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Abstract

As the world rapidly advances with groundbreaking technology, the food sector is no exception.
Artificial intelligence is increasingly utilized in the food industry to enhance production and
quality. However, ensuring quality in the food industry can be challenging due to environ-
mental factors such as fluctuations in temperature and humidity levels, as well as changes in
raw material sources. To guarantee high quality and safety standards, it is crucial to develop
systems that monitor and regulate these variables, ensuring that consumers receive safe and
enjoyable food products. This master thesis delves into applying machine learning and opti-
mization techniques to predict the dry matter content and optimize the quality and production
of Norvegia cheese at Tine Jæren. Dry matter plays a critical role in determining the quality of
Norvegia cheese, affecting its flavor and texture significantly. The optimal dry matter content
for Norvegia cheese should be between 57.6% and 57.7%, as it ensures the highest quality and
customer satisfaction. The study developed machine learning models that can be used to gain
insights from data and predict dry matter content. Different feature selection techniques were
employed to identify the variables affecting dry matter content and refine the predictive models.
The optimal models will be integrated as a predictive component into an optimization model
utilizing an evolutionary algorithm to optimize and enhance the production and dry matter con-
tent of fresh Norvegia cheese. This approach optimizes essential dry matter parameters affecting
dry matter to improve quality and production efficiency while ensuring customers receive safe
and enjoyable food products. The best optimization model developed in this study has been
integrated into a user-friendly website tailored for industry application. This website serves
as both a prototype and a demonstration of how the optimization model can be implemented
in daily operations. This approach can help manage resources and minimize waste, a crucial
factor in sustainable food production. In summary, the application of machine learning and
optimization techniques to predict dry matter content and optimize the quality and production
of Norvegia cheese has the potential to improve the food industry and pave the way for more
sustainable and efficient food production practices.
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Chapter 1
Introduction
1.1 Motivation

Food industries worldwide play a crucial role in sourcing raw materials from farmers and lo-
cal suppliers, refining, processing, and packaging these into safe, consumable consumer prod-
ucts. Enhancing and maintaining food quality is essential for ensuring food safety and meeting
customer expectations. However, many food industries face significant challenges in product
quality, often due to various environmental factors. Technology is now an essential part of the
food industry, with Artificial intelligence (AI) offering numerous opportunities to automate and
optimize processes, reducing human error. Machine learning originated in the 1950s and has
played a significant role in automating and enhancing tasks. From its early stage with simple
algorithms like the perceptron, it has evolved into more advanced techniques such as artificial
neural networks [1]. As technology advances and digitization increases, public institutions in-
creasingly adopt machine learning and AI in the food industry. Leveraging machine learning
outcomes can help reduce costs and optimize resources, serving as digital decision support to
pave the way for innovation and success in an industry [2]. To continue being a vital part of
the global supply chain, the food industry must adopt new technologies to maintain and im-
prove food quality. This adaptation is crucial to ensure the industry can sustain its vital role
in providing safe, high-quality food products.

Established in 2001, TINE is a cooperative enterprise owned by over 8,000 farmers, enabling
them to process and add value to their produce. The company is renowned for its diverse
range of dairy products, including milk, cheese, yogurt, butter, and juice [3]. Focusing on dairy
products, TINE aims to be a leading and sustainable supplier of branded food and beverages.
TINE is committed to ongoing innovation in the dairy sector, exploring new technologies and
processes to enhance the production and quality of dairy products, including leveraging cutting-
edge technology to improve efficiency and sustainability in their operations. The company is
working towards this goal by closely monitoring consumer preferences and delivering goods and
innovative products in consumers’ desired formats. Like many other food industries, TINE faces
challenges in maintaining and enhancing the quality of cheese production.

Cheese production is a complex process that faces unique challenges that are not present in other
industries. Some of the most significant challenges are managing batches with additives and
seasonal variations. Various additives are used in cheese production to enhance flavor, texture,
and shelf life. The variation in texture, flavor, and overall composition of cheese can be impacted
by the amount of additives used in different batches. The addition must be carefully managed
to ensure that each batch remains consistent with expected outcomes. The composition of milk,
the primary ingredient in cheese, can significantly vary with the seasons due to factors such as
the health and diet of dairy animals and their environment. This can affect the fat and protein
content of the milk. All cheese in a batch undergoes the same processing steps, resulting in
a consistent outcome. Variations in processing steps can lead to inconsistencies in the final
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product, affecting flavor, texture, and overall quality. This poses a challenge because batches
may have different characteristics. Therefore, the process must be adjusted to accommodate
natural fluctuations without affecting cheese quality.

1.2 Objective of the Thesis

The case study delves deep into the operations at Tine Jæren, a prominent producer of Norvegia
cheese. Tine Jæren faces the challenge of maintaining consistent quality in cheese production
due to fluctuations in the dry matter content of the cheese. The dry matter between 10.10.2022
and 15.01.2024 has a mean value and a standard deviation of 57.68 and 0.55, respectively. This
gives a 99% confidence interval of (57.65, 57.71), which means we are 99% confident that the
true population mean of the dry matter falls within this range. The desired level of dry matter
for Norvegia is 57.6-57.7%. The dry matter content is a crucial indicator of cheese quality
and significantly influences the taste. By effectively controlling the dry matter content, we can
enhance the product’s quality and flavor. In addition to enhancing quality, we can improve
efficiency by reducing waste from processes or materials that do not contribute to maintaining
optimal quality. This thesis aims to apply machine learning and optimization techniques to
forecast and optimize the dry matter content in cheese production. This approach will enable
a comprehensive understanding of the factors influencing variations in dry matter, enhance
production efficiency, minimizing waste, improve quality, and ensure that the taste and texture
of Norvegia cheese meet consumer expectations.

1.3 Research Focus and Questions

We have formulated a specific research question in light of the complexities outlined in the ob-
jectives. This question explores the potential application of machine learning and optimization
techniques to enhance the quality of Norvegia cheese, focusing specifically on:

How can machine learning and optimization techniques be applied to improve the
quality and production of Norvegia cheese?

To solve the problem formulated in the research question, exploration and data modeling have
been conducted based on the following research questions:

• Research question 1: How can machine learning models be used to predict the dry
matter content?

• Research question 2: How can we use the insights from the predictive models to create
an optimization model to improve the quality of Norvegia Cheese?

• Research question 3: How can we use the results as digital decision support to improve
the industry’s production process?

Research question 1 is crucial for understanding the underlying patterns that affect the qual-
ity of Norvegia cheese. By applying machine learning models to predict dry matter content,
this question aims to uncover the specific factors that directly impact cheese quality. Gain-
ing insights from these models could enhance our understanding and significantly improve the
consistency and efficiency of the cheese-making process. Research question 2 is crucial for iden-
tifying the critical factors from the model and using optimization techniques to enhance the
quality of Norvegia Cheese. Research question 3 focuses on using the findings from Research
questions 1 and 2 to enhance the overall production process in the industry. Limitations have
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been defined in collaboration with the project supervisors, taking into account the project’s
constraints and aiming to achieve satisfactory results. These limitations will be mentioned and
discussed throughout this thesis.

1.4 Thesis Structure

This chapter delves into the motivation behind the master’s thesis and the challenges encoun-
tered by Tine Jæren in cheese production. Chapter 2 provides the necessary theoretical frame-
work to address these challenges. The theory chapter is divided into three parts, each covering
different topics. The first part will discuss datasets, data preprocessing, and an introduction
to machine learning. The second part covers machine learning algorithms and feature selec-
tion techniques. Lastly, the third part focuses on optimization techniques and the CRISP-DM
framework. Chapter 3 introduces the methodology, detailing how the data is processed and
how machine learning algorithms are implemented. Chapter 4 discusses the results obtained
from the machine learning models and uses insights from these predictive models to develop an
optimization model that will be integrated into a website using Streamlit. Chapter 5 entails an
analysis and discussion of the different models, along with reflections on and challenges faced
during this thesis. Chapter 6 provides a conclusion and outlines future work. Figure 1 visually
illustrates the structure of the master’s thesis.

Figure 1: Thesis structure
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Chapter 2
Theoretical Framework
2.1 Data Management and Preprocessing

A dataset is a structured collection of data, typically presented in a tabular format for analysis
and processing. The data within a dataset generally are related and often used for a single
project. Each column in a dataset describes a specific variable, and each row corresponds
to an instance. The number of columns can vary from two (in a bivariate dataset) to multiple
columns (in a multivariate dataset). A dataset can include many data types, such as categorical,
numerical, time series and text data [4]. Working with raw data, identifying patterns and trends
among the variables can hold valuable insights and unveil underlying structures. This will make
a dataset a powerful tool for decision-making.

Real-world data is messy and is not often suited for data scientist tasks. Data quality is essential
for decision-making, and good data quality can be obtained through data preprocessing. Data
preprocessing transforms the data into a format that is more easily and effective to handle
in data science projects. The better the data represents the problem, the better the results.
Inaccuracies, missing values, and inconsistencies can give wrong results, leading to misleading
conclusions [5]. Data preprocessing is crucial to ensure the dataset can be analyzed accurately
and reliably. This extensive process involves correcting data errors, filling in missing values,
resolving inconsistencies, enhancing the overall quality of the dataset, and making it suitable for
practical analysis and insightful decision-making. Scaling is an important step in data science
projects as it standardizes data, making it easier for decision-making tools to operate more
effectively. This process helps reduce potential biases caused by natural variations in the data.
Encoding categorical variables that are essential for the analysis is also important because
computers do not understand string values. Through One-hot encoding, we convert these
variables into a form that the computer can handle more effectively. Beyond preprocessing,
understanding the type and scale of the data is essential for selecting appropriate analytical
techniques and models.

Missing Values

Missing values are common in real-world datasets and can affect the performance of machine-
learning models. The simplest way to deal with it is to remove rows and variables with many
missing values. Another way is to use imputation techniques to fill in the missing values. One
of the most common techniques is to use the mean or median values of each column to fill in
the respective missing values. Iterative imputer is a more advanced technique for multivariate
data. It uses an estimator, such as a machine learning model, to estimate the missing values.
The Iterative imputer estimates the missing values being imputed using the data available in
other features [6]. Using imputation techniques to fill in missing values can greatly improve
the effectiveness and robustness of machine learning models. However, imputing missing values
is not always reliable, especially when many are missing. In such cases, removing rows and
variables would be more appropriate.
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2.2 Machine Learning

Machine learning (ML) is a subfield of AI that teaches a computer to perform tasks without
explicit programming. Instead, data are fed into and trained in an algorithm to improve out-
comes with experience gradually. Over time, we have developed many algorithms to help us with
tasks such as classification or prediction. The result of an ML model is a prediction generated
from input data that matches the format used during its training, effectively applying learned
patterns to new, unseen examples [7]. The term ML was coined by Arthur Samuel in 1959 at
IBM, who was developing AI that could play checkers and even outplay its programmer [8].
Half a century later, many predictive models are embedded in numerous products we use daily.
Predictive models can classify data, such as determining whether a human is on the road or a
patient has cancer. ML can also help us to identify patterns and relationships between input
features and target values. We can distinguish between supervised and unsupervised learning.

Supervised learning is a method where the data consists of n observations, each with p-
dimensional features. The data can be represented as a matrix X =

(
xT
1 , . . . ,x

T
n

)
∈ Rn×p,

and an associated vector of target values y = (y1, . . . , yn) ∈ Rn, where each yi represents a
single target outcome, either a class label or a real number. In supervised learning, the input
and output data are known in advance. The goal is to train a model using an ML algorithm that
can detect the patterns in the input variables to predict the target variable [9]. Loss functions
in ML algorithms help measure the cost of inaccuracies in predicting output variables. These
functions compare expected and actual outcomes and guide the learning process by highlight-
ing their differences. The goal is to minimize the loss functions by minimizing the differences
between expected and actual outcomes. Supervised learning encompasses both classification
and regression, with yi representing either categorical or continuous values, depending on the
specific task. Many supervised ML algorithms are available for identifying patterns and mak-
ing predictions, with none inherently superior to the others [10]. Every dataset is unique and
requires a specific machine-learning algorithm to generate reliable predictions.
Conversely, unsupervised learning seeks to uncover data patterns, relationships, or structures
without relying on the labeled output y. Various methods are available to accomplish these
objectives. One such method is clustering, which involves grouping similar things and discov-
ering hidden patterns and insights based on certain features or characteristics. [11]. Principal
Component Analysis is another unsupervised learning technique used for data compression and
feature extraction while preserving essential information. This method is explored further in
later sections. Unsupervised learning is used in many places, such as stores, to determine what
products customers prefer to buy. By tracking and grouping spending patterns, the store can
create better ads and sales offers. Figure 2 illustrates the structure of a dataset commonly
used for ML tasks. Supervised learning utilizes the matrix X, which contains the input or
independent variables, and the vector y, corresponding to the response or target variables that
the model aims to predict. This structure is used to investigate the relationship between X and
y across various observations. In contrast, unsupervised learning only utilizes the matrix X to
detect patterns and similarities without any associated target outputs

X

Observation Variable 1 Variable 2 Variable 3

1 x11 x12 x13
2 x21 x22 x23
3 x31 x32 x33

y

Observation Response

1 y1
2 y2
3 y3

Figure 2: Example of a dataset used in machine learning tasks, featuring matrix X employed
for unsupervised learning tasks, while X and corresponding output vector y are specifically
utilized in supervised learning tasks.
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2.2.1 High-dimensional Data

A high-dimensional data space is often described as a dataset with a large number of features
compared to the number of observations. In a high-dimensional data space, the data points
are more sparse, making it harder to capture the underlying patterns. The model’s learning
capacity increases as the number of features also increases. This can make the model learn from
noisy data points and random fluctuations. Challenges like these can often lead to overfitting.
Overfitting is an undesirable model behavior in which the model learns to fit the training data
so precisely that it captures noise or specific characteristics of the training data. This may not
generalize well to new, unseen data, causing the model to perform poorly on test data [12]. High-
dimensional data can also lead to multicollinearity. This statistical phenomenon occurs when
more than two independent variables are highly correlated due to their high dimensionality.
Highly correlated variables contain similar information, making it challenging to determine
the feature’s individual impact on the model output [13]. These challenges encountered in
high-dimensional data often negatively affect the performance and accuracy of the predictions.
Throughout this thesis, we will explore different ML algorithms and techniques to overcome
these challenges.

2.2.2 Training, Validation and Testing

During preprocessing, the dataset is typically divided into training, validation, and testing
subsets. The training set is utilized to train or fit the prediction model, enabling it to identify
patterns and make predictions. When training a model on a specific dataset, it’s crucial for
the model to generalize effectively to unseen data. Achieving this balance is essential to avoid
overfitting, where the model performs exceptionally well on the training data but poorly on test
data. The validation set is used to evaluate the model’s performance during hyperparameter
optimization, which is detailed in Chapter 2.2.5. This provides insight into how the model
behaves during processing. By examining the validation score, adjustments can be made to
enhance the model’s performance. Finally, the test data serves as the final evaluation of the
model, assessing the algorithm’s predictive power on unseen data. The results from the test data
indicate the effectiveness of the learning process. Figure 3 illustrates the data being divided
into training, validation and test set.

Figure 3: The figure illustrates the data divided into three sets: training, validation, and testing.
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2.2.3 Cross-validation

Cross-validation (CV) is a technique used to estimate the performance of an algorithm, often
serving as an alternative to a validation set. This technique offers a more robust assessment
compared to the training data evaluation since it predicts data that was not used during the
model’s training process. CV divides the dataset into multiple folds, each used as the validation
set while the remaining folds serve as the training set. The performance scores from each fold
are then aggregated to obtain a single score. The primary purpose of CV is to prevent overfitting
by evaluating the model on multiple validation sets, providing more realistic estimates of model
performance. Various techniques exist for CV, and for our research, we will focus on the Leave-
One-Group-Out (LOGO) method [14]. LOGO is a form of CV used in ML when datasets
contain groups of data that may be related to each other in a way that affects the model’s
generalizability. With this technique, one group is held back as a test set while the rest of the
data are used for training. This process is repeated for each group during the training process
[15]. This technique ensures that the model can generalize well to new, unseen groups.

2.2.4 Performance Metrics

Performance metrics are used to evaluate the performance of an ML model. High performance
is achieved when the algorithm predicts the correct value for each observation. Different types
of performance metrics are used depending on the problem type. For regression problems,
performance metrics like the Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
and coefficient of determination (R2) are frequently used for evaluation.

