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Abstract

This thesis made deep learning models for time-to-event prediction on patients
with head and neck cancer. The follow-up period was split into ten time intervals,
spanning a five year period. The models predicted the time until two different end-
points, overall survival and disease free survival. Models, based on the EfficientNet
architecture, were given combinations of CT and PET images, and contours around
the primary tumor and nodal areas, as input. The models were evaluated using
Harrell’s Concordance Index (C-index), the Area Under the Receiver Operating
Characteristic Curve (AUC) and the Integrated Brier Score (IBS) as metrics, using
one internal dataset to train and validate the models, and one external dataset
for testing. The model that achieved the highest overall performance utilized CT,
PET, and a primary tumor contour as inputs, and was able to achieve a C-index
of 0.74, AUC of 0.69 and IBS of 0.16 on the internal dataset. The predictions on
the overall survival endpoint were generally of a higher score than predictions on
the disease free survival endpoint, across all metrics.

Additionally, the models were assessed on their explainability, detailing how the
model predictions related to the observed real data, and what parts of the images
the models used for predictions. This was done using Kaplan-Meier curves, and
saliency maps from the Variance of the Model Gradients method and the Shap-
ley Additive Explanations method. The Kaplan-Meier curves indicated that the
models generally overestimated the survival probabilities of all patients. Saliency
maps generated using the Variance of the Model Gradients method and the Shap-
ley Additive Explanations method showed that the PET modality was the most
influential in model predictions, while the CT modality had the least influence.
The models mostly took information from the primary tumor area when predict-
ing on the overall survival endpoint, and from both the primary tumor and nodal
areas when predicting on the disease free survival endpoint. The Shapley Addi-
tive Explanations method for explaining the model predictions proved to show the
same areas as the Variance of the Model Gradients method.
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Chapter 1

Introduction

1.1 Head and Neck Cancer

In Norway, there were 38 094 new cases of cancer in 2023, following 11 451 cancer-
related deaths in 2022 [1].

Head and Neck Cancer (HNC) is a group of cancers in the tissues and organs of the
head and neck region [2] [3]. Tumors arise in the oral and nasal cavity, pharynx,
larynx, sinuses and salivary glands. Worldwide, HNC is the seventh most common
cancer [4]. The most common type of HNC, accounting for over 90% of cases, is
squamous cell carcinoma, and results in approximately 400 000 worldwide deaths
annually [2].

Consumption of alcohol and tobacco are leading contributors to HNC due to the
carcinogens they introduce to the lining of the aerodigestive pathway [5]. This in-
creases the likelihood of developing both initial and additional cancers in the head,
neck, lungs, throat, and other regions with similar risk profiles. Approximately
75% of HNC is caused by alcohol and tobacco use, while the remaining 25% is
mainly caused by Human Papillomavirus (HPV) [6] [7].

Various imaging techniques are employed to determine the stage of the cancer and
to develop a treatment strategy. Computed Tomography (CT) images provide a
detailed view of bones, blood vessels and soft tissues, useful for cancer staging and
treatment planning [8] [9]. Positron Emission Tomography (PET) images show the
metabolic activity in tissues, aiding in detecting cancerous areas [10]. In addition to
medical images, a Gross Tumor Volume (GTV) contour around the primary tumor
(GTVp) and nodal area (GTVn) are manually delineated by oncologists, guided
by the medical images [11] [12]. During the planning of cancer treatments, GTV
contours are drawn around tumors and nodes to focus the treatment precisely,
ensuring that healthy tissue is preserved while the tumor is targeted.

The treatment of HNC varies based on how developed the cancer is, where the
cancer is located and whether or not surgery is possible [13]. Treating the cancer
often includes surgery, radiation and chemotherapy.

1.2 Objectives

Radiomics involves extracting large amounts of features from medical images in a
designated region of interest [14]. This process involves manual or semi-automatic
feature extraction, and leads to variability and highly correlated features [15].
These issues can lead to models with poor generalizability due to the high number
of features, and arbitrarily chosen features importance due to the high correlation.
A Convolutional Neural Network (CNN) model can offer an alternative way of ex-
tracting features, done automatically by the CNN model from the medical images,
potentially leading to better feature extraction with more robust models.
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The primary objective of this thesis is to develop time-to-event CNN survival
models. The models will be using HNC datasets, predicting the survival time
until the endpoints Overall Survival (OS) and Disease Free Survival (DFS). One
dataset will be used for model training and internal validation, and a separate
external dataset, not seen by the models during the training phase, will be used
for model evaluation, to ensure unbiased performance metrics. The models will
be given combinations of CT, PET and GTV contours as input. This is done to
automate the process of feature extraction from medical images. Crucial to this
objective is assessing the different possible combinations of modalities and how
they impact the model performance.

Secondly, an analysis of model interpretability is done to validate the predictions
and facilitate trust and transparency in the models. The interpretability analysis
is done with Kaplan-Meier (KM) curves, and saliency maps from the Variance of
the Model Gradients (VarGrad) method and the SHapley Additive exPlanations
(SHAP) method. These methods aim to clarify how the model performed relative
to the observed data, and which features are relevant for time-to-event predictions.

1.3 Related Works

Among the contributions within the domain of time-to-event analysis, done on
HNC with the use of CNNs, is the study conducted by Wang et al. [16], which
explores the potential of deep learning models to predict Distant Metastasis (DM)
and OS in patients with HNC. Wang et al. used a 3D-Resnet architecture combined
with a time-to-event outcome model. A log likelihood loss function was used
to incorporate censoring information in the model. Their study compared five
different models based on PET images, CT images and/or a GTV contour as
input. Evaluation of these models’ predictive performance was done with Harrel’s
Concordance Index (C-index) and KM curves. For both the DM and OS endpoints,
the PET-only model exhibited the highest C-index performance, suggesting that
PET images, even without tumor and nodal volume segmentation, might be more
informative for prognosis in HNC compared to CT images or combined PET+CT
modalities.

The HEad and neCK TumOR (HECKTOR) challenge provides a competitive en-
vironment for researchers to test and refine their algorithms on a standardized,
high-quality dataset consisting of diverse patient cases across several institutions
[17] [18]. The winner of the outcome prediction task from the 2022 HECKTOR
challenge, Rebaud et al. [19], developed a binary-weighted radiomics model for
time-to-event analysis, predicting recurrence-free survival. The model achieved a
C-index of 0.68 by using a simple nnUNet model for segmentation of the tumor,
and extracting radiomics features from the segmented area.
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Chapter 2

Theory

2.1 Survival Analysis

Survival analysis is a branch of statistics concerned with time-to-event data [20]
[21] [22]. It addresses several limitations of conventional methods, like the handling
of censored data, and considering the timing of an event. Survival data typically
contain information about an event and the time until that event occurred. In the
medical field, an event is commonly the death of a patient or the recurrence of
a disease. The main objectives of survival analysis are to estimate and interpret
survival and hazard functions, and assess the relationship of explanatory variables
to survival [20].

2.1.1 Censoring

Figure 2.1: Types of censoring. 1. shows a not censored patient where the event
occurred within the study period. 2. shows a right-censored patient that did not
have the event occur within the study. 3. shows a left-censored patient whose
event occurred at an unknown time before the beginning of the study. 4. shows an
interval-censored patient whose exact event time is unknown, but known to have
occurred within an interval of time.

A unique aspect of survival analysis is the handling of censored data, which occurs
when there is incomplete information about the timing of the event for some study
participants [21].

3



Reasons for incomplete information include [21]:

� The study ends before the event was observed for a patient.

� Loss to follow-up, meaning that the patient is no longer available to the
study.

� The patient actively withdraws from the study.

Figure 2.1 shows four types of censoring which can happen within survival analysis.

1. Not censored:

The event occurred within the study period, and no information is
required prior to the beginning of the study [21]. All information is present,
therefore the patient is not censored.

2. Right-censored:

The study ends, or the patient leaves the study, before an event is
observed [21]. The exact time of the event is unknown, but it is known to
be later than the last recorded time point.

3. Left-censored:

The event occurred before the patient entered the study [21]. The
exact time of the event is unknown, but it is known to have happened before
the first time point.

4. Interval-censored:

The event is known to have occurred within a specific time interval,
but the exact time is unknown [21]. This type of censoring often arises in
follow-up studies where patients are checked at intervals.

Not including censoring information in the analysis would lead to inaccurate and
invalid results [21]. When right-censoring information is ignored, the analysis
would assume that all patients who did not have the event occur within the study
had the event occur when they were censored. This leads to a bias of underesti-
mating the survival times, since it falsely shortens the observed survival times of
right-censored individuals [22]. Excluding left-censoring information leads to an
underestimation of survival times, since the analysis would incorrectly assume that
these individuals were at risk only from the beginning of the study period [22].
Disregarding interval-censoring leads to either underestimating or overestimating
the event times, depending of where in the interval the event occurred [22]. These
model biases could lead to incorrectly estimating the survival function, hazard
rates, and the effects of covariates on survival times [22].
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2.1.2 Survival Function

The survival function, given in Equation 2.1, is the probability that a subject’s
time until event, T , is greater than some specified time t [22]. That is, S(t) gives
the probability that an individual survives longer than a specific time t.

S(t) = P (T > t) (2.1)

The survival function is non-increasing, since the probability of surviving past a
certain point either decreases or stays the same as time progresses [22]. At t = 0
the probability of surviving is necessarily 1, and therefore S(t = 0) = 1. As t ap-
proaches infinity, survival must necessarily approach 0, therefore S(t = ∞) = 0.
The value of S(t) for a dataset at any given time is a direct measure of the pro-
portion of individuals that is expected to survive beyond that time.

2.1.3 Hazard Function

The hazard function, h(t), is the instantaneous rate of an event occurring at time t,
given no prior occurrence up to that time [22]. Unlike the survival function, which
gives the probability for surviving beyond a certain time, the hazard function
gives the immediate risk of event occurrence at a certain time point. The hazard
function, given in Equation 2.2, is the limit of the probability of an event occurring
in the interval [t, t+∆t), divided by the length of the interval, as ∆t approaches
0. Where T is the time until the event occurs.

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
(2.2)

The hazard function is a probability per unit of time, and therefore a rate of
hazard [22]. It has no upper bound, ranging from 0 to infinity. This hazard rate is
not directly interpretable, but can be interpreted by comparing it to other hazard
rates.

The hazard function can be derived from the survival function [22], shown in
Equation 2.3, given by

h(t) = −
d
dt
S(t)

S(t)
(2.3)

And likewise the survival function can be derived from the hazard function [22],
shown in Equation 2.4, given by

S(t) = e−
∫ t
0 h(u) du (2.4)

This relationship shows the survival functions dependence on the cumulative haz-
ard function [22]. The cumulative hazard function H(t), shown in Equation 2.5,
is a measure of the accumulated risk up to a specified time t, given by

H(t) =

∫ t

0

h(u) du (2.5)
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2.2 Kaplan-Meier Curves

The KM estimator is a statistic used to estimate the survival function from time-
to-event data [23]. The KM estimator calculates the survival probabilities without
assuming a statistical distribution for the data. The KM estimator Ŝ(t), shown in
Equation 2.6, gives a step wise survival function where the survival probabilities
decrease only at times when an event occurs [22]. Between the event times the
survival probability remains constant.

Ŝ(t) =
∏
ti≤t

(1− di
ni

) (2.6)

Here, ti are the times where at least one event has occurred in the set of total
times t, di is the number of events that occurred at times ti, and ni is the number
of individuals at risk before ti, referred to as the risk set.

The KM estimator accounts for right-censoring by only calculating the survival
estimate at times where an event occurs [22]. Patients who have not experienced
an event are included in the risk set calculation up to their censoring time, but
do not directly alter the survival probability estimates. Censoring information is
assumed to be random and non-informative. This means that censoring does not
provide any information about a patient’s survival probability, and that there is
no systematic reason for censoring occurring [22].

Figure 2.2: An example of KM curves, showing the estimated survival probability
of two groups. Ticks on the KM curves indicates times where one or more patient
were censored. Shown under the graph is a risk count. The risk count shows the
number of patients that are at risk of experiencing the event, censored, or have
had the event occur, at the various time intervals throughout the study.
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As seen in Figure 2.2, KM curves are visual representations of the estimated sur-
vival function, Ŝ(t), over time [22]. The KM curve shows how survival probabilities
decrease over time, helping identify critical periods of risk or survival benefit. KM
curves can be compared to each other to uncover differences between groups, such
as comparing the effect of a covariate on survival by grouping the KM curves by
the covariate.

The log-rank test, first introduced as a chi-square test in [24], is used to assess
statistical significant difference between two or more KM curves. The log-rank test
compares the expected and observed event occurrences under the null hypothesis
that there is no difference between the curves.

The log-rank statistic is calculated as follows [25] [22]:

1. For each time point an event occurs, calculate the expected number of events
based on the number of individuals at risk in a group relative to the total
population at risk at that time point, given in Equation 2.7, as,

Eij =
nij

nj

dj (2.7)

where Eij is the expected number of events in group i at time j. nij is the
number of individuals at risk in group i just before time j. nj is the number
of individuals at risk across all groups just before time j. dj is the total
number of events observed across all groups at time j.

2. Calculate the difference, D, between the observed and expected number of
events for each group at each time point, given in Equation 2.8, as,

D = Oij − Eij (2.8)

where Oij is the number of observed events in group i at time j.

3. Calculate the variance, Vij, between the observed and expected events.

4. Sum up the differences between observed and expected events, divided by
the variance, to obtain the test statistic. The test statistic, χ2, follows a
chi-square distribution, as shown in Equation 2.9, where degrees of freedom
equals the number of groups minus one.

χ2 =
∑
j,i

(Oij − Eij)
2

Vij

(2.9)

The log-rank test assumes proportional hazards, meaning the hazard ratios be-
tween any two groups are constant over time [26] [22]. The test is still applicable
if this is not the case, but it will be less likely to detect a true difference in survival
between the groups. A visual way of determining if the hazard is proportional is
by seeing if the KM curves cross. If they do, the proportional hazard assumption is
violated. The log-rank test is said to be significant if the p− value of the log-rank
test is under a set threshold, usually 5%, which corresponds to a p− value of 0.05.
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2.3 Radiomics

Radiomics involves extracting a large number of quantitative features from a spec-
ified region of interest in images [14]. Features may be related to texture, shape
and intensity of the image regions, among many others. These extracted features
can be used as input for a survival model by choosing to extract features from a
relevant region of interest in medical images.

Feature range in complexity from first-order, second-order and higher-ordered fea-
tures [14]. First-order features are those that quantify voxels in an image without
considering their spatial relationship. This includes metrics like mean or maximum
voxel intensity, and distribution based features like entropy. Second-order features
take spatial relationships into account, and are often texture-based features, like
Gray Level Co-occurrence Matrix, which analyzes texture by measuring the fre-
quency with which pairs of voxels with specific values occur in a specified spatial
relationship within an image. Higher-order features are calculated by filters put
over the image to find complex patterns. An example of a higher order feature is a
wavelet transformation, which decomposes an image into multiple scales, analyzing
patterns and textures at different resolutions and orientations.

A common problem with radiomics is the high number of features extracted [15].
These features are highly correlated with each other, leading to redundancy and
collinearity, which complicates the model and leads to overfitting and low general-
izability. One solution to this problem is the use of CNNs to automate the feature
extraction and selection process [27] [28].

2.4 Convolutional Neural Networks

CNNs are a type of deep learning model specialized in processing data from mul-
tiple arrays, such as images [29]. Several types of layers are added in order to
facilitate automatic feature extraction and prediction.

Figure 2.3: Simple CNN architecture by [30]. This work is licensed under a
“CC BY 4.0” license. The image shows a simple structure of a typical CNN
model, using several convolution and pooling layers after the input, and ending in
a fully connected layer followed by an output layer.

8
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As seen in Figure 2.3, the first layers of a CNN are most often convolutional and
pooling layers [29]. Convolutional layers apply filters over the input and creates
feature maps. These feature maps capture spatial relationships in the input, such
as edges, textures, or complex patterns. At the end of a convolutional layer is an
activation function that is applied to the feature map to introduce non-linearity to
the model. Pooling layers are used to reduce the dimensions of the feature map,
while preserving the most important information. Max pooling, the most common
pooling layer, selects the maximum value from a given region.

