30] in Python. It is a
sequential model with two layers: one LSTM and one Dense layer. Within the LSTM layer, there is also
defined an input layer, in table 7 this layer is extracted to show the input dimensions of the training data.
As shown in table 7, the model is rather simple, with 40 LSTM nodes that learn the relations between
the features in the data and the target and one fully conceded layer, the Dense layer that outputs one
value as a final estimation.
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Table 7: A summary of the machine learning model used to estimate inertia. All layers in the model
are shown with their layer type, number of nodes, activation function, output shape, and the number of
trainable parameters. The model described is a regression model with total trainable parameters equal
to 9801, and it outputs a single floating point value as its prediction.

Layer Number of nodes Activation function Output shape Trainable parameters
Input 20 linear (none,24,23) 0
LSTM 40 tanh (none, 40) 9760
Dense 1 linear (none,1) 41

The training process for the models follows the outline in section 2.11 and is described in the sections
below.

Step 1: Preprocessing
A combination of the three datasets mentioned earlier was used to create the dataset that was used
to train the LST. As previously mentioned, the ENTSO-E data does not have consistent features for
the years 2020-2023. To be used in the LSTM, the data feature space must be consistent for all the
years. Because of this, 20 features were retained for the production data from 2020-2023. The features
were filtered based on their contribution to the overall power production and the number of missing
values. Figures showing the relative production from production types for all the years can be found in
appendix C. These 20 chosen features were combined with the diffusion, D(2), R2 score, and oscillation
point extracted from the frequency data. The table below shows the first five rows of the data frame. As
the target for supervised learning, the best guess inertial data from the Danish TSO Energinet was used.
The features were normalized using the MinMaxScaler() from the sklearn.preprocessing package [31]. The
normalized input features have a shape of (26163, 23), and for applications in an LSTM model, the data
needs to have three dimensions. To achieve this, every step of the data was given knowledge of the previous
24 hours of feature information, giving the data the dimensions of (26163, 24, 23). The reason behind this
is to give the LSTM knowledge about the 24-hour cycle that exists in power consumption/production.
The data was then split into training and testing data, which were used during the training and evaluation
part of supervised learning.

Step 2: Traning
The model was trained and cross-validated at the same time. The cross-validation was done using the
KFold() function from the sklearn.model_selection package [31]. This function creates five random
splits of the testing data, called folds. The folds are then split into training and validation parts at an
80-20 ratio. The model’s training is then done over the five folds, keeping the best-performing models
at the end of each fold. This is done because it ensures that the validation data is representative of the
dataset as a whole. Each fold was trained for 30 epochs with a batch size of 32. Early stopping was used
to combat overfitting and retain the best-performing model for each fold.

Step 3: Evaluation
During the evaluation stage, the model was tested on the test data to evaluate its performance on unseen
data. The model’s performance was evaluated using the R2, RMSE, MAE, and MAPE scores.
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Step 4: Prediction
The model can now be trained on all the available training data, and the fully trained model can predict
new data points.

4.4 Residual analysis of diffusion and LSTM models
A residual analysis was performed to evaluate the diffusion and LSTM model’s ability to capture relevant
information from the available data. Additionally, the analysis is used to examine if the models have
tendencies towards either overestimating or underestimating the target value. Kurtosis and skewness are
used to evaluate the distributions, along with mean, median, and standard deviation. For large datasets,
Kurtosis and Skewness can be defined as[21]

Kurtosis ≈ 1

n

n∑
i=1

(
xi − x̄

s

)4

− 3, (4.12)

Skewness ≈ 1

n

n∑
i=1

(
xi − x̄

s

)3

. (4.13)

Where x̄ is the mean value and s is the standard divation of the time series x = [x1, x2, ... xi .., xn].
Kurtosis is a number quantifying the shape of a frequency distribution. If the kurtosis is zero, the frequency
plot of the residuals will have a Gaussian distribution. For a residual plot, a positive kurtosis results in
a pointier frequency plot than a Gaussian distribution, with more values around the mean and a faster
fall-off in the tails. Negative kurtosis indicates a flatter frequency plot with fewer values around the
mean and a slower fall-off in the tails. Skewness is, on the other hand, a measure of the symmetry of a
distribution. A skewness of zero indicates a distribution symmetric around the mean value. If skewness
is positive, most values fall on the left of the mean value, and the mean and median are typically larger
than the mode. Negative skewness indicates that most values fall to the right of the mean value, and the
mean and median are typically less than the mode. The residual used in the analysis was created using
equation (4.14)

Residuals = estimations− targets. (4.14)

The skewness of the residuals was found using the skew() function, and the kurtosis of the residuals
was found using the kurtosis() function both from the scipy.stats package [28]. Finally, the residual
distribution was plotted using the plt.hist() function from the matplotlib package [32].

The residuals were examined further to see if they had constant variance concerning the target value and
if the residuals were independent with respect to themselves and the target value. A scatter plot was
created to examine variance using the plt.scatter() function from the matplotlib package [32]. The
plot shows the residuals plotted against the target values and is used to investigate the variance of the
residuals with respect to the estimated values. If the linear model is a good representation of the data,
the variance should be constant and have no relation to the target variable. To examine whether residuals
are independent or dependent of each other, they were plotted over time using the plt.plot() function
from the matplotlib package [32]. The plot shows the time series containing the residual values and is
used to examine the existence of patterns between the residuals in the time series.
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5 Results
The following sections show the results of the four methods of inertia estimation described in the method
sections, section 4. They are presented in increasing order of performance, with the worst-performing
model first and the best-performing model last. The two first models get a less in-depth analysis, while
the last two models get a more in-depth analysis. They are all applied to the year 2020, with the third
model also applied to the year 2022. The figures also show more detailed figures from January, May, and
August in an attempt to show the seasonal variations for each model.

5.1 Estimation of inertia using drift
Applying the method of inertial estimation using a drift coefficient calculated from power-grid frequency,
outlined in section 4.2, on the year 2020, yielded the results shown in figure 8. The fitting of equation (4.8)
resulted in the change of the constant power-system dampening from the initial value of D = 0.05 to
the value D = 4.73×10−5. Utilization of the drift coefficient for estimating the kinetic energy stored in
the power system yielded the plots in figure 8 and failed to capture the relations expected to be present
within the data. The estimated values, in green, fluctuate around the target values and seem to capture
a minimal amount of the relations in the data. The estimations also spike to over two times the largest
target value several times; on some occasions, the spikes exceed almost three times the largest target
values.
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Figure 8: Estimation of inertia constants using drift-based estimation method outlined in section 4.2. The
estimated values are shown in green, and the target values are shown in orange. There is no discernable
relation between the estimated and target kinetic energy. For the monthly plots, the horizontal axis
depicts hours. For the yearly plot, the horizontal axis depicts months. The vertical axis shows the kinetic
energy, Ek, stored in the power system measured in GW·s.

Because of the generally underwhelming performance of this model, only the results for the whole year
will be described; the reasoning behind this can be seen in figure 8 where the monthly variation does
not contribute much meaningful insight. Still, the evaluation metrics for the months shown in figure 8
can be found in table 8. For the year 2020, the model had a MAPE of 24.3%. The estimation ranges
from [22, 960]GW·s with an MAE of 46GW·s, and the target values ranges from [135, 256]GW·s. The
maximum error of the predictions is 723GW·s, almost three times the largest target value.

Table 8: Evaluation metrics for the 2020 estimation using drift coefficient. The metrics used to evaluate
the estimations against the targets are R2 score, RMSE, MAE, and MAPE. The RMSE and MAE are
scale dependent and have the unit GW·s. The R2 Score and MAPE are scale-independent and have no
units.