Mean Squared Error

MSE is often used in regression problems to find the average squared difference between actual
and predicted values. Squaring the differences eliminates negative values. The metric is also
sensitive to significant errors due to the squared term, which makes MSE prone to the influence of
outliers [16]. This could help the model to predict extreme values more accurately by penalizing
large deviations. A model with no mistakes would have an MSE of zero. As the model error
increases, the MSE value also rises. The formula for MSE is:

MSE =
1

n

∑
(yi − ŷi)

2 (2.1)

Where yi is the i
th observed value, ŷi is the corresponding predicted value, and n is the number

of observations. MSE is also a commonly used loss function to minimize errors in regression
problems, making it computationally efficient and straightforward for predictive modeling.

Root Mean Squared Error

RMSE is the standard deviation of the residuals, indicating how far from the regression line data
points are. Like MSE, the lower the RMSE, the better the model’s ability to predict accurately.
Conversely, a higher RMSE signifies a lower performance of the model. RMSE values can range
from zero to positive infinity and are expressed in the same units as the target variable.
The RMSE formula is as follows:

RMSE =

√
1

n

∑
(yi − ŷi)2 (2.2)

As shown above, the RMSE is like the MSE with a square root applied. This adjustment
means that RMSE, while providing a scale of error that is more interpretable and similar to the
original data, remains sensitive to outliers. This sensitivity can potentially lead to overfitting
if not managed correctly during the training process [16].
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R-squared

R2 is known as the coefficient of determination and is a statistical measure used in ML to
determine the proportion of variance in a dependent variable that can be predicted or explained
by an independent variable [16]. In other words, R2 calculates how well a regression model
predicts the outcome of observed data. The formula for R2 is given by:

R2 = 1− Unexplained Variation

Total Variation
= 1−

∑
i(yi − ŷi)

2∑
i(yi − ȳ)2

(2.3)

In the formula above, yi is the ith observed value, ŷi is the corresponding predicted value, and
ȳ is the mean of the observed values. For training data, R2 values typically range from 0 to 1.
A value equal to zero indicates that the model does not explain any variance in the dependent
variable based on the independent variables [16]. A higher R2 value signifies a more significant
proportion of the variance in the dependent variable is explained by the model. Specifically, a
value of 1, or 100%, indicates that the model perfectly predicts the relationship between the
independent variable and the dependent variable [16]. For validation or test data, R2 values
theoretically do not have a lower bound. A negative R2 value means that the variance in the
residuals is larger than in the data. This is because R2 measures how well the model fits the
data compared to a simple mean baseline. Therefore, if the predictions are worse than simply
using a baseline like the mean of the dependent variable, R2 can be negative [17].

2.2.5 Hyperparameter Optimization

Most ML algorithms are configured by hyperparameters. A hyperparameter is a configurable
value in the model that can be adjusted to control how an ML algorithm behaves [18]. Finding
the optimal hyperparameters is a crucial step in constructing a ML model, as the values of
these hyperparameters often substantially influence the complexity, behavior, speed, and other
aspects. Model tuning is a technique used to determine the most suitable hyperparameters. As
discussed in Chapter 2.2.2, the validation set is typically used for this tuning process. The dura-
tion of the tuning process can vary significantly, ranging from seconds to many hours, depending
on factors such as the dataset size, the algorithm used, and the hyperparameter optimization
technique employed. Many hyperparameter optimization techniques exist, such as Grid search,
Random search, and Bayesian optimization. Grid search can be used to find the optimal hy-
perparameters by defining a range for each hyperparameter and exhaustively evaluating every
combination of values [18]. This technique is simple to use and implement but can be com-
putationally expensive. On the other hand, random search randomly samples hyperparameter
values from a predefined distribution for a specified number of iterations. Random search tends
to be more efficient than grid search for high-dimensional hyperparameter space, as it allows for
better exploration of the hyperparameter space. However, it may not cover the entire hyperpa-
rameter space evenly [18]. Bayesian optimization is a model-based technique used to search for
optimal hyperparameters efficiently. The Bayesian optimizer employs probabilistic models to
estimate the optimal hyperparameters and automates the tuning process by utilizing previous
information to find more suitable hyperparameters. Optuna is a hyperparameter optimization
software framework, that automates the search for optimal hyperparameters using Bayesian
optimization. By leveraging a history record of trials, Optuna intelligently determines which
hyperparameters to try in the next iteration. In a short amount of time, this framework can
efficiently find good hyperparameters, enhancing a model’s performance [19].
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2.3 Machine Learning Algorithms

2.3.1 Linear Regression

Simple linear regression (LR) is a statistical model that estimates the linear relationship be-
tween a dependent variable Y and one independent variable x. Normally, the objective is to
predict the value of the output variable Y based on the value of the input variable x. Multiple
linear regression (MLR) is a generalization of simple LR, which estimates the linear relationship
between a dependent variable Y and multiple independent variables collectively represented as
matrix X. This model allows for the prediction of Y considering a broader array of variables,
providing a more comprehensive analysis of the factors influencing the dependent variable. The
objective is to predict the value of the target variable considering a broader array of variables.
More specifically, the MLR fits a line through a multidimensional cluster of data points. Fur-
thermore, it can be utilized to understand the relationship among several variables. Regression
modeling results can determine which variables influence the target variable or help explain the
response [20]. Therefore, Regression can be used for both explanatory and predictive modeling
purposes. Given a dataset of n observations denoted as {xi1, xi2, . . . , xip}ni=1, the MLR model
can be mathematically expressed as follows:

yi = β1xi1 + β2xi2 + . . .+ βpxip + εi = XT
i β + εi, i = 1, 2, . . . , n (2.4)

In this context, yi denotes the continuous numeric response corresponding to the ith observation,
while βj represents the coefficients associated with the jth variable. xij signifies the jth variable
for the ith observation and εi is referred to as the random noise not accounted for by the linear
model. Multiple methods are available for obtaining parameter estimates in a model, such as
Ordinary Least Squares (OLS) estimation. This technique aims to obtain the best estimates
of regression coefficients β so that the MSE, which represents the sum of squared differences
between observed values and predicted values divided by the number of observations, can be
minimized. MSE is the most commonly used loss function in linear regression. By minimizing
the MSE, the model aims to achieve the best fit to the data [20]. The OLS estimator of β is
described below in formula 2.5:

β̂ = (X ′X)−1X ′y (2.5)

The estimated regression coefficients are represented by β̂ in vector form. The matrix X holds
the values of independent variables, where each column corresponds to a variable, and each row
corresponds to observations. The transpose of X is denoted by X ′. The inverse of the matrix
obtained by multiplying X and X ′ is written as (X ′X)−1, which is theoretically important
in the estimation process. However, this expression is only valid when the matrix (X ′X) is
non-singular and has full rank and a non-zero determinant. The vector y conveys the values of
the response variable, which the model aims to predict [21]. Linear regression models rely on
certain basic assumptions to ensure the validity of the model’s results. The model needs a linear
relationship between the independent and dependent variables. If the relationship is non-linear,
the model can not capture the underlying patterns of the data. Additionally, the model as-
sumes that the differences between observed and predicted values have uniform variance across
all levels of the independent variables, known as homoscedasticity. The linear regression model
is a powerful statistical tool if the assumptions are met. The model’s estimations and predic-
tive capabilities could be compromised if these conditions are unmet. Therefore, a thorough
preliminary data assessment is crucial to ensure these conditions are met [22]. In this study,
the term ’linear regression (LR)’ will specifically denote multiple linear regression, and will be
used in all subsequent discussions and analyses.
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2.3.2 Elastic Net Regression

Traditional LR often provides satisfactory results but may struggle with high-dimensional data,
as explained in Chapter 2.2.1. As discussed in Chapter 2.3.1, MLR aims to predict the dependent
variable Y based on the independent variables X. This method is effective when there are few
predictors and the matrix X maintains full rank, ensuring linear independence among columns.
However, challenges arise when the number of predictors exceeds the number of observations,
leading to a potentially singular matrix X. This situation makes it impossible to find a unique
solution, rendering the model unreliable and sensitive to minor data or model changes. Elastic
net regression addresses these issues by integrating LR with Lasso and Ridge regression, two
prominent regularization techniques. Throughout this chapter, λ will consistently be used as
the regularization parameter for various regularization techniques.

The Least Absolute Shrinkage and Selection Operator (Lasso), or L1 regularization, introduces
a penalty term to the loss function to address challenges in high-dimensional data analysis
[23]. The L1 penalty, which is the sum of the absolute values of the model’s coefficients, helps
reduce some coefficients to zero, thereby removing certain features from the model. This sim-
plification not only improves model interpretability by balancing complexity with performance
but also serves as an effective feature selection tool, particularly beneficial in contexts with
high-dimensional datasets where some features may be irrelevant [23]. The mathematical rep-
resentation of the L1 penalty term is given by:

LossL1 = MSE + λ
∑

|wi| (2.6)

In this context, MSE represents the original loss function before adding the penalty term. The
hyperparameter λ controls the intensity of the regularization, and wi are the model’s coefficients.
As λ increases, stronger regularization is applied, pushing more coefficients toward zero. Using
the absolute value in the penalty encourages minimizing the coefficients [23].

Ridge regression, or L2 regularization, applies a distinct penalty term compared to L1 regular-
ization: the sum of the squares of the model coefficients [23]. Unlike L1, L2 regularization aims
to shrink coefficients but does not reduce them to zero. This method helps simplify the model
and prevent overfitting, which is crucial in high-dimensional datasets with potentially highly
correlated features. By distributing influence more evenly across all features, L2 regularization
mitigates the adverse effects of multicollinearity by penalizing large coefficients. The same reg-
ularization parameter used for Lasso will be applied here as well. The mathematical expression
for the L2 penalty term is as follows:

LossL2 = MSE + λ
∑

w2
i (2.7)

Elastic net regression combines the strengths of these two regularization techniques, making
it efficient for handling high-dimensional data. The elastic net regression is mathematically
similar to LR, with the main distinction in the objective function used for optimization. While
LR seeks to minimize the basic loss function, elastic net regression expands this objective by
incorporating two additional penalty terms, enhancing the model’s ability to handle complex
data scenarios. The elastic net regression can be mathematically described as:

Loss = MSE + λ
[
(1− α)|θ|2 + α|θ|1

]
. (2.8)

Here, λ continues to serve as the regularization parameter, θ is the coefficient vector affected
by the L1 and L2 penalties, and α is a hyperparameter that controls the balance between the
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contributions of L1 and L2 regularization. By tuning λ and α, the loss function can be optimized
[24]. Thus, strategically balancing the penalties from both L1 and L2 regularization reduces
model complexity and improves performance in high-dimensional datasets.

2.3.3 Decision Tree

Decision trees are powerful supervised learning algorithms for classification and regression tasks,
known for their greedy construction approach. They can effectively capture non-linear relation-
ships between input and target variables. A decision tree model breaks down the data into
subsets by making decisions through a series of questions. The initial question, at the tree root,
forms the basis for classifying the data. If a split results in only one label remaining, it forms a
leaf node. However, if multiple labels persist, the model continues by creating new parent nodes
and asking more questions. The resulting sub-nodes are referred to as child nodes. This process
iterates until pure nodes are obtained, forming a tree-like structure [25]. During the training
process, the algorithm learns which questions to ask to make accurate predictions. Decision
tree regression follows the same principles as classification but differs in dividing the data into
continuous intervals based on feature thresholds. Figure 4 illustrates an example of a decision
tree.

Figure 4: Decision tree example, adapted from an image by CollaborativeGeneticist available
under a CC BY-SA 4.0 license via Wikimedia Commons. [26]

This greedy algorithm aims to split nodes at the most informative features. This ensures that
the model consistently seeks conditions that maximize the information gain (IG) for effective
data portioning. The IG is the objective function the decision tree algorithm seeks to optimize
to decide which features to prioritize when constructing the tree. A higher IG is considered
more helpful in making decisions and is typically chosen as the condition or splitting criteria.
The IG is calculated based on the impurity measures. In the case of regression, specifically, the
weighted MSE is used as the impurity measure for IG computation [27]. The features that have
the impurity are the ones selected for splitting a node. After calculating the impurity measure
for features at a given node, this value will be used to calculate the IG and determine which
feature is more appropriate for making the split. The IG for a dataset split, based on a feature
f , is defined by the following formula:
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IG(Dp, f) = I(Dp)−
m∑
j=1

(
Nj

Np

)
I(Dj) (2.9)

IG in decision tree algorithms is calculated using Formula 2.9. The formula considers the
Impurity measure (I), which evaluates how homogeneous the dataset is at a node, and the
feature (f), which performs the split. The parent node’s dataset is denoted as Dp, while Dj

represents the dataset of the jth child node. The total number of samples at the parent node
and the number of samples at each child node are represented by Np and Nj , respectively [27].

2.3.4 Random Forest

Random Forest (RF) is an ensemble learning algorithm used for both classification and regres-
sion. It generates predictions based on a majority vote from numerous decision trees. It is
called ensemble learning because it builds multiple models in parallel, in this case, many deci-
sion trees, to ensure diversity and robustness in its predictions. RF employs a feature bagging
technique, randomly selecting features to formulate questions for splitting nodes, which ensures
low correlation among decision trees. This technique makes sure that all the decision trees are
not identical, and the questions asked for splitting nodes will vary. Additionally, it employs
bootstrapping in randomly sampling subsets from a dataset for each decision tree. These newly
constructed subsets contain observations from the original dataset and may contain observations
multiple times or not at all. The newly constructed datasets are the same size as the original
one and are used to train the decision trees [28]. When combined within the RF algorithm,
these techniques result in the creation of multiple decision trees, each constructed from different
subsets of the data through random sampling.

Figure 5: Explanation of the Random Forest algorithm, created by TseKiChun. Licensed under
CC BY-SA 4.0 [29].

Figure 5 provides a graphical illustration of how RF operates. The process begins by drawing a
random bootstrap sample of size n, where n observations are randomly selected with replacement

12



from the training set. Subsequently, a decision tree is grown using this bootstrap sample, and
at each node, d features are randomly selected without replacement. The node is then split
using the feature that optimizes the chosen objective function, such as maximizing the IG. This
process is iterated multiple times to draw numerous decision trees from the original dataset.
Finally, the predictions from each tree are aggregated, and the class label or continuous value is
determined by a majority vote [30]. Due to the reduction in the variance of individual decision
trees, RF can achieve high accuracy and effectively handle non-linear relationships. However,
it can be computationally expensive and require substantial memory consumption [31].

2.3.5 Histogram-Based Gradient Boosting Regression

Histogram-based Gradient Boosting Regression (HGBR) is a ML algorithm specifically utilized
for solving regression problems. This ML technique is part of the gradient boosting family of
algorithms, an ensemble technique that builds multiple weak learners using decision trees for
better prediction. It creates models sequentially, and each new model corrects errors made by
the previous one [32]. The objective of gradient boosting is to minimize a loss function by adding
multiple decision trees. For each iteration, the residuals or gradients of the loss function with
respect to the current model’s predictions are calculated. This gradient represents the direction
to reduce the loss and find the global minima. The algorithm uses histograms for faster training
and lower memory usage than traditional gradient-boosting algorithms. These types of models
divide the continuous feature values into bins. The binning process helps to approximate the
underlying data distribution and effectively reduces the computational complexity of finding
optimal split points manually [33]. Another advantage of this algorithm is its native ability to
handle missing values without the need for data preprocessing. During training, it determines
whether samples with missing values should go left or right at each split point based on po-
tential gains. For predictions, it assigns samples with missing values accordingly. If a feature
encountered no missing values during training, samples with missing values are automatically
directed to the child with the majority of samples [34]. HGBR is generally faster and often more
accurate than RF on complex datasets, as it builds each tree sequentially, continually adjusting
for errors identified by the previous trees.

2.3.6 Principal Component Analysis

Principal component analysis (PCA) is an unsupervised ML technique used to find patterns
in a dataset by reducing the dimensionality of large datasets [35]. The primary objective of
PCA is to transform the original dataset into new variables, known as the principal components
(PCs), which capture the maximum variance in the original data. These PCs are orthogonal,
meaning they are statistically uncorrelated or independent. This orthogonality ensures that
each PC contributes uniquely to explaining the variance in the dataset without redundancy.
The PC1 is calculated to capture the maximum variance in the dataset. This is achieved by
identifying a line (or, in higher dimensions, a hyperplane) that passes through the origin. The
data points are then projected onto this line, and the direction of this line is determined so
that the sum of squared distances from the projected points to the origin is maximized. This
process is effectively repeated to find the best fitting line through the multidimensional data,
which becomes the PC1. The subsequent PCs are identified by finding lines (or hyperplanes in
higher dimensions) perpendicular to the previous component [36]. An example of visualizing
the first two PCs of a synthetic dataset is illustrated in Figure 6 below.
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Figure 6: An example of visualizing the projection of dataset points along the first PC1 and
PC2.