After several iterations of convolution and pooling, a fully connected layer is added
[29]. The fully connected layer connects all activations from the previous layer,
and performs the higher level reasoning in the model. After the fully connected
layer comes the final output layer, which outputs the models predictions.

After model predictions are made, the model error can be calculated. The loss
function is a function that calculates how far the model predictions deviate from
the true values [31]. Different loss functions are required for different tasks, like
Mean Square Error for regression, or Cross-Entropy Loss for a classification task
[29].

The CNN learns by changing the weighting between layers and in the filters in the
network [29]. This is done by backpropagation, where the weights are updated
relative to the gradient of the loss function, which indicates the direction to adjust
the weights to minimize the error in predictions [31]. The weights are updated
by an optimizer, which updates the weights to minimize the loss function [31].
The size of the updates is called the learning-rate. Different optimizers change
the weights in different ways, like the Stochastic Gradient Descent optimizer [32],
which updates the weights proportionally to the gradient, or the Adam optimizer
[33], which dynamically changes the learning-rate for each weight.

The batch size is the number of samples used a single iteration of the model [31].
An epoch is a full pass through of the entire training dataset. The number of
iterations in one epoch is equal to the total number of samples in the training
dataset divided by the batch size. For example, if there are 1 000 samples in
the training dataset and the batch size is 100, then one epoch will consist of 10
iterations. The model weights are updated each iteration using the optimizer.
The process is repeated for several epochs. Choosing too few epochs can lead
to not capturing the complexities of the data, called underfitting. Choosing too
many epochs can lead to the model learning noise in the training data, and not
generalizing well, called overfitting.

In survival analysis, CNNs can be faster and more consistent than conventional ap-
proaches to radiomics [27], outperforming models like the Cox proportional hazard
model [25] [34]. However, CNNs tend to fail in unusual cases that are not repre-
sented well in the training data, and are harder to interpret due to their architec-
tures which transform the data in ways that are not straightforward understand
[35] [36].
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2.5 The Negative Log Likelihood Loss Function

Gensheimer et al. [37] introduced an approach for analyzing survival data using a
discrete-time framework adapted for neural networks. This method is particularly
advantageous in handling the intrinsic complexities of survival data, including
right-censored observations and time-varying hazards. The core of this approach
lies in their formulation of the log likelihood loss function.

According to [37], the follow-up period is divided into discrete time intervals. The
probability of an event occurring in a given interval j is the conditional hazard
probability, denoted by hj, assuming the individual has survived up to that in-
terval. The survival probability until the end of interval j, represented as Sj, is
defined in Equation 2.10, given by

Sj =

j∏
i=1

(1− hi) (2.10)

The likelihood function incorporates contributions from each individual depending
on their event occurrence [37]. Equation 2.11 shows the likelihood contribution, L,
for an individual who experiences the event in interval j (uncensored). The likeli-
hood contribution is the probability of surviving through interval j − 1 multiplied
by the hazard probability at interval j, hj, and is given by

Luncensored = hjSj−1 = hj

j−1∏
i=1

(1− hi) (2.11)

The censored individual’s contribution is the survival probability up to the cen-
soring interval, as seen in Equation 2.12,

Lcensored = Sj−1 =

j−1∏
i=1

(1− hi) (2.12)

To simplify the calculations, the likelihood function, L, is represented in logarith-
mic form, making it possible to convert the product to a summation. For a cohort
of N individuals, the full log likelihood loss function, shown in Equation 2.13,
is the sum of contributions from censored and uncensored individuals, combining
Equation 2.11 and Equation 2.12,

logL =
N∑

n=1

[δn · ln(hn,j) + ln(Sn,j−1)] (2.13)

Here, δn is an indicator variable with the value 1 if the event occurs for individual
n and 0 if the event does not occur.

A neural network survival model will minimize the loss function, while the log
likelihood function should be maximized. Therefore, the loss function, defined in
Equation 2.14, is given by the negative of the log likelihood,
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− logL = −
N∑

n=1

[δn · ln(hn,j) + ln(Sn,j−1)] (2.14)

2.6 Evaluation Metrics

2.6.1 Area Under the Receiver Operating Characteristic
Curve

The Area Under the Receiver Operating Characteristic Curve (AUC) is a widely
used metric for evaluating the performance of binary classification models [38]. It
offers a comprehensive measure of a model’s ability to distinguish between two
classes. In the context of survival analysis, these two classes will be whether or
not the event occurred [39].

The AUC is derived from the Receiver Operating Characteristic Curve (ROC) [39].
The ROC is created by plotting two parameters, True Positive Rate (TPR) and
False Positive Rate (FPR).

The TPR, shown in Equation 2.15, is the proportion of correctly predicted positive
classes divided by the total number of actual positive classes, given by

TPR =
TP

TP + FN
(2.15)

where TP is the number of true positive model predictions and FN is the number
of false negative predictions.

The FPR, shown in Equation 2.16, is the proportion of falsely predicted positive
classes, divided by the total number of actual negative classes, and is given by

FPR =
FP

FP + TN
(2.16)

where FP is the number of false positive predictions and TN is the number of
true negative predictions.

The model predicts a probability of each sample belonging to one of the two classes.
To decide which class a probability score corresponds to, a classification threshold
is used [38]. The classification threshold is a cut-off value that determines whether
a probability score classifies an instance as belonging to the positive class or the
negative class. If the probability score of an instance is above this threshold, the
instance is classified as positive, otherwise, it is classified as negative. As the
classification threshold changes from 0 to 1, the TPR and FPR will change, and
plotting these changes yields the ROC curve [38], as seen in Figure 2.4.
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Figure 2.4: An example of ROC curves. The performance of a model making
random predictions is shown with the red dashed curve, indicating half of the
model predictions were false positives. Perfect performance is shown with the
green dashed curve, which follows the y-axis up to 1 and follows the top, indicating
zero false positive predictions. A typical ROC curve is shown with the blue curve,
in between random and perfect performance. The blue curve is jagged, as opposed
to smooth, because the threshold moves in discrete steps and is not continuous.
The AUC corresponding to the typical ROC curve is shown in the shaded area
underneath the blue curve.

The AUC quantifies the entire two-dimensional area underneath the ROC curve
[38]. This way it provides a single scalar value to assess the model’s ability to
discriminate between positive and negative classes. The AUC value ranges from 0
to 1:

� AUC = 1: The model has perfect discrimination ability, correctly classifying
all positive and negative instances. This corresponds to the dashed green
curve in Figure 2.4.

� 0.5 < AUC < 1: The model has a good to excellent discrimination ability.
The higher the AUC, the better the model is at correctly predicting the
classes. This corresponds to the jagged blue curve in Figure 2.4.

� AUC = 0.5: The model has no discrimination ability and is randomly guess-
ing. It is unable to distinguish between the two classes, as shown in the
dashed red curve in Figure 2.4.

� AUC < 0.5: The model performs worse than random chance. This scenario
suggests that predictions are inversely related to the actual values.
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2.6.2 Harrell’s Concordance Index

Harrell et al. [40] presented a method for evaluating the informational value of
medical tests. The C-index measures the predictive accuracy of a model in terms
of its ability to correctly rank pairs of observations. This metric extends the
concepts of the AUC to accommodate censored data [17]. When dealing with
binary outcomes and no censored data, the C-index is equivalent to the AUC.
Both metrics then assess the model’s ability to differentiate between two classes.

Two subjects are denoted as i and j, with their respective event times Ti and Tj,
and predicted risk scores ηi and ηj. The metric assess whether observations with
a longer survival time T are assigned a lower estimated risk score η by the model,
compared to those with shorter event times [40].

A pair (i, j) is defined as [41]:

� Concordant, if the model estimated risk score is higher for individual i (ηi >
ηj) and individual i experienced the event earlier than j (Ti < Tj).

� Discordant, if the model estimated risk score is higher for individual i (ηi >
ηj) but individual i experienced the event later than j (Ti > Tj).

Assessing the concordance of pairs is straight forward when both individuals are
uncensored, that is, both Ti and Tj are known. In this case the risk scores are
compared to obtain the C-index score [41].

When one of the event times, Ti, is observed, but the other, Tj, is censored, and
Tj is greater than Ti (Tj > Ti), it is clear that patient i experienced the event first
[41]. In this case, the pair (i, j) is concordant if ηi > ηj, and discordant if ηi < ηj.

On the other hand, if Ti is observed, but the other event time Tj is censored, and
Tj is less than Ti (Tj < Ti), the order of events is ambiguous, since it is unknown
whether the event for Tj would have occurred before or after Ti if it had not been
censored. These pairs are not considered in the C-index calculation [41].

If both Ti and Tj are censored, it remains uncertain who experienced the event
first, or if it occurred at all. Therefore, pairs with two censored individuals are
excluded from the computation [41].

The full Equation for the C-index [42] is given by

C =

∑
i,j:ti<tj

I(ηi > ηj)δi∑
i,j:ti<tj

δi
(2.17)

where

I(ηi > ηj) =

{
1, if ηi > ηj

0, otherwise

and

δi =

{
0, if individual i is censored

1, if individual i is uncensored

Using Equation 2.17, a score of 1 is a perfect score, where all pairs of observations
are correctly ordered by their risk scores. A score of 0.5 indicates random predictive
performance with no discriminating ability.
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The accuracy of the C-index can be overly optimistic or inflated when there is
a high degree of censoring in the data [41]. This bias occurs as the number of
comparable pairs decreases, potentially leading to an overestimation of the model’s
predictive performance.

2.6.3 Integrated Brier Score

The Brier Score (BS) is a measure used to assess the accuracy of probabilistic
predictions [43]. The metric quantifies the accuracy of predictions by comparing
the predicted probabilities of events to actual outcomes at a specific time point
[44], given in Equation 2.18,

BS =
1

N

N∑
i=1

(oi − π̂(t|Xi))
2 (2.18)

where N is the number of predictions, oi is the actual outcome corresponding
to prediction i, and π̂(t|Xi) is the predicted probability of the event for the ith

prediction at time point t, given the input X. The BS ranges from 0 to 1, where
0 indicates perfect accuracy and 1 denotes the lowest possible accuracy.

For time-to-event analysis, the BS can be divided into three categories based on
censoring status and the time of the event occurrence relative to the time point of
BS calculation [44].

These categories are [44]:

1. Individual i had the event occur before BS calculation: ti ≤ t, δi = 1
Here, ti is the event time, t is the time at which the BS is being calculated
and δi is a binary indicator of whether an individual is censored, δi = 0, or
uncensored, δi = 1. Category 1’s contribution to the BS, following Equation
2.18, is defined as Equation 2.19,

BS = (0− π̂(t|Xi))
2 (2.19)

Since the individual has had the event occur, the actual outcome, oi, is 0.

2. Individual i has not had the event occur before BS calculation, making cen-
soring status uncertain. In this case, ti > t, δi = 1 or δi = 0.
Category 2’s contribution to the BS is given by Equation 2.20,

BS = (1− π̂(t|Xi))
2 (2.20)

Since the individual has not had the event occur, the actual outcome, oi, is
1.

3. Individual i is censored before BS calculation. In this case, ti ≤ t, δi = 0.
Category 3’s contribution to the BS is undefined since the event status at
time t is unknown.

The equations for category 1 and 2 combine into Equation 2.21 for the Time
Dependent Brier Score (BS(t)) [44], given by
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BS(t) =
1

N

N∑
i=1

I(ti ≤ t, δi = 1)(0 − π̂(t|Xi))
2 + I(ti > t)(1 − π̂(t|Xi))

2 (2.21)

where I is an indicator of which category an individual belongs to.
I(ti ≤ t, δi = 1) = 1 means a category 1 individual that had the event occur before
time t. I(ti > t) = 1 means a category 2 individual that did not have the event
occur before time point t.

To take censoring into account, category 1 and 2 observations are weighted by the
inverse probability of censoring [44]. Category 3 observations are included in the
calculation of the probability of censoring. These probabilities are Kaplan-Meier
estimates of the censoring distribution, denoted as Ĝ(t). Category 1 observations
are weighted by 1

Ĝ(ti)
and category 2 by 1

Ĝ(t)
. The censoring distribution Ĝ(ti) is

specific to a certain event time, ti, of each observation, reflecting the probability
of surviving just to this event time. The distribution Ĝ(t) is for all censored
observations, reflecting the probability of surviving the whole follow-up period.

The Time Dependent Brier Score Under Random Censorship (BSc(t)), shown in
Equation 2.22, combines Equation 2.21 and the inverse probability of censoring
weights [44], and is given by

BSc(t) =
1

N

N∑
i=1

(0− π̂(t|Xi))
2

Ĝ(ti)
I(ti ≤ t, δi = 1) +

(1− π̂(t|Xi))
2

Ĝ(t)
I(ti > t) (2.22)

A model making random predictions would, on average, predict π̂(t|Xi) = 0.5. It
follows from Equation 2.22 that ∀i ∈ [1, N ], π̂(t|X) = 0.5 then BSc(t) = 0.25 is
the BSc(t) score for a randomly guessing model.

The Integrated Brier Score (IBS) extends the metric so as to provide a score for a
specified time period [t0, t1] [44]. To calculate the IBS, Equation 2.22 is integrated
over the time period, as shown in Equation 2.23,

IBS =

∫ t1

t0

BSc(t) dW (t) (2.23)

where W (t) is a weighting function used to put emphasis on different time points
[44]. A common weighting function is W (t) = t

t1
, which has a linear increase of

weight with time.

2.7 Explainability Methods

2.7.1 Variance of the Model Gradient

A measure for evaluating the accuracy of feature importance estimates was pro-
posed in [45]. The method quantifies model accuracy as it degrades when features
deemed important by the model are removed from the input data. Many com-
monly used explainability methods, such as Integrated Gradients [46] and Guided
BackProp [47], were found to be worse or equal to randomly marking features
as important [45]. However, the ensemble techniques SmoothGrad-Squared and
VarGrad were shown to outperform random feature importance.
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VarGrad is a method for interpreting CNN predictions by computing gradient-
based saliency maps [48]. VarGrad works by perturbing the input and focusing
on the variance in the gradients of the model’s output over several perturbations.
Areas of high variance are more influential on the model’s predictions, and therefore
provide an indicator of feature importance. VarGrad is defined in Equation 2.24.

VarGrad = ν(E(x+ gi)) (2.24)

The model explanation method, E(x), where x is the model input, is perturbed
by gi, noise from a normal distribution such that gi ∼ N (0, σ2). The standard
deviation of the normal distribution σ is manually chosen when computing the
VarGrad. This process is repeated a set number of times per sample. The variance,
ν, is calculated from these perturbed sets of inputs, giving the VarGrad saliency
map.

2.7.2 Shapley Additive Explanation

SHAP is a model interpretability method that assigns each feature an importance
value for a particular prediction [49]. This importance value is based on additive
feature importance measures under three properties. Additive feature importance
measures, defined in Equation 2.25, express model predictions as a sum of indi-
vidual feature contributions with a baseline reference value, ϕ0, given by

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′
i (2.25)

Here, g(z′) is the explanation model with the simplified input space z′ ∈ 0, 1M ,
M is the number of simplified input features. z′ is a binary vector of whether
a feature is included in the simplified space. The baseline reference value ϕ0,
is the value of predictions if no features were present, usually the average of all
predictions. ϕiz

′
i is the feature importance value, ϕi, of each feature i multiplied

by their presence in the simplified input space z′i. This decomposes the predictions
into the contributions of the individual feature [49].

To compute SHAP values, the additive feature importance measures must fulfill
three properties [49], listed below. These properties are derived from game the-
ory and the concept of Shapley values, where the goal is to fairly distribute the
“payout” (prediction) among the “players” (features) based on their contribution:

1. Local Accuracy
For a specific input, the sum of all SHAP values, ϕ, plus the baseline reference
value ϕ0, must equal the original model prediction.

2. Missingness
All features with no impact on prediction have no impact on SHAP values.
That is, a feature that does not change the model prediction should not
contribute to the SHAP explanation.

3. Consistency
If a feature’s contribution to the model prediction increases or stays the
same, regardless of the other features’ values, the corresponding SHAP value
should not decrease.
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By applying the three properties, local accuracy, missingness and consistency to
the additive feature importance measure, SHAP ensures the feature importance
measures are fair and accurate, reflecting the true impact of each feature on the
model predictions [49].
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Chapter 3

Materials and Methods

3.1 Patient Characteristics

Table 3.1: Patients characteristics for the Oslo University Hospital (OUS) and
Maastro Clinic Maastricht (MAASTRO) datasets, adapted from [28].