January May August Year
R2 -7.485 -12.115 -28.754 -4.929
RMSE 56.085 47.852 60.673 60.293
MAE 42.047 38.093 49.932 45.790
MAPE 20.20% 21.30% 30.50% 24.30%
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5.2 Estimation of inertia using generic H constants
The inertial estimation with the generic H constant, outlined in section 4.1, yielded the results shown
in figure 9. The estimations show a similar trend to inertia data from Energinet with an offset. The
evaluation metrics from table 9 show that on the months tested, the model has the best accuracy for
January with a MAPE of 14.2%. While the actual targets range from January are from [163, 245]GW·s,
the values of estimations range from [131, 218]GW·s with a MAE with an average absolute error of
29GW·s, as seen in table 9. The accuracy of the 2020 model reduces from January to May. For May, the
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Figure 9: Inertia estimation via the generic H constant method described in section 4.1 applied to the
year 2020. Estimations are shown in green, and target values are in orange. Analyzing the trends in the
four figures, the estimated inertia seems to follow a similar trend to the ground truth inertia but with
an offset around 35GW·s. The model is most accurate during the winter months and the least accurate
in the summer months. For the monthly plots, the horizontal axis shows hours. For the yearly plot, the
horizontal axis shows months. The vertical axis does, in all cases, show kinetic energy stored in the power
system measured in GW·s.

model had a MAPE of 19.6%. Figure 9 shows that the overlap of estimation and target values in January
is no longer present for May. However, it seems the estimations can still reproduce the general trend of
the target data because the peaks and valleys shown coincide for estimation and target inertia. For May,
the estimations range from [103, 172]GW·s, with an average absolute error of 35GW·s. The actual targets
have a range of [144, 203]GW·s. From May to August, the MAPE rises to 21.8%. For August, the model
still shows an ability to recreate the general trends in the data. The values of the estimations are in the
range [99, 150]GW·s, with an average absolute error of 36GW·s. The target values in this month are in
the range [135, 186]GW·s. A summary of the different performance metrics evaluated on the different
months can be found in table 9.
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Table 9: Evaluation metrics for the 2020 estimation using generic H constants. The metrics used to
evaluate the estimations against the targets are R2 score, RMSE, MAE, and MAPE. The RMSE and
MAE are scale dependent and have the unit GW·s. The R2 Score and MAPE are scale-independent and
have no units.

January May August Year
R2 -1.383 -6.170 -9.430 -0.983
RMSE 29.739 35.520 36.117 34.850
MAE 29.272 34.970 35.617 34.093
MAPE 14.20% 19.60% 21.80% 18.20%

Model performance for the year 2020 is slightly better than in May and August. For the year as a whole,
the MAPE is 18.2%. The inertial estimations have the range of [95, 227]GW·s with an average absolute
error of 34GW·s. The range of the inertia targets is [135, 256]GW·s. The bottom plot in figure 9 shows
how the estimated and target inertia changes over the year. The generic H model gives values closest to
the target inertia for the winter months of January, February, and December. Values furthest from the
target inertia occur in the summer months of June, July, and August.

5.3 Estimation of inertia using diffusion
Applying the method for estimating kinetic energy using the diffusion coefficient calculated from the
power-grid frequency, outlined in section 4.2, for the year 2020 yielded the results shown in figure 10.
The best fit of equation (4.11) to the inertial data for 2020 resulted in the change of the constant
C = 0.00457 s from its initial value of C0 = 0.00466 s. The offset value was also changed from its initial
value of Υ0 = 100GW·s to the fittest value Υ = 93.81GW·s. Looking at figure 10 and the evaluation
metrics in table 10, the model performed best in January with a MAPE of 3.6% and a R2 score of 0.73.
For January the estimations ranged from [152, 270]GW·s with an MAE of 7.70GW·s. The actual targets
for this period were within the range of [163, 245]GW·s, which is contained within the estimation range
for the period. The MAPE increases slightly in May to 4.7% with an R2 score of 0.38. The estimation
are in the range [153, 227]GW·s with an MAE of 8.28GW·s. The actual targets are in the range of
[144, 203]GW·s. Comparing this range to the estimation range, it is evident that some of the target
values are not within the estimation range. MAPE rises again for August, where it is 5.1% with an R2
score of 0.13. The estimations are within the range [142, 207]GW·s with an absolute error of 8.2GW·s.
The actual targets for August are contained in the range [135, 186]GW·s; comparing this range to the
estimation range, it becomes clear that some of the target values for August are not within the range of
estimation.
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Figure 10: Inertia estimation via the diffusion coefficient outlined in section 4.2 applied on the year 2020.
The estimated kinetic energy values are shown in green, and the targets are shown in orange. The model
is most accurate for the winter months and least accurate for the summer months. For the monthly plots,
the horizontal axis shows hours. For the yearly plot, the horizontal axis shows months. For all plots, the
vertical axis shows kinetic energy in the power system measured in GW·s.

For the year 2020 as a whole, the model had a MAPE of 4.2% and an R2 score of 0.84. The yearly
MAPE is better than the MAPE for May and August and slightly worse than the MAPE for January.
Moreover, the R2 score for the whole year is better than for the individual months. The estimations
are within the range of [129, 270]GW·s with an MAE of 7.83GW·s. The target values are within the
range [135, 256]GW·s notably, all targets are within the range for the estimations. The complete table of
evaluation metrics for the diffusion estimation can be found in table 10.

Table 10: Evaluation metrics for the 2020 estimation using diffusion coefficient. The metrics used to
evaluate the estimations against the targets are R2 score, RMSE, MAE, and MAPE. The RMSE and
MAE are scale dependent and have the unit GW·s. The R2 Score and MAPE are scale-independent and
have no units.

January May August Year
R2 0.725 0.375 0.133 0.838
RMSE 10.102 10.444 10.355 9.975
MAE 7.698 8.281 8.186 7.832
MAPE 3.60% 4.70% 5.10% 4.20%

To further examine if the model tends to over- or under-predict the target values, the histogram-based
residual analysis, outlined in section 4.4, was used. When applied to the year 2020, it yielded the residual
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distribution shown in figure 11.
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Figure 11: Residual distribution for inertia estimation based on diffusion coefficient, 2020. With the
magnitude of the residual on the horizontal axis, given in GW·s and the frequency of the residual given
on the vertical axis.

The distribution in figure 11, in combination with table 11, shows that the diffusion model for 2020 tends
to under-estimate the kinetic energy for January with a mean error of −0.12GW·s. The model tends
to overestimate the kinetic energy for May and August with a mean error of 5.3GW·s and 1.8GW·s,
respectively. Seeing the year as a whole, the model shows no tendency to over or under-predict, having a
mean error of 0GW·s.

Table 11: Statistical information about the residuals from the diffusion estimation for the year 2020. Skew-
ness measures the discrepancy between the given distribution and a symmetrical distribution around the
same mean. Kurtosis measures the discrepancy between a normal distribution and the given distribution.

January May August 2020
Skewness −0.29 0.19 −0.07 0.01

Kurtosis 2.19 0.43 0.71 0.54

Mean −5.33 5.44 4.44 0.00

Median −4.56 5.63 4.39 −0.13

Std 8.58 8.91 9.35 9.97

The method of estimating kinetic energy from the diffusion coefficient outlined in section 4.2 showed
more promising results than the methods using the drift coefficient. Thus, the fitting of equation (4.11)
was done for the other years individually, and the combined data of all the years 2020–2023. A residual
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analysis similar to the analysis to the one done for 2020 was performed for the yearly fitted models and
for the model fitted to all the data. The model fitting yielded coefficients for C and Υ; the coefficients
can be found with their corresponding year in table 12.