The proportions of each feature in a PC are known as loadings. The loadings inform us how the
original features combine to form the PC. Essentially, a PC is a linear combination of the original
features in a dataset, and the loadings are the coefficients in this linear combination. Given
a set of predictors as {X1, X2, . . . , Xp}, the PC1 can be formulated as a linear combination of
these predictors:

Z1 = ϕ11X1 + ϕ21X2 + ϕ31X3 + . . .+ ϕp1Xp, (2.10)

where Z1 represents the PC1, and ϕj1 denotes the loading (coefficient) of the jth feature in the
PC1. These loadings (ϕ11, ϕ21, ϕ31, . . . , ϕp1) illustrate the contribution of each original feature
to the PC, thereby indicating the structure and dimensionality of the dataset in the context of
PCA [37]. The process of applying PCA results in the projection of data onto the PCs, offering
a graphical representation that lays out the data along the axes defined by these components.
This simplification allows for a clear view of the structure of the data. Such plots can be used
to uncover hidden patterns and insights [37].

Score plot

A score plot displays these PCs on a graph, with each axis representing a PC. Each point on the
score plot represents an observation from the original dataset projected onto these PCs. The
color gradient represents the magnitude of the target variable. This allows us to visualize the
observations in a reduced dimensional space defined by the PCs. Points that are closer together
correspond to observations that have similar scores on the components [38]. By examining a
score plot, we can identify patterns and explore the similarities and differences among the data
points and how they are grouped or clustered along the PC axis. Figure 7 presents a score plot
from PCA generated from a synthetic dataset. This plot visually illustrates the distribution of
the dataset along the PCs identified by PCA.
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Figure 7: This figure illustrates a score plot from PCA generated from displaying the distribution
of data points in terms of the first two PCs.

Loading plot

A loading plot is a visual representation of the loadings in PCA, which can help identify the most
influential variables for each PC and determine how they are correlated or inversely correlated
[39]. A loading plot displays each PC’s loadings in terms of both direction and magnitude,
illustrating how strongly each original variable influences a PC. Figure 8 shows a loading plot
where each arrow represents an original variable, plotted based on its loadings in the PCs. The
direction and length of the arrows show how each feature influences the PCs. The position
of a variable on this plot can indicate its correlation with the PCs. Variables that are close
together tend to be highly correlated, those that are far apart are likely negatively correlated
or not correlated at all, and variables close to the origin have a lower contribution to the
PC, whereas those far from the origin have a higher contribution. From the loading plot, we
can observe that Feature 2, Feature 3, and Feature 4 strongly influence PC1, indicating their
significant contribution to the variance along this component. Conversely, Feature 1 and Feature
5 demonstrate a stronger influence on PC2, signifying its substantial influence on the variance
captured by the second PC. The smaller angle between the vectors of Feature 1 and Feature
2 suggests that they are positively correlated. In contrast, Feature 4 appears to be less or not
correlated with both Feature 1 and Feature 2. This arrangement of features within the loading
plot provides valuable insights into the underlying structure of the data.
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Figure 8: This PCA loading plot generated from synthetic data, illustrating how the features
contribute to the first two principal components.

Cumulative Variance Explained Plot

A cumulative variance explained plot graphically represents the proportion of the dataset’s
variance explained by each PC. One of the initial steps in interpreting PCA results is to assess
how much total variance is captured by each component [40]. This analysis aids in determining
the number of PCs to retain for further examination. To identify the optimal number of PCs,
one should look for a point where adding additional components does not contribute significantly
to the explained variance. In Figure 9, three PCs are shown, collectively explaining 64.09% of
the dataset’s variance.

Figure 9: PCA Cumulative variance plot created from synthetic data, depicting the individual
and cumulative explained variance by the first three PCs.
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2.3.7 Principal Component Regression

While PCA offers valuable tools for dimensionality reduction, it specifically does not utilize
the response variable in its analysis. Principal Component Regression (PCR) is a regression
technique that combines PCA features and MLR. The process starts, as discussed in the section
above, by using PCA to reduce the dimensionality of the dataset and transform the original
predictors into a set of PCs. These PCs will be used as predictors, and MLR will be applied to
predict the response variable [41]. However, this approach may not capture the full predictive
potential of the dataset, especially in cases where understanding the direct relationship between
predictors and the response variable is critical for accurate predictions. In the subsequent
chapter, we delve into a technique that incorporates the response variable directly into its
dimension reduction process, thereby offering a more targeted approach to modeling complex
data scenarios.

2.3.8 Partial Least Squares Regression

Partial Least Squares Regression (PLSR) offers a robust solution to the challenges of high-
dimensional data and multicollinearity. PLSR transforms the original predictors into a smaller
set of uncorrelated components, which are derived through linear combinations of the original
predictors. Unlike PCA and PCR, which only focus on the variance within the predictors, PLSR
aims to maximize the covariance between the predictors and the response variables [42]. This
technique can, therefore, be said to derive components in a more effective way for prediction
than PCR by accounting for the covariance between X and y. PLSR can effectively reduce the
dimensionality while preserving the predictive power by focusing on the covariance.

PLSR visualizes the relationship between predictors and the response variable, producing plots
that, while similar to those generated by PCA, serve a distinct purpose. Unlike PCA plots,
which are designed to solely account for the variance within the predictor variables, PLSR plots
aim to explain not only the variance in the predictors but also to maximize the covariance
between X and y [43]. The interpretation of these plots is mostly the same as that of PCA
plots, but with the response now taken into account. This makes PLSR particularly valuable
in a predictive analysis context, as it offers deep insights into the dynamics between predictors
and the response.
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2.4 Feature Selection Techniques

2.4.1 Permutation Importance

Feature importance is a significant part of any model building and evaluation. Not all variables
influence the model, so some techniques can be used to select the most important variables in the
dataset. There are several ways to estimate feature importance from models [44]. Permutation
importance is a technique used to determine the importance of features in ML models. This
method involves individually shuffling the values of each feature in the dataset and observing
the impact on the model’s performance. If shuffling the feature values greatly reduces the
model’s accuracy, the feature is essential for the model’s predictions[45]. It is important to note
that permutation importance is calculated before model training, where features are permuted
before training to assess their importance.

2.4.2 Sequential Feature Selection

Sequential Feature Selection (SFS) is a feature selection technique designed to enhance model
performance by iteratively adding or removing features from a dataset. Supported by Scikit-
learn, forward and backward selection methods are available [46]. Forward selection involves
incrementally adding features one at a time until predefined criteria are fulfilled. Conversely,
backward selection starts with the complete set of variables and systematically removes them
individually until those criteria are met. These criteria often involve achieving a specified
number of features or reaching a target performance score. SFS seeks to identify optimal
feature subsets that maximize the model’s performance score. This technique can be applied
to many ML algorithms, serving as an estimator. However, it’s important to know that SFS
chooses the best feature at each step rather than considering all possible feature combinations.
This approach can lead to suboptimal results since it focuses on short term gains and may
overlook better-performing feature combinations.

2.4.3 Variable Importance in Projection

Variable Importance in Projection (VIP) scores are used in PLSR to identify the variables that
most significantly explain the variance in the response. A VIP score is calculated for each
predictor and represents its contribution to the model. This score can help determine which
variables contribute most to explaining the response variable. The VIP score for each variable,
denoted as j, is calculated based on the importance reflected by the a-th components and can
be mathematically described as:

V IPj =

√√√√p ·
A∑

a=1

(
SSa ·

(
waj

∥wa∥

)2
)/ A∑

a=1

SSa (2.11)

The symbol p denotes the total number of predictor variables in the model. The optimal
number of components determined through CV is denoted by A. SSa represents the sum of
squares explained by a specific component, indicating its variance contribution. waj signifies the
standardized influence of the j-th predictor variable on the a-th component, obtained by dividing
it by the Euclidean norm of wa. This reveals how each predictor variable contributes to the
standardized components, highlighting their relative influence. Squaring this normalized weight
emphasizes each variable’s importance [47]. A VIP score exceeding one is often used to identify
crucial variables, with the threshold adjustable based on the application. Removing variables
that contribute less to the model can mitigate overfitting and enhance model performance.
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2.4.4 Repeated Elastic Net Technique

RENT is a feature selection method for binary classification and regression problems [48]. Since
many studies aimed to investigate predictive power, RENT was made to investigate stability
in the context of the feature selection process. RENT was benchmarked against six established
feature selectors on eight multivariate datasets for binary classification and regression and shows
a well-balanced trade-off between predictive performance and stability [48].

The methodology employs a training datasetXtrain, composed of ntrain observations, each within
a p-dimensional feature space. We then train an ensemble of linear models, each enhanced with
elastic net regularization. Specifically, each model is trained on a distinct subset of rows from
Xtrain. These subsets are selected using repeated stratified K-fold CV, a method chosen to
ensure that the subsets are both independent and identically distributed (i.i.d.), enhancing the
representativeness and reducing bias and variance in model evaluation [48]. Each model in the
ensemble, denoted as Mk where k = 1, . . . ,K, is assessed using a separate validation set. The
weight distribution across all models is represented by βk,j , where j = 1, . . . , p. The weights
from each model are aggregated into a matrix B with dimensions K × p. This matrix helps
us evaluate how important each feature is by looking at the weight vectors associated with all
models. By examining these weight vectors, we can easily compare the significance of each
feature [48]. The feature selection technique and the importance of each feature in the models
are visualized in Figure 10, effectively illustrating how the methodology leverages the ensemble
approach to refine predictions and feature relevance.

Figure 10: This figure illustrates the comprehensive framework of the RENT, showcasing its
iterative process and key components [48].

We can then apply three criteria to select features, aiming to identify those with high stability
in selection from the high-dimensional data. This ensures that the chosen features contribute to
maintaining the predictive performance of the models, thereby enabling us to isolate the most
impactful features for our analysis. The three criteria for selecting features are as follows: (1)
Firstly, we assess the frequency of a feature selection across models. (2) Secondly, we examine
how much a feature’s weight fluctuates between positive and negative values. (3) Lastly, we
evaluate whether the feature weights significantly differ from zero. To choose the features using
the criteria, we introduce corresponding cutoff values t1, t2, t3 ∈ [0, 1]. A feature is added to the
selected feature if it satisfies all three criteria: τi ≥ ti, ∀I ∈ {1, 2, 3}, ensuring a comprehensive
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and informed approach to identifying the most relevant features for our analysis [48]. The
criteria are mathematically formulated as follows:

1) τ1(βn) =
1

K

K∑
k=1

1[βk,n ̸= 0] (2.12)

2) τ2(βn) =
1

K

∣∣∣∣∣
K∑
k=1

sign(βk,n)

∣∣∣∣∣ (2.13)

3) τ3(βn) = tK−1

 |µ(βn)|√
σ2(βn)

K

 (2.14)

The first criterion, τ1(βn) represents it measures the proportion of models in which the coefficient
for feature n is non-zero, indicating the frequency of selection across different models [48]. The
second criterion, τ2(βn), aggregates the signs of the coefficients by summing them up, taking
the absolute value of the sum, and then dividing by the number of models K. This method
captures how consistently the sign of a coefficient is either positive or negative across different
models. Values near zero indicate that the sign of βn is nearly random across different models,
while values closer to one suggest that the sign is consistently the same, which implies a stable
feature across the models. This measure provides an important indicator of the reliability of a
feature’s effect in predictive modeling [48]. The third criterion, τ3(βn) evaluates the statistical
significance of βn using a t-distribution with k − 1 degrees of freedom. This process involves
calculating a t-statistic for the standardized mean of βn, which is adjusted by its variance
σ2(βn) and the total number of models k. The resulting t-statistic is then compared against the
t-distribution, from which a p-value or a similar statistic is derived to indicate the significance
of the feature’s effect across different models [48]. All three criteria are bounded by the interval
[0,1]. These quality metrics are hyperparameters for the RENT method, allowing the user to
influence the selected features by tuning the thresholds t1, t2, t3. Given that τ3(βn) is evaluated
using a t-distribution, the threshold values t3 for significance levels of 5% and 1% are set at
t3 = 0.95 and t3 = 0.99, respectively [48].

RENT Hyperparameter Selection

RENT employs a two-step hyperparameter estimation process that begins with a grid search
to identify the optimal regularization parameters (α and λ) using the Bayesian Information
Criterion (BIC). BIC seeks a balance between predictive performance and model complexity,
favoring models that achieve high accuracy with fewer features through stronger penalization.
The formula for BIC is written as:

BIC = −2 log(L̂) +Xtrain log(ρ), (2.15)

where L̂ denotes the estimated likelihood of the predictive model, and ρ represents the number
of estimated model parameters [48]. The estimated likelihood L̂ refers to the probability of
observing the given data under the assumed model parameters, quantifying how well the model
fits the data [48]. By minimizing BIC, models with high information and low complexity are
favored. The second step involves training the RENT ensemble with the optimal regularization
parameter. Another grid search will then be used to search for the best cutoff values t1, t2,
and t3, which are used to decide the final selected features. This is not available for regression
problems in RENT, so we will choose the cutoff values manually.
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Validation study

Two validation study setups are applied to ensure the validity of the features selected with
RENT. This validation study outlines a general method applicable to various feature selection
methods, not just to RENT. However, it is included in the RENT package, facilitating easy
demonstration and practical application within this specific framework. In Validation Study
1 (VS1), we draw randomly selected features, representing inefficient feature selections. We
then train LR models on these features and predict them on an unseen test dataset denoted as
Xtest, comparing R2 scores to predictions based on features selected by RENT. In Validation
Study 2 (VS2), we compare the predictive performance of a model based on features selected
with RENT on the real Xtest labels to the predictive performance of models with l randomly
permuted labels of Xtest. The comparisons are performed using Student’s T-tests, where the
null hypothesis claims that the R2 of RENT is lower or equal to the R2 obtained from VS1 and
VS2, respectively [48]. The tests are conducted at a significance level of 0.05. The P-values
are used to determine if the null hypothesis can be rejected, thereby assessing the statistical
significance of the results. The heuristic P-value serves as an additional metric, indicating how
frequently random scores surpass the actual score achieved by the model [48]. The results from
the validation study are a reliable indicator of whether the model based on features selected
by RENT performs better than models based on randomness. Figure 11 depicts an example of
a validation study result, where the X-axis represents the R2 score, and the Y-axis represents
the density. We can observe that the RENT model generally performs better than the models
with randomly selected features and better than the models with permuted labels. The density
plot in the image illustrates the distribution of the RENT prediction scores, with two peaks
representing the densities of VS1 and VS2 scores.

Figure 11: An example of a validation study result showing the RENT prediction score (R2)
compared to random feature selection (VS1) and permuted labels (VS2) [48].
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2.5 Optimization

Optimization can be easily explained as selecting the correct inputs for a model to achieve the
best possible outcome. By optimizing, we can improve the quality of the solution. Optimization
is used in numerous real-world applications today for decision-making and strategic planning,
ranging from allocating optimal resources to finding the best investments that will maximize
profit. Optimization problems may include constraints or limits that act as rules that the
optimization must follow. This will create boundaries restricting possible solutions [49]. The
optimization process is mainly about maximizing or minimizing an objective function, repre-
senting the quantifiable value you are trying to optimize. The objective function should reflect
the problems to be solved and the goals to be achieved. The minimization or maximization of
an objective function f , the most beneficial solution within a defined set of feasible options,
can be identified. The decision variables are the values the optimizer can change to improve
the quality of the solution [49]. The more decision variables there are, the more complex the
optimization problem will become. Consider the problem of identifying the maximum value of
a function f(x). The goal is to find the vector of optimal values represented as x∗ that will
result in the maximization of f(x). This can be formulated as:

maximize f(x1, x2, x3, x4, . . . , xn)

subject to: g1(x1, x2) ≤ b1,

g2(x1, x2) = b2,

x1, x2, . . . , xn ≥ 0.