Characteristics OUS MAASTRO

Number of patients

139 99

Age [years]

Mean ± SD (median) 60.2± 7.7(60) 61.6± 9.5(61)

Gender

Male 107 (77.0%) 73 (73.7%)

Female 32 (23.0%) 26 (26.3%)

Overall stage

I-II 72 (51.8%) 19 (19.2%)

III-IV 67 (48.2%) 80 (80.8%)

Smoking [packs per year]

Mean ± SD (median) 25.0± 22.8 (22.5) 46.1± 47.5 (40)

HPV-related cancer

Yes 80 (57.6%) 22 (22.2%)

No 59 (42.4%) 77 (77.8%)

Charlson comorbidity index

0 86 (61.9%) 25 (25.3%)

1-6 53 (38.1%) 74 (74.7%)

SUVpeak

Mean ± SD (median) 11.0± 5.4 (10.0) 11.2± 6.2 (10.6)

OS

Event 57 (41.0%) 53 (53.5%)

Non-event 82 (59.0%) 46 (46.5%)

DFS

Event 68 (48.9%) 59 (59.6%)

Non-event 71 (51.1%) 40 (40.4%)

Proportion of censored patients

OS 61.4% 45.6%

DFS 54.3% 40.4%
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Patients with HNC from two different cohorts, a total of 238, were analyzed [28].
From Oslo University Hospital (OUS), 139 patients were collected between the
years 2007 to 2013. 99 patients from the Maastro Clinic Maastricht (MAASTRO)
clinic where collected between years 2008 to 2014. Patients from both cohorts who
lacked contrast-enhanced CT scans, had oropharyngeal cancer, or had unknown
HPV status were excluded from this thesis.[28]. Patient characteristics are shown
in Table 3.1, adapted from [28].

Patients from both hospitals shared a similar age distribution, with OUS having a
mean age of 60.2 with a standard deviation of 7.7, and MAASTRO having a slightly
higher mean age of 61.6 with standard deviation 9.5. The gender distribution was
also similar, with 77.0% being male in the OUS dataset, and 73.7% in MAASTRO.

The MAASTRO patients had a notable higher proportion of high stage cancers,
where 80.8% of MAASTRO patients had cancer Stage III-IV, compared to the
relatively even distribution in the OUS data, where 48.2% of patients have Stage
III-IV. The MAASTRO data also had a higher number of cigarette packs smoked
per year. MAASTRO patients smoked an average of 46.1 packs per year com-
pared to 25.0 packs per year for OUS patients. This indicates that patients from
the MAASTRO clinic had a higher disease severity and a larger consumption of
tobacco.

On the other hand, HPV-related cancers were more common among OUS patients.
57.6% of patients from the OUS hospital had HPV-related cancer, compared to a
considerably lower percentage of 22.2% in MAASTRO patients.

The Charlson comorbidity index is a measure of mortality risk [50]. A higher
number corresponds to a higher severity of risk. The OUS dataset had a larger
proportion of patients with a score of 0, 61.9%, compared to 25.3% for MAASTRO
patients, where the majority had scores between 1 and 6.

The max Standardized Uptake Values (SUV), a measure of the maximum
metabolic activity in the pet images [51] [10], is similar across the datasets. The
OUS dataset had a mean SUVpeak of 11.0 with a standard deviation of 5.4, while
the MAASTRO dataset had a mean SUVpeak of 11.2 with standard deviation 6.2.

The endpoints used in this thesis were OS and DFS. OS was defined the time from
the beginning of treatment until death [28]. DFS was the time from the beginning
of treatment until the first signs of recurrence of the cancer. The MAASTRO
patients had a higher proportion of experienced events for both endpoints. The
percentage of MAASTRO patients who experienced the OS event was 53.5% and
DFS 59.6%, compared to OS 41.0% and DFS 48.9% for OUS patients.

The proportion of censored patient, that is, patients who were either lost to follow-
up or had not experienced the event by the end of the study, was higher for the
OUS dataset than for the MAASTRO dataset. OUS patients had a censoring
percentage of 61.4% for OS and 54.3% for DFS, compared to MAASTRO’s 45.6%
for OS and 40.4% for DFS.
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3.2 Image Modalities and Contours

(a) CT image with
primary and nodal
GTV contours.

(b) PET image with
primary and nodal
GTV contours.

(c) GTVp primary
tumor mask.

(d) GTVn nodal region
mask.

Figure 3.1: Image modalities, primary and nodal GTV contours. (a) shows a slice
from a CT image with added primary tumor and nodal region contour. (b) shows
a slice from a PET image with added primary tumor and nodal region contour.
(c) shows a slice of the primary tumor contour mask. (d) shows a slice of the nodal
region contour mask.

The modalities and contours used in this thesis were collected as described in [28].
CT and PET images, along with primary and nodal GTV contours, were used
as inputs for the models, as shown in Figure 3.1. Images of all four types were
collected from both the OUS hospital and the MAASTRO clinic.

CT images were collected following the standard procedure used for HNC ra-
diotherapy at each hospital [28]. The PET images were 18F-Fluorodeoxyglucose
(FDG)-PET scans, highlighting areas with high metabolic activity [10]. Both PET
and CT images were collected using a combined PET/CT scanner. The GTV con-
touring was manually drawn by oncologists, in accordance with the protocols of
each hospital, based on the CT and PET images [28]. GTV contours were split into
one delineation of the primary tumor, called GTVp, and one nodal delineation,
called GTVn.

When a GTV contour was given as input to a model, the contours were multiplied
with the modalities CT and PET. This created additional masked images contain-
ing the original CT and PET information only for regions inside the delineated
areas. For example, a model with the input CT, PET and GTVp will in actuality
have as its input: CT images, PET images, the GTVp primary tumor contour,
the CT-primary-tumor-area and the PET-primary-tumor-area.

3.3 Image Preprocessing

The modalities and contours were preprocessed before being used as input for
the models. The images used in this thesis were already preprocessed for a pre-
vious study [28]. The images were co-registered so as to align the metabolic
information from the PET modality with the anatomical information from CT,
and to align the GTV contours. All modalities and contours were cropped to a
191× 265× 173mm3 volume around the tumor and nodal areas. All images were
resampled to 1mm3 isotropic voxels, meaning that the voxel represented 1mm3 in
all directions.
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CT images were windowed to a center of 70 Hounsfield Units (HU) and width 200
HU, to enhance the visibility of soft-tissue [28]. This windowing approach was
proven to be useful for segmentation in previous studies [52] [53]. PET images
were converted from values given in Bq/mL to SUV values normalized by body
weight. The PET images were cut at 25 SUV, which was the 95% percentile of
max SUV values for all patients in the OUS dataset. The PET cutoff was done to
eliminate outliers in SUV intensity. Before being used as model input, the voxel
intensities of the CT and PET images were normalized to a range between 0 and
1.

3.4 Model Implementation

The time-to-event model architecture of this thesis was based on a treatment
outcome model in [28]. The model was a CNN model, a downscaled version of
EfficientNet, made to be compatible with 3D images.

3.4.1 EfficientNet

EfficientNet is a family of CNN models with a novel approach to scaling the size
of the model [54]. Typically, the number of layers, called model depth, amount of
neurons in a layer, called model width, and size of input layer, called resolution,
are chosen arbitrarily, leading to suboptimal performances and high computational
costs [54]. The depth of the network determines how complex the features the
model can learn are, the width how many processes can be run simultaneously,
and the resolution determines how fine the input details given to the model are.

Figure 3.2: EfficientNet scaling, reproduced with permission from [54]. (a) shows
an example model architecture without any scaling. (b) shows uniform width
scaling, where the number of neurons in each layer is scaled up, relative to the
model in (a). (c) shows uniform depth scaling, by increasing the number of layers
and keeping the width and resolution the same. (d) shows resolution scaling, where
only the input layer changes. (e) shows compound scaling, combining the scaling
methods of (b), (c) and (d).
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EfficientNet uniformly scales the depth, width and resolution [54], as seen in Figure
3.2. This is done with a user specified scaling coefficient, ϕ, that scales the size of
the network, and therefore, the resources available for the model to train, as seen
in Equation 3.1.

d = αϕ

w = βϕ

r = γϕ

(3.1)

Here d is the model depth, w is the model width and r is the model resolution. The
constants α, β and γ are predetermined from a small grid search and are fixed dur-
ing model training [54]. Different versions of EfficientNet, ranging from the model
with the fewest parameters, EfficientNetB0, to the largest model, EfficientNetB7,
will have different predefined values for α, β and γ. The efficacy of EfficientNet
models is largely based on the model structure determined by the constants α, β
and γ, and their scaling coefficient ϕ.

3.4.2 Implementation of EfficientNet

All models were implemented through the Deoxys framework, available at
https://pypi.org/project/deoxys/. Deoxys is a framework designed to
streamline the application of deep learning techniques, with emphasis on medi-
cal images and cancer segmentation. The code for the model implementation and
analysis can be found at https://github.com/huynhngoc/hnc-surv. Important
code excerpts are found in Appendix A.

This thesis used a custom downscaled 3D version of EfficientNetB1 for all mod-
els. A 3D version of EfficientNetB1 is severely limited by computational costs
because of the higher dimensionality of 3D images [55], and therefore needed to
be downscaled to reduce the cost. The EfficientNet architecture was chosen be-
cause it had proven to outperform other CNN models while having fewer model
parameters [54], reducing the computational cost of the model. The downscaling
involved reducing the number of filters in each convolutional layer by half, setting
the scaling coefficient ϕ to 0.5 for the model width. The 3D implementation was
done by replacing all 2D layers with 3D layers from the 2D EfficientNet found in
the TensorFlow library version 2.11 [56].

The model in [28] was designed for treatment outcome predictions and was not
capable of performing time-to-event predictions. The model was made compati-
ble with survival time estimation by changing the loss function to a negative log
likelihood loss function. This new loss function was compatible with time-to-event
analysis by quantifying the loss based on survival status in discrete time intervals,
and incorporating censoring information. To make survival predictions over time,
the final layer of the model was changed into a dense layer. This layer had the
number of neurons equal to the number of time intervals. This made the model
output a vector with size equal to the number of time intervals, with each item
giving a probability of surviving through that interval.
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The models were initialized with the Adam optimizer from the Keras library ver-
sion 2.11 [57], with a learning rate of 0.0001. Adam is an efficient optimizer that
adapts the learning rate by using the average and variance of the gradients of the
loss function, and adapts a new learning rate to each weight in the model [33].

3.4.3 Data Augmentation

Table 3.2: Data augmentation techniques and parameters, with their respective
probability of being applied.

Augmentation
Technique

Value Probability

Rotation Between -15◦ and 15◦ 20%

Rescaling Factor from 0.9 to 1.1 20%

Shifting
Range of 5 voxels in
each direction on each

axis
10%

Flipping
Inverting the image in

the sagittal plane
50%

The input images were augmented before model training, following the method
in [28]. The data augmentation techniques are summarized in Table 3.2. Data
augmentation involves applying various transformations to the input to mitigate
overfitting and generalize the model [58]. Data augmentation was performed using
the ClassImageAugmentation3D function from Deoxys. The input images, being
3D volumes, were rotated with a range of ±15◦ around their three axes. The
images were rescaled with a factor between 0.9 and 1.1, and shifted with a range
of 5 voxels in each direction on each axis. The images were also flipped in the
sagittal plane. The probability of an image being augmented during training was
20% for the rotation, 20% for the rescaling, 10% for the shifting and 50% for the
flipping.
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3.4.4 Train/Test Scheme

The general workflow for training and testing the models was adapted from [28].
A total of 13 models were developed, each representing a different combination of
modalities, contours, endpoints and time intervals, summarized in Table 3.3.

Table 3.3: Model input combination scheme. Various combinations of modalities,
contours, endpoints and time intervals were used to make 13 models. Eight models
were made for the OS endpoint and five models were made for the DFS endpoint.

Model Input
Time

Intervals

Overall Survival

CT 10

PET 10

PET 20

CT+PET 10

PET+GTVp 10

CT+PET+GTVp 10

PET+GTVp+GTVn 10

CT+PET+GTVp+GTVn 10

Disease Free Survival

CT 10

PET 10

CT+PET 10

PET+GTVp 10

CT+PET+GTVp 10

All models, except one, were evaluated using 10 time intervals. One PET-only
model was tested using 20 time intervals to assess the impact of splitting the
follow-up period into a larger number of smaller intervals.

The combinations of modalities for each model was chosen to cover a broad spec-
trum of information combinations. CT and PET images were combined in various
ways with GTV contours to leverage the anatomical and metabolic information
they provide. The hypothesis was that the spatial resolution of CT, the metabolic
information from PET and the exact delineations from GTV contours could be
combined to offer a more nuanced understanding of tumor behavior. Single and
dual modality models were also made to assess the performance of simple models
that were not given as much information about the cancer.

The primary endpoint for the evaluation of these models was OS. The four models
with the highest predictive performance and one model with the lowest perfor-
mance, as measured by the C-index, were used for predicting the DFS endpoint.
The DFS endpoint was used to further asses models of interest since this endpoint
can be harder to predict than OS [28] [51].
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Figure 3.3: Model training and testing scheme, based on [28]. The cross-validation
scheme involved splitting the OUS data into train, test and validation folds. Train-
ing a model for each fold combination, with total of 20 combinations. Combining
each model with the same test fold into ensemble models and averaging. Fi-
nally vertically stacking the ensemble models to obtain the final OUS prediction
scores. The same fold combination models were trained on the external MAAS-
TRO dataset. Each model was averaged into ensemble models and averaged again
to obtain the final MAASTRO prediction scores.

All models went through the same nested five-fold cross-validation scheme, adapted
from [28], as seen in Figure 3.3. This was implemented so that the model perfor-
mances were robust, and that they generalized well to unseen data [59]. Data
from the OUS dataset was used for training and validating the model, and the
MAASTRO data was used as an external test set, unseen by the model during
training.
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First, the OUS training data was split into five folds, as seen at the 5 Fold Split part
of Figure 3.3. These folds were stratified on cancer stage, keeping the proportion
of Stage I-II and Stage III-IV the same in each fold as in the whole dataset. The
proportion of stage was kept, following the scheme in [28], because it was found
to be an important factor for outcome prediction. Each fold then contained 27
or 28 patients from the 139 total. Each model used three folds for training, one
for validation during training, and one for testing. This resulted in 20 unique
combinations of folds, as seen in the Training 20 Models part of Figure 3.3. One
model was trained and tested per fold combination, resulting in 20 models. These
20 models all had the same input combination of modalities and contours.

Each model was run for a total of 60 epochs, calculating performance with the
validation fold every epoch after the 20th. To not exceed memory restrictions, the
batch size was set to 4, meaning that four patients were used from the training
folds per training iteration. From the 20th epoch, model weights and performance
metrics were saved. The metrics calculated were C-index, AUC and IBS. The
model weights corresponding to the epoch with the highest C-index were selected
as the model representing that fold combination. These predictions are seen in the
Predictions on Test Fold part of Figure 3.3.

All models using the same test fold were averaged into one ensemble model, seen
in the Ensemble Averages part of Figure 3.3. This resulted in five ensemble model
averages, with each giving one prediction per patient in their respective test fold.
These ensemble averages were stacked vertically, resulting in one set of prediction
metrics for all patients in the OUS dataset, called OUS Prediction in Figure 3.3.

The same 20 models were used to predict the external MAASTRO dataset, as
seen coming off the Training 20 Models part of Figure 3.3, providing a measure
of the model’s stability and generalizability. Each model predicted on all MAAS-
TRO patients, which resulted in 20 sets of full predictions, seen in the Predictions
on MAASTRO part of Figure 3.3. The prediction sets were averaged into five
ensemble models, and then averaged again to get one set of predictions for the
MAASTRO dataset, shown in the Ensemble Averages and MAASTRO Prediction
parts of Figure 3.3.