Table 12: Fitting of the parameters C and Υ in equation (4.11). The fitting was done for the years
individually and the combined 2020–2023 data. The variance and covariance are also shown for C and Υ

parameters.
2020 2021 2022 2023 All years

C [s] 0.0046 0.0045 0.0031 0.0034 0.0032
Υ [GW·s] 93 100 140 140 130
variance C [s2] 5.08×10−10 4.00×10−10 8.01×10−10 6.23×10−10 1.94×10−10

variance Υ [(GW·s)2] 0.24 0.19 0.24 0.19 0.078
covariance [GW·s2] −1.08×10−5 −8.41×10−6 −1.30×10−5 −1.02×10−5 −3.69×10−6

To further investigate if the fitting should be carried out yearly or globally, the residual analysis method
described in section 4.4 was applied for all the years and the combined data for all years. Figure 12 shows
the resulting frequency plots for the yearly fits, and figure 13 shows the residual plot for the entire dataset,
2020-2023. The fit for 2020 and 2023 has a skewness of −0.01 and −0.81 and a kurtosis of 0.53 and 0.22,
respectively, indicating normally distributed residuals for both years. The year 2022 has, on the other
hand, a skewness of −0.81 and a kurtosis of 1.63. The kurtosis of this distribution indicates a distribution
that is starting to resemble a leptokurtic distribution, with a much larger peak around the mean value
and more outliers. The resemblance to a leptokurtic distribution is even more evident for 2021, with a
kurtosis of 6.78 and a skewness of −1.05. The residual distributions are overall similar from year to year,
with skewness in the range of [−1.05,−0.01] and kurtosis in the range of [0.22, 6.78]. The distributions also
have a similar mean and standard deviation, with the mean values being in the range [0, 0.07]GW·s and
the standard deviation within the range [9.97, 14.91]GW·s. The distribution showing the residuals for the
global fit has a kurtosis of 49.76 and has the characteristics of a leptokurtic distribution. Therefore, this
distribution should not have the same properties as the yearly ones, even though the mean of 0.0GW·s,
a median of 0.22GW·s, and standard deviation of 16.44GW·s are reasonable compared to the yearly
values.

Table 13: Statistical information about the residual distribution for the yearly and globally fitted estima-
tions.

2020 2021 2022 2023 All years
Skewness −0.01 −1.05 −0.81 −0.08 −1.64

Kurtosis 0.53 6.78 1.63 0.22 49.76
Mean [ GW·s] 0.00 0.00 0.07 0.00 0.00
Median [ GW·s] −0.13 0.34 1.77 0.22 0.02
Standard deviation [ GW·s] 9.97 11.58 14.91 14.02 16.44

Due to the differences between the yearly and global residual distributions, the analysis is proceeding with
only the yearly fittings. The scatter plot in figure 14 can be used to check if the residuals are independent
of target values. When plotting the residuals against the target values, no significant correlation between
the magnitude of the error and the amount of kinetic energy stored in the power system can be seen.
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Figure 12: Residual distribution for kinetic energy estimation based on diffusion coefficient, for the years
2020–2023. With the magnitude of the residual on the horizontal axis, given in GW·s and the frequency
of the residual given on the vertical axis. Statistical information about the distributions can be found in
table 13.
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Figure 13: Residual distribution of the global dataset. Statistical information about the distribution can
be found in table 13 and shows that this distribution is leptokurtic. The figure has the magnitude of the
error in GW·s on the horizontal axis and the error frequency on the vertical axis.
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Figure 14: Scatter plot of the absolute magnitude of the residuals given in GW·s against the kinetic
energy stored in the power system, also given in GW·s.

Plotting the residuals over time can be used to investigate if the residuals depend on each other. Figure 15
shows the magnitude of the residuals plotted over time, with no discernable pattern between the residuals.
Indicating that the residuals are independent of each other.
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Figure 15: Time series of the magnitude of the error, residuals, between the estimated stored kinetic
energy and actual kinetic energy in the power system given in GW·s.

Given the different distributions of the residuals, seen in figure 12, and the different Υ and C values, seen
in table 12 another year was evaluated using the evaluation metrics. The year 2022 was chosen because
of the values of the parameters C = 0.0031 s and Υ = 1.4×102 GW·s, and residual distribution with a
kurtosis of 1.63. These values are the furthest from the C and Υ of the testing year 2020, and the residual
distribution is more leptokurtic than the residual distribution for 2020. Applying the diffusion-based
estimation method outlined in section 4.2 on the year 2022 yielded the results displayed in figure 17.
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Figure 16: Inertia estimation via the diffusion coefficient, D(2), outlined in section 4.2, applied on the year
2022. The estimated kinetic energy values are shown in green, and the targets are shown in orange. The
model is most accurate for the winter months and least accurate for the summer months. Notably, for the
year 2022, there is a large discrepancy between estimated and target values from late January to April.
For the monthly plots, the horizontal axis shows hours. For the yearly plot, the horizontal axis shows
months. For all plots, the vertical axis shows kinetic energy in the power system measured in GW·s.

Looking at the evaluation metrics in table 14, the estimation for 2022 presents the best performance for
January with a MAPE of 4.0% and R2 score of 0.46. This month’s estimation has the range [161, 276]GW·s
with an MAE of 8.3GW·s, and a target range of [173, 248]GW·s. Notably, all observed target values fall
within the estimated range. Model accuracy for May is lower when comparing 2022 to 2020, with a
MAPE of 8.1% and an R2 score of −0.66. The R2 score indicates that the model loses its ability to
capture the general relations of the data for the month of May. The estimations are within the range of
[156, 203]GW·s with an MAE of 13.1GW·s, while the target range for this month is within the range
[139, 194]GW·s. Notably, all the target values for this month are not within the range of estimation. For
August, the model has a MAPE of 5.4% and an R2 score of 0.14, which is close to the MAPE and R2
score seen for August 2020. The estimations have a range of [156, 209]GW·s with a MAE of 11.2GW·s,
and the actual target range were within [150, 218]GW·s.
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Table 14: Evaluation metrics for the 2022 estimation of stored kinetic energy, using diffusion coefficient.
The metrics used to evaluate the estimations against the targets are R2 score, RMSE, MAE, and MAPE.
The RMSE and MAE are scale dependent and have the unit GW·s. The R2 Score and MAPE are scale-
independent and have no units.

January May August Year
R2 0.464 −0.659 0.136 0.619
RMSE 12.583 15.595 12.443 14.908
MAE 8.295 13.092 9.797 11.211
MAPE 4.00% 8.10% 5.40% 5.90%

For the year as a whole, the diffusion estimation for 2022 has a MAPE of 5.9% and an R2 score of
0.62. The estimations are contained within the range [155, 280]GW·s with a MAE of 7.85GW·s. The
target values are within [138, 255]GW·s. Notably, not all target values are within the estimation range.
Following the same method as for the year 2020, a histogram-based analysis was used to examine if the
model tends to over- or under-estimate the kinetic energy in the power system. The method yielded the
distributions seen in figure 17.
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Figure 17: Residual distribution for kinetic energy estimation based on diffusion coefficient, 2022. With
the magnitude of the residual on the horizontal axis, given in GW·s and the frequency of the residual
given on the vertical axis.