Here, f(x) denotes the objective function, g1 and g2 represent the constraints, and b1 and b2 are
the boundaries of these constraints. x represents the decision variable used to find the optimal
solution for the problem. This optimization problem requires finding the optimal points x∗ such
that f (x∗) ≥ f (x) for every x in the defined domain. Optimization algorithms are implemented
to resolve most optimization problems, and like the machine learning algorithms described in
Section 2.3, many optimization algorithms are used for different problems.

2.5.1 Linear and Non-Linear Programming

Optimization problems are usually divided into two categories: Linear and Non-linear Pro-
gramming. Linear programming (LP) is used in optimization when the relationship between
the decision variables, the constraints, and the objective function is linear. There are many
Linear programming algorithms, such as the simplex method, the interior-point method, and
the dual simplex algorithm [50]. Non-linear programming (NLP) is used when the relationship
between the decision variables, the constraints, and the objective function is non-linear. NLP
problems can be more challenging than LP and may require different algorithms, such as the
gradient method, Newton method, or differential evolution [51].

2.5.2 Differential Evolution

Differential evolution (DE) is a powerful optimization algorithm for solving complex non-linear
real-world optimization problems [52]. Unlike some optimization algorithms mentioned earlier,
this method does not require gradient information, meaning the optimization problem does not
need to be differentiable [53]. This algorithm was developed by Rainer Storn and Kenneth Price
in the 1990s and is recognized today for its simplicity, efficiency, and ability to handle noisy
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objective functions [53]. Although many packages offer implementation of the DE algorithm,
we will discuss the version available in SciPy in this theoretical discussion.

DE is categorized as a genetic algorithm, a search technique used in optimization based on
an evolutionary process. This algorithm iteratively tries to improve the candidate solution
(individuals) by creating new solutions, combining and comparing multiple potential solutions
to find the optimal one [53]. DE begins by randomly generating a population of potential
solutions called the parent population, where each solution is represented as a vector of decision
variables. It then uses mutation, crossover, and selection as part of the optimization process
to create an offspring population or a solution. The main advantage of DE is that it has
only three hyperparameters for the user to adjust. These include the population size, the
mutation factor, and the recombination parameter. The population size significantly affects
the algorithm’s exploration ability [53]. In cases where the optimization problems have a large
number of dimensions, the population size also needs to be significant to enable the algorithm
to search in the multi-dimensional space and converge to an optimal solution. The mutation
factor F is a positive hyperparameter in the range [0,2] used to scale and control the different
vectors’ amplification [54]. Small values of F can lead to smaller mutation step sizes, causing the
algorithm to take longer to converge. Conversely, large values of F can lead to the algorithm
overshooting good optima. The recombination parameter (RC) controls the diversity of the
algorithm and should be in the range of [0,1]. Larger values of RC will increase the variation of
the new population and the exploration [54]. Figure 12 illustrates a three-dimensional plot of a
mathematical objective function. We also refer to this as a fitness landscape in the optimization
context. In the DE algorithm, a fitness landscape like this would represent the search space
where the algorithm tries to find the global optimum by creating optimal solutions from the
candidate solutions.

Figure 12: A 3D visualization of a non-linear function surface, illustrating the landscape ex-
plored during differential evolution optimization. Adapted from Andrebis (2010) [55].
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2.6 Cross-Industry Standard Process for Data Mining

Cross-Industry Standard Process for Data mining (CRISP-DM) is an iterative process model
that was created to make a structured and systematic procedure for planning, organizing, and
executing data analysis projects [56]. Crisp-DM consists of six phases, and their relationship is
illustrated in Figure 13. This model will potentially increase the efficiency of the data analysis
project by providing a clear roadmap for the data mining process. This ensures the optimal
allocation of resources and that each phase of the project, from data preparation to model
evaluation, is executed precisely and aligned with the project’s objectives.

Figure 13: The figure illsutrates the CRISP-DM process model. Adapted from Kenneth Jensen,
available under a CC BY-SA 3.0 license ([57]).

The Business understanding phase is the initial phase and focuses on understanding the ob-
jectives, requirements, and resources available from a business perspective. This means under-
standing the problem that the project aims to address. Success criteria are used to determine
whether the project’s goals have been met or if the process requires iteration. The phase follow-
ing the evaluation determines whether these success criteria have been met. The second phase,
data understanding, focuses on collecting the raw data from various sources and understanding
the dataset’s basic structures. This includes analyzing the data format, the number of records,
and the identification of fields. The objective is to identify quality issues and interesting prop-
erties within the dataset. Techniques in data visualization can be effectively employed during
this phase. Figure 13 illustrates the connection between the first and the second phases. The
initial phase is closely linked to this phase, where insights from the data are required to define
a research question and develop a project plan [56]. Data preparation is the third phase, where
we prepare the final dataset for modeling. During this stage, the dataset undergoes exten-
sive processing such as cleaning, handling missing values, transformation, removing irrelevant
variables, and managing outliers. Additionally, the Construction of new variables may be a
critical component in certain data science projects [56]. Modeling is the fourth phase and is
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all about using the processed data to construct or refine one or more models. This involves
selecting the appropriate model architecture, algorithms, and hyperparameters. The focus here
is searching for the optimal architecture that aligns with the cleaned dataset and the predefined
problem. This phase is connected to the data preparation because new insights about the data
may emerge during the construction of the models. These insights can lead to further data
processing, feature engineering, or even re-evaluating the choice of the model itself. Evaluation
is the fifth phase, focusing on assessing and interpreting the performance of the models. The
model selection should be thoroughly justified, and the results should be employed to determine
whether the predefined success criteria have been met. Should these criteria remain unmet, a
thorough review is necessary to identify potential oversights. Ultimately, a decision regarding
the utilization of the results must be made. If the results are not optimal, it is essential to
undertake steps to refine the process. This may include revisiting and refining earlier phases
to ensure improved outcomes. The last phase is about developing a plan for deploying the
model. The results and implementation should be intuitive for the users. The plan should
outline simple, actionable steps for integrating the model with the current processes or systems.
Additionally, it should include a strategy for ongoing support and maintenance of the model to
ensure the model quality.
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Chapter 3
Methodology

3.1 Methodology Overview

The methodology section consists of two parts. The first part focuses on understanding the
relationship between the independent and the target variable, dry matter content. By modeling
this relationship using ML algorithms, we aim to find the most influential variables affecting
dry matter content and to develop predictive models. The second part involves taking the
insights gained from the first part to design an optimization algorithm. This algorithm will be
integrated into a user-friendly website accessible to the industry. The objective is to use this
digital platform to reduce variability and achieve a more optimal dry matter content, thereby
enhancing the quality of Norvegia Cheese. The aim is not only to improve product quality but
also to improve decision-making and resource management.

The selected ML algorithms for the first part include HGBR, PLSR, and LR. The main fea-
ture selection techniques we will use to find an optimal feature set are SFS, VIP, and RENT,
respectively. These ML algorithms and feature selection techniques will help us understand
the relationship between the explanatory variables and the target variable, dry matter content.
This strategic selection of algorithms is designed to leverage their unique strength and capa-
bilities in uncovering meaningful patterns and for effective prediction and optimization. In the
second part of our research, we will categorize the most influential variables identified in the
first part into controllable and uncontrollable variables. Controllable variables can be adjusted
during production, while uncontrollable variables are fixed values that cannot be changed. The
optimal ML models from the first phase, which serves both predictive and optimization roles
through differential evolution (DE), will be deployed on a user-friendly website. The integrated
optimization model, designed for deployment, will adjust controllable variables based on real-
time measurements taken on the production day. This is done by process operators entering
different values for the uncontrollable variables. The website will then output optimal values
for the controllable variables that can be used as a guide to achieve optimal dry matter content.
However, there is a challenge with this website. Some uncontrollable variables are measured
early in the process, while two critical variables necessary for predictive power are measured
later, often after determining the controllable variables. This can make it challenging to utilize
the website realistically, as there may be a need to update the controllable variable based on
the uncontrollable variables. Therefore, our research assumes prior knowledge of the uncontrol-
lable variables to address this issue, but we will also discuss potential methods to mitigate this
problem.
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3.2 Workflow

Figure 14: This figure illustrates the projects workflow described in a flowchart.

The workflow for the project is presented in Figure 14. The first step is to initiate the project
by thoroughly understanding the problem that needs to be addressed. This involves analyzing
the dataset provided by Tine Jæren, which is examined to determine several ML algorithms
that can be applied to the problem. Specific feature selection techniques are chosen for each
algorithm to ensure the best results. Once the algorithms and feature selection methods are
finalized, the focus shifts to modeling. The selected models and corresponding feature selection
techniques are applied to the dataset. The models are then evaluated to determine if they
meet some success criteria defined in the business understanding. If the criteria are unmet,
the process returns to the data understanding phase to refine the models. The steps in this
workflow align with the CRISP-DM process, depicted in Figure 13. The insights from the best
model selected during the modeling phase inform the design of an optimization model that
employs DE combined with an optimal ML model. The optimization models are evaluated to
determine if they meet the defined success criteria. If they do not, the models are refined until
they meet the criteria. Finally, the best optimization model is integrated into the Streamlit
website, making it accessible to stakeholders and decision-makers.
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3.3 Hardware and Software

This project used Google Colab for model development, which provided 12 GB of RAM and
GPU support. Python was the primary programming language, and it is widely used in data
science and ML. Python’s library made it easy to create ML models, with all necessary packages
installed via Anaconda and PIP. Table 1 lists the Python packages used and their versions.
The project also involved the utilization of Grammarly Premium and ChatGPT. ChatGPT
facilitated code debugging and enabled the creation of code elements beyond the university
curriculum. As a result, significant time savings were realized. Also, Grammarly Premium
enhanced the writing in this master thesis. The outputs from both tools were cross-checked
against available codes and online resources to ensure their proper functionalities. The project
codes and accompanying figures are available on GitLab. The data itself and some codes contain
sensitive information and are censored or not available on GitLab. Table 2 displays the latest
version numbers of the Jupyter Notebook files available on GitLab at the time of writing this
document. Access to the repository is provided through the following link:

Data driven cheese optimization spring2024

Package Name Version Purpose

Pandas 2.0.3 Data manipulation and analysis
NumPy 1.25.2 Fundamental numerical operations
Hoggorm 0.13.3 Graph plotting functionality
Hoggormplot 0.13.3 Visualization tool
SciPy 1.11.4 Advanced scientific computing and data manip-

ulation. The optimization techniques are from
this package

Optuna 3.6.1 A Hyperparameter optimization Framework
Scikit-learn 1.2.2 Machine learning toolkit
Matplotlib 3.7.1 Data visualization and graphical representation
Missingno 0.5.2 Data visualization aiding in missing data explo-

ration
Streamlit 1.34.0 Development of interactive web applications
Seaborn 0.13.1 Statistical data visualization
mlxtend 0.22.0 Feature selection package

Table 1: Python packages utilized in this project.

File Name Git Hash

Preprocessing 3731a728

Histogram Based Gradient Boosting Regression 2dc3f873

Partial Least Squares Regression dd18fd64

RENT 7e51f90

Model Comparisons 113937d8

Optimization Models c1d788a8

Streamlit website py 3efe7a36

Table 2: Latest versions of Jupyter Notebook files available on GitLab at the time of writing.
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3.4 CRISP-DM

3.4.1 Business Understanding

As highlighted in the introduction, the goal of this project is to use ML to predict dry matter
content and optimize dry matter content within the production process using operational data
(e.g., temperature, pH, time). The desired dry matter range is aimed to be between 57.6-57.7%.
The development of predictive models will enable a deep understanding of the relationship
between various predictors and dry matter content. This is fundamental for maintaining high-
quality products such as Norvegia cheese. This section outlines the significance of accurately
predicting and controlling the dry matter content, highlighting the impact on product quality
and operational efficiency.

Dry matter content is a crucial determinant of product quality in the dairy industry, especially
for cheese products like Norvegia. It impacts the product’s physical and sensory properties and
shelf life, directly influencing consumer satisfaction and compliance with regulatory standards.
Controlling dry matter content is essential in maintaining product quality and consistency
across numerous manufacturing processes. The absence of effective control over this aspect
can lead to quality deviations, affecting the overall product value and possibly leading to high
variations in dry matter content, increased production time, and customer dissatisfaction. By
identifying key production parameters that significantly influence dry matter content, we can
get better control over production parameters that will lead to optimal dry matter content,
affecting product quality.

The economic benefits of effectively controlling dry matter content in production extend far
beyond mere cost savings. It represents an important strategy to enhance operational efficiency
and promote sustainability in the manufacturing industry. For a cooperative like Tine, owned
by thousands of farmers, optimizing dry matter content represents a dedication to mutual
prosperity and sustainable farming. By managing the dry matter content, companies like Tine
can significantly reduce the overuse of resources, such as raw materials and energy, thereby
minimizing waste generation at various stages of production. Enhancing production efficiency,
achieved through the precise control of dry matter content, will result in a more streamlined
manufacturing process, enabling faster production times while maintaining the quality of the
final product Tine is known for. Furthermore, maintaining uniform product quality through
optimized dry matter content helps businesses build more vital customer satisfaction and loyalty.
This approach to optimizing dry matter content reduces operational costs and drives economic
viability and sustainability, ultimately improving the company’s overall financial health and
competitive positioning. Table 3 displays the data goal and its corresponding success criteria.

Table 3: Data Goals and Success Criteria.

Data Goal Success Criteria

1. Achieve good model performance: - R2 score > 0.50 for all models on test data.

2. Feature Selection Performance: - Reduce feature set by > 50% for all models while maintaining performance.

3. Optimize Algorithm Effectiveness: - Improve > 80% of dry matter content for all test data.
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3.4.2 Data Understanding

To construct a predictive model and explore the factors contributing to significant variability
in dry matter, we used a dataset provided by Tine Jæren. Such data is invaluable, offering a
detailed view of the operational factors that determine the final characteristics of the cheese. To
understand the data, we can investigate cheese production, from when the raw milk is received
to the point where the fresh cheese is produced. By analyzing these variables, we could obtain
insights that could lead to the optimization of the cheese production process, enhancing both
efficiency and product quality. All the variables and their descriptions are listed in Appendix A.

The process of making cheese begins with the raw milk being stored in silos. At this stage,
various tests are conducted to measure the fat content, protein levels, acidity (pH), and tem-
perature of the milk. These measurements are prefixed with the label ’Si’. After that, the
milk is pasteurized and standardized to eliminate bacteria and adjust the fat content. These
measurements are prefixed with ’Pa’. Before the fermentation process begins, the milk’s pH is
adjusted by adding starter acid, which is recorded under the prefix ’Bs’. Then, a starter culture
is added to the milk, which starts the fermentation process. During this process, rennet is added
to the cheese vat, which coagulates the milk into curds and whey. The measurements taken
during this phase are prefixed with ’Yk’. The curds are then transferred to a buffer tank, where
they are held until they reach the desired pH level. The curds may then be further processed
using a casomatic machine, and these measurements are prefixed with ’Bu’. The final product
is fresh cheese, characterized by its soft texture and moisture content. The measurements at
this stage include dry matter, fat, and pH, which are recorded under the prefix ’Ost’. Figure
15 illustrates the different steps involved in the process of making cheese.

Figure 15: The image illustrates the key steps in making cheese, starting with raw milk and
ending with the finished cheese product (Image credit: Lars Erik Solberg, Nofima).

Explorative Data Analysis

This section will cover the technical aspects of the data. Although the raw data has been
transformed into a usable dataset, some additional preprocessing is still required. The dataset
consists of 1,949 records and 103 features, including 13 string variables, one categorical variable,
and the rest numerical. The string variables serve mainly to identify ID numbers throughout
the process. We will keep all variables for the exploratory analysis, even though not all of them
are important. As mentioned, the dataset captures information from multiple stages in the
production chain. The dataset defines the target variable, dry matter content, as Ost inlineTS.
The distribution of the variables varies, with some having more spread-out data than others.
Figure 16 shows histograms of all numerical variables, providing insight into the range of each
variable. The value of the variables will be censored due to sensitive information.
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Figure 16: Histograms of all the numerical variables in the dataset.