All models were run on the Orion High Performance Computing cluster
at the Norwegian University of Life Sciences. ORION can be found at
https://orion.nmbu.no (internal). The ORION GPU capacity consists of four
nodes, each with three Nvidia Quadro RTX 8000 – 48GB GPUs. A model for one
fold combination took around six to eight hours to run. Four fold combination
models were run in parallel, making the total time to train one full model 30 to
40 hours.
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3.5 Implementation of the Negative Log Likelihood

Loss Function

The implementation of the log likelihood loss function logL is based on [16], and
is defined in Equation 3.2. The code excerpt of the negative log likelihood loss
function can be found in Appendix A.1.

logL = −
N∑
i=1

ln(1 + si · (oi − 1)) + ln((1− fi) · oi) (3.2)

Here, N is the total number of individuals, with i being one individual. The output
of the model is stored in the vector o, and contains the probabilities of the indi-
vidual not having the event occur in each time interval, that is, surviving through
the interval. Any item in o ranges from 0 to 1, where 0 is 0% predicted chance
of surviving through the interval, and 1 is 100% predicted chance of surviving.
The vector s indicates the time intervals in which the individual i has had no
event occur. Vector s has value 1 for intervals where the event did not occur, and
value 0 in the interval the event occurred and afterwards. The vector f indicates
where the event occurred and has a value of 1 in the time interval where the event
occurred, and 0 in all other intervals.

The vectors s and f were made from the OUS and MAASTRO datasets, using the
MakeSurvArray function, found in Appendix A.2. First, the true time and true
event information was extracted from the data. The number of samples and the
number of intervals were calculated, based on the predefined split of the follow-up
period, given as interval break points. Then, the size and midpoint of each time
interval was computed. Using this, the vectors s and f were made. If a sample
had the event occur, the vector s was set to 1 for intervals that passed with no
event, that is, where the time until event was greater or equal to the upper limit
of the given interval break. The vector f was set to 1 where the time until event
was less than an upper interval break. If a patient was censored and had no event,
the s vector was set to 1 for intervals where the time until censoring was greater
than or equal to the midpoint of each interval. This means that censored patients
were given credit for surviving through an interval if the time until censoring was
greater than halfway through the interval. Every entry in the f vector was 0 for
censored patients.

The model concatenated the s and f vectors into one SurvArray tensor, and ap-
pended to the end the true event and time information used for metric calculation.
For example, a division of ten time intervals means a tensor of shape N * 22, since
the vectors s and f have the length of the number of intervals, and the time and
event information have length 2, where N is the number of samples.
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Figure 3.4: Example SurvArray tensor for one sample, (N = 1), with ten time
intervals. The breakpoints making up the ten time intervals are shown under the
tensor, from 0 months to 60 months. The patient experienced the event within the
first half of the 6th time interval, and was not given credit for surviving through
the interval. The first ten elements constitute the s vector, and show the patient
as having survived through the first five time intervals. The next ten elements
make up the f vector, which shows the event occurring in time interval 6. The
last two elements contain the actual survival time and event information, which
show a survival time of 32 months and that the event occurred.

Figure 3.4 shows an example tensor for one sample with ten time intervals for an
individual who had the event occur within the 6th interval. The s vector indicates
that no event occurred in the first five time intervals, and the f vector indicates
the event occurred in the 6th interval. True time and event information is included
in the last two elements of the tensor.

For all but one of the models, the follow-up period was split into ten time intervals.
The break points for the time intervals, in months, were set to:
0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60. This makes the first time interval between
0 and 6 months, the second time interval between 6 and 12 months, and so on.
These intervals were spaced with six months, focusing on the beginning of the
follow-up period.

To assess different interval sizes and number of intervals, a model was trained on
20 intervals with the break points:
0, 6, 8, 12, 16, 20, 24, 32, 39, 42, 45, 49, 55, 59, 64, 67, 69, 76, 81, 85, 90. The 20
intervals were spaced out to include around the same number of patients in each
interval and to be more equally spaced over the follow-up period. This was done
to avoid bias on any interval or set of intervals.
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3.6 Implementation of the Evaluation Metrics

3.6.1 AUC

The AUC metric was calculated using the roc auc score from the Scikit-learn li-
brary version 1.3.0 [60]. The code excerpt for AUC calculation is found in Ap-
pendix A.3. The function required two inputs: an array of true labels and an array
of corresponding estimates.

The array of true labels was found in the s vector, which gave a 1 if an individual
has survived an interval, 0 if not. The model extracted the s vector from the
SurvArray tensor, taking the n first items, where n is the number of time intervals.
The model predictions was found in the o vector, which recorded the model output,
that is, the predicted probability for surviving each intervals.

3.6.2 Harrel’s Concordance Index

The C-index was computed using the function concordance index from the lifelines
library version 0.28.0 [61]. The code excerpt for C-index calculation is found in
Appendix A.4. The function required true time until event, predicted score, and
true event information. The true time until event and true event information was
extracted from the last two items in the SurvArray tensor.

The predicted score was calculated from the vector o, by taking the cumulative
product of predicted probabilities up to a specified period. This resulted in a single
risk score for each individual, representing the predicted survival probability at the
end of the specified period. The specified period was set to five years, making the
C-index a measure within a specific time frame. The five year period corresponded
to the ten time intervals, where 60 months (five years) was the last breakpoint.
This method assumed that the cumulative product of probabilities up to a certain
interval represents the survival probability up to that time.

3.6.3 IBS

IBS was calculated using the integrated brier score function from the Scikit-
survival library version 0.22.2 [62]. The code excerpt for IBS calculation is found
in Appendix A.5. The function required four parameters: (1) an array of true
survival times and event information of the training data, used to estimate the
censoring distribution; (2) an array of true survival times and event information
of the test data; (3) an array of estimated survival probabilities at specified time
points; (4) specified time points to estimate the BS at.

The model extracted the true time and event information from the last two items in
the SurvArray tensor and listed them together. This list served as both the array
used to estimate the censoring distribution (1), and the array of true survival
times and event information (2). The estimated survival times (3) were the model
outputs found in vector o. The specified time points (4) were the provided break
points. Since the provided break points stop at 60 months (IBS was not calculated
for the 20 interval model) the metric quantified prediction error over a five year
period.
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3.7 Implementation of KM Curves

KM curves were made using the KaplanMeierFitter function from the lifelines
library version 0.28.0 [61]. To draw the curves, two sets of data were needed: the
observed true time-to-event data with clinical information, and the time-to-event
model predictions. Clinical data, like cancer stage or HPV status, was merged
with the actual and predicted time-to-event data. This new dataset was split into
groups based on some clinical factor, for example, one group with cancer Stage
I-II, and one with cancer Stage III-IV.

The KaplanMeierFitter was now initialized, one for each group. The curve for the
observed true data, called the ground truth, was made by fitting the KM estimator
to the observed time-to-event data, and observed event information. The curve was
only drawn at time intervals that corresponded to the chosen break points. The
curve was drawn using the plot survival function in the KaplanMeierFitter. This
function included an upper and lower confidence interval, showing the uncertainty
around the survival estimate. The confidence interval was calculated by Green-
wood’s Exponential formula [61], which approximates a 95% confidence interval
[63]. Risk counts, a count of individuals at risk of experiencing the event, censored
individuals and individuals who have experienced the event, at each interval, was
added to the plot. The risk counts were made by the add at risk counts function.

Estimated KM curves were made by initializing a new set of KaplanMeierFitters.
These were fitted to the predicted time-to-event and predicted event status. The
curves were drawn using the same functions as for the ground truth curves, with
added confidence intervals and risk counts.

A log-rank test was made after the curves were estimated. The log-rank test was
calculated with the pairwise logrank test function from the lifelines library version
0.28.0 [61]. The test was given the same time until event, event status and groups
as the KaplanMeierFitter. This gave log-rank tests for the observed and predicted
KM curves.

3.8 Implementation of Explainability Methods

The VarGrad and SHAP methods were chosen for assessing how different features
of the input data contributed to the survival predictions. Gradient based explain-
ability methods are often noisy [64], and can highlight seemingly arbitrary voxels.
VarGrad has proven to be superior to other gradient based methods [45], and can
make the saliency hap less noisy by averaging over a chosen number of repetitions
per image. The SHAP method was chosen for its game theory approach, ensuring
fair and additive explanations [49].

3.8.1 The VarGrad Method

VarGrad heatmaps were made by calculating the variance of the model gradients
when the image was perturbed by noise. The noise was normally distributed with
a standard deviation of 0.05. The calculation was repeated a number of times
for each image, making the heatmap smoother and less noisy [48]. VarGrad was
calculated with 20 repetitions per image.

31



A series of statistical plots were made to assess the relation between the VarGrad
heatmaps and the input data. The plots compared the OUS and MAASTRO
datasets to the VarGrad heatmaps, assessing the variability and consistency in
model predictions.

Two plots were line graphs displaying the relationship between mean VarGrad
values and HU values from CT images, as well as between mean VarGrad values
and SUV values from PET images. First, the mean VarGrad values for each SUV
and HU value were calculated. These mean VarGrad values were then plotted
against the corresponding SUV and HU values. The resulting graphs were used to
evaluate what metabolic activity and anatomical data had predictive influence.

A histogram showing the VarGrad values found within certain areas was made.
This plot showed the mean VarGrad values found within the primary tumor, nodal
areas and outside any delineated area. This plot was used to assess in which of the
areas, delineated by the GTVp and GTVn contours, the VarGrad heatmap was
present in, and therefore, which areas influenced the model predictions.

The final plot was a violin plot showing the correlation of VarGrad values and SUV
values for all patients within the datasets. Violin plots show the distribution of
correlation coefficients with an inner box plot. This plot highlights the variability
of the correlation of VarGrad values with SUV values across the patients from
both datasets.

3.8.2 The SHAP Method

Several types of SHAP explainers can be utilized on images, but the
limitation of requiring the model input to be 3D volumes of shape
number of samples× depth× height× width× channels limited the number of
choices. Gradiant SHAP, from the SHAP library version 0.44.11 [49], was the
only explainer found to be compatible with the models used in this thesis, and
then, only the single-modality models, where the shape the number of channels
was 1 due to there only being one modality as input.

Gradient SHAP is a method based on Integrated Gradients [46] and is therefore
similar to VarGrad in that it is based on the model gradients. Gradient SHAP
calculates the expected values of gradients by sampling from a baseline distribu-
tion, similar to Integrated Gradients. First, a baseline of samples is chosen as a
background distribution. Then, input data is perturbed relative to the baseline
samples, meaning features from the input are gradually introduced to the base-
line. For each perturbed sample the gradient is calculated and scaled to fulfill the
SHAP properties, attributing the output prediction to each input feature based
on its contribution.

One fold from the dataset was used in calculation of the SHAP values. This one
fold array was reduced to a one-channel PET-array containing only the PET data,
corresponding to the PET-only model, and preprocessed according to the modality.
From the PET-array, a 4D array was extracted for a specified patient. Since there
was only one channel, the PET channel, this patient array could be represented as
a 3D volume of shape depth× height× width, compatible with the Gradient SHAP
explainer.
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A GradientExplainer was initialized from the SHAP library version 0.44.1 [49].
The explainer was given the PET-only model and the PET-array for all patients
in the fold, used as the background dataset.

The SHAP values were calculated for the patient array. The images for the patient
were perturbed 100 times in the calculation. One SHAP heatmap was created per
model output node, which corresponded to ten heatmaps for the ten interval model.

Thresholded SHAP values were created by binarizing the SHAP values against a
threshold. The threshold was set at the 99th percentile of significance, meaning
the top 1% significant SHAP values were set to 1, the others to 0. This resulted
in a binary mask of the top 1% significant SHAP values.

The built in plotting function shap.image plot was used to create the SHAP plots.
Both the raw SHAP values and the thresholded SHAP values were plotted, for
each time interval. The plotting function requires both the original image and
SHAP values to be a 2D image with three channels, like that of an RGB image.
Since different SHAP values were made for each model output, here, time intervals,
one image was made per interval. For each interval a slice from the 3D volume
of the patient and of the corresponding SHAP values were extracted. The slice
and values were both converted into pseudo-RGB by repeating them three times,
creating three channels. Then the pseudo-RGB image slice and pseudo-RGB SHAP
values were given to the plotting function, and the GTV contours were overlaid to
provide information of the overlap of SHAP values in the tumor and nodal areas.

3.9 AI statement

The use of AI in this thesis followed the current regulations as of May
2024 at the Faculty of Science and Technology (REALTEK), found at
https://www.nmbu.no/fakulteter/fakultet-realfag-og-teknologi/

kunstig-intelligens-ved-realtek.

ChatGPT, a language model by OpenAI, found at https://openai.com/chatgpt,
was used in the creation of this thesis.

ChatGPT was used to format LATEXtables and aid in formatting. Example prompts
include: “Make the cell text span all cells in the table” and “Add vertical and
horizontal lines, in gray, for the white cells”.

ChatGPT was used in code development. It was used to write small code snippets
and to debug existing code. Example prompts include providing the code with the
error message.

ChatGPT was used to summarize papers to quickly get an overview of their con-
tents. It was not used as the source for information, rather to find out which
papers were worth pursuing in depth. Care was taken to fact check every claim
made by the ChatGPT model. Example prompts include giving the ChatGPT
model one or more papers in the form of PDF files, and asking it to summarize
them.
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ChatGPT was used to give suggestions on how to rewrite portions of text for
clarity. This was done while making sure the ChatGPT model did not add nor
subtract any information. Example prompts include giving the ChatGPT model a
paragraph of text and asking it to rewrite the text while not adding or subtracting
information. Care was taken to ensure the rewrites were factual and correct.
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Chapter 4

Results

4.1 Model Performances

4.1.1 Predictions on the OUS Dataset

Table 4.1: Model predictions on the OUS dataset, sorted by C-index. The highest
C-index performing models are highlighted in bold. All models were run on 10
time intervals.

Model C-index AUC IBS

Overall Survival

CT+PET+GTVp 0.74 0.69 0.16

PET+GTVp 0.72 0.68 0.16

PET+GTVp+GTVn 0.71 0.67 0.16

PET 0.70 0.63 0.17

CT+PET 0.66 0.61 0.18

CT+PET+GTVp+GTVn 0.66 0.62 0.17

CT 0.61 0.56 0.18

Disease Free Survival

PET 0.62 0.55 0.23

PET+GTVp 0.60 0.54 0.24

CT+PET+GTVp 0.59 0.54 0.23

CT+PET 0.59 0.54 0.23

CT 0.51 0.49 0.24

Table 4.1 shows the performances of the various ensemble model averages tested
on the OUS dataset. The ensemble model results are found in Appendix B.1. The
models are sorted by their C-index with the highest performing models in bold.
The models were evaluated on three metrics: C-index, AUC and IBS, and on two
endpoints: OS and DFS.

For the OS endpoint, the CT+PET+GTVp model had the highest C-index, high-
est AUC score and the lowest IBS error, making it the highest performing model
on all metrics. Models including the CT modality generally performed lower on
all metrics, with the exception of the highest performing model. In addition, a
PET-only model on the OS endpoint, not included in the table, was trained using
20 time intervals and achieved a C-index of 0.69, which was similar to the 10 time
interval PET-only model shown in Table 4.1, which achieved a C-index of 0.70.
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For the DFS endpoint, the four OS models, with the highest C-index, were exam-
ined, with the inclusion of a CT-only model. The PET-only model performed the
best on all metrics with a C-index of 0.62, AUC of 0.55 and IBS of 0.23. Models
on the DFS endpoint generally had a lower performance than models on the OS
endpoint, with lower C-index and AUC scores, and higher IBS error. Similar to
the OS endpoint, models with the CT modality performed worse on the C-index
than models without. The CT-only model had a C-index of 0.51, AUC of 0.49
and IBS of 0.24. This is close to the expected score of a randomly guessing model,
which would be expected to have a C-index of 0.50, AUC of 0.50 and IBS of 0.25
[41] [38] [44].

4.1.2 Predictions on the MAASTRO Dataset

Table 4.2: Model predictions on the external MAASTRO dataset, ordered as in
Table 4.1. The highest C-index performing models are highlighted in bold. The
increase or decrease in C-index from the OUS predictions is shown as Difference
in C-index. All models were run on 10 time intervals.