The statistical information given in table 15 shows that the model for 2022 has a trend of overestimating
the kinetic energy in the power system for January, May, and the year as a whole with a mean error of
0.94GW·s, 13.92GW·s, and 1.57GW·s respectively. For August, the model tends to underestimate the
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kinetic energy in the power system with a mean error of −0.91GW·s.

Table 15: Statistical information about the residuals from the diffusion estimation for the year 2022. Skew-
ness measures the discrepancy between the given distribution and a symmetrical distribution around the
same mean. Kurtosis measures the discrepancy between a normal distribution and the given distribution.

January May August 2020
Skewness -2.24 -0.03 -0.33 -0.81
Kurtosis 9.30 -0.28 -0.08 1.62
Mean 2.18 12.11 -1.74 0.00
Median 3.00 11.83 -0.99 1.67
Std 12.39 9.83 12.32 14.91

5.4 Estimation of inertia using LSTM
Applying the LSTM model outlined in section 4.3 to the year 2020 yielded the results shown in figure 18.
From looking at both the estimation in green and the targets in orange, the general trend is well captured
by the model. Table 16 provides the evaluation metrics for the LSTM estimation kinetic energy stored
in the power system in 2020; the model performed best in January with MAPE 1.6% and an R2 score
of 0.96. The estimations are within the range of [165, 242]GW·s with an MAE of 3.29GW·s. The targets
for January are contained within the range of [163, 245]GW·s, notably some of the target values are not
within the estimation range. For May, the model performed worse with a MAPE of 4.3% and an R2
score of 0.52. The estimations range from [129, 203]GW·s with MAE of 7.69GW·s. The targets for May
were in the range of [144, 203]GW·s; notably, all the target values are within the estimation range. For
August the LSTM model had an MAPE of 4.4% and an R2 score of 0.44. The estimations for this month
have the range of [127, 184]GW·s with an MAE of 7.20GW·s. The targets are contained within the range
of [135, 186]GW·s, notably this means some of the target values are not within the estimation range.
For 2020, the LSTM model had a MAPE of 3.1% with an R2 score of 0.92. The estimations across the
year are within the range [121, 248]GW·s with a MAE of 5.63GW·s. The targets are within the range
[135, 256]GW·s; notably, not all the target values are within the estimation range. The full table showing
the LSTM evaluation metrics can be found in table 16.

Table 16: Evaluation metrics for the 2020 estimation using the LSTM model. The metrics used to evaluate
the estimations against the targets are R2 score, RMSE, MAE, and MAPE. The RMSE and MAE are
scale dependent and have the unit GW·s. The R2 Score and MAPE are scale-independent and have no
units.

January May August 2020
R2 0.955 0.515 0.443 0.917
RMSE 4.051 9.156 8.216 7.125
MAE 3.291 7.685 7.197 5.626
MAPE 1.60% 4.30% 4.40% 3.10%

As for the previous model, the distribution of residuals is interesting in examining tendencies to over-
estimate or underestimate the kinetic energy stored in the power system. A histogram showing the
distribution of the residuals can be seen in figure 19. Looking at where the distributions in figure 19 seem
to have their mean values indicates the model’s tendency to over or under-estimate kinetic energy in
the power system. Comparing the figure with the statistical information regarding mean in table 17, the
LSTM model seems to overestimate the stored kinetic energy in January, with a mean error of 2.69GW·s,
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Figure 18: Inertia estimation using an LSTM machine learning model outlined in section 4.3 for the year
2020. The estimated values are given in the green figure, and the target values are shown in the orange
figure. The model seems to capture the general trend in the data, and the estimations follow the target
values closely. The model seems to have the best performance during the winter months and slightly worse
performance during the summer months. For the monthly plots, the horizontal axis shows the timestep in
hours. For the yearly plot, the horizontal axis shows months. For all plots, the vertical axis shows Stored
kinetic energy in the power system given in GW·s.

and underestimate the stored kinetic energy for the rest of the months tested. May has a mean error of
−7.17GW·s and August has a mean error of −7.30GW·s. For the whole year, the model has a mean error
of −0.98GW·s, showing that for 2020, the model underestimates the stored kinetic energy more often
than it overestimates it.

Table 17: Statistical information about the residual distribution displayed in figure 19. Skewness measures
how symmetrical the distribution is around its mean, and kurtosis measures how similar the distribution
is to a normal distribution. Skewness and kurtosis of zero indicate a symmetrical and normal distribution,
respectively.

January May August 2020
Skewness -0.07 -0.08 0.06 -0.12
Kurtosis 0.57 0.03 -0.04 0.16
Mean[ GW·s] 2.69 -7.17 -7.05 -1.32
Median[ GW·s] 2.61 -7.28 -7.30 -0.98
Standard deviation[ GW·s] 3.03 5.69 4.22 7.00
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Figure 19: Residual distribution for kinetic energy estimation by LSTM machine learning model, 2020.
With the magnitude of the residual on the horizontal axis, given in GW·s and the frequency of the residual
given on the vertical axis.
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6 Discussion
The discussion of the results presented in this thesis has three main paragraphs. Key findings and inter-
pretation outline the key findings from the results presented in section 5 and the interpretations of these
results. Limitations presents some limitations regarding the choice of the stochastic model and the equa-
tion used to estimate kinetic energy. This section also covers some generalizations that are not necessarily
true for other power systems, given the results in this thesis. Implication and recommendations cover the
implication of the key findings and limitations with respect to current practices and give suggestions on
further work based on what has been explored in this thesis.

6.1 Key findings and interpretation
Four models were created to estimate inertia in the Nordic power system, outlined in section 4, the generic
H-, the drift-, the diffusion- and the LSTM models. The generic H, drift, and diffusion model uses pro-
duction data together with H constants for their estimations. The generic H model uses average values
for the inertial constant H to estimate inertia. The drift and diffusion models were based on stochastic
modeling of power-system frequency using an Ornstein-Uhlenbeck process. The drift model uses the drift
coefficient, D(1), and the diffusion model uses the diffusion coefficient, D(2), to estimate regional inertial
constants hourly for the year 2020. To evaluate the generic H, drift, and diffusion models, the inertia
constants were combined with data of synchronous production, also for 2020, to create inertia estimation
so that the inertia estimation could be compared to the inertia estimation of a power system operator.
Finally, an LSTM model was trained on production, load, and frequency data from 2021–2023 and then
used to estimate the inertia in the power system directly from the input features from 2020. The first five
rows of the LSTM data are available in appendix B.

The main reason for creating the generic H model was to examine the behavior of the linear model,
outlined in section 4.1, to get a better understanding of how the linear model, used to create estimations
of kinetic energy from the different inertial constants, behaves compared to the TSO estimations used
as target values. The generic H constants in table 6, gathered from the ENTSO-E report [5], represent
the average inertial constant of a generator by production type. The most important finding from the
generic H model is the existence of an offset of around 35GW·s, as seen in figure 9. The presence of the
offset is likely due to the use of aggregated active power output rather than rated separate power and not
because the H constants fail to represent true values accurately. To ensure that the metrics evaluating
the performance of the diffusion model reflect the precision of the regional inertial constant rather than
the accuracy of active power measurement, the offset parameter Υ is introduced to equation (6.1). This
parameter is designed to correct for the offset caused by the use of aggregate active power. The generic H

model displays an ability to capture much of the underlying patterns and dynamics of the data, as seen by
how the trajectory of the estimation plot closely mirrors the trajectory of the target plot in figure 9. This
could indicate that much of the estimation error can be attributed to a constant offset error, resulting
in the estimations consistently being lower than the target values by a fixed amount. The metric table 9
shows a seasonal variation in model performance. During the test months, the model performed better in
January with a MAPE, MAE and RMSE lower than the annual average, while the months of August and
May had higher MAPEs. Because of the offset that exists between the estimated inertia and the target
inertia for the generic H model, the R2 score does not indicate anything useful and is not discussed
further. Figure 9 indicates that the amount of stored kinetic energy in May and August is significantly
lower compared to January. It could be the case that the model performed better for periods with high
amounts of stored kinetic energy within the power system than for periods with low kinetic energy stored
within the power system. The periods with high and low inertia also coincide with periods of high and
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low production and consumption of electrical power, as the winter months in the Nordic region create a
larger need for power than the summer months.