The dataset being analyzed consists of several variables that exhibit different distribution pat-
terns. Some variables follow an unimodal distribution, while others show a multimodal dis-
tribution with multiple peaks. Additionally, some variables have a uniform distribution. The
dataset also contains potential outliers, which their long tails can identify in the histograms.
One significant characteristic of the dataset is the presence of missing values. These missing
values can range from one to a maximum of 1279 in some features and may occur due to sen-
sor errors or production anomalies. If a variable has a high number of missing data, it can
be challenging to accurately fill in the gaps and utilize that data in the future. Therefore, it
is crucial to carefully preprocess variables with numerous missing values. Different techniques
can handle missing values, such as iterative imputation as discussed in Chapter 2.1, discarding
features with excessive missing data, or employing alternative methods. Iterative imputation
is a commonly used technique that estimates the missing values using the observed values in
the dataset. Discarding features with excessive missing data is another technique that can be
used when the missing values are too many to handle. It is essential to select the appropriate
method for handling missing values that align with the nature and specific requirements of the
dataset. Given the importance of data quality, these strategies should be chosen carefully to
maintain the dataset’s integrity.
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The data is organized chronologically in batches. Within each batch, there are multiple cheese
vat batches, which are equivalent to samples. The batch number for each cheese vat batch
is defined in the variable Bs Batch, which contains a 17-digit number. Notably, there is a
batch number equal to zero. This anomaly may indicate a discrepancy in the data collection
process or potentially a data entry error. The starter culture is also produced batch-wise.
Each starter culture is consistently used in multiple cheese vat batches within the same batch
and likely shares similar properties. When analyzing data organized in batches, such as in
cheese production, it is essential to consider the batch effects. These effects are caused by the
uneven distribution of samples across batches, which can lead to variations that might affect the
accuracy of comparisons or models. Therefore, it is crucial to consider batch effects to ensure
that the results are reliable and meaningful. In our case, the starter culture is a critical factor
to consider. Cheese vat batches (samples) within the same batch share the same starter culture,
leading to dependencies or correlations between batches within the batch. Therefore, simply
splitting the data into training and testing sets using random or standard CV methods may not
adequately address these dependencies. Using LOGO CV, we can exclude entire batches from
the training set while using them for testing. This approach ensures that the model evaluates
unseen batches, providing a more realistic performance assessment and reducing the risk of bias
due to overrepresented batches. Figure 17 illustrates the distribution of samples across batches,
highlighting variations in sample counts among batches. Notably, some batches contain fewer
than ten samples, which is significant as these smaller batches may impact the model’s learning
capability if not properly accounted for.

Figure 17: The image illustrates the number of cheese batches for each starter culture.
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In Chapter 2.2, we discussed how some ML algorithms struggle with multicollinearity, which
occurs when variables in the dataset are highly correlated. To identify highly correlated vari-
ables, we compute the correlations between all variables and then select the top 20 positive and
negative correlations, as shown in Table 4 and Table 5, respectively. We analyze the top ten vari-
ables with the highest positive and negative correlations to streamline our analysis. However,
it’s crucial to acknowledge that there may be more variables with significant correlations beyond
this selection. For the top positive correlations, there are strong relationships between certain
features. For example, there is a very high positive correlation between Yk start2lopeTime and
Yk start2coagTime, indicating that as one feature increases, the other also tends to increase.
Similar strong positive correlations are observed between other pairs of features, suggesting that
these features may be influenced by similar underlying factors or may have a direct relation-
ship with each other. On the other hand, for the top negative correlations, there are strong
negative relationships between certain pairs of features. For instance, a negative correlation of
-1 between Bs artikkel R6024 and Bs artikkel R6024Cryostart indicates a perfect negative
linear relationship between these two features. In the production, these two variables represent
two different acid cultures utilized, each with its own distinct composition and purpose. Other
pairs of features also exhibit strong negative correlations, suggesting an inverse relationship
between them. This aspect is essential when constructing predictive models and conducting
subsequent analyses.

Table 4: Top 10 Positive Correlations.

Feature 1 Feature 2 Correlation

Yk start2lopeTime Yk start2coagTime 0.999986
Yk timeTomming Yk tommingToendSumT 0.999551
Bu cut2casomaticTime Bu coag2casomaticTime 0.996603
Yk timeYstevann Yk ystevannToTommingSumT 0.990985
Bu start2casomaticTime Bu coag2casomaticTime 0.990714
Yk timeMy1 Yk my1ToYstevannSumT 0.988864
Bs temp Temp0 Bs temp Temp stage26 0.987480
Bu start2casomaticTime Bu cut2casomaticTime 0.986562
Yk timeCoag Yk coagToCutSumT 0.982548
Bs temp end incubation Bs temp start cooled 0.980447

Table 5: Top 10 Negative Correlations.

Feature 1 Feature 2 Correlation

Bs artikkel R6024 Bs artikkel R6024Cryostart -1.000000
Ost wilab ph 4t Ost phReduction4T -0.894052
Bs temp end incubation Bs temp Time stage26 -0.791753
Bs temp end incubation Bs temp Time stage91 -0.690754
Bs temp temp incubation Bs temp end incubation -0.689411
Bs temp end cooled Bs artikkel R6024 -0.677807
Bs wilab akt ym Bs temp start cooled -0.633775
Bs temp Temp0 Bs temp end incubation -0.630866
Bs temp end incubation Bs temp Temp stage26 -0.624831
Bs ph t1 Bs ph pH1 -0.597400
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Principal Component Analysis

In this section, we will utilize PCA for exploratory analysis of the dataset. As mentioned
in Chapter 2.3.6, PCA plots focus on visual representations used to explore and understand
the structure of high-dimensional data. We will present PCA plots including the cumulative
explained variance plot, score plot, and loading plot.

Figure 18 presents the cumulative explained variance from the PCA. The X-axis represents the
number of PCs, ranging from 0 to 84. Collectively, these components account for 100% of the
explained variance. There is a sharp increase in explained variance for the first few PCs, which
suggests that these initial components capture most of the variance in dataset X. As additional
PCs are included, the rate of increase in explained variance becomes more gradual for both
lines, indicating that subsequent PCs contribute progressively less to the explanation of the
variance as the number of components increases. For this PCA, a threshold of 95% cumulative
explained variance was chosen to select the components. Therefore, 30 PCs were chosen and
will be used for the subsequent PCA plots.

Figure 18: Cumulative explained variance in the dataset.

Figure 19 represents the score plot visualized with the first two PCs. There’s noticeable vari-
ability in both the first and second PCs. There don’t appear to be clear, distinct clusters, but
there is some density variation. The bulk of the data points are clustered around the PC1,
suggesting that most of the data variation can be explained by this component. The variation
in color suggests that there’s a relationship between the position of a data point on the PCA
plot and its dry matter content. Even though there are some observations with very low dry
matter content indicated by the dark blue color on the left side, the majority with higher dry
matter content is predominantly in quadrants 1 and 4, which could suggest that higher values
of PC1 are generally associated with increased dry matter content. However, there is no clear
trend or distinct clustering solely based on the dry matter content across the two PCs, implying
that these components alone may not perfectly segregate samples based on their dry matter
content. Some points are far removed from the main cluster, especially along PC1. These points
could represent samples from identical batches, aggregating due to batch effects.
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Figure 19: Score plot for explorative data analysis.

Figure 20 displays the loading plot and offers insights into how various variables influence the
two PCs. Nine variables with the highest loadings were chosen for better interpretation and
visualization. This selection criterion ensures that the most influential variables explaining the
variance within the dataset are highlighted. Variables such as Bs artikel R6024Crystostrt,
Bs temp end cooled, Bs alder, and Yk coagToCutAvgT project towards the positive side of
PC1. This indicates they have a strong positive correlation with PC1, suggesting that higher
values of these variables align with higher values of PC1. From the small angle between these
loadings, we know that they are positively correlated with each other. Si wilab f ftir and
Si wilab prot fir show negative loadings on PC1, implying an inverse relationship with PC1.
Observations with higher values of these variables tend to have lower values on PC1. From the
plot, we can also observe that these variables are highly correlated. All the variables in the
first and third quadrants are likely to be inversely correlated. This aligns with Table 5, which
shows that Bs artikel R6024Crystostrt and Bs artikel R6024 have a negative correlation
of -1. Observations on the right side of the score plot, where dry matter content is mostly very
low, are associated with variables that have positive loadings on PC1. This could indicate that
variables like Bs artikel R6024Crystostrt and Bs temp end cooledmight indicate conditions
or processes that result in a lower dry matter content. On the other hand, observations on the
left side, associated with a bit higher dry matter content compared to the right side, correlate
with the variables Si wilab fir and Si wilab rot fir, which negatively load on PC1. It’s
important to note that not all variables have been selected for this visualization. Additional
variables can be important for understanding other underlying patterns and variances in the
dataset.
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Figure 20: Loading plot from the PCA.

3.4.3 Data Preparation

Various data preparation steps have been designed for different algorithms to enhance their
efficiency. The same preprocessing steps have been consistently applied across all the models to
ensure a fair comparison and accurate evaluation of the algorithms’ performance. This approach
is crucial in maintaining the integrity and comparability of the results. The preprocessing tech-
nique was the same for all three ML models, except for handling missing values for HGBR.
We treated missing values differently based on the algorithms’ capabilities and requirements
for complete data. The preprocessing for both functions started by removing all samples with
Bs Batch equal to zero, which amounted to ten instances. This step was essential to elimi-
nate data corruption due to errors in the production process. Additionally, any missing values
within the response variable were identified and removed. As the response variable is signifi-
cant for accurate predictions, we decided that imputing missing values would be inappropriate,
as it could introduce erroneous information into the model. Moreover, string features lacking
predictive relevance were removed from the dataset to ensure compatibility with the model-
ing algorithms. Some examples of these variables are Si utstyr and sampleID. Furthermore,
Ost inlineFett was removed from the analysis due to its dual nature as a response variable and
its high positive correlation with dry matter. This could potentially introduce multicollinearity
issues and distort the model’s predictive accuracy. Lastly, the categorical feature Bs Artikkel

was One-hot encoded. For RENT and PLSR models, a different approach was taken to handle
missing values. The iterative imputer discussed in Chapter 2.1 was used, utilizing the HGBR as
the estimator model for imputation. This step was critical as these models require a complete
dataset for the modeling phase. The HGBR model is designed to handle missing values during
training. Given the batch effects within the dataset, it became imperative to employ techniques
that could effectively tackle this issue. The dataset was organized chronologically by batches,
making the modeling process smoother. The dataset was split into Xtrain, Ytrain, Xtest, and
Ytest chronologically by time, with the training set containing 1,459 samples and the test set
containing 295 samples. There were no overlapping batches between the training and test sets.
Dividing the data this way ensures that temporal trends or shifts do not confound the model’s
learning process, reducing the impact of batch effects. This arrangement enhances the model’s
ability to generalize across unseen batches.
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3.4.4 Modelling

The selected ML algorithms, HGBR, PLSR, and LR, have undergone thorough training and
evaluation. To ensure reliability and accuracy, we use the LOGO CV approach. This technique
helps us understand how well each model works and how accurate its predictions are in different
scenarios. It also allows us to address batch effects and improve model performance on new data
while preventing data leakage. Ultimately, the LOGO CV approach forms the foundation of
our modeling strategy, ensuring that each algorithm undergoes rigorous testing and validation,
resulting in the most reliable and effective predictive models.

Model 1 – Histogram-Based Gradient Boosting Regression

The process of modeling HGBR started with specific preprocessing steps designed for this model.
Scaling of data was not required since tree-based algorithms can handle unscaled data. However,
before using the model for prediction, it was crucial to select important variables that affect the
target variable. To initiate the feature selection process, we trained the HGBR on the complete
training dataset. After training the model, permutation importance was calculated 50 times to
evaluate the importance of features in predicting the target variable. The features were ranked
based on their mean importance scores, and the top 20 were identified for further analysis.
These selected features were then analyzed using an SFS with backward elimination to identify
a subset of 3 to 15 features that would maximize the model’s R2 score across a 5-fold CV.
Once we identified the important features, we trained a new model with the same algorithm
and selected features. We optimized the model’s performance by tuning hyperparameters such
as max depth, max iterations, learning rate, minimum samples per leaf, and max bins using
Optuna.

Model 2 - Partial Least Squares Regression

The PLSR method requires specific preprocessing steps for modeling. The process involves
applying PLSR to the entire dataset to identify the optimal number of components based on
cumulative explained variance to prevent overfitting. Initially, two components were found to be
optimal, determined by the highest R2 score achieved. After refining the model, VIP (Variable
Importance in Projection) scores were used for feature selection. A threshold of 0.8 was set
for retaining the features, and the selected features were used to train a new model with three
components, again identified by the highest R2 score achieved. To examine the relationship
between input features and dry matter content, the PLSR plots using hoggormplot provided
nuanced visual interpretations of the data.

Model 3 - Linear Regression

The Linear Regression (LR) model was subjected to the same preprocessing steps as the PLSR
model. The features for LR were chosen with the help of RENT. The optimal combinations of
hyperparameters for the RENT algorithm were selected by evaluating the Bayesian Information
Criterion (BIC), as explained in Section 2.4.4. To find the best parameters, we explored a range
for the C parameter, which is the regularization parameter, from 1 to 50. Lower values indicate
stronger regularization. Additionally, the l1 ratio, representing the balance between L1 and
L2 penalties, was adjusted from 0.1 to 1 in increments of 0.1. A fixed test size of 0.25 was
used for data division, ensuring a consistent framework for model assessment. CV techniques
and data standardization were used to normalize input features and enhance the reliability and
generalizability of the findings. The exploration involved generating 100 models, allowing for a
comprehensive assessment of the hyperparameter space and ensuring the selection of the most
effective model configuration.
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3.4.5 Evaluation

A benchmarking procedure has been developed to assess the ability of ML models to predict
unseen data. This procedure involves using performance metrics such as MSE, RMSE, and
R2 to determine the models’ predictive power and goodness of fit. Codes have been developed
for each ML algorithm to facilitate this process. Techniques like scatter plots, box plots, and
PLSR plots are used to visualize the model’s performance. These plots help to understand
the relationship between the data and the underlying patterns. Figures and plots displaying
the performance of each model are provided, and finally, all ML algorithms are compared, and
conclusions are drawn based on their performance. The optimization model is evaluated using
a custom scoring function. The Improvement Score is calculated based on the instances where
the actual dry matter content has been increased to fall within the optimal value range of 57.6%
to 57.7%. This score is then converted into a percentage, ranging from zero to one hundred
percent (0-100%). The evaluation process and whether the success criteria were met will be
discussed further in the discussion chapter, Chapter 5.2.

3.4.6 Deployment

During the final stage of the CRISP-DM process, we aim to implement the optimization model.
We plan to integrate the model into a user-friendly website that uses real-time measurements via
Streamlit. While we have developed a prototype website using Streamlit, we are not currently
focusing on building a permanent website with real-time measurements for industry use. How-
ever, we will discuss ways to integrate such measurements effectively in the discussion section,
which will create opportunities for future projects to create such a website.
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Chapter 4
Results
In this chapter, we present the results of the evaluation procedure applied to each ML model
described in Chapter 3. We begin by introducing the features selected and then present the
performance metrics of each ML model. Additionally, we include several plots to understand
the relationship between the independent and dependent variables.

4.1 Prediction of dry matter

4.1.1 Model 1 – Histogram-based Gradient Boosting Regression

In this section, we present the results of our evaluation process for our ML Model 1 using
HGBR. The process involved identifying the top 20 features by using permutation importance.
We then applied backward selection to refine the feature set and evaluate the model’s predictive
performance across various datasets. Table 6 displays the initial ranking of the top 20 variables
based on permutation importance. Furthermore, Table 7 displays the final set of features after
applying backward selection.

Top 20 Variables Permutation Importance

Bu cut2casomaticTime 0.106
Bs temp Temp stage26 0.066
Bs ph pH2 0.035
Bu duration 0.032
Bs temp Time stage91 0.010
Bs alder 0.009
Bu start2casomaticTime 0.008
Bs temp Time stage26 0.006
Ost wilab ph 4t 0.005
Yk tommingToendAvgT 0.005
Bu tempmean 0.004
Bu tempmax 0.004
Ost phReduction4T 0.003
Si wilab f ftir 0.003
Yk ystevannToTommingStdT 0.002
Yk timeTomming 0.002
Yk mengde 0.002
Yk lopeToCoagAvgT 0.002
Bu coag2casomaticTime 0.001
Yk brukssyreToLopeStdT 0.001

Table 6: The top 20 variables selected using permutation importance.
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Final selected features

Si wilab f ftir
Bs alder
Bs ph pH2
Bs temp Temp stage26
Yk mengde
Yk tommingToendStdT
Yk ystevannToTommingStdT
Bu duration
Bu coag2casomaticTime
Bu tempmax
Bu start2casomaticTime
Ost wilab ph 4t
Ost phReduction4T

Table 7: Final selected features for Model 1, identified using Sequential Feature Selection (SFS)
from the top 20 variables determined by permutation importance

The performance of HGBR model is presented systematically in Table 8 and Figure 21. Table 8
shows the accuracy metrics of the model, which provide a quantitative evaluation of its predictive
capabilities across various statistical measures. On the other hand, Figure 21 presents a visual
comparison between the actual and predicted values obtained by applying the HGBR model to
both the training and test datasets. This visual representation highlights the model’s ability
to generalize from the training data to unseen data, illustrating discrepancies and alignments
between predicted outcomes and actual results.