Model C-index AUC IBS
Difference

in
C-index

Overall Survival

CT+PET+GTVp 0.68 0.68 0.17 −0.06

PET+GTVp 0.65 0.65 0.17 −0.07

PET+GTVp+GTVn 0.66 0.64 0.17 −0.05

PET 0.67 0.64 0.17 −0.03

CT+PET 0.63 0.62 0.17 −0.03

CT+PET+GTVp+GTVn 0.69 0.67 0.16 +0.03

CT 0.62 0.60 0.18 +0.01

Disease Free Survival

PET 0.67 0.63 0.21 +0.05

PET+GTVp 0.61 0.63 0.22 +0.01

CT+PET+GTVp 0.63 0.64 0.21 +0.04

CT+PET 0.65 0.65 0.21 +0.06

CT 0.64 0.64 0.21 +0.13

Table 4.2 summarizes the ensemble model average performances, tested on the
external MAASTRO dataset. The ensemble model performances are found in
Appendix B.2. The models with the highest C-index are highlighted in bold. In
addition to the metrics, the difference in C-index between the MAASTRO and
the OUS predictions is shown, i.e. C-indexMAASTRO − C-indexOUS, and shows the
increase or decrease in C-index when going from predicting on the OUS dataset
to the external MAASTRO dataset.

36



For predictions on the OS endpoint, the CT+PET+GTVp+GTVn model had the
highest C-index at 0.69, an increase of 0.03 from the OUS performance in Table
4.1. Comparably, the CT+PET+GTVp, the best model on the OUS dataset,
had a C-index of 0.68. The CT+PET+GTVp model had a C-index decrease of
0.06 relative to the OUS performance. There was no longer a clear separation
in C-index scores for models with the CT modality for the models tested on the
MAASTRO dataset, as was seen in Table 4.1 when predicting on the OUS dataset.

The PET-only model had the highest C-index on the DFS endpoint with a C-
index of 0.67, giving a 0.05 increase from the OUS performance. All models on
the DFS endpoint showed an increase in the C-index score when predicting on the
MAASTRO dataset. The model with the largest increase was the CT-only model,
with a C-index of 0.64, gaining 0.13 from the OUS C-index. Again, there was no
clear separation in performance for models with or without the CT modality.

Model performances were more similar between endpoints when predicting on the
MAASTRO data than on the OUS data. The C-index performances of the models
tested on the MAASTRO dataset generally decreased when predicting the OS
endpoint, and increased on the DFS endpoint relative to OUS performances.
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4.2 Kaplan Meier Curves

4.2.1 Overall Stage of Disease

(a) Observed ground truth for the OUS data. (b) Model prediction for the OUS data.

Figure 4.1: KM curves grouped by overall stage of disease for the OS endpoint using the
CT+PET+GTVp model. The KM curves show the survival probability of two groups, the blue
curve with Stage I-II cancer, and the orange curve with Stage III-IV. The figure is divided into
two panels, (a) shows the observed survival present in the OUS dataset, called the ground truth,
(b) shows the model estimated survival for the OUS dataset. The shaded area around the curves
represent the 95% confidence intervals, which indicates the precision of the survival estimate, the
narrower the confidence interval, the more precise the estimate is. Note that the panels have different
y-axes, (a) ranging from 0.20 to 1.0, and (b) ranging from 0.50 to 1.0. Under the KM curves in panel
(a) and panel (b) are shown the number of patients at risk, and the events and censoring counts for
each time interval. For example, at time interval 1 in Figure 4.1a, 70 patients are at risk, and two
have already had the event occur in group Stage I-II, while 60 patients are at risk, with seven having
had the event occur in the Stage III-IV group.

Table 4.3: Log-rank test for the KM curves given in Figure 4.1.

Ground Truth OUS Predicted OUS
Test statistic p-value −log2(p) Test statistic p-value −log2(p)

31.14 < 0.005 25.31 21.46 < 0.005 18.08
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Figure 4.1 shows KM curves grouped by overall stage of disease on the OS endpoint. The survival
curves span the ten time intervals the model used for prediction, which is over a five year period,
where time interval 10 equals 60 months. The y-axes are different between the two panels Figure 4.1a
and Figure 4.1b. Figure 4.1a ranges from 0.20 to 1.0, and Figure 4.1b ranges from 0.50 to 1.0. The
KM curves in Figure 4.1a had the observed survival probabilities around 0.80 and 0.30 for Stage I-II
and Stage III-IV patients respectively at the end of time interval 10. On the other hand, the model
estimated survival, in Figure 4.1b, had an estimated probability around 0.95 and 0.60 for Stage I-II
and Stage III-IV patients respectively at the last time interval. This shows that the model estimated
higher survival than the observed ground truth. The number of patients that experienced the event
at time interval 10 were, for the observed ground truth, 14 patients with Stage I-II, and 43 patients
with Stage III-IV. The model estimates were 4 events for patients with Stage I-II, and 25 events for
patients with Stage III-IV, at time interval 10.

Figure 4.1b shows the model predictions for the patients in each stage group. The model has been
given no cancer stage information except for what it extracted from the input images. The predictions
followed a similar patters to the ground truth in Figure 4.1a, where Stage I-II patients had a higher
survival probability than Stage III-IV. The ground truth showed a higher distinction between the
groups than the model predictions. Until around time interval 4, the model predictions did not show
much separation of each group’s survival probability.

Table 4.3 shows the log-rank test results corresponding to the KM curves in Figure 4.1. For the
log-rank test, the significant threshold for the p − value was set at 0.05. The ground truth showed
a significant difference between the cancer stage groups with a p − value under the 0.05 threshold.
Similarly, the model predictions had a significant difference between the groups, with a similar
p − value, showing the model’s ability to differentiate between the survival probabilities of the two
cancer stages.
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(a) Observed ground truth for the MAASTRO data. (b) Model prediction for the MAASTRO data.

Figure 4.2: KM curves grouped by overall stage of disease for the OS endpoint using the
CT+PET+GTVp model. The KM curves show the survival probability of two groups, the blue
curve with Stage I-II cancer, and the orange curve with Stage III-IV. The figure is divided into two
panels, (a) shows the observed survival present in the MAASTRO dataset, called the ground truth,
(b) shows the model estimated survival for the MAASTRO dataset. The shaded area around the
curves represent the 95% confidence intervals, which indicates the precision of the survival estimate,
the narrower the confidence interval, the more precise the estimate is. Note that the panels have
different y-axes, (a) ranging from 0.20 to 1.0, and (b) ranging from 0.60 to 1.0. Under the KM curves
in panel (a) and panel (b) are shown the number of patients at risk, and the events and censoring
counts for each time interval.

Table 4.4: Log-rank test for the KM curves given in Figure 4.2.

Ground Truth MAASTRO Predicted MAASTRO
Test statistic p-value −log2(p) Test statistic p-value −log2(p)

11.33 < 0.005 10.35 3.84 0.05 4.32
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Figure 4.2 shows KM curves for the external MAASTRO dataset, grouped by overall stage of disease
on the OS endpoint. The figure shows the observed ground truth of the dataset, and the predicted
survival probabilities of the CT+PET+GTVp model, in Figure 4.2a and Figure 4.2b, respectively.
The KM curves span 10 time intervals used by the model for prediction across a five-year period,
with the final interval corresponding to 60 months. The y-axes in Figure 4.2a and Figure 4.2b
differ in scale. Figure 4.2a ranges from 0.20 to 1.0, and Figure 4.2b ranges from 0.60 to 1.0. The
curves showed observed survival probabilities of approximately 0.80 for Stage I-II patients and 0.30
for Stage III-IV patients at the end of the 60 months. Figure 4.2b, the model-estimated survival
probabilities, showed about 0.95 for Stage I-II patients and 0.75 for Stage III-IV patients at the
same interval, indicating that the model predicted higher survival rates than the observed ground
truth. The number of patients who experienced the event by time interval 10, in the observed ground
truth, were 3 for Stage I-II and 50 for Stage III-IV, while model estimated 1 and 22 respectively.

Figure 4.2a shows the observed ground truth data, where the survival probability was higher for
Stage I-II patients than Stage III-IV. This trend continued throughout the time intervals. From
around time interval 4 to 9, the confidence intervals overlapped, meaning that it was possible that
the curves were not separate during this time. Still, the p − value, seen in Table 4.4, was under
0.005, and the curves were therefore significantly different.

In Figure 4.2b, showing the model predictions on the MAASTRO dataset, the confidence interval of
the Stage I-II group overlapped with the Stage III-IV curve. This is reflected in the p − value in
Table 4.4, which was 0.05. Although this p− value is at the set threshold, and therefore signified a
marginal significance, it suggests that the model is not capable of distinguishing between the stage
groups with a high degree of confidence. Again, both model predicted curves showed a higher survival
probability than the observed ground truth.
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4.2.2 HPV-Positive Oropharyngeal Tumors

(a) Observed ground truth for the OUS data. (b) Model prediction for the OUS data.

Figure 4.3: KM curves grouped by HPV status for the OS endpoint using the CT+PET+GTVp
model. The KM curves show the survival probability of two groups, the blue curve with HPV related
tumors, and the orange curve with No HPV relation. The figure is divided into two panels, (a)
shows the observed survival present in the OUS dataset, called the ground truth, (b) shows the
model estimated survival for the OUS dataset. The shaded area around the curves represent the
95% confidence intervals, which indicates the precision of the survival estimate, the narrower the
confidence interval, the more precise the estimate is. Note that the panels have different y-axes, (a)
ranging from 0.30 to 1.0, and (b) ranging from 0.50 to 1.0. Under the KM curves in panel (a) and
panel (b) are shown the number of patients at risk, and the events and censoring counts for each
time interval.

Table 4.5: Log-rank test for the KM curves given in Figure 4.3.

Ground Truth OUS Predicted OUS
Test statistic p-value −log2(p) Test statistic p-value −log2(p)

10.48 < 0.005 9.69 6.74 0.01 6.73

42



Figure 4.3 shows KM curves grouped by HPV status in oropharyngeal tumors for the OUS dataset
and OS endpoint. Figure 4.3a shows that observed ground truth data, while Figure 4.3b shows
the predicted survival probabilities by the CT+PET+GTVp model. The curves span the ten time
intervals the model used for prediction, which is over a five year period where time interval 10 equals
60 months. The y-axes are different between the two panels Figure 4.3a and Figure 4.3b. Figure
4.3a ranges from 0.30 to 1.0, and Figure 4.3b ranges from 0.50 to 1.0. The KM curves in Figure 4.3a
had the observed survival probabilities around 0.70 and 0.40 for HPV related tumors and No HPV
relation respectively, at the end of time interval 10. The model estimated survival in Figure 4.3b
had an estimated probability around 0.90 and 0.70 for HPV related tumors and No HPV relation
respectively, at the last time interval. This shows that the model estimated higher survival than the
observed ground truth. The number of patients that experienced the event were, for the observed
ground truth, 27 patients with HPV related tumors, and 30 patients with No HPV relation. The
model estimates were 8 events for patients with HPV related tumors, and 17 events for patients with
No HPV relation, at time interval 10.

Figure 4.3a demonstrated a higher survival probability for patients with HPV related tumors over
those with No HPV relation. The log-rank test results for the ground truth curves, shown in Table
4.5, gave a p − value of under 0.005. This indicates a significant difference between the survival
probabilities of patients with or without HPV related tumors.

The model predicted survival probabilities in Figure 4.3b showed a similar trend as the ground
truth, where patients with HPV related tumors had a greater survival probability that those with
No HPV relation. Until around time interval 4, corresponding to month 24, the KM curves and
their confidence interval overlap, and the curves even crossed, indicating that the model had not
differentiated between the survival probabilities of the two groups. The log-rank test in Table 4.5
gave a p− value of 0.01. This is under the set threshold at 0.05 and therefore indicated a significant
difference in predicted survival probability, but less so than for the observed ground truth.
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(a) Observed ground truth for the MAASTRO data. (b) Model prediction for the MAASTRO data.

Figure 4.4: KM curves grouped by HPV status for the OS endpoint using the CT+PET+GTVp
model. The KM curves show the survival probability of two groups, the blue curve with HPV related
tumors, and the orange curve with No HPV relation. The figure is divided into two panels, (a) shows
the observed survival present in the MAASTRO dataset, called the ground truth, (b) shows the model
estimated survival for the MAASTRO dataset. The shaded area around the curves represent the
95% confidence intervals, which indicates the precision of the survival estimate, the narrower the
confidence interval, the more precise the estimate is. Note that the panels have different y-axes, (a)
ranging from 0.30 to 1.0, and (b) ranging from 0.60 to 1.0. Under the KM curves in panel (a) and
panel (b) are shown the number of patients at risk, and the events and censoring counts for each
time interval.

Table 4.6: Log-rank test for the KM curves given in Figure 4.4.

Ground Truth MAASTRO Predicted MAASTRO
Test statistic p-value −log2(p) Test statistic p-value −log2(p)

0.24 0.63 0.67 0.04 0.85 0.24
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Figure 4.4 shows KM curves grouped by HPV status in oropharyngeal tumors on the external MAAS-
TRO dataset and OS endpoint. Figure 4.4a and Figure 4.4b show the actual ground truth data and
the predicted survival probability by the CT+PET+GTVp model. The curves span ten time inter-
vals corresponding to a five-year period, where time interval 10 equals 60 months. Figure 4.4a and
Figure 4.3b have different y-axes. Figure 4.4a ranges from 0.30 to 1.0, and Figure 4.4b ranges from
0.60 to 1.0. The KM curves in Figure 4.4a had the observed survival probabilities around 0.40 for
both HPV related tumors and No HPV relation, at the end of time interval 10. The model estimated
survival in Figure 4.4b had an estimated probability around 0.80 for both HPV related tumors and
No HPV relation, at the last time interval. This shows that the model estimated higher survival
than the observed ground truth. The number of patients that experienced the event were, for the
observed ground truth, 12 patients with HPV related tumors, and 21 patients with No HPV relation.
The model estimates were 5 events for patients with HPV related tumors, and 14 events for patients
with No HPV relation, at time interval 10.

The ground truth in Figure 4.4a show overlapping KM curves across the entire follow-up period. The
log-rank test in Table 4.6 gave a p−value of 0.63, much higher than the 0.05 threshold for significance.
This confirms that there were no significant differences between the survival probabilities for patients
with HPV related tumors and patients with No HPV relation in the MAASTRO dataset.

Similarly, the model predicted survival probabilities, in Figure 4.4b, showed the same pattern of
overlapping curves. The corresponding p− value of 0.85 indicates that the model had not predicted
a separation between the groups.
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4.3 Explainability Methods

4.3.1 VarGrad Saliency Maps

Overall Survival

(a) Original CT image, VarGrad
for CT input channel and

magnification of the VarGrad
highlighted region.

(b) Original PET image,
VarGrad for PET input channel

and magnification of the
VarGrad highlighted region.

(c) Original GTVp contour,
VarGrad for GTVp input channel

and magnification of the
VarGrad highlighted region.
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Figure 4.5: VarGrad heatmaps with the corresponding modalities on the OS endpoint for the OUS
dataset, using the CT+PET+GTVp model. The VarGrad heatmaps, shown in green overlay over
the input images, range in intensity from 0 to 1, as shown in the color bar, where a higher intensity
means a higher significance for model predictions. The images come from one slice of one patient from
the OUS dataset. The patient slice contains both a primary tumor and a nodal area, shown in the
primary tumor, GTVp, and nodal, GTVn, overliad delineations. The first row for each input channel
shows a slice of the unaltered input image given to the model. The second row shows the input image
with overlaying VarGrad heatmap. The third row shows the overlaying VarGrad heatmap zoomed
in on the region of interest.

VarGrad heatmaps in Figure 4.5 identify regions within the input image that the model considers
significant for predicting survival probability. The GTVp and GTVn contours outlined on the images
correspond to the actual tumor and nodal regions delineated by the oncologist, and were not given
to the model unless shown in one of the figure panels as an input image. The CT+PET+GTVp
model was not given the nodal contour as input, yet the VarGrad heatmap was shown highlighting
this area for all input images.

Figure 4.5a shows a slice of the VarGrad heatmap for the CT input channel. The heatmap shows
the areas of the CT modality the model finds most important for prediction. The VarGrad heatmap
highlighted the primary tumor and nodal regions of the CT image.

Figure 4.5b shows a PET slice with an overlaid VarGrad heatmap. The highest values of VarGrad
were found in around the same region as the highest SUV values, which correspond to the primary
tumor and nodal areas.