With a MAPE of 4.2%, R2 score of 0.837, MAE of 7.8GW·s, and an RMSE of 9.98GW·s for the year 2020,
the diffusion model showed an ability to estimate kinetic energy stored within the power system with a
surprising degree of accuracy. This shows that the diffusion-estimated regional inertia constant discussed
in section 4.2 captures relevant information from the data-driven analysis of frequency measurements
for the Nordic power system. The model’s ability to capture relevant data from frequency strengthens
the assumption that frequency behavior can be estimated by an Ornstein-Uhlenbeck process on an hour-
to-hour basis in the Nordic power system and that a stochastic representation of frequency allows the
extraction of useful information from noise-based deviations in power grid frequency. The equation used
for the diffusion estimation (4.11), and equation (1.1) proposed in the report [5] is rewritten below for
convenience,

Ek,diffusion =
P

pf

C

α
+Υ, (6.1)

Ek,TSO =
K∑
i=1

SniHi. (6.2)

Equation (6.1) uses an offset parameter, Υ, in an attempt to correct the offset error that can be seen
in figure 9. The offset parameter compensates for the average difference between the total rated appar-
ent power and the active power produced for a specific type of production. However, in periods where
generators operate closer to maximum capacity, it is expected that the produced active power of a pro-
duction type Pm starts to approximate the aggregate rate apparent power, Sn,m, for production type m.
If the two power terms become more similar, it would cause a smaller discrepancy between the active
power generated and the rated apparent power used in equation (6.1) and equation (6.2), respectively.
This could result in equation (6.1) starting to approximate equation (6.2) for periods where the power
system uses more of the available capacity, resulting in a smaller discrepancy than the annual average.
A potential result of this is a fitting of equation (6.1) favoring the periods with high amounts of stored
kinetic energy, leading to better performance for these periods.

To ensure that 2020 was not a random case of success, the model was also tested for the year 2022. The
model performed a bit worse for the year 2022. This includes the loss of its ability to capture much of
the relevant variance of the label for May, indicated by the negative R2 score; however, given the model’s
simplicity, the performance did not drop significantly enough for the rest of the year to indicate that the
estimation for 2020 is an isolated case of success. This suggests that stochastic modeling can be helpful
for extracting information regarding regional/nodal inertial constants from steady-state frequency data.
However, the loss of ability to accurately capture the variance in power system inertia, together with the
odd behavior that can be seen in figure 10, could indicate some relations between frequency behavior
and regional inertial constants that the Ornstein-Uhlenbeck process is not capable of capturing. The odd
behavior in figure 10 is a large increase in the discrepancy between the estimated and target values,
starting in late January and persisting to April; this was not investigated further due to time constraints.

To examine the diffusion ability to capture relevant information from the features, a residual analysis
was done. The analysis involved examining the distribution, variance, and independence of the residuals
in relation to themselves and to the target variable. Looking at figure 14, the diffusion model displays
variance that seems constant with respect to the target variable. The residuals also display no pattern
against the targets, indicating that the residuals are independent of the target values. Figure 15 shows
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that the residuals have no pattern that is dependent on previous or following residuals; this indicates
that the residuals are independent of other residuals. Reisudals that are both independent with constant
variance indicate that the linear model with regional inertia constants estimated from steady-state fre-
quency, outlined in section 4.2, captures relevant relations between production, inertia constants, and
stored kinetic energy within the power system available in the data. Furthermore, the analysis showed
that the diffusion model tended to favor underestimations for periods of high kinetic energy, like January,
and overestimation for periods with high amounts of kinetic energy, like May and August. A possible
conjecture for this behavior is the reverting to the mean nature of the Ornstein-Uhlenbeck process, as
the process describes a system that deviates randomly from a mean value and has a linear drift back
the mean value (2.17), possibly resulting in the model leaning towards estimating the mean value. When
measuring this against the need for better estimations of stored kinetic energy for more optimal operation
of the power system [8], this behavior is not favorable. This is because an overestimation for a period
with low stored kinetic energy can result in an operational state where the power system is not working
at optimal levels but outside safe operational boundaries.

To determine whether the model should be fitted yearly or a single fit over all the data, 2020–2023,
a residual analysis for 2020–2023 was done. Given that the residuals for the yearly fit display close to
normally distributed residuals for the years, shown in figure 12, and displayed fairly similar properties,
shown in table 13, a yearly fitting of equation (4.11) was chosen over a global fitting for over all the
years. The residuals of the global fitting had a vastly different distribution to the yearly fit, shown in
figure 13. However, a more interesting finding from the analysis regarding the choice of fitting approach
can be seen in table 12. Namely, the value of C is similar for two consecutive years, 2020 and 2021.
Then, it changes to a new value for 2022 and remains similar for the consecutive year 2023. The fact
that the parameter is similar in pairs of years but changes significantly from 2021 to 2022 could indi-
cate that the ‘constant’ is affected by an underlying change in a dynamic process within the power system.

Moving to the LSTM model, it was trained on data from 2021–2023 and then tested on data from 2020.
A MAPE, MAE, RMSE, and R2 score of 3.1%, 5.6GW·s, 7.1GW·s and 0.92 for the year 2020 indicat-
ing that the model could extract the relationships between the input features and the output label, the
stored kinetic energy in the power system. The model performed best for the month of January and
somewhat worse in May and August. Relationships between features and labels may be more straight-
forward for January compared to relationships in May and August. By the same reasoning as for the
diffusion model, it is most important to capture the relations in the periods of low kinetic energy stored
in the power system, like August and May. The residual analysis for the LSTM shows that the model
tends to underestimate the stored kinetic energy for the periods where the actual stored kinetic energy is
low. Underestimations during low inertia periods are beneficial for a method created to estimate stored
kinetic energy in a power system. Suppose the estimated value is less than the actual value. In that
case, any actions taken based on the estimation will still result in the safe and efficient operation of the
power system, given its actual state. This would allow for a more optimal operation of the power system.
The LSTM model, like other machine learning models, can easily add additional features to the model
without requiring significant changes in the model architecture. This makes it possible to add different
data that could contain relations to the amount of inertia in the power system, but where the relations
in the data are hard to find with classical methods, such as weather patterns. Compared to the diffusion
model’s results for 2020, the LSTM model outperforms the diffusion model in all the metrics tested. This
also remained the case for all the individual moths tested. The LSTM model also showed a tendency to
underestimate inertia for periods where the inertia in the power system is low; this is favorable to the
diffusion model’s tendency to overestimate the inertia in the power system for the same periods.
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The drift model does not seem to capture much of the relations available in the data. Examining figure 8
and the evaluation metrics in table 8, the drift models prove no ability to predict the kinetic energy stored
in the data from the available parameters. The most probable cause of this is the assumption that power
dampening, D, in equation (2.17) is not valid for the Nordic power system.