Training set Cross-validation Test set

MSE 0.0256 0.0731 0.0937
RMSE 0.1600 0.2704 0.3060
R2 0.9081 0.7375 0.7644

Table 8: Performance metrics for Model 1.

Figure 21: The image shows a scatterplot of actual versus predicted values from the Histogram-
based Gradient Boosting Regression model for the training and test set.
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The performance of the training data is illustrated by the dense clustering of points around
the dashed line, reflecting a high degree of accuracy. This indicates that the model fits the
training data well and has effectively captured the training set’s underlying patterns. The
CV results reveal a decrease in predictive performance, as evidenced by the increased MSE
and RMSE, along with the decreased R2 scores. Despite the decrease in performance, the
score remains high, suggesting that the model possesses a reasonable ability to predict new,
unseen data. The test set results, which serve as the final unbiased evaluation of the model,
display a wider spread of points. This wider spread of data points suggests that the predictions
are less accurate than the training set, potentially indicating the model’s decreased ability to
generalize to unseen data. However, our approach to evaluation has been designed to address
the batch effect problem. By implementing LOGO CV, we made our predictions more realistic
and robust, enhancing the reliability of our performance metrics on new unseen data. Moreover,
by ensuring no overlap between batches in the training and test sets, we ensured that the scores
we obtained were highly reliable and precise on new, unseen data. As mentioned in Chapter
2.3.5, HGBR is a non-linear, tree-based ensemble model. The model’s high score could be
due to the algorithm’s ability to discover complex patterns through non-linearity. This could
help the algorithm to effectively utilize the underlying structure of the data, possibly revealing
influential variables and interactions that are not immediately obvious. Furthermore, as a tree-
based ensemble method, it utilizes multiple weak learners working together to create a strong
predictor, significantly enhancing the model’s predictive power. However, this model type is
prone to overfitting, which can be seen by the model’s performance. Even after selecting the
minimal tree depth, the training score remains high. Overfitting is a common issue observed in
tree-based models and represents a well-known drawback. This is reflected in the result, where
training accuracy is significantly higher than the test across all datasets.

43



4.1.2 Model 2 – Partial Least Squares Regression

This section aims to evaluate the results of the Model 2 using PLSR. The focus will be on
assessing the model’s predictive ability and the significance of the predictor variables identified
through our analysis. We began the feature selection by computing the Variable Importance
in Projection (VIP) scores. Table 9 presents a list of selected features with VIP scores greater
than 0.8. These features have been used for modeling purposes.

Important Variables VIP-score

Bu start2casomaticTime 2.589995
Bu cut2casomaticTime 2.498496
Bu coag2casomaticTime 2.481256
Bu duration 2.041004
Yk start2endTime 1.962124
Bu emptytime 1.762194
Yk tommingToendSumT 1.758585
Yk timeTomming 1.721259
Yk tommingToendAvgT 1.497236
Bs temp Time stage130 1.382967
Bs alder 1.322590
Yk mengde 1.317194
Ost wilab ph 4t 1.304591
Bs temp end cooled 1.303960
Bu tempmean 1.302259
Yk mysemengde r6001 1.273180
Bu tempmax 1.267663
Bs artikkel R6024 1.265423
Bs artikkel R6024Cryostart 1.265423
Yk ystevannToTommingSumT 1.240171
Ost phReduction4T 1.128447
Yk start2tommingTime 1.122613
Yk timeYstevann 1.105214
Yk tommingToendStdT 1.067067
Bs wilab ph 1.064797
Si wilab prot ftir 1.003233
Bs temp temp cooled 0.952943
Yk lopeToCoagAvgT 0.921632
Si wilab f ftir 0.908433
Bs Mengde 0.883577
Bs temp Temp stage91 0.879235
Yk lopeToCoagSumT 0.874524
Bu filltime 0.869147
Bs ph mx dpH 0.818364
Yk coagToCutAvgT 0.801372

Table 9: VIP-scores of Important Variables.

Table 9 presents the variables in descending order of their VIP scores, which measures their
contribution towards the model’s predictive accuracy. The variable with the highest VIP score
of 2.589995 is Bu start2casomaticTime. This is followed closely by Bu cut2casomaticTime

with a VIP score of 2.498496, and Bu coag2casomaticTime with a VIP score of 2.481256. To
select the most significant features based on their VIP scores, we set a cut-off threshold of 0.8
and included the variables in the table accordingly. Following this, we trained a new PLSR
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model using these important features transformed into orthogonal components as predictors.
Table 10 presents the detailed accuracy metrics. Figure 22 compares the actual and predicted
values for the training and testing datasets, thus providing a comprehensive view of the model’s
predictive power.

Training set Cross-validation Test set

MSE 0.0524 0.0673 0.1548
RMSE 0.2290 0.2594 0.3934
R2 0.8117 0.7584 0.6105

Table 10: Performance metrics for Model 2.

Figure 22: The figure displays a scatterplot comparing actual and predicted values generated
by HGBR for both the training and test sets.

The dense clustering of points around the dashed line illustrates the high accuracy of the
training data. Model 2 demonstrated strong performance in the training set, characterized by
low MSE and RMSE values, and a high R2 score. The CV shows small MSE and RMSE values,
closely resembling those of the training set. This indicates the model’s ability to generalize
effectively across various data subsets. Such consistency underscores the model’s robustness
and reliability. The test set performs notably worse than both the training and CV sets, as
anticipated. However, the performance scores are still moderate. The significant difference in
performance between the training and test sets suggests the potential occurrence of overfitting.
Figure 22 reveals a high density of data points along the reference line in the test set, especially
in the values ranging from 57 to 58. This suggests that within this range the models’ predictions
are close to the actual value. As the actual values increase, the density of the points begins to
spread out slightly more.
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PLS Regression Plots

The visualizations of the PLSR plots are provided below and are important in illustrating the
behavior of the model, offering insights into how well the model captures the underlying patterns
of the data.

Figure 23 presents the score plot, which illustrates the distribution of the dataset across the
first two principal components. The first component accounts for 66.5% of the variance in the
response variables, which indicates a strong relationship with the dependent variables. It also
explains 17.2% of the variance in the predictor variables, highlighting its importance in the
model. The second component captures less variance, with 12.7% for the response variables
and 9.2% for the predictor variables, indicating a secondary yet significant influence. The
central cluster of data points suggests that most observations have common characteristics.
Notably, many observations cluster together within the same batch, hinting at additional factors
contributing to unexplained variance. This also confirms that many samples within the same
batch share the same characteristics. Some observations, such as numbers 100, 101, and 102,
are from the same batch, which logically explains why they are grouped together far in the
bottom right corner. This grouping suggests they share similar characteristics, likely reflected
by high values in the loading plot in that direction. However, data points significantly deviating
from this central cluster suggest outliers or variations within the dataset. Some deviations are
grouped, potentially signaling a consistent variation in the cheese-making process. Such a
pattern might be expected in the food industry or imply that variations in a particular variable
influence the overall variation. These insights could guide further investigation into specific
areas of the production process for quality control or process optimization.

Figure 23: Score plot from PLS Regression.
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Figure 24 shows the loading plot, which demonstrates the contribution of each predictor vari-
able and the relationships among the original variables with respect to the first two components
identified in the analysis. The variable Bu duration exhibits a positive loading on component
1 and a negative loading on component 2. Conversely, Yk mengde are positioned in the third
quadrant, suggesting their significant negative impact on component 2. Some of the variables in
the dataset that explain the most variance are located farthest away from the origin, and they
are clustered in the bottom right corner. These variables include Bu start2casomaticTime,
Bu cut2casomaticTime, Bu coag2casomaticTime, Yk start2endTime, and Bu duration. They
reflect the VIP scores in Table 9 for the most influential variables in making predictions. These
variables represent time measurements, making them highly correlated with each other and
the first component. Therefore, most of the time-related measurements are important for dry
matter predictions. It is also worth noting that some variables, such as Ost phReduction4T

and Ost wilab ph 4t, are inversely correlated, meaning that if one variable increases, the other
decreases, and vice versa. This relationship was observed in Chapter 3.4.2. Most variables
are highly correlated with other variables from the same subprocess. It is logical to expect
that measurements within the same subprocess will influence each other when adjustments are
made. Within any subprocess, especially in industrial or manufacturing settings, measurements
are often related because they reflect aspects of the same process. For example, if one step in
a subprocess changes, such as the temperature or duration, it can affect other measurements
within that subprocess, leading to correlations. However, some variables, like Yk mengde, do not
correlate highly with other variables within the same subprocess. Instead, this variable shows
a stronger correlation and is more similar to variables such as Bs alder, Bs temp end cooled,
and Bs temp Time stage130.

Figure 24: Loading plot from PLS Regression.
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Figure 25 displays the explained variance plot shown in the dependent variable by the compo-
nents derived from the PLSR. The graph depicts two lines tracking the explained variance across
multiple components. The blue line corresponds to the explained variance for the response y,
representing how much of the variance in the response is captured by the model. Conversely, the
red line corresponds to the validated explained variance, indicating the proportion of variance
in the response variable that is explained by the model when subjected to a validation process.
The X-axis shows the number of components ranging from 0 to 3. The y-axis shows the ex-
plained variance in the dependent variable. We can see that the first components add the most
explanatory power, which suggests that the most critical factor captured by the model resides
within the first component. This aligns with observations from other plots, where the most in-
fluential predictors are highly correlated with the first component. The small gap between the
calibrated and validated lines suggests a good model generalization. The model’s performance
on the validation set is good, considering the validated explained variance does not drastically
drop as more components are added, suggesting that the model’s predictive power does not rely
on overfitting to the training data.

Figure 25: Explained variance in Y from PLSR.
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4.1.3 Model 3 – Linear Regression

The following section presents the outcomes of Model 3 using LR, including the feature selection
process using RENT and model performance evaluation. Additionally, validation study analysis
are also presented. Table 11 enlists the features that the RENT method selected, using a cutoff
of 0.95 across all three criteria. The selected features are considered significant predictors due
to their substantial predictive power and importance in determining the dry matter content.

Selected features by RENT

Si wilab f ftir
Bs alder
Bs ph pH2
Bs temp end cooled
Bs temp Time stage91
Bs temp Temp stage91
Bs artikkel R6024
Yk mengde
Yk lopeToCoagAvgT
Yk coagToCutSumT
Yk ystevannToTommingStdT
Yk ystevannToTommingSumT
Yk tommingToendAvgT
Yk tommingToendStdT
Bu filltime
Bu emptytime
Bu tempmax
Bu tempmean
Bu start2casomaticTime
Ost wilab ph 4t

Table 11: Selected Features by RENT.

For feature selection, RENT was utilized, and the performance of the model was tested on
various datasets. Accuracy metrics for the model can be viewed in Table 12. Additionally,
Figure 26 shows a comparison between predicted and actual results of the model on both
training and test data.

Training set Cross-validation Test set

MSE 0.0441 0.0597 0.1621
RMSE 0.2102 0.2444 0.4027
R2 0.8414 0.7854 0.5921

Table 12: Model Performance Metrics for Linear Regression using RENT as the feature selection
method.
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Figure 26: The image shows scatterplots of actual versus predicted values from the Linear
Regression model for the training and test set.

Examining the model’s performance using the RENT approach, the analysis begins with the
training set. The model demonstrates a strong ability to capture the underlying data patterns,
as indicated by a relatively low MSE and RMSE alongside a high score of R2. This suggests
that the model fits well with training data. Moving to the CV results, there is a slight increase
in the MSE and RMSE, with a decrease in R2. The modest difference between the training
and CV metrics further supports the model’s effective generalization. However, the model’s
performance on the test set shows a decline, with significant increases in both MSE and RMSE,
and a drop in the R2 score. This indicates a decrease in predictive accuracy when applied to
new, unseen data. This shift is visually confirmed by the graphical analysis of predicted versus
actual values. While the training set exhibits a tight clustering of points around the line of
identity, illustrating good calibration, the test set displays a more dispersed scatter of points.
This increased spread reflects higher error rates and a reduced R2 value, signaling challenges in
the model’s effectiveness on external data.
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Validation Study

According to the theory presented in Chapter 2.4.4, we present the RENT model’s validation
study. The study aims to determine if the RENT model performs better than the benchmarks
for different validation studies. The summarized results of this study can be found in Table 13
and Figure 27.

Table 13: Summary of RENT Model Validation Results.

Mean p-value

VS1 0.27 8.11e-160

Heuristic p-value (VS1) — 0.108

VS2 -0.91 1.74e-115

Heuristic p-value (VS2) — 0.0

Note: H0 is rejected at the significance level of 0.05.

Figure 27: The image shows of two validation studies for the RENT mdodel.

We observed significant predictive performance in the validation study using the RENT method.
The mean validation score from VS1 was 0.27 with a highly significant p-value, indicating a
robust model compared to random feature drawing. The heuristic p-value for VS1 also suggests
that the RENT prediction score is reliably higher than random chance, confirming the effec-
tiveness of the selected features. However, the model is not perfect, as indicated by a heuristic
p-value greater than the significance level of 0.05, which points to room for improvement in some
areas. With a heuristic p-value of 0.11, approximately 11% of the random scores are higher
than those obtained using the RENT method. This suggests that the RENT method’s score is
better than the scores obtained by chance about 89.2% of the time. Since the first p-value is
much lower than 0.05, the conclusion drawn is that H0 is rejected for VS1. The heuristic p-value
is more of a supplementary measure, indicating that while the model is statistically significant,
some variability in its predictive power might be improved. For Validation Score 2, the mean
was -0.906, again with a p-value so small it is essentially zero, strengthening our confidence in
the model’s predictive abilities over random permutation of test labels. The heuristic p-value
is exactly zero, underscoring that the RENT prediction score consistently outperforms random
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predictions, allowing us to reject the null hypothesis with a high degree of certainty. The RENT
score, marked by the dashed red line, clearly stands apart, validating the model’s predictive
power.

Figure 28 displays three distinct metrics: stability, performance, and runtime as functions of
the number of models (K) for RENT. The red line indicates the consistency of feature selection
across the different models, whereas the blue line signifies the R2 score across various models.
The green line illustrates the computation time associated with the number of K models. This
line exhibits linear growth, which is expected as the number of models increases. The stability
of the features selected is exceptionally high, suggesting that the feature selection is consistent
irrespective of the number of models run. The blue line, representing the performance, is ex-
pected to be around an R2 score of 0.60. Like the other models, this could be attributable to
batch effects and a lack of sufficiently significant variables with predictive power. The perfor-
mance levels off slightly after 50 models and remains constant, indicating that an increase in
the number of models beyond a certain point does not result in significant improvements in
predictive performance. This plateau could be due to data complexity, batch effects, or other
forms of noise. As anticipated, the runtime increases linearly with the number of models. From
the plot, we can deduce that a lower number of models, K, is adequate for achieving optimal
stability and performance while minimizing runtime.

Figure 28: Stability performance in RENT.
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4.2 Model Comparisons

In the previous section, the results of each model were presented individually. Moving forward,
we will compare the models against one another. We will then determine which model(s) will be
implemented in the optimization phase. First, we will examine the figures below that present
a clear comparison of the performance scores for each model, using the optimal feature sets
obtained from each. Additionally, we will examine the figures, which provides a summary of
the performance scores obtained when the optimal feature sets from each model are applied
to each other. This will allow us to observe the resulting scores and determine cross-model
efficacy. Figures 29, 30, and 31 display a side-by-side summary of the results from the dry
matter prediction across the different performance metrics using their unique feature subset.

Figure 29: Model comparison for MSE.

Figure 30: Model comparison for RMSE.
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Figure 31: Model comparison for R2.