Figure 4.5c shows the VarGrad heatmap corresponding to the GTVp input channel. Here, the
VarGrad highlighted the area delineated by the GTVp contour, while still mostly found around it.
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(a) Original CT image, VarGrad
for CT input channel and

magnification of the VarGrad
highlighted region.

(b) Original PET image,
VarGrad for PET input channel

and magnification of the
VarGrad highlighted region.

(c) Original GTVp contour,
VarGrad for GTVp input channel

and magnification of the
VarGrad highlighted region.
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Figure 4.6: VarGrad heatmaps with the corresponding modalities on the OS endpoint for the external
MAASTRO dataset, using the CT+PET+GTVp model. The VarGrad heatmaps, shown in green
overlay over the input images, range in intensity from 0 to 1, as shown in the color bar, where a
higher intensity means a higher significance for model predictions. The images come from one slice
of one patient from the MAASTRO dataset. The patient slice only contains a primary tumor, shown
in the GTVp delineation overlaid. The first row for each input channel shows a slice of the unaltered
input image given to the model. The second row shows the input image with overlaying VarGrad
heatmap. The third row shows the overlaying VarGrad zoomed in on the region of interest.

Figure 4.6 shows the VarGrad for the CT+PET+GTVp model predicting on the external MAASTRO
dataset on the OS endpoint. Note that the patient had no nodal areas in the slices shown, only a
primary tumor.

The VarGrad heatmap corresponding to the CT modality in Figure 4.6a was found mostly around
the tumor area, but more in the periphery than inside. The VarGrad heatmap for the PET channel,
seen in Figure 4.6b, overlapped the highest SUV areas, which themselves were found within the
tumor area. The peak of the GTVp channel’s VarGrad heatmap, seen in 4.6c, was found within the
delineated primary tumor area, but as in Figure 4.5c it was also seen outside.
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(a) Original CT image, VarGrad
for CT input channel and

magnification of the VarGrad
highlighted region.

(b) Original PET image,
VarGrad for PET input channel

and magnification of the
VarGrad highlighted region.

(c) Original GTVp contour,
VarGrad for GTVp input channel

and magnification of the
VarGrad highlighted region.
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Figure 4.7: VarGrad heatmaps with the corresponding modalities on the OS endpoint for the external
MAASTRO dataset, using the CT+PET+GTVp model. The VarGrad heatmaps, shown in green
overlay over the input images, range in intensity from 0 to 1, as shown in the color bar, where a
higher intensity means a higher significance for model predictions. The images come from one slice
of one patient from the MAASTRO dataset. The patient slice contains both a primary tumor and a
nodal area, shown in the primary tumor, GTVp, and nodal, GTVn, delineations overlaid. Notably
for this patient, the PET modality failed to show the tumor and nodal areas. The first row for each
input channel shows a slice of the unaltered input image given to the model. The second row shows
the input image with overlaying VarGrad heatmap. The third row shows the overlaying VarGrad
zoomed in on the region of interest.

Figure 4.7 shows a case where the PET modality did not align with the tumor and nodal areas. This
was because the patient had excessive use, or inflammation, of the sternocleidomastoid muscle before
PET acquisition.

For this patient, the VarGrad heatmap highlighting was found mostly outside the primary tumor
and nodal areas, while still highlighting the primary tumor, for all modalities and contours, as seen
in Figure 4.7a, Figure 4.7b and Figure 4.7c.

51



Overall Survival Statistical Plots

(a) Mean VarGrad values against HU of the CT
modality.

(b) Mean VarGrad values against SUV values of
the PET modality.

(c) Mean VarGrad values per region. (d) Correlation between VarGrad values and SUV
per patient.

Figure 4.8: VarGrad statistical plots for the OS endpoint based on the CT+PET+GTVp model.
The panels show plots for both the OUS and external MAASTRO datasets, in blue and orange,
respectively. Panel (a) shows the mean VarGrad values plotted against HU of the CT modality,
giving an indication of the correlation of VarGrad values to the values of the CT images. (b) shows
the mean VarGrad values plotted against SUV of the PET modality, giving an indication of the
correlation of VarGrad values to the values of the PET images. (c) shows which regions the VarGrad
heatmap highlighted. The regions are the primary tumor area, called Tumor, the nodal areas, called
Node, and the region outside those deliniations, called Others. (d) shows the distribution of each
patient’s mean VarGrad value’s correlation with the SUV values from that patient’s PET image.
The plot is a violin plot, showing the distribution, with an inner box plot, showing the correlation
interquartile range and median correlation coefficient.
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Figure 4.8 shows a series of statistical plots for the VarGrad analysis of the CT+PET+GTVp model
predicting on the OS endpoint. The plots show data for model predictions on all patients on both
the OUS and external MAASTRO datasets.

The first plot, Figure 4.8a, shows the mean VarGrad value against HU values of the CT modality.
The plot indicates what values in the CT modality correspond to mean VarGrad values. As HU
increased, the mean VarGrad values were relatively stable, with an increase in mean VarGrad value
from around 90 HU, for both datasets. The mean VarGrad values ranged from 0 to a max mean
VarGrad value around 0.05 across all HUs.

The second plot, Figure 4.8b, shows the mean VarGrad values against values of SUV of the PET
modality. The plot shows that higher values in SUV corresponded to a higher mean VarGrad, with a
peak at SUV > 10. Unlike in Figure 4.8a, where the mean VarGrad was relatively stable over values
of HU, the mean VarGrad ranged from 0 to a max mean VarGrad around 0.22, over all values of
SUV. Results for both datasets followed the same trend.

The third plot, Figure 4.8c, shows mean VarGrad values within each delineated area: primary tumor,
called Tumor, nodal regions, called Node, and Other regions outside of the provided contours. The
plot shows that mean VarGrad values were mostly present within the primary tumor area, and
somewhat present within the nodal areas. It was almost not found in the Other area. Both datasets
followed the same pattern.

The fourth plot, Figure 4.8d, shows the correlation between VarGrad values and SUV for all patients
in both datasets. The plot shows the distribution of correlation coefficients for both datasets, with
an inner box plot showing the interquartile range and median correlation coefficient. Both datasets
had a wide distribution, meaning that some patients showed a strong relationship between VarGrad
values and SUV, while others showed a weaker relationship. Both datasets had around the same
median correlation coefficient of 0.25.
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Disease Free Survival

(a) Original PET image,
VarGrad for PET input channel

and magnification of the
VarGrad highlighted region, for

the OUS dataset.

(b) Original PET image,
VarGrad for PET input channel

and magnification of the
VarGrad highlighted region, for

the MAASTRO dataset.
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Figure 4.9: VarGrad heatmaps with the corresponding modality on the DFS endpoint for both the
OUS and external MAASTRO datasets, using the PET-only model. The VarGrad heatmaps, shown
in green overlay over the input images, range in intensity from 0 to 1, as shown in the color bar,
where a higher intensity means a higher significance for model predictions. The two panels show
images from one slice of one patient from each of the datasets. Panel (a) shows a patient from the
OUS dataset. Panel (b) shows a patient from the MAASTRO dataset. The patient slices contain
both a primary tumor and a nodal areas, shown in the primary tumor, GTVp, and nodal, GTVn,
overlaid delineations. The first row for each input channel shows a slice of the unaltered input image
given to the model. The second row shows the input image with overlaying VarGrad heatmap. The
third row shows the overlaying VarGrad zoomed in on the region of interest.

Figure 4.9 shows VarGrad heatmaps for the PET-only model predicting the DFS endpoint on both
datasets. Figure 4.9a shows the VarGrad results for the model predictions on the OUS dataset, and
Figure 4.9b on the MAASTRO dataset. Both VarGrad heatmaps are concentrated around the areas
with the highest SUV, which roughly corresponded to the tumor and nodal areas.
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Disease Free Survival Statistical Plots

(a) Mean VarGrad against SUV. (b) Mean VarGrad per region on DFS for PET.

(c) Correlation between VarGrad and SUV per
patient on DFS for PET.

Figure 4.10: VarGrad statistical plots for the DFS endpoint based on the PET-only model. The
panels show plots for both the OUS and external MAASTRO datasets, in blue and orange, respec-
tively. Panel (a) shows the mean VarGrad values plotted against SUV of the PET modality, giving
an indication of the correlation of VarGrad values to the values of the PET images. (b) shows which
regions the VarGrad heatmap highlighted. The regions are the primary tumor area, called Tumor,
the nodal areas, called Node, and the region outside those deliniations, called Others. (c) shows
the distribution of each patient’s mean VarGrad value’s correlation with the SUV value from that
patient’s PET image. The plot is a violin plot, showing the distribution, with an inner box plot,
showing the correlation interquartile range and median correlation coefficient.

Figure 4.10 shows a series of statistical plots for the PET-only model predicting on the DFS endpoint
for both OUS and MAASTRO datasets.

The first plot in Figure 4.10a shows the relationship between mean values of VarGrad and SUV. The
graph shows a trend where increased SUV values lead to an increase in mean VarGrad. The VarGrad
values ranged from 0 to a max SUV of 0.30 over all values of SUV. This pattern was shared between
the datasets.

The second plot, Figure 4.10b, shows VarGrad values across different regions. Here, the VarGrad
values were found mostly within the tumor and nodal areas, where most were within the primary
tumor for both datasets. Some VarGrad highlighting was also found outside these areas.
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The violin plot in Figure 4.10c shows the correlation between mean VarGrad values and SUV for all
patients. The distributions show a span of correlations among patients. Patients in the MAASTRO
dataset were less spread out than in the OUS dataset. This means more variability in how the
VarGrad values correlates with SUV in the OUS dataset than in the MAASTRO dataset.
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4.3.2 SHAP Saliency Maps

(a) Original CT image with primary
tumor contour.

(b) Original PET image with primary
tumor contour.

(c) Raw Gradient SHAP values
overlaid on the PET image.

(d) Thresholded Gradient SHAP
values overlaid on the PET image.
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Figure 4.11: Gradient SHAP values computed with the PET-only model for one patient from the
OUS dataset on the OS endpoint. The SHAP values are displayed as one slice from one patient for
the 9th time interval. The patient slice contains a primary tumor and nodal areas, delineated by the
GTV contours. The primary tumor contour, GTVp, is shown in cyan in (a) and (b), and in purple in
(c) and (d). The nodal area contour, GTVn, is shown in pink in (a) and (b), and in green in (c) and
(d). The image is the same slice as used for the VarGrad images in Figure 4.5. Under the images is
shown a color bar for the SHAP value range. This color bar only applies to the raw Gradient SHAP
values in panel (c). (a) shows the original CT image of the slice with GTVp contour. The model was
not given CT images as input. (b) shows the original PET image of the slice with GTVp contour.
(c) shows the raw Gradient SHAP values as computed by the GradientSHAP explainer using the
PET-only model, with GTV contours overlaid. The SHAP values are represented as colored regions
of the image, each color representing a SHAP value. The corresponding color bar shows which color
corresponds to which SHAP values. Negative SHAP values, shown in blue, correspond to a negative
prediction, here, prediction the event occurred within the interval. Positive SHAP values, shown in
red, represent points that correlate to a positive prediction, here, predicting survival through the
time interval. (d) shows Gradient SHAP values that were thresholded to be the 1% most significant
values for model prediction. The values are binary, 1 if they were the 1% most significant values for
model prediction, 0 if not. The color of the binary thresholded SHAP values is insignificant.

Figure 4.11 shows raw and thresholded Gradient SHAP values and the corresponding original CT
and PET images. The model used to compute the SHAP values was the PET-only model for the
OUS dataset on the OS endpoint. This is the same slice as used in the VarGrad image in Figure 4.5.
The values are shown for time interval 9.

Figure 4.11a and Figure 4.11b show the original CT and PET image slices corresponding to the
slices of raw and thresholded SHAP values. Since the model used to compute the SHAP values was
a PET-only model, the model was not given the CT image as input, only the PET image.

Figure 4.11c shows the raw Gradient SHAP values. The values are shown with a primary tumor,
GTVp, and nodal area, GTVn, contour. The SHAP values are represented as colored regions of
the image, each color representing a SHAP value. The intensity of the colors shows how significant
that SHAP value was for model predictions. The raw SHAP values are a mix of positive and
negative, mostly concentrated within the tumor and node area. Negative SHAP values, shown in
blue, correspond to a negative prediction, here, prediction the event occurred within the interval.
Positive SHAP values, shown in red, represent points that correlate to a positive prediction, here,
predicting survival through the time interval. There’s no clear preference for one color in the raw
Gradient SHAP values.

Figure 4.11d shows Gradient SHAP values thresholded to be the 1% most significant values for
model prediction. The thresholded SHAP values are binary, and therefore, the color is irrelevant.
The amount of points is fewer than the raw SHAP output of Figure 4.11c. The thresholded Gradient
SHAP values are concentrated around the tumor and node areas, but are also found outside the
delineations.
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(a) Original CT image with primary
tumor contour.

(b) Original PET image with primary
tumor contour.

(c) Raw Gradient SHAP values
overlaid on the PET image.

(d) Thresholded Gradient SHAP
values overlaid on the PET image.
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Figure 4.12: Gradient SHAP values computed with the PET-only model for one patient from the
external MAASTRO dataset on the OS endpoint. The SHAP values are displayed as one slice from
one patient for the 9th time interval. The patient slice only contains a primary tumor, delineated
by the GTVp contour. he primary tumor contour, GTVp, is shown in cyan in (a) and (b), and in
purple in (c) and (d). The image is the same slice as used for the VarGrad images in Figure 4.6.
Under the images is shown a color bar for the SHAP value range. This color bar only applies to the
raw Gradient SHAP values in panel (c). (a) shows the original CT image of the slice with GTVp
contour. The model was not given CT images as input. (b) shows the original PET image of the slice
with GTVp contour. (c) shows the raw Gradient SHAP values as computed by the GradientSHAP
explainer using the PET-only model, with GTV contours overlaid. he SHAP values are represented
as colored regions of the image, each color representing a SHAP value. The corresponding color
bar shows which color corresponds to which SHAP values. Negative SHAP values, shown in blue,
correspond to a negative prediction, here, prediction the event occurred within the interval. Positive
SHAP values, shown in red, represent points that correlate to a positive prediction, here, predicting
survival through the time interval. (d) shows Gradient SHAP values that were thresholded to be the
1% most significant values for model prediction. The values are binary, 1 if they were the 1% most
significant values for model prediction, 0 if not. The color of the binary thresholded SHAP values is
insignificant.

Figure 4.12 shows raw and thresholded Gradient SHAP values computed with a PET-only model
on the OS endpoint using the external MAASTRO dataset. This is the same slice as used in the
VarGrad in Figure 4.6. The values are shown for time interval 9.

Figure 4.12a and Figure 4.12b show the original CT and PET image slices corresponding to the
slices of raw and thresholded SHAP values. Since the model used to compute the SHAP values was
a PET-only model, the model was not given the CT image as input, only the PET image.

The strongest colored raw SHAP values in Figure 4.12c, and therefore the most significant, seem to
be inside the primary tumor area, while more dim values are found just outside it.

Figure 4.12d shows SHAP values thresholded to the 1% most significant values. Most thresholded
SHAP values are found in the primary tumor area, while some are found outside around it. The color
of the thresholded SHAP values is irrelevant, since the thresholded SHAP values were binarized.
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Chapter 5

Discussion

5.1 Choice of Intervals

In [37], Gensheimer et al. used between 15 and 40 intervals that were more spaced
out with increasing follow-up time and included around the same number of event
occurrences in each time interval to limit model bias. To avoid bias in estimates
of survival distributions, [65] suggests splitting the follow-up period into at least
ten intervals.

The follow-up time in this thesis was split into ten intervals for all models except
one. The choice of ten time intervals was found in preexisting literature [16] [65].
Selecting intervals from 6 months up to 60 months aims to capture the nuances in
survival times in the earlier, more critical periods of post-diagnosis. The first few
months after diagnosis or treatment are the most critical, and survival rates change
more dramatically during this period [51] [16]. A higher number of intervals in the
early stages of the follow-up period relative to the number of intervals allow for a
more detailed analysis of survival probabilities when they are most variable. This
approach can increase the resolution of the analysis, especially in the early follow-
up period where most events occur. In the dataset there are a higher density of
data points in the initial months with fewer events recorded as time progresses.