6.2 Limitation
One of the significant limitations of inertia estimations, in general, is the lack of a proper ground truth.
All the metrics used to evaluate the models show how well the model can estimate the TSO’s estimation
of stored kinetic energy. However, the TSO estimation does not necessarily depict the actual amount
of kinetic energy stored within the power system. For instance, the TSO model does not consider syn-
chronous consumption of electrical power [5], which also contributes to the overall stored kinetic energy
in a power system. When using the TSO’s estimation as the ground truth, any model that depicts ki-
netic energy stored in the power system more realistically would perform worse according to the metrics.
Creating ambiguity around the errors shown by the evaluation metrics; the errors may result from an
inability to capture relevant information, or the error could result from the model capturing more relevant
information than is done in the TSO estimation, causing it to better represent the true state of inertia
in the power system.

The use of the generic constant H to examine the behaviour of the linear equation (see equation (4.1))
introduces a limitation regarding the accuracy of the H constants shown in table 6 for the years analyzed.
The constants in table 6 represent the average H constant of the generators that make up the different
production types shown in table 6 and are gathered from the ENTSO-E report [5] from 2015. Given that
the Nordic TSOs chose the average H values from the data available to them, it is assumed that they
are representative of the production types for the year they were created. However, changes to the power
system after 2015 could impact the true average value of the H constant for the different production types.

Further limitations arise from the different time resolutions that can be seen in table 1, where the fre-
quency data has a much finer time resolution than the other datasets. The reduction in time resolution
from 0.1 s to 1 hour does entail the loss of information that could contain information about the regional
inertia constant. A possible remedy for this would be to increase the time resolution for the production
data. An increased time resolution on production data would allow for a smaller reduction in the time
resolution of the frequency data, retaining more of the information available in the dataset. Another
limitation of the method lies within the stochastic model used when estimating the hourly regional iner-
tial constants. This equation relies on several assumptions outlined in section 4.2. Based on the general
performance of the model on the two years tested and the residual distribution of the modeling errors
for the other years, shown in the result section, these assumptions seem reasonable for the operational
years 2020–2023. However, this does not necessarily generalize outside the years being analyzed. The
same is true for the scale of the system being analyzed. The methods used for the analysis are applied at
the transmission grid level, and the results might not generalize to smaller-scale power systems, such as
the regional power grid. Additionally, any conclusions around applying stochastic modeling in extracting
inertial information from frequency and the further estimations of kinetic energy stored in the power
system are only valid for the Nordic power system. The Nordic power system may be ideal for modeling
frequency dynamics in the power system with stochastic processes, and similar behavior might not be the
case for other power systems.

There are also limitations regarding the change in the value of the C parameter from 2021 to 2022.
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This could, as mentioned, point to the fact that the C parameter is influenced by a power system dy-
namic not captured by the Ornstein-Uhlenbeck equation used to model frequency dynamics. Since the
Ornstein-Uhlenbeck equation is a stochastic differential equation in time, a model based on this equation
would not capture a deterministic process impacting the parameter C. While the residual histograms of
all the years, figure 12, indicate that a constant C works on the timescale of one year, there is a potential
that the change in C from 2021 to 2022 is a result of a change in a deterministic process. A slowly or
rarely changing deterministic process affecting frequency behavior could change the best fit for the C

parameter from 2021 to 2022. This could be one of the potential causes of deviation seen in figure 17
from late January to April. This is, however, not the only limitation of using the Ornstein-Uhlenbeck
equation to model frequency behavior. If the change in the parameter C results from a change in a non-
time-dependent stochastic process from 2021 to 2022, the Ornstein-Uhlenbeck equation could not model
this change in behavior. Since the Ornstein-Uhlenbeck is a stochastic differential equation with respect
to time, the equation can only be used to model time-dependent stochastic processes, and the model
will not capture any information regarding non-time-dependent stochastic processes within the frequency
deviations.

A possible limitation of inertial estimation with machine learning models is the lack of training data.
Energinet has only recorded the stored kinetic energy in the Nordic power system from the middle of
2019 and onwards. The low amount of available data to train the model makes it harder to ensure that
the LSTM model generalizes to new unseen data. This would become even more prevalent if relations
between the explanatory variables and stored kinetic energy become more complex when more IBRE is
introduced in the power system. There is also the potential that the added computational complexity
of using an LSTM instead of other machine learning models is not worth the LSTM model’s ability
to capture long-term dependencies. Even though the LSTM model shows a good ability to capture the
available information from the data, it is hard to evaluate how much of this is due to the LSTM’s
capability of handling both non-linear relations and long-term dependencies or if any machine learning
model capable of handling sequential information would perform similarly, with a lower computation cost.
Although incorporating extra features into an LSTM model is straightforward in terms of architecture
and computational demands, this comes at the expense of reduced explainability, primarily because each
additional feature adds complexity to the model’s decision-making process, making it harder to trace how
inputs influence outputs. So, even though adding more features can enhance the model’s performance, it
becomes hard to determine whether this improvement is due to the model discovering new relationships
in the data or simply overfitting the training set’s peculiarities.

6.3 Implication and recommendations
The promising results regarding estimating regional inertial constants from frequency using the Ornstein-
Uhlenbeck process to model frequency behavior could have several advantages for the Nordic TSOs
compared to the methods mentioned in the introduction [10, 5, 8]. The diffusion model can estimate a
regional inertia constant by analyzing steady-state frequency measurements. This could, in theory, allow
for a real-time estimation of regional inertial constants that includes inertial contributions from syn-
chronous loads. The new method for estimating regional inertial constants could allow the Nordic TSOs
to better understand how the kinetic energy contribution is distributed and how it changes in real-time
for the Nordic power system. A real-time estimation of the regional stored kinetic energy within the power
system would be a valuable tool for operating the power system at higher capacities in order to meet the
increasing demand for electrical power that is expected in the near future [3]. The stochastic estimation of
inertia constant from frequency also requires less data when compared to the TSO method, as described
in report [5]. This method utilizes all available information on the inertial constants of the synchronously
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connected generators. With this method, estimating regional inertia constants for large power systems
requires extensive knowledge of the inertial constants of all synchronous generators, leading to the issue
of having up-to-date knowledge of as many generators as possible. The diffusion model only needs fre-
quency data to create a regional inertial constant for the region, reducing the amount of accurate data
required for the estimation. This method also allows for a finer time resolution for the estimation of
regional inertial constant, it is possible to estimate an inertia constant for every time step making up
the frequency data. The limiting factor in time resolution for the inertia estimation results from the res-
olution of the production data, necessitating the use of stochastic modeling with the Ornstein-Uhlenbeck
process. Some practical applications of regional estimation of inertial constants depend on whether or not
the results found in this thesis are generalized to smaller-scale power systems. Therefore, further work
should include applying stochastic modeling to smaller-scale power systems, such as regional distribu-
tion grids, to see if the methods yield similar results for smaller power systems as for the transmission grid.

Following the same reasoning as for the Nordic power system, the method of estimating inertia constants
would be useful for other power systems outside the Nordic region if stochastic modeling yields similar
results for these power systems. In order to examine whether or not the findings generalize to other
power systems, it would be beneficial to do a similar analysis for more power systems in Europe. When
considering such an analysis, three power systems initially stand out: the British, Irish, and European.
The British power system has a similar scale as the Nordic power system but differs in terms of what
production types provided the majority of electrical power [33]. The Irish power system is smaller than the
Nordic power system but still generates much of its power from synchronous sources in hydro and thermal
power generation [22]. This power system could be used to see if similar stochastic models provide similar
results to smaller transmission grids and to investigate further if stochastic frequency analysis could be
a tool for other power systems. Finally, the European power system is of a much larger scale and has
much more varied production than the Nordic power system. It could be used to examine if the finding
of this thesis generalizes to a larger-scale power system, where power is produced from several different
countries containing vastly different production types.