The evaluation across the models demonstrates varied abilities to handle data complexity and
generalize well. HGBR (Model 1) showcases the strongest performance on the test sets, with
the lowest error rates and highest R2 scores, suggesting its effectiveness in managing non-
linear patterns, as evidenced by its consistent results despite a slight underperformance in CV
compared to the other models. In contrast, PLSR (Model 2), while performing well in CV
due to its simplicity and potential noise robustness, struggles on the test set. The LR model
(Model 3) outperformed the others during CV but performed poorly in the training and testing
phases. This could indicate that while tree-based methods like Model 1 effectively capture
complex data variations, simpler models might require enhancements or more sophisticated
regularization to improve their adaptability and performance on unseen data. To summarize,
the HGBR model shows promise, especially in handling complex, non-linear patterns within the
dataset. However, there is a noticeable trade-off between model complexity and performance
on unseen data. The PLSR model, though not excelling on the test set, has merits in CV that
need further exploration. Lastly, while LR model maintains relatively consistent performance
from training to CV, it experiences the most substantial decline in performance when moving
from CV to test set, compared to other models. This notable decrease suggests potential issues
with overfitting or a lack of robustness against unseen data.
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Figure 32 demonstrates the shared and unique features used by three models. Each circle
represents the features utilized by a particular model. The features present in the overlapping
regions of the circles are used by more than one model, indicating their significance and relevance
across different regression techniques.

Figure 32: Venn diagram of the optimal features selected for the different models.

The Venn diagram showcases how different features are distributed across three models: HGBR,
PLSR, and LR. The HGBR model’s circle represents both unique and shared features. The
RENT circle has two distinct features but shares many with PLSR, suggesting a consensus on
the importance of these features across different models. The PLSR circle contains features
that are specific to this model and those that are shared with one or both of the other models.
The unique features in this circle could be particularly significant in predicting outcomes using
PLSR, possibly due to the model’s ability to handle multicollinearity or its method of reducing
predictors to a smaller set of uncorrelated components. PLSR may require a broader set of
features to achieve a predictive model. The features that intersect all circles are called the
”Common features” and are considered essential across all models.
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In this analysis, we compare the performance of the three models using optimal feature sets
identified by each model. The comparisons are illustrated in Figure 33. By looking at the R²
scores, we can determine how good each model is at capitalizing on feature sets from alternative
methodologies, providing insights into their versatility and effectiveness in different contexts.
The graph displays a group of ”Common Features” that all the models use. Although the LR
model performs slightly better on this subset, it is not universally effective across all models.
The HGBR model still shows the highest R² scores on its feature subset, indicating that it
outperforms other models in predicting test data. This is likely due to its ability to handle
complex data patterns better than PLSR and RENT. While PLSR and RENT deliver decent
performances, they do not achieve the same level of effectiveness as the HGBR model. This
variation in performance may be due to the inherent differences in how these algorithms manage
feature sets. The HGBR model, with its tree-based structure and gradient-boosting mechanism,
tends to perform robustly across extensive feature sets, which may help mitigate issues such as
noise and overfitting that can adversely affect other models. However, it is important to note
that having many features is not universally problematic. For instance, PLSR is especially useful
in handling high-dimensional data, a strength that should not be overlooked. In summary, this
analysis not only tests the robustness of each model but also demonstrates the potential for
improving model performance through informed feature selection. Understanding the strengths
and weaknesses of each model can help us choose the correct algorithm for different datasets
and contexts and ultimately improve the accuracy and effectiveness of our predictions.

Figure 33: R2 comparison across models using their own and each other’s optimized feature
subsets, highlighting the impact of feature selection on model performance.
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4.3 Development of Optimization model

In this section, we will develop an optimization model by utilizing the information gathered
from previous chapters. We will use the strengths of the HGBR and PLSR models to create
optimization models using the Differential Evolution algorithm, as they have shown the best
and moderately good performance scores, respectively. Once we have the optimization models,
we will select the one with the best score to integrate into the website. The first and crucial step
in making the optimization model is identifying the controllable and uncontrollable variables.
We examined the chosen variables from each ML model and consulted an expert to select the
significant variables and predictive power. Identifying the variables that can be utilized in
practice is also essential. While building the optimization model, we have considered some
interactions between variables that are not visible on the website’s user interface. Instead,
they are calculated automatically to enhance the performance of the ML algorithm used in
the optimization model. The selected controllable and uncontrollable variables are displayed in
Table 14.

Table 14: Chosen parameters.

Uncontrollable Parameters Controllable Parameters Interaction Parameters

Bu start2casomaticTime Bs Mengde Bu duration * Bu tempmean
Yk start2endTime Yk coagToCutAvgT Yk timecoag*Yk coagToCutAvgT
Yk mengde Yk ystevannToTommingAvgT Yk timeYstevann*Yk ystevannToTommingAvgT
Bu duration Bu tempmean
Yk timeCoag
Yk timeYstevann

Several factors can affect the cheese production process, some of which are beyond the manufac-
turer’s control. Two such factors are the time measurements, namely Bu start2casomaticTime

and Yk start2endTime. Bu start2casomaticTime represents the duration from the start of the
cheese vat to the end of the buffer batch, while Yk start2endTime represents the total time
taken from start to finish. These variables are uncontrollable, and their values are vital for
the optimization model. Although predicting these values in advance can be challenging, they
must be known for the optimization model to work correctly. Another important variable is
Bs mengde, representing the culture added to the cheese vat in liters. This variable is control-
lable, and manufacturers can adjust this parameter during production. To optimize the cheese
production process, the optimization algorithm DE needs a set of boundaries that specify the
minimum and maximum values for each controllable parameter. A domain expert has deter-
mined these boundaries. The DE utilizes a nonlinear objective function to guide the controllable
parameters toward an optimal solution for each sample in the test set. The samples are then
predicted by the ML model and evaluated against a set target range (57.6-57.7), with penalties
applied if the predictions fall outside this range. This process is iterative, where the controllable
variables are updated based on feedback from the objective function. These optimal values for
the controllable variables help bring the production process closer to the optimal dry matter
range. However, due to the sensitive nature of this information, the boundaries and optimized
values for the parameters are censored.

4.3.1 Optimization Model 1 - HGBR

The development of the optimization model began with the selection of variables outlined in
the previous chapter. These variables were used to create a model using HGBR. Techniques
such as the LOGO CV, similar to those described in Chapter 3.4.4, were applied to handle
batch effects. The same performance metrics were used to evaluate this model. The results
from the HGBR model are presented in Table 15. This model performs worse than the HGBR
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model previously discussed, primarily because many features have been excluded. Some of the
variables measured in the process are not practical to include in the model. This is because
they are measured too late in the process.

Training set Cross-validation Test set

MSE 0.0713 0.1377 0.1857
RMSE 0.2671 0.3711 0.4310
R2 0.7438 0.5054 0.5327

Table 15: Model Performance for Histogram-based Gradient Boosting Regression with chosen
parameters.

After creating the ML model, we will use it for the Differential Evolution (DE) algorithm.
The DE algorithm will iterate through each sample in the test set, optimizing the controllable
parameters to achieve the optimal dry matter content. The maxiter, popsize, mutation, and
recombination parameters are set to 10, 50, (0.2, 1), and 0.9, respectively. This combination
will expand the solution space and assist the optimization algorithm in finding optimal solutions.

Figure 34 displays the dry matter content before and after optimization for the test set. The
blue data points represent the actual dry matter content, while the red represents the dry matter
content after optimization. The green shaded region represents the optimal dry matter content
target. The lines between the actual and optimized values are used for better visualization and
connect the same samples together. Figure 35 displays the distribution of actual and optimized
dry matter content for the optimization model using HGBR. Table 16 displays the custom score,
which counts the number of cases in which the actual dry matter content has been enhanced
by the model, relative to the total number of cases.

Figure 34: Optimized dry matter values using Differential Evoloution with Histogram-based
Gradient Boosting Regression.
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Figure 35: Distribution of Actual and Optimized Dry Matter Content for the optimization
model using HGBR regression.

Metric Value

Improvement Score 221 / 295
Accuracy Percentage 74.92%

Table 16: Evaluation of optimization model using HGBR

Figure 34 demonstrates that the optimization algorithm has successfully adjusted the dry matter
content in many cases to achieve values within the optimal range of 57.6-57.7%. In some
instances, it has brought the dry matter content closer to this optimal level. In Figure 35, the
box plots illustrate that the variability has been reduced and the dry matter content is now
closer to the optimal range. We observe that test samples with very high initial dry matter
content struggle to reach within the optimal range, yet they still exhibit improvement. The
Improvement score shows that in 221 out of 295 cases, the dry matter content reached the
optimal range of 57.6-57.7%. This yields an accuracy score of 74.92%. Before optimization,
there were 22 instances within the target range. Additionally, 82.37% of these observations
continued to meet the optimal values after optimization. However, there are rare instances where
some samples within the optimal range exhibited worse dry matter content after optimization.
Although these cases are few, it is possible that the HGBR model predicts poorly in some
instances. Figures 36, 37, 38, and 39 display the values for the controllable variables before
and after optimization. Blue represents the original value, while red indicates the optimized
value. The figures presented demonstrate adjusting the controllable parameters Bu tempmean,
Yk ystevannToTommingAvgT, Yk coagToCutAvgT, and Bs Mengde to enhance the dry matter
content.
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Figure 36: Optimized Bs Mengde values.

Figure 37: Optimized Yk coagToCutAvgT values.
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Figure 38: Optimized Yk ystevannToTommingAvgT values.

Figure 39: Optimized Bu tempmean values.
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4.3.2 Optimization Model 2 - PLSR

To develop the second optimization model, we started by selecting variables and creating a
model using PLSR with three components. We used the same methods and techniques as the
previous model. Table 17 below shows the performance of the PLSR model based on the chosen
variables.

Cross-validation Training set Test set

MSE 0.1414 0.1264 0.1887
RMSE 0.3760 0.3555 0.4344
R2 0.4922 0.5461 0.5252

Table 17: Model Performance for PLSR with 3 Components.

This model uses the differential evolution algorithm and the same modeling techniques and
parameters as the previous optimization model. The optimized dry matter content can be
seen in Figure 40, both before and after the optimization process. Figure 41 provides a visual
representation of the distribution of actual and optimized values through box plots. Table 18
contains the results of the evaluation of the optimization model.

Figure 40: Optimized dry matter values using Differential Evoloution with PLSR.
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Figure 41: Distribution of Actual and Optimized Dry Matter Content for the optimization
model using Histogram-based Gradient Boosting Regression.

Metric Value

Improvement Score 245 / 295
Accuracy Percentage 83.05%

Table 18: Evaluation of optimization model using PLSR

Figures 40 and 41, along with Table 18, demonstrate that the optimization algorithm, which em-
ploys Differential Evolution (DE) with PLSR, has successfully adjusted the dry matter content
in many instances to achieve a value within the optimal range. The distribution of the actual
and optimized values, plotted through box plots, shows that the variability in the dry matter
has been significantly reduced. This model surpasses the first in effectively reaching the target
range of 57.6-57.7%. The improvement score indicates that the dry matter content has been
enhanced and falls within the target range of 57.6-57.7% in 245 out of 295 cases, translating to a
90.51% accuracy of achieving the desired dry matter content range. Like the first optimization
model, this model starts with 22 observations within the target range. After optimization, this
number increases to 267 instances. Furthermore, 90.51% of the observations that were within
the target range before optimization have remained within this range afterward. This marks an
improvement over the first optimization model. Despite their small number, these cases warrant
further investigation. Figures 42, 43, 44, and 45 displays the original values of the controllable
parameters and their optimized values.
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Figure 42: Optimized Bs Mengde values.

Figure 43: Optimized Yk coagToCutAvgT values.
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Figure 44: Optimized Yk ystevannToTommingAvgT values.

Figure 45: Optimized Bu tempmean values.

65



4.4 Streamlit-website

In this section, we will utilize an optimization model integrated into a user-friendly website.
We will employ PLSR as a predictive component in the optimization model because of its good
performance. Within the scope of this research, we will use Streamlit to create a simple website
to demonstrate the intention and functionality of the model. Further research will focus on
developing a permanent website using real-time measurements with a well-designed interface
integrated with the TINE value chain. This is beyond the scope of our current research. The
website is intended for Norvegia cheese production and can be accessed daily. Production
workers can use a computer to find parameter values to enhance the dry matter content. The
process of using this website starts with finding all the values for the uncontrollable variables.
As shown in Table 14, six uncontrollable parameters must be known in advance. After entering
the uncontrollable values, you can click the ”Optimize” button. The website will then print out
the optimized controllable variables to enhance the dry matter content. Figure 46 will show us
a screenshot of the website.

Figure 46: Screenshot of the website created with Streamlit.

66



Chapter 5
Discussion

5.1 Reflections

When I began working on this project, I had limited knowledge about the subject area, initially
presenting some challenges. However, I viewed this as an opportunity to learn and grow.
Although I had a basic understanding of cheese production, I was determined to deepen my
knowledge and quickly adapt to the research demands. Throughout the project, I sought expert
advice to help me select the right variables and understand their critical relationships. This
guidance was crucial in improving my understanding and ensuring the reliability of our analytical
processes. With each step, I refined our data analysis and developed my expertise in the field.

Our research employed various effective methods and models, including the HGBR algorithm,
which produced robust results due to its ability to handle non-linear patterns in the dataset.
While the HGBR algorithm was optimal for this particular dataset, we recognize the poten-
tial benefits of exploring additional non-linear machine learning algorithms. Such exploration
could offer slight improvements in our results and interpretations, providing a broader com-
parative analysis that could refine the accuracy and depth of our conclusions. In addition to
HGBR, the PLSR proved considerably effective, particularly in optimization tasks where its
more straightforward, linear approach provided more stable interactions with our optimization
algorithms. However, it is important to note that while exploring alternative approaches and
advanced techniques could yield more insightful findings, the improvements over our current
results might be minimal. We have already covered a relevant range of predictive methods,
tested combinations of variable selection, and applied domain knowledge effectively in choosing
variables. This comprehensive approach ensured a balanced and grounded analysis, reflecting
a well-considered application of available methodologies. While feature selection was a central
focus of our study, we did not fully explore feature engineering techniques. Considering inter-
actions in all models could have led to a more comprehensive understanding of the underlying
relationships and patterns within the data, emphasizing the need for deeper exploration. How-
ever, incorporating interactions could also result in overly complex models, so they were not
considered for this research. Moreover, identifying potentially valuable variables not currently
measured could uncover new insights and enhance the model’s accuracy. This exploration would
involve reviewing the process and domain-specific knowledge. Integrating these methods could
have expedited the discovery of additional features that might have influenced the dataset, such
as variables related to milk composition. These could include factors like the dairy animals’ diet
and environmental conditions, such as seasonal variations. It’s also worth noting that outlier
detection methods were not used. Incorporating advanced outlier detection techniques could
potentially improve the performance of our models and lead to more precise identification and
handling of outliers, resulting in more reliable and robust analyses
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5.2 The use of CRISP-DM

Throughout this project, we followed the CRISP-DM process to gain a thorough understanding
of our data from multiple perspectives. The advantage of this iterative process is that it provides
a structured way to organize our work. During this project, the experience has underscored
the importance of the CRISP-DM framework in enhancing the effectiveness of our efforts. The
business aspect helped us understand the economic factors that made it necessary to control
dry matter content. Understanding the problem and the data available to use the CRISP-DM
model effectively is essential. Without this knowledge, the model won’t provide a solution. The
model has been around for a while and can be modified to work better for modern projects.
Additionally, it’s essential to remember that the model needs to be tailored to the specific
project at hand and that it’s continuously evolving. We also spent time examining the technical
aspects of the dataset during the data understanding and preparation stages. We developed and
assessed several models to optimize dry matter content effectively in the modeling and evaluation
stages. During the CRISP-DM cycle, we ensured that the evaluation and optimization models
aligned with our success criteria. One cycle could consist of using different missing values
techniques, split techniques, and other changes that affected the evaluation. Based on our data
analysis, we adjusted our criteria regularly to ensure they were realistic and achievable. The
initial criteria were overly optimistic and could not be achieved due to factors like batch effect.
Ultimately, we established and attained suitable, realistic success criteria. All the machine
learning and optimization models have met the success criteria. As explained in Chapter 2.6,
the method contains six phases. Almost all the phases were used in this project, though the
deployment phase was not fully implemented. In our case, a simple website using Streamlit was
developed. In practical applications, advanced technology is required to integrate it into the
industry, allowing all workers and administrators to access it. Deriving data and analysis from
this website is also crucial for its improvement, especially in the early stages. This is beyond
the scope of our research and, therefore, will not be fully implemented in this thesis.