A PET-only model on the OS endpoint was run to assess the difference in setting
the time intervals to 20, each interval then including about the same number of
patients. These intervals were spaced up to month 90, giving a larger period than
the ten intervals, and therefore focusing less on the beggining of the follow-up
period. The PET-only model using the 20 time intervals achieved a C-index of
0.69. This was worse than the PET-only model using ten time intervals which had
a C-index of 0.70. Due to this small difference, and the fact that a higher number
of intervals could make the analysis overly complex, or the intervals too sparsely
populated with events, the choice was made to only test models on the 10-interval
split. This is in line with Gensheimer et al. [37] that stated “In our experiments
we have found that the model’s performance is fairly robust to choice of specific
cut-points”.
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5.2 Model Assessment

The C-index is the primary metric used to evaluate the performance of the models.
This is because, unlike AUC, the C-index takes into account censoring information
[42]. IBS shows the model’s error in predictions rather than the correctness of the
order of predictions [44]. C-index is preferred to IBS because it provides a di-
rect measure of the model’s ability to discriminate between different individuals in
terms of risk. Other studies often only report the C-index, and therefore are only
comparable to this thesis on that metric [16] [18] [17]. The AUC and IBS metrics
can be more informative in certain contexts. The AUC can give the performance of
the model at a specific instance of time, rather than only over the entire follow-up
period. The IBS gives both the accuracy of the predicted probabilities and the
timing of the events. It gives a combined measure of how close the predicted prob-
abilities are to actual probabilities and how well the model distinguishes between
events and non-events across all time points.

5.2.1 OS prognosis

For the OS prediction on the OUS dataset, the CT+PET+GTVp model emerged
as the leading model with a C-index of 0.74, AUC of 0.69 and IBS of 0.16. The
model had the highest C-index and AUC and the lowest IBS of any other OUS
OS model. This model integrated CT, PET, and a GTV contour of the primary
tumor, implying that the combination of imaging modalities with primary contour
provided a comprehensive approach to predicting patient survival. It notably
outperformed the single-modality models (CT and PET only), emphasizing the
added value of multi-modal data integration. It also outperformed the CT+PET
model without the GTVp contour, which had a C-index of 0.66. The worst model
was the CT-only model, which had a C-index of 0.61, AUC of 0.56 and IBS of
0.18. This, together with the fact that models with the CT modality generally
performed lower than models without CT, suggests that the CT modality, at least
by itself, may not be well suited for time-to-event predictions.

For the external MAASTRO dataset, the CT+PET+GTVp+GTVn model had
the highest C-index of 0.69, again reinforcing the notion that an approach utiliz-
ing multiple modalities provides a superior predictive capability. It is important to
note that the highest performing model on the OUS dataset, the CT+PET+GTVp
model, showed a lower C-index of 0.68 in the MAASTRO dataset, a decrease of
0.06. This decrease might be attributed to variations in the external dataset or
differences in the patient populations, suggesting the model was potentially overfit-
ting to the training dataset. The CT+PET+GTVp+GTVn model outperformed
the CT+PET model with no GTV contours, which had a C-index score of 0.63.
On the other hand, the PET-only model performed close to the best model, with
a C-index of 0.67, suggesting that GTV contours might not be essential to high
model performance. The CT-only model was the worst performing model on all
metrics with a C-index of 0.62, AUC of 0.60 and IBS of 0.18.
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5.2.2 DFS prognosis

When evaluating DFS, the model performances were generally lower than those for
OS. The IBS scores of the DFS models using the OUS dataset ranged from 0.23 to
0.24. These IBS scores were close to the expected score from a randomly guessing
model, which is 0.25. While the IBS showed a similar low performance for all DFS
models on the OUS dataset, the C-index and AUC scores could differentiate them.
In the OUS dataset, the PET only and PET+GTVp models scored the highest on
the C-index, with the scores 0.62 and 0.60 respectively. This suggests that for DFS
predictions, the CT modality did not provide useful information and contributed
some noise to the model, leading to a lower performance. The CT-only model
performed the worst on all metrics with a C-index of 0.51, AUC of 0.49 and IBS
of 0.24. This score is close to a model making random guesses, which would have
the expected performance of a C-index score of 0.50, AUC of 0.50 and IBS of 0.25.

All DFS models had an increase in C-index scores and a decrease in IBS error when
evaluated on the external MAASTRO dataset. This suggests that the models may
be more capable of predicting DFS in the context of the MAASTRO dataset
rather than in the OUS dataset. As seen in Table 3.1, the MAASTRO dataset
has different characteristics compared to the OUS dataset which potentially could
make the DFS event outcomes more distinguishable by the models. The DFS
event distribution could also be different in the MAASTRO dataset, potentially
having a clearer separation between patients with events and those without. This
could enhance the model’s predictive performance. Another explanation is that the
DFS models were more generalizable and not overfitted to the OUS training data,
having captured underlying patterns that were valid across different populations.
The PET-only model achieved the highest C-index score of 0.67, a gain of 0.05
from the OUS prediction. Notably, the CT-only model increased the C-index score
with 0.13 to a score of 0.64, making it the third highest performing model on the
C-index.

5.2.3 Modality Importance

The overall highest performing model, using the C-index, for predicting OS and
DFS was the CT+PET+GTVp model. The robust performance of this model
can be linked to its ability to capture both anatomical and functional information
from CT and PET images, combined with the insights provided by the primary
tumor volume contour in GTVp. However, focusing on the C-index, the model’s
performance was only slightly better than the other MAASTRO models.

The consistency of the multi-modal modeling approach in providing higher C-index
values in both datasets implies that the complexity of cancer prognosis may be
better navigated with a rich set of diverse modalities.

With exception of the highest performing model, the CT+PET+GTVp model, the
performance of models incorporating CT images for predicting both OS and DFS
in both the OUS and MAASTRO datasets can be seen to occupy the lower end of
the performance spectrum when judged by the C-index. This suggests that models
relying solely on CT or in combination with fewer modalities are less effective at
capturing the complexity of cancer prognosis compared to those integrating more
diverse data types.
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In the OUS dataset for OS prediction, the CT-only model had a C-index of 0.61,
which was the lowest among the models evaluated. For DFS prediction on the
same dataset, the single-modality CT model again ranked lowest with a C-index
of 0.62. This consistent pattern of lower performance of CT-only models across
both endpoints suggests that anatomical imaging alone may not be sufficient for
time-to-event analysis. CT images lack the ability to capture metabolic activity
[8] like PET images [10], and a simple delineation of the cancer like the GTV
contours [11]. This could be to be critical for assessing survival prognosis. The
higher performance of multi-modal models that included PET and GTV contour
parameters alongside CT, suggests that the integration of metabolic and functional
information alongside the anatomical data leads to a more holistic and thus more
accurate prediction, at least on the OS endpoint.

Predictions on the DFS endpoint showed a preference for the PET-only model on
both datasets. This suggests that while a multi-modal approach could give more
accurate predictions on the OS endpoint, predictions on the DFS endpoint could
be better with the use of a simple single-modality model.

When looking at the MAASTRO dataset, the CT+PET model, which included the
anatomical imaging from CT, as well as the metabolic information from PET, per-
forms relatively better than the more complex CT+PET+GTVp+GTVn model
for DFS prediction, albeit only slightly with a C-index of 0.65 compared to 0.63.
This, and CT being a part of the highest performing model on the C-index, could
indicate that in the context of an external dataset with different patient character-
istics, the anatomical information of a CT scan can help predicting the prognosis.

5.2.4 Model Robustness

Looking at the ensemble average model performances before vertically stacking
and averaging, shown in Appendix B, the external results had a similar C-index
even though the models were trained on different data splits. For example, the
CT-only model trained on the OS endpoint in the MAASTRO dataset had very
similar C-index for MAASTRO folds 0-4, even though fold 0 was trained and
validated on OUS fold 1-4, while MAASTRO fold 1 was trained and validated on
OUS fold 2-4. So even though each model had not seen a part of the OUS dataset,
their performance on the external MAASTRO data was quite similar. This suggest
that the models were stable, since they did not differ much in performance when
exposed to new data from unseen folds.

5.2.5 Comparison With Other Studies

In [16], Wang et al. reported the highest performance with a PET-only model for
both DM and OS predictions, achieving a C-index of 0.82 for the DM endpoint,
and 0.69 for the OS endpoint. Their findings indicate that the metabolic imaging
data from PET images could be the most important model input for the time-
to-event models, without the necessity of the anatomical data from CT or GTV
delineations.
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Models relying on CT imaging scored, with exception of the highest performing
model, lower on C-index in this thesis. This is consistent with the results from
Wang et al. [16], where PET-based models outperformed those based on CT
imaging. This reinforces the notion that the anatomical data from CT images
could be less predictive of patient survival compared to the metabolic imaging
provided by PET. While multi-modality approaches can be beneficial for certain
tasks, they may reach a point of diminishing returns. Especially adding the extra
information provided by the CT modality may only contribute noise to the model
and reduce it’s predictive performance.

Although the results in this thesis highlight the potential for multi-modality mod-
els, Wang et al. [16] found that single modality PET-only models perform the
highest on both the OS and DM endpoints. The PET-only model achieved the
highest C-index for DFS in this thesis. Together with the results from Wang et
al. it is likely that a single-modality PET-only based approach could be more
practical and equally robust for certain endpoints, like the DFS endpoint.

Wang et al. [16] also concluded that the GTV contour may be less relevant for
models focusing on the PET modality, a finding not supported by this thesis.
Notably, the GTV modality in Wang et al. combined both the GTVp and GTVn
contours, which were split into two separate contours in the models of this thesis.
Models including both GTV contours in this thesis did not perform as well as
models with only the GTVp contour. This could explain the discrepancy between
the model performances with the GTV contour in the study by Wang et al. and
the model performances with GTVp contours in this thesis.

In [51], Moan et al. conducted a study that looked at the significance of FDG-PET
parameters on DFS prediction, using univariate and multivariate Cox regression
models. The study utilized the same data as the OUS datset used in this thesis.
Moan et al. found that FDG-PET parameters, like SUV and metabolic tumor
volume, were not significant predictors of the DFS endpoint. Especially for patients
with HPV-related cancer, the GTV segmented area from the CT images was found
to be more influential on predictions than the PET-related parameters. This is in
contrast to the findings in this thesis, which found the PET modality to generally
be the most influential model input. Particularly for predictions on the DFS
endpoint, models relying the PET modality scored the highest on the C-index. The
best model for both the OUS and external MAASTRO datasets when predicting
on the DFS endpoint were the PET-only models. While the GTVn contour was
not included in any model prediction on the DFS endpoint, the GTVp contour was
part of the second and third highest C-index scoring model using the OUS dataset.
The GTV contours in this thesis, however, were given as masks for both CT and
PET, and not just a CT-based tumor volume like in Moan et al. Therefore, the
importance of the GTV contours are not directly comparable between the studies.

The differences in importance of PET-related features when predicting on the DFS
endpoint between the studies could be due to the models and methods. Moan et
al. used a radiomics approach for feature extraction with Cox regression models
for predictions [51], while this thesis used CNNs to automate the feature extraction
and make predictions. The study by Moan et al. was also not making survival time
predictions, like this thesis. Rather, Moan et al. used a Cox regression analysis of
the different radiomics parameters. This difference in approach could explain the
differing results of feature importance.
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In [19], Rebaud et al. made a time-to-event radiomics model for the HECKTOR
2022 challenge. The model was predicting the time until recurrence free survival,
which was defined as the time until a reappearance of a lesion or a new lesion. The
model extracted 93 radiomics features from segmented tumor and nodal areas of
CT and PET images, combining them with clinical features. The predictions were
averages of ensemble models, using randomly chosen subsets of the training data
and model features. The best model achieved a C-index of 0.68.

The endpoint predicted on in [19], being recurrence free survival, made the models
not directly comparable to this thesis, which predicted on the endpoints OS and
DFS. However, the features found to be important in the study by Rebaud et al.
offer parallels to the feature importances found in this thesis. Rebaud et al. found
a number of clinical features to have an impact on predictions, like tobacco usage.
Of the radiomics features, large primary tumor diameter, high SUV in lesions and
the number of affected nodal areas were found to be most important for model
predictions. This supports the findings in this thesis, which found that the GTVp
tumor area and PET modality could be particularly important for time-to-event
predictions.

5.3 Kaplan-Meier Curves

5.3.1 Overall Stage of Disease

Figure 4.1 and Figure 4.2 show the true and estimated survival probabilities for
the patients grouped by stages I-II and III-IV of disease. The log-rank tests, given
in Table 4.3 and Table 4.4, confirm a statistically significant difference in survival
probability between the two stage groups. Both the actual and predicted results
showed p-values well below the chosen threshold of 0.05, indicating that stage of
disease is a critical factor in patient prognosis, and is picked up by the model. The
model was not given any clinical information of the stages of the cancer, and any
separation of the stage groups found by the model is therefore predicted from the
CT, PET and GTV inputs given to the model.

The ground truth for both the OUS and MAASTRO datasets show a consistent
trend where lower stages of cancer had higher survival probabilities. Predictions
for both datasets had a higher survival probability than the ground truth for both
groups of stages. For example, at the end of the last time interval, looking at
the Stage III-IV group on the OUS dataset, the observed data showed a survival
probability of 0.30, while the model predicted 0.50. Likewise the observed data
for the MAASTRO dataset, looking at the Stage III-IV group, showed a survival
probability of 0.20 for the Stage III-IV group, while the model predicted 0.60. This
consistent trend indicates that the model may overestimate the survival probability
of all patients, regardless of stage or dataset.
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5.3.2 HPV Positive Opharyngeal Tumors

In Figure 4.3 the KM prediction curves indicated an inability to separate survival
probabilities based on HPV status in the first four time intervals, which correspond
to the first 18 months. It was only after the fourth time interval that a divergence
appeared. This could be the result of a time-dependent effect of HPV on survival.
The effect of HPV on survival may become more pronounced over time as the
disease progresses. This shows the importance of focusing the model on the initial
months of the follow-up period where differences in survival may be harder to
detect, and justifies the choice of splitting the follow-up period into ten intervals
which has a higher proportion of intervals in the early period.

The MAASTRO dataset, as seen in Figure 4.4, did not show a significant differ-
ence in survival based on HPV status, with a log-rank p-value of 0.63, as seen
in Table 4.6. The model predictions therefore did not significantly differ between
the groups. Looking at the patient characteristics in Table 3.1, there was a lower
proportion of HPV-related cancers in the MAASTRO dataset, only 22.2% com-
pared to 57.6% in the OUS dataset. The smaller proportion of HPV-positive cases
in the MAASTRO data could explain the lack of significant difference between
the groups, compared to the OUS data where such cases were more prevalent.
Furthermore, the MAASTRO dataset had a significantly higher proportion of pa-
tients with cancer stage III-IV, 80.8% compared to 48.2% for OUS, and packs of
cigarettes smoked per year, a median of 40 packs per year compared to 22.5 for
OUS. Given that advanced stages and tobacco usage are strongly associated with
poorer survival [6], they may mask the influence of HPV status in this dataset,
which is reflected in the KM curves. That is to say, the model doesn’t pick up on
the differences in HPV status since it was relatively not a huge contributor to the
event outcomes.

5.3.3 Comparison With Other Studies

In [16], Wang et al. displayed KM curves for various models grouped by high and
low risk. The risk score was made by averaging the scores of patients with and
without event occurrence, to make high and low risk groups. These groupings
are not directly comparable to the KM curves in this thesis. However, the KM
curves in the study by Wang et al. showed a similar pattern to the KM curves
in this thesis. The first time steps showed greater overlap of the curves and their
confidence intervals than the later time steps. This is in accordance with the
findings in this thesis, where the earlier time periods of the study was found to be
harder to predict correctly.

Wang et al. [16] reported p-values from a log-rank test on the models’ ability
to differentiate between the KM curves. Notably, the model with the smallest
p − value was, for the OS endpoint, the PET+CT+GTV model. For the DM
endpoint the model with the second smallest p − value was the PET+CT+GTV
model. These models are similar to the best overall performing model using the
C-index in this thesis, which was the PET+CT+GTVp model. This could indicate
the ability of multi-modal models to differentiate groups based on unseen clinical
data.
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In [51], Moan et al. reported KM curves grouped by low and high metabolic tumor
volume. Two sets of KM curves were shown, one for HPV-related cancer and one
without HPV-relation. The curves in Moan et al. are on the DFS endpoint, while
the KM curves in this thesis use the OS endpoint, making the curves not directly
comparable.