Moving to the potential of the two best-performing models proposed in this thesis. A comparison of the
LSTM and diffusion models indicates different strengths and weaknesses. As previously stated, the LSTM
model provided estimations that, in all cases, were closer to the TSO estimation than the estimations
made by the diffusion model. The residuals of the LSTM model also indicate that the LSTM model
has a tendency to underestimate inertia for periods where inertia in the power system is low. Both
the better performance and the more favorable direction of the error for the LSTM model give it more
merit as a potential tool for Nordic TSOs to estimate the inertia in the Nordic power system than the
diffusion model. However, this model does not give further insight into which features are important for
the estimation process, leading to a model that gives accurate estimation but no insight that can be used
to create a power system that is more resilient to frequency deviation in low inertia periods. This is where
continuing the development of stochastic models like the diffusion model proposed in this thesis can be
beneficial. It could be modified to increase the accuracy of the regional inertial constants estimated from
the stochastic model.
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The modification could involve including more time-dependent variables in the stochastic model, mak-
ing it into a higher-order stochastic differential equation. This could potentially resolve periods where
the diffusion model loses its ability to capture the variance of the data. Alternatively, integrating non-
time-dependent processes that change with respect to another variable, making it a partial stochastic
differential equation, could allow for the modeling of frequency behavior that is not time-dependent. Or a
combination of the two modifications, resulting in a higher-order stochastic partial differential equation.
If the modifications provide better results, it would be because they allow the stochastic model to more
closely model the actual behavior of the power grid’s frequency. More work is needed to understand why
the model loses its ability to capture the relations in the data for May 2022 and what dynamics govern
the C parameter from equation (4.11). Both the sudden change of this parameter seen in table 12 and
the model’s inability to capture variance for May 2022 could result from changes in a deterministic or
stochastic process not accounted for by the model outlined in section 4.2, that a different stochastic model
might be able to capture.
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7 Conclusion
To conclude, objective (1) was explored by proposing the diffusion model outlined in section 4.2. The
results yielded by the diffusion model indicate that stochastic modeling of power-grid frequency can ex-
tract useful information regarding regional inertial constants from noise-based deviations of steady-state
frequency by modeling the frequency behavior as an Ornstein-Uhlenbeck process. Objective (2) of the
thesis was explored with the LSTM model outlined in section 4.3. The LSTM model showed great ability
to capture relevant relations between features of the training data and the label, stored kinetic energy
in the Nordic power system. The LSTM model also showed some beneficial behavior as it tended to
underestimate the stored kinetic energy in the Nordic power system in periods when this value was lower
than average.

The analysis performed for this thesis focuses on estimating stored kinetic energy for the Nordic power
system since this region already has historical estimations of stored kinetic energy using other methods.
This limits the generalizability of the findings to this region, and further research on different power sys-
tems would be needed to validate the models and ensure their effectiveness across various power systems.

Based on the diffusion model’s results, power systems operators should consider investigating similar
methods of estimating regional inertial constants in real time for their respective power systems. If similar
models based on stochastic power-grid frequency analysis yield similar results for other power systems,
this method could depict the state of stored kinetic energy in a more realistic way than the methods
outlined in other literature [5, 8]. Successfully implementing LSTM or stochastic models to improve the
current techniques for real-time estimation of stored kinetic energy could result in new tools, allowing
TSOs to operate their power systems more optimally and efficiently than what can be done with the
information available today. A more efficient power system could facilitate a more rapid change to a
society with a higher degree of electrification for the Nordic region and Europe as a whole. With a high
potential to mitigate emissions and decarbonize energy supply chains, the electrification of Europe is one
of the considerable hurdles that need to be passed to achieving the sustainability goals set by the United
Nations [6] and reach net-zero carbon emission.

51



References
[1] Norges Vassdrags- og Energidirektorat (NVE). Overview of Norway’s Electricity History. Last Ac-

cessed: 2024-04-16, url: https://publikasjoner.nve.no/rapport/2017/rapport2017_15.pdf.
[2] J. Clauß, S. Stinner, C. Solli, K. B. Lindberg, H. Madsen, and L. Georges. Evaluation Method for

the Hourly Average CO2eq. Intensity of the Electricity Mix and Its Application to the Demand
Response of Residential Heating. Energies 12, 1345, 2019. doi: 10.3390/en12071345.

[3] Stattnett. Langsiktig markedsanalyse. Last Accessed: 2024-04-16, 2022. url: https://www.statnett.
no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/lma/langsiktig-markedsanalyse-
2022-2050.pdf.

[4] F. Trengereid, K. Brekke, and S. Parelius. Leveringskvalitet i kraftsystemet. Last Accessed: 2024-
04-16, 2004. url: https://publikasjoner.nve.no/dokument/2004/dokument2004_03.pdf.

[5] E. Ørum, M. Kuivaniemi, M. Laasonen, A. I. Bruseth, E. A. Jansson, A. Danell, K. Elkington, and
N. Modig. Future System Inertia. Last Accessed: 2024-04-16, 2015. url: https://eepublicdownloads.
entsoe.eu/clean-documents/Publications/SOC/Nordic/Nordic_report_Future_System_Inertia.
pdf.

[6] United Nations. Sustainable Development. Last Accessed: 2024-04-16, url: https://sdgs.un.org/
goals.

[7] International Energy Agency. Electrification. Last Accessed: 2024-04-26, url: https://www.iea.
org/energy-system/electricity/electrification.

[8] E. Heylen, F. Teng, and G. Strbac. Challenges and opportunities of inertia estimation and forecast-
ing in low-inertia power systems. Renewable and Sustainable Energy Reviews 147, 111176, 2021.
doi: 10.1016/j.rser.2021.111176.

[9] A. Ulbig, T. S. Borsche, and G. Andersson. Impact of Low Rotational Inertia on Power System
Stability and Operation. IFAC Proceedings Volumes 47, 7290–7297, 2014. doi: 10.3182/20140824-
6-ZA-1003.02615.

[10] L. P. Andersen. Applying a Top-Down Estimation of Inertia in the Nordic Power System. Master’s
thesis. Norwegian University of Life Sciences, 2022. url: https://hdl.handle.net/11250/2993969.

[11] L. Rydin Gorjão, M. Anvari, H. Kantz, C. Beck, D. Witthaut, M. Timme, and B. Schäfer. Data-
Driven Model of the Power-Grid Frequency Dynamics. IEEE Access 8, 43082–43097, 2020. doi:
10.1109/ACCESS.2020.2967834.

[12] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation 9, 1735–1780,
1997. doi: 10.1162/neco.1997.9.8.1735.

[13] W. Demloj. Electricity Price Forecasting using Multivariate Price Time Series. Master’s thesis.
Oslo Metropolitan University, 2023. url: https://hdl.handle.net/11250/3100586.

[14] D. J. Glover, J. T. Overbye, S. M. Sarma, and B. B. Adam. Power System Analysis & Design.
7th ed. Cengage, 2022. isbn: 978-0-357-67619-6.

[15] H. Risken. The Fokker–Planck Equation. 2nd ed. Springer, 1996. isbn: 978-3-540-61 530-9.
[16] M. R. R. Tabar. Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems

Processes. 1st ed. Springer, 2019. isbn: 978-3-030-18471-1.
[17] A. Jung. Machine Learning. 1st ed. Springer Singapore, 2022. isbn: 978-981-16-8192-9. doi: 10.