5.3 Feature Selection Process

We used permutation importance and backward selection in our study on feature selection for
the HGBR model. It’s important to note that the backward feature selection assumes that
the initial model includes all relevant features. However, this may not always be true based
on the permutation importance. Permutation importance can be biased by unrealistic data
instances [58]. By having correlated features, it can decrease the importance of the associated
feature. As mentioned in data understanding Chapter 3.4.2 we have many correlated features.
This implies that certain correlated variables could strongly influence the model yet appear
mediocre in their permutation importance results. By using only permutation importance, the
interpretation of feature importance becomes considerably more difficult [58]. Moreover, the
sequence in which features are eliminated in the backward feature selection can significantly
influence the composition of the final feature set, raising questions about the optimality of the
selected features. Although the feature set yields a good performance score, there remains
room for improvement. The uncertainty about the optimality of this set underscores the need
for further investigation. The combination of the techniques was initially chosen to tackle the
multicollinearity problem by using permutation importance and a backward feature selection
to improve the model’s ability to predict accurately. Nonetheless, alternative feature selection
methods may better handle multicollinearity. Exploring other feature selection approaches for
the HGBR model could provide deeper insights into feature interdependencies, refining our
feature selection process for enhanced precision.

RENT is a method that incorporates built-in functions, which presented some challenges through-
out the modeling process. Modifying these inherent functionalities was particularly challenging.
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For the feature selection process, the cutoff values were chosen to select optimal features. The
cutoff values t1, t2, and t3 in RENT serve as critical hyperparameters that influence the number
of features selected. Lowering t1 may allow for the selection of more features, thus potentially
capturing more complex patterns in the data, but also increases the risk of including noisy, less
stable features. This could enhance the model’s performance on the training set but may not
generalize well to unseen data, leading to overfitting. Conversely, a higher t1 threshold priori-
tizes stability by selecting only the most consistently deemed important features. t2 and t3 add
further refinement to the selection process, controlling the stability of feature weights [48]. The
binary classification function in RENT includes a grid search to identify optimal cutoff values.
However, this function is not available for regression problems. Therefore, this was manually ex-
perimented with various combinations and identified some values for the criteria that produced
satisfactory results. If the grid search functionality had been available for regression problems,
other variables might have been selected, leading to better performance. Therefore, these cutoff
values require careful consideration. Further exploring this balance could offer deeper insights
into the model’s behavior under different stability constraints. Another aspect to discuss is the
selection of features for the validation study. In the validation study, we found that the p-value
was crucial in determining whether the RENT method was more effective than random selec-
tion in feature selection. If the p-value was significant, it indicated that RENT was better than
random selection. However, it’s important to note that the RENT method used in our research
has selected many variables. Therefore, the p-value’s significance should depend on using a
limited number of features. When many features are included, random selection can have a
higher chance of selecting the most effective features by chance. As a result, the advantage of
using RENT may decrease in scenarios with many features to choose from.

We used VIP scores to assess the significance of each variable in the PLSR. These scores are
computed based on the contribution of each variable to the model’s predictive ability. However,
the PLSR model we used in our analysis had limited predictive accuracy, as indicated by a
moderate R2 score. This suggests that the model might not have accurately captured the
intricate relationships within the data. As a result, the VIP scores obtained from this model
may not accurately reflect the true importance of the variables. Therefore, the VIP scores must
be interpreted carefully, particularly when the underlying model’s performance is suboptimal.
In our research, the threshold for determining important variables, typically considered a VIP
score greater than 1, can be considered a tuning parameter. In our case, a lower threshold of
0.8 was adopted in our approach. This adjustment resulted in a better performance on the test
set, suggesting that a broader range of variables might be necessary for better predictions. This
threshold was tested manually, but in the future, we should determine the optimal threshold
more systematically, which could potentially yield better predictions.

5.4 Overfitting

The HGBR model utilized Optuna for hyperparameter selection. Although Optuna significantly
saved time, ensemble models that use decision trees for their predictions tend to overfit the train-
ing data. Overfitting may occur due to overly complex models that capture noise and irrelevant
patterns. To prevent excessive complexity, the parameter values were restricted to very small
numbers using Optuna. The max depth, n estimators, and min samples leaf are the main
tuning parameters that can lead to complexity if their values are set too high. Therefore, regu-
larization terms were not included because of the computation costs and the complexity of the
hyperparameter search. It is worth noting that including more tuning parameters might have
given us different results.
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5.5 Discussion of Optimization Model

The optimization model aims to increase the dry matter content by using uncontrollable vari-
ables known in advance to obtain optimal controllable variable values. However, this assumption
may make the model more challenging for practical application since most uncontrollable values
are time measurements, which are difficult to predict. In Chapter 3.1, we learned that we could
use real-time measurements to measure the uncontrollable parameters. Four uncontrollable
parameters can be measured before the controllable parameters are adjusted, and two uncon-
trollable parameters come at the end of the process, one of which is Bu start2casomaticTime.
This variable is highly significant, as observed in all models. However, by analyzing historical
data, we could provide estimates for the uncontrollable values. Identifying the variables influ-
encing these variables could allow for partial control, better estimating the variables used in the
optimization model, and leading to more robust results. Moreover, the optimization model can
account for uncertainty by incorporating uncertainty analysis. Integrating probabilistic meth-
ods, such as stochastic programming techniques, can help the model to consider uncertainty
in input parameters or constraints and optimize decisions under uncertainty to achieve robust
solutions. We learned in Chapter 2.5 that linear and non-linear programming can handle con-
straints effectively. For instance, we can optimize variables such as dry matter content while
considering additional data such as manufacturing costs or energy consumption. By incorporat-
ing these factors into the optimization framework, we can minimize their impact while achieving
optimal dry matter content. However, the lack of relevant data limits further exploration of
such possibilities. This indicates the need for more research in this area.

There is another aspect of the optimization model that merits discussion, particularly concerning
the ML models used: PLSR and HGBR. These models are crucial for predicting the optimized
dry matter content in the optimization mdel. However, the performance of these models, based
on the selected parameters, was not entirely satisfactory. Their average performance suggests
that some predictions may be inaccurate. In rare cases, it was observed that the dry matter
content actually deteriorated compared to the initial measurements. Therefore, it is important
to acknowledge that the success of the optimization model heavily depends on the robustness
of these predictive models. We must focus on identifying more influential variables, engaging in
feature engineering, and exploring similar optimization techniques to enhance their accuracy.

5.6 Future Work

Even though this work has provided valuable insights into improving Norvegia cheese produc-
tion, some challenges still need to be addressed and further explored. Future work will involve
identifying more influential variables for prediction to enhance the ML and optimization mod-
els. This can improve the performance and the feature selection process. Additional data can
also be collected and used for improved modeling. Further investigation into batch effects and
how they can be properly handled should also be pursued. As we mentioned earlier, the data
we collected was obtained sequentially. This means that time series analysis could be used
to better understand the data. However, this approach requires a significant amount of data
to be collected, which we did not have in our research. Nonetheless, this approach could be
utilized in future research. A permanent website, integrated with the optimization model, must
be developed to provide better visualization for the industry. We have assumed that we know
the uncontrollable variables, which is crucial for the optimization to function effectively. In the
previous chapter, we discussed some techniques that could be used to address this issue. These
must be further investigated to determine their usability or to find other methods for identifying
the uncontrollable variables.
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Chapter 6
Conclusion

This project has utilized the dataset provided by Tine Jæren and employed various machine
learning algorithms and feature selection techniques to develop a predictive model to understand
the relationships between the dependent and independent variables. These insights have created
an optimization model to enhance the dry matter content. This model was integrated into a user-
friendly, easy-to-use website to demonstrate how the optimization model could be deployed in
the industry. The motivation behind this project is strongly driven by the use of new technology
to enhance and improve the quality of products in the food industry. The problem statement
and the research questions were introduced in Chapter 1.3.

The first research question we address is: How can machine learning models be used to predict
the dry matter content? We have discovered that predictive models can be developed by under-
standing the relationships and mapping between X (independent variables) and y (dependent
variable). The process begins with exploring and preprocessing the data, followed by exploratory
data analysis. During the modeling phase, it is necessary to identify suitable machine learning
algorithms and feature selection techniques, which vary depending on the chosen algorithm.
Our study utilized Permutation Feature, Sequential Feature Selector, and RENT with HGBR,
PLSR, and LR, respectively. By training these algorithms, they learn the relationship between
X and y, enabling them to predict the response variable.

The second research question we address is: How can we use insights from the predictive models
to create an optimization model that improves the quality of Norvegia Cheese? By analyzing the
relationships between X (independent variables) and y (dependent variable) using tools such
as ML, we can identify the variables that contribute to variance within the dataset and those
that are influential for predictive power. After selecting two models that perform best on test
data and CV, these models are employed in the optimization model. The optimization process
begins by identifying influential variables that can be practically adjusted. By categorizing
these variables into controllable and uncontrollable groups, we use non-linear programming to
adjust the controllable variables based on the uncontrollable variables, aiming to enhance and
achieve an optimal dry matter content between 57.6%-57.7%.

The third and final research question is: How can we utilize the results as digital decision support
to improve the industry’s production process? Integrating the optimization model into a user-
friendly website is not just a technological feat but a practical solution that enhances the quality
control of Norvegia Cheese’s dry matter. By examining the optimized values of the controllable
parameters, we gain insights into how adjustments to these variables affect the dry matter
content. This analysis enables us to perform various scenario analyses, providing actionable
intelligence that can lead to more informed decision-making and potentially transformative
adjustments in the production process.
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The research questions have guided our exploration of how and why controlling the dry matter
content is crucial and its significant impact on production. These questions have also helped
us answer the main problem statement, which is: How can machine learning and opti-
mization techniques be applied to improve the quality and production of Norvegia
cheese?. In conclusion, this thesis not only enhances our understanding of the critical fac-
tors influencing Norvegia cheese production but also paves the way for future advancements
in the field by integrating machine learning and optimization techniques. By addressing the
key questions that guided this research, we have laid the groundwork for more efficient and
effective production processes that promise to elevate the quality and sustainability of cheese
manufacturing.
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Appendix A
Appendix A: Overview of Variables

Name Description

batchid Batch ID
batch Batch number
artikkel Article number
artikkelBeskrivelse Description of the article
start Start of ystekar batch
stopp End of ystekar batch
Si batchid Batch ID for silo
Si start Start time for silo batch
Si utstyr Equipment used for silo (Silotank)
Si wilab f ftir Fat content (%) in silo milk, measured in the lab
Si wilab prot ftir Protein content (%) in silo milk, measured in the lab
Si wilab temp Temperature in silo (manually registered)
Si alder beregnet Calculated age in hours from start of silo batch to start of

cheese batch
Pa start Start time for pasteurization
Pa utstyr Pasteurization line used
Pa inlinefat Fat content (%) measured with inline NIR
Pa inlineprot Protein content (%) measured with inline NIR
Pa inlinetorrstoff Dry matter content (%) measured with inline NIR
Bs Batch Batch ID for culture used in cheesemaking
Bs artikkel Culture article
Bs Mengde Amount of culture added to the cheese vat in liters
Bs alder Hours from culture production completion to its use in the

cheese vat
Bs produsertMengde Amount of culture produced in this batch
Bs start Start time for culture production
Bs stopp End time for culture production
Bs wilab akt stm Culture activity measured in standard milk
Bs wilab akt ym Culture activity measured in today’s cheese milk
Bs wilab ph pH of the culture
Bs ph pHo pH at start from the culture production pH curve
Bs ph tmx Time from start to maximum pH (days)
Bs ph pHmx Maximum pH recorded
Bs ph t1 Time from start to when pH curve begins to fall (days)
Bs ph pH1 pH when curve begins to fall
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Continued from previous page

Name Description

Bs ph t2 Time from start to pH curve end of fall (days)
Bs ph pH2 pH when curve ends falling
Bs ph mx dpH Rate of pH fall
Bs ph pH stage120 pH at stage 120
Bs ph pH stage130 pH after cooling at stage 130
Bs temp Temp0 Temperature at start from the culture production tempera-

ture curve
Bs temp temp incubation Temperature during incubation/stage 91
Bs temp end incubation Temperature at end of middle level (incubation)
Bs temp start incubation Temperature at start of middle level (incubation)
Bs temp temp cooled Temperature after cooling
Bs temp start cooled Temperature at start of cooled period
Bs temp end cooled Temperature at end of cooled period
Bs temp Time stage26 Time from start to stage 26 (heating to max completed)
Bs temp Temp stage26 Temperature at stage 26 (heating to max completed)
Bs temp Time stage91 Time from start to stage 91
Bs temp Temp stage91 Temperature at stage 91
Bs temp Time stage130 Time from start to stage 130
Bs temp Temp stage130 Temperature at stage 130
Yk utstyr Cheesemaking vat
Yk mengde Amount of milk in cheesemaking vat in liters
Yk mysemengde r6001 Whey amount, R6001
Yk wilab ph my1 pH of whey, measured at MY1
Yk start2lopeTime Minutes from start to rennet addition (step 11)
Yk start2coagTime Minutes from start to coagulation (step 13)
Yk start2cutTime Minutes from start to cutting (step 15)
Yk start2myseavtappTime Minutes from start to whey removal (step 38)
Yk start2ystevannTime Minutes from start to cheese water addition (step 41)
Yk start2tommingTime Minutes from start to beginning of emptying (step 57)
Yk start2endTime Minutes from start to end (step 58)
Yk timeCoag Minutes during coagulation step
Yk timeCut Minutes during cutting
Yk timeMy1 Minutes during first whey removal
Yk timeYstevann Minutes during post-heating
Yk timeTomming Minutes during post-heating
Yk brukssyreToLopeAvgT Average temperature
Yk brukssyreToLopeStdT Standard deviation of temperature
Yk brukssyreToLopeSumT Area under time-temperature curve per second
Yk lopeToCoagAvgT Average temperature
Yk lopeToCoagStdT Standard deviation of temperature
Yk lopeToCoagSumT Area under time-temperature curve per second
Yk coagToCutAvgT Average temperature
Yk coagToCutStdT Standard deviation of temperature
Yk coagToCutSumT Area under time-temperature curve per second
Yk cutToMy1AvgT Average temperature
Yk cutToMy1StdT Standard deviation of temperature
Yk cutToMy1SumT Area under time-temperature curve per second
Yk my1ToYstevannAvgT Average temperature
Yk my1ToYstevannStdT Standard deviation of temperature
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Continued from previous page

Name Description

Yk my1ToYstevannSumT Area under time-temperature curve per second
Yk ystevannToTommingAvgT Average temperature
Yk ystevannToTommingStdT Standard deviation of temperature
Yk ystevannToTommingSumT Area under time-temperature curve per second
Yk tommingToendAvgT Average temperature
Yk tommingToendStdT Standard deviation of temperature
Yk tommingToendSumT Area under time-temperature curve per second
Yk ystevanntempMean Average temperature of cheese water when added to the

cheesemaking vat
Yk ystevanntempStd Standard deviation of temperature of cheese water when

added to the cheesemaking vat
Yk phInlineMy1 pH of first whey removal measured with inline sensor
Bu utstyr Buffer tank
Bu duration Minutes from ”start” to ”stop” of buffer batch
Bu level Fill level in the buffer tank
Bu filltime Minutes from start of filling to full tank
Bu emptytime Minutes from start of emptying to empty tank
Bu tempmin Minimum temperature in buffer tank
Bu tempmax Maximum temperature in buffer tank
Bu tempmean Average temperature in buffer tank
Bu start2casomaticTime Minutes from start of cheesemaking to ”stop” of buffer batch
Bu cut2casomaticTime Minutes from cutting step in cheesemaking to ”stop” of

buffer batch
Bu coag2casomaticTime Minutes from coagulation step in cheesemaking to ”stop” of

buffer batch
Ost inlineFett Fat content (%) in fresh cheese, measured with inline NIR
Ost inlineTS Dry matter content (%) in fresh cheese, measured with inline

NIR
Ost wilab ph 4t pH in fresh cheese (manual measurement)
Ost phReduction4T Difference between pH in cheese milk and pH in fresh cheese
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