1007/978-981-16-8193-6.
[18] S. Raschka and V. Mirjalili. Python Machine Learning. 3rd ed. Packt Publishing, 2019. isbn: 978-

1-78995-575-0.

52

https://publikasjoner.nve.no/rapport/2017/rapport2017_15.pdf
https://doi.org/10.3390/en12071345
https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/lma/langsiktig-markedsanalyse-2022-2050.pdf
https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/lma/langsiktig-markedsanalyse-2022-2050.pdf
https://www.statnett.no/globalassets/for-aktorer-i-kraftsystemet/planer-og-analyser/lma/langsiktig-markedsanalyse-2022-2050.pdf
https://publikasjoner.nve.no/dokument/2004/dokument2004_03.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/Publications/SOC/Nordic/Nordic_report_Future_System_Inertia.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/Publications/SOC/Nordic/Nordic_report_Future_System_Inertia.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/Publications/SOC/Nordic/Nordic_report_Future_System_Inertia.pdf
https://sdgs.un.org/goals
https://sdgs.un.org/goals
https://www.iea.org/energy-system/electricity/electrification
https://www.iea.org/energy-system/electricity/electrification
https://doi.org/10.1016/j.rser.2021.111176
https://doi.org/10.3182/20140824-6-ZA-1003.02615
https://doi.org/10.3182/20140824-6-ZA-1003.02615
https://hdl.handle.net/11250/2993969
https://doi.org/10.1109/ACCESS.2020.2967834
https://doi.org/10.1162/neco.1997.9.8.1735
https://hdl.handle.net/11250/3100586
https://doi.org/10.1007/978-981-16-8193-6
https://doi.org/10.1007/978-981-16-8193-6


[19] S. Singh. Understanding the Bias-Variance Tradeoff. Last Accessed: 2024-04-16, url: https : / /
towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229.

[20] J. Trebbien. Explainable Artificial Intelligence and Deep Learning for Analysis and Forecasting of
Complex Time Series: Applications to Electricity Prices. Master’s thesis. University of Cologne,
2023. url: https://kups.ub.uni-koeln.de/70766/1/JTrebbien_Thesis_final.pdf.

[21] G. G. Løvås. Statistikk for universiteter og høgskoler. 4th ed., 300–325, 2018. isbn: 978-82-15-03104-
0.

[22] ENTSO-E. Transparency Platform RESTful API - user guide. Last Accessed: 2024-04-23, url:
https://transparency.entsoe.eu/content/static_content/Static%20content/web%20api/Guide.
html.

[23] Fingrid. Frequency - historical data. Last Accessed: 2024-04-26, url: https://beta-data.fingrid.fi/
en/datasets/339.

[24] Energinet. Inertia, Nordic Synchronous Area. Last Accessed: 2024-04-23, url: https : / / www .
energidataservice.dk/tso-electricity/InertiaNordicSyncharea.

[25] J. Pecinovsky. entsoe-py. Last Accessed: 2024-04-16, url: https://github.com/EnergieID/entsoe-
py.

[26] L. Rydin Gorjão and F. Meirinhos. kramersmoyal: Kramers–Moyal coefficients for stochastic pro-
cesses. Journal of Open Source Software 4, 1693, 2019. doi: 10.21105/joss.01693.

[27] C. R. Harris et al. Array programming with NumPy. Nature 585, 357–362, 2020. doi: 10.1038/
s41586-020-2649-2.

[28] P. Virtanen et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature
Methods 17(3), 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[29] T. M. Sandvik. Area Based Frequency Control in the Nordic Power System. Master’s thesis. Nor-
wegian University of Science and Technology, 2016. url: http://hdl.handle.net/11250/2616077.

[30] M. Abadi et al. TensorFlow: A system for large-scale machine learning. 2016, Last Accessed: 2024-
04-16, url: https://arxiv.org/abs/1605.08695.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, A. Müller,
J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay. Scikit-learn: Machine Learning in Python.
2012, Last Accessed: 2024-04-16, url: https://arxiv.org/abs/1201.0490.

[32] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 9, 90–
95, 2007. doi: 10.1109/MCSE.2007.55.

[33] ENTSO-E. Actual Generation per Production Type. Last Accessed: 2024-04-26, url: https : //
transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show.

53

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://kups.ub.uni-koeln.de/70766/1/JTrebbien_Thesis_final.pdf
https://transparency.entsoe.eu/content/static_content/Static%20content/web%20api/Guide.html
https://transparency.entsoe.eu/content/static_content/Static%20content/web%20api/Guide.html
https://beta-data.fingrid.fi/en/datasets/339
https://beta-data.fingrid.fi/en/datasets/339
https://www.energidataservice.dk/tso-electricity/InertiaNordicSyncharea
https://www.energidataservice.dk/tso-electricity/InertiaNordicSyncharea
https://github.com/EnergieID/entsoe-py
https://github.com/EnergieID/entsoe-py
https://doi.org/10.21105/joss.01693
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
http://hdl.handle.net/11250/2616077
https://arxiv.org/abs/1605.08695
https://arxiv.org/abs/1201.0490
https://doi.org/10.1109/MCSE.2007.55
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show


A Appendix A: Gitlab
The data and code used to produce the results for this thesis can be found on:
https://gitlab.com/tomazzo/master-oppgave

B Appendix B: LSTM Data

Table B.1: The first five rows of the input data for the LSTM model, transposed.
Hour 1 Hour 2 Hour 3 Hour 4 Hour 5

Actual Load 9548 9237 9141 9149 9206
Actual Load_NO 16151 15787 15532 15427 15321
Actual Load_SE 14957 14860 14595 14204 14263

Biomass 549 546 547 542 542
D2 0.000002 0.000002 0.000002 0.000002 0.000002

Fossil Hard coal 551 519 515 514 515
Fossil Peat 472 466 466 468 483

Hydro Pumped Storage 309 309 309 309 309
Hydro Run-of-river and poundage 1368 1372 1372 1373 1371

Hydro Run-of-river and poundage_FI 1166 980 929 889 912
Hydro Water Reservoir_NO 13716 13597 13027 12005 11099
Hydro Water Reservoir_SE 4284 3731 3663 3620 3725

Nuclear 7767 7767 7767 7770 7768
Nuclear_FI 2798 2798 2798 2797 2797

Other renewable_FI 25 25 26 26 26
Other_NO 54 54 54 53 54
Other_SE 1128 1128 1116 1103 1094
R2_score 0.972649 0.972649 0.985341 0.956299 0.984712
Waste_FI 7 7 7 7 7

Wind Onshore 1219 1197 1190 1050 916
Wind Onshore_NO 1422 1314 1276 1274 1250
Wind Onshore_SE 4863 4878 5109 5230 5500

oscillation point 49.775360 50.010848 49.994559 50.039888 50.042532
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Figure C.1: The relative production of all production types found in the production data for the Nordic
Power system for 2020.

C Appendix C: Production data
The Figures C.1–C.4 show the relative production of all production types available at the ENTSO-E
transparency platform [33] for the Finish, Norweigan and Swedish power systems.
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Figure C.2: The relative production of all production types found in the production data for the Nordic
Power system for 2021.
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Figure C.3: The relative production of all production types found in the production data for the Nordic
Power system for 2022.
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Figure C.4: The relative production of all production types found in the production data for the Nordic
Power system for 2023.
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