The KM curves in [51] are however made using the same data as the OUS dataset
in this thesis. A similar trend where the curves are less distinguishable in the first
time steps are found both in Moan et al. and this thesis. The KM curves for the
HPV-unrelated patients show a clear separation, with a log-rank test p− value of
< 0.0001. Still, the curves are close to each other until around month 10, where
they clearly separate. Even though the curves in the study by Moan et al. did
not include the confidence intervals, they corroborates the findings made in this
thesis where the model estimated KM curves were less separate in the first time
intervals. This in turn justifies the choice of ten time intervals, focusing on the
early stages of the follow-up period, which were more difficult to predict.

5.4 Assessment of Explainability Methods

5.4.1 The VarGrad method

In Figure 4.5, Figure 4.6 and Figure 4.7, as well as Figure 4.9, VarGrad heatmaps
are seen overlaying the corresponding input channels. While the model was only
provided with one input modality at a time, there were some interactions between
the channels during training. For example, the CT+PET+GTVp model had its
CT and PET masked images created by multiplying the original CT and PET with
the GTVp tumor mask, making two new input images of the CT and PET images
only within the masked area. This explains how the VarGrad heatmaps of the
GTV contours could be found outside the delineated areas and exhibit patterns
like the other input images. For example, the heatmap showing around the spinal
area for the GTVp input channel in Figure 4.5, even though the GTVp input itself
only includes information about the primary tumor and not the spinal area.

Interestingly, in the case where the PET image did not line up with the primary
tumor and nodal areas in Figure 4.7, the VarGrad heatmap did not align with
any nodal area, and while it did highlight the primary tumor, it was mostly found
outside any delineation. This suggests that the model could rely mostly on the
PET modality, since it was not able to use the CT image to find the nodal areas.
The reason it was able to find the primary tumor could have been due to the
GTVp contour being given as an input, and not from the CT image.

Modality correlation

Looking at the mean VarGrad plotted against the HU of the CT images CT, in
Figure 4.8a, it is clear that the highest VarGrad values are seen over the highest HU
values. This implies that the model may be associating certain density patterns
on CT scans with survival outcomes, which could correlate with the tumor area.
This density seems to be around 98HU and up, which corresponds to dense soft
tissue [8].
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The SUV plotted against the mean VarGrad values, in Figure 4.8b and Figure
4.10a, show a clear pattern of higher VarGrad values for higher SUV. VarGrad
seems to be emphasizing areas with higher uptake, corresponding to areas with
higher metabolic activity and therefore the cancer tumor area. This correlation
was more pronounced than the correlation of VarGrad values against HU, seeing as
the change in VarGrad values ranged from 0 to around 0.05 for HU, and from 0 to
around 0.22 for SUV in the OS model and around 0.30 in the model for DFS. This
VarGrad correlation difference shows that the model may prefer information from
the PET modality over the CT modality, suggesting that PET is more important
for survival diagnostic than CT.

Region correlation

The bar graph in Figure 4.8c shows in which region the VarGrad values were found,
inside the primary tumor, nodal areas or outside either of them. The areas with
VarGrad were considered important for the CT+PET+GTVp model predicting
on the OS endpoint. A higher weight was placed upon the primary tumor area
compared to the tumor nodes and other regions. This could reflect that survival
prognosis on OS could be mostly determined by the primary tumor. On the
other hand, for the PET-only model on DFS in Figure 4.10b, the primary tumor
continued to be a focal point for the model, but there was a much higher emphasis
on the tumor nodes, highlighting their potential role in disease progression and
recurrence. The PET-only model also took more information from the Other
regions, outside the tumor and nodal areas. The reason the model used this region
might be that it was a model with no GTV contours. Without a GTV contour it
might have been harder for the model to focus on specific regions. Also, the PET
image by itself is of a lower resolution than the CT modality [10], which could lead
to a more diffuse VarGrad heatmap.

Overall correlation

The violin plots in Figure 4.8d and Figure 4.10c provide a distribution of the
correlation between VarGrad values and the mean SUV for all patients in the
respective datasets. The height of the violin plots at various correlation levels
indicates the density of patients with that particular correlation coefficient. For
the CT+PET+GTVp model, the OUS correlation was wider than the MAASTRO,
suggesting that the model’s reliance on SUV to highlight areas of importance in
the image varied more from patient to patient in the OUS dataset. For the PET-
only model, the MAASTRO plot had a notably sharp peak, suggesting a strong
agreement in correlation across this cohort. The tails of the violin plot represent
the correlation coefficients that are less common within the dataset. The PET-only
model for DFS shows both datasets as having short tails, suggesting that there
were fewer patients with extremely high or low correlations. This could indicate
that for DFS prognosis using a PET-only model, the relationship between the
VarGrad highlighted regions and SUV was relatively stable across patients. The
mean correlation coefficients were around 0.3 for both endpoints and datasets.
This suggesting that, on average, SUV values of the PET modality might not be
highly correlated with the areas the model assigns as important for prediction.
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Comparison with other studies

A study by Huynh et al. [28], using radiomics for predicting OS and DFS outcomes,
done on the same datasets as this thesis, showed similar patterns as this thesis in
the VarGrad analysis done in the study. This thesis found a positive trend in mean
VarGrad values with increasing SUV levels. The same trend was found in the study
by Huynh et al., where both a CT+PET model on DFS and CT+PET+GTVp
on OS showed this pattern. The relationship between VarGrad values and HU
appears to be relatively low in both this thesis and the study. This indicates
that PET images, more so than CT images, were used by the model for survival
prognosis, both time-to-event and outcome prediction.

For VarGrad values distributed across primary tumor, nodes, and other regions,
this thesis aligns with the study by Huynh et al. [28]. Both displayed the high-
est VarGrad values within tumor regions, affirming the model’s prioritization of
primary tumor characteristics over nodal regions or other factors. This reiterates
the significance of primary tumor-based features in survival analysis. As for this
thesis, Huynh et al. found the DFS model to have a relativity higher emphasis on
the nodal regions. The consistency of the results from this thesis and the study
by Huynh et al. reinforces the reliability of model interpretability. PET images
emerged as a significant predictor of both DFS and OS.

Similarly to the VarGrad heatmap identified nodal regions as being more influential
on predicting time until the DFS endpoint than the OS endpoint, the winner of
the 2022 HECKTOR outcome prediction challenge [19], Rebaud et al., showed
an interesting parallel. Rebaud et al. found that the radiomics feature number
of affected nodal areas was impactful on predicting the recurrence free survival
endpoint. While the endpoint recurrence free survival is different from the DFS
endpoint, they are similar, both giving a measure of the time free from cancer
after treatment. This suggests that the nodal regions could be more significant in
predicting the time free from disease, more than the overall survival of the patient.

5.4.2 The SHAP method

Due to the limitation of the time-to-event models requiring 3D volumes as input,
most SHAP methods were incompatible with the time-to-event model require-
ments, and only Gradient SHAP was found to be able to use 3D images as input.
For example, the standard SHAP explainer, shap.Explainer from the SHAP li-
brary version 0.44.1 [49], required a masker function for the background data.
The masker function for images, shap.maskers.Image, was incompatible with 3D
volumes. Methods like Deep SHAP, Kernel SHAP and the standard SHAP ex-
plainer could have provided a different method for calculating feature importance,
not based on perturbing parts of the image and looking at the model gradient.
This would have provided a better range of methods when paired with the Var-
Grad method, giving a more nuanced model explainability assessment.

The Gradient SHAP method is similar to the VarGrad method in that it works by
perturbing a sample and assigning importance to areas were perturbations resulted
in changing predictions. Therefore, the SHAP plots are similar to the VarGrad
plots. The thresholded Gradient SHAP values were the 1% most significant values
for model prediction. There was a more noticeable spread out from the tumor and
node areas in the thresholded SHAP values than the raw SHAP values.
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Both the raw and thresholded Gradient SHAP values were shown mostly in and
around the primary tumor and nodal areas in Figure 4.11, and in and around the
primary tumor in Figure 4.12. Notably, the thresholded SHAP values seem to be
more spread out, suggesting the most important areas for the model are found in
and around the tumor and nodes.

Similarity between the outputs of the VarGrad method and the SHAP method
could also indicate that the methods are correct in showing what features of the
images are important to the model. Both methods highlighted the tumor and
nodal areas, indicating that the model looks to those regions of the images for
making time-to-event predictions.

5.5 Limitations

The model input requirements limited the number of usable explainability models.
For example, Local Interpretable Model-agnostic Explanations (LIME) [66] was
considered, but was not utilized as an explainability method due to its limitations.
LIME required the data given to the explainer to be 2D images with three channels,
like that of RGB images, while the models in this thesis require the input be 3D
volumes with channels equal to the number of modalities and contours given to the
model. Because of this conflict no LIME explainer could be used. This resulted
in the usage of two similar explainability methods, VarGrad and Gradient SHAP,
which did not cover a wide range of explainability methods.

Due to time constraints, not all model input combinations were tested. Not testing
all possible combinations of CT, PET, GTVp and GTVn could have led to the
wrong conclusions of modality and contour importance. Especially for the DFS
endpoint, few model combinations were tested. No models predicting on the DFS
endpoint contained the GTVn contour, even though the VarGrad method high-
lighted the nodal areas as being more important for the model predicting on the
DFS endpoint than the OS endpoint. This limited the assessment of the GTVn
contour as a model input.

Another limitation due to time constraints was the assessment of the SHAP ex-
plainability method. No statistical plots were made comparing SHAP values to
the CT values, PET values or GTV delineation.

All models in this theses used a log likelihood loss function [37] [16]. While this
approach is widely used, it comes with some limitations. By binning continuous
time into intervals, there is an inherent loss of information, which could lead to a
less accurate representation of the survival probabilities. The PET-only models ran
on 10 and 20 time intervals were found to be robust against the choice of intervals,
however, the choice of intervals could still impact the model’s predictions. Having
very large intervals could lead to a simplified model not able to detect nuances
in the data [37]. On the other hand, short intervals may lead to overfitting by
creating a model sensitive to noise.
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Although the C-index is the most widely used metric for evaluating predictions
in survival analysis [17] [18] [16], it falls short with high degrees of censoring [41].
As seen in Equation 2.17, uncertain ordered pairs are not counted, leading to an
overly optimistic metric with high censoring proportions. Looking at Table 3.1,
the OUS dataset had 61.4% of patients censored for the OS endpoint. With this
high percentage of patients censored, the C-index may not necessarily be reliable,
since the number of comparable pairs decreases when censoring increases. When
this was the case IBS was consulted, which is a measure of accuracy of prediction,
and therefore holds up under high degrees of censoring. In this thesis, the IBS
scores gave around the same result as the C-index when comparing the models.

5.6 Future Work

Concerning the limitations of discrete time, an area for future work could be
exploring continuous-time models, such as the Cox proportional hazards model
[25] that can handle continuous time-to-event data. The inclusion of continuous
time can give the model the ability to handle time-varying covariates [67]. Models
with continuous time could also provide more accurate estimates of the hazard
and survival probabilities [68].

Assessing different loss functions suited to time-to-event analysis is also worth
pursuing. For example adapting a root mean square loss, common in regression
models [69] [70], to a Brier-Score-based loss function that handles censored data,
since the Time Dependent Brier Score Under Random Censorship essentially is an
adaptation of root mean square taking censoring into account [44].

Another aspect of survival analysis not pursued in this thesis was the inclusion of
left-censoring [21], where the beginning of the at-risk period is unknown. Models
that incorporate left-censoring could be able to take in more information, ensuring
that early events are not overlooked [71].
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Chapter 6

Conclusion

This thesis aimed to develop time-to-event CNN models for predicting survival
time until the OS and DFS endpoints. This was done for patients from the OUS
hospital and the MAASTRO clinic. Seven models were made for predicting on the
OS endpoint, and five were made for the DFS endpoint, using a variety of com-
binations of CT images, PET images, GTVp primary tumor contour and GTVn
nodal area contour as input. The models were evaluated using the C-index, AUC
and IBS metrics, over a five year period, splitting the follow-up time into ten time
intervals.

An additional PET-only model was trained on a different split of the follow-up
period into 20 intervals. This model achieved a C-index of 0.69, which was lower
than the PET-only model trained on the 10 interval split, which had a C-index of
0.70. This suggested that the models performances were robust to the change of
time intervals. Therefore, the five year split of 10 time intervals was chosen for all
other models, focusing on the beginning of the follow-up period.

The CT+PET+GTVp model emerged as the highest performing model on the OS
endpoint, with a C-index of 0.74 for the OUS dataset and 0.68 for the MAASTRO
set. This model used anatomical data from the CT modality, metabolic informa-
tion from the PET modality and the delineation of the primary tumor from the
GTVp contour. This suggested that a multi-modal approach was most effective
at capturing the nuances of the data and achieving a high performance on the OS
endpoint.

When predicting on the DFS endpoint, the PET-only model had the highest C-
index for both datasets, achieving a C-index score of 0.62 and 0.67 for the OUS
and MAASTRO datasets, respectively. The predictions on the DFS endpoint were
generally of a lower performance than predictions on OS. This suggested that DFS
predictions may be influenced by more subtle and complex factors that are not as
easily picked up by the models, making it harder to predict.

Models that utilized the PET modality consistently outperformed models with-
out it, on both endpoints, suggesting that the models had a high reliance on the
PET modality. The model with the lowest performance, across all metrics, was
overall the CT-only model. This reinforced the notion that the PET modality
provided more relevant information than the CT modality, for time-to-event pre-
dictions. The GTVp primary tumor contour was found to be a valuable model
input, especially for predictions on the OS endpoint.
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The second goal of this thesis was to asses the models on explainability, i.e. how
the model predictions related to the observed data, and what parts of the images
the models used for predictions. This was done using KM curves and saliency
maps from the VarGrad and SHAP methods. The KM curves showed that the
models generally overestimated the survival probability of all patients. However,
the models significantly differentiated between the survival probabilities of differ-
ent cancer stages and HPV status, whenever the differences were present in the
observed data.

The VarGrad heatmaps showed a stronger correlation with the SUV from PET
than the HU from CT, suggesting that the model relied more PET images than CT
images. However, the distribution of the correlation coefficients between SUV and
mean VarGrad values per patient showed that, while the PET modality was most
correlated with VarGrad values, the correlation varies considerably from patient
to patient. The mean correlation for all patients was around 0.3 for both end-
points and datasets, suggesting that, on average, SUV values of the PET modality
might not be highly correlated with the areas the model assigned as important
for prediction. The VarGrad highlighted areas were mostly within the primary
tumor, and very little outside it, when predicting on the OS endpoint with the
CT+PET+GTVp model. For the DFS endpoint, using the PET-only model, the
VarGrad highlighted areas were almost equally found in the primary tumor and
nodal regions, preferring the primary tumor, and some outside these areas. This
suggested that the nodal areas were less important in prediction on the OS end-
point than the DFS endpoint. Due to the similar nature of the Gradient SHAP
method to the VarGrad method, the SHAP heatmaps proved to follow a similar
pattern to the VarGrad.
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Appendix A

Code Excerpts

A.1 Negative Log Likelihood Loss Class

@custom loss
class NegativeLogLikelihood(Loss):

def init (
self , n intervals , reduction=”auto”, name=”negative log likelihood loss”):

super(). init (reduction, name)
self . n intervals = n intervals

def call ( self , target , prediction ):
# remove the last two elements, true time and true event
target = target [:, :=2]
# component for all individuals
cens uncens = 1. + target [:, 0: self . n intervals ] * (prediction = 1.)
# component for only uncensored individuals
uncens = 1. = target [:, self . n intervals :2 * self . n intervals ] * prediction
# return =log likelihood
L = K.sum(=K.log(K.clip(K.concatenate((cens uncens, uncens)),

K.epsilon (), None)), axis==1)
return L
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A.2 SurvArray Class

@custom preprocessor
class MakeSurvArray(BasePreprocessor):

def init ( self , breaks):
self .breaks = np.array(breaks)

def transform(self , data, targets ):
t = targets [:, 1]
f = targets [:, 0]
n samples = t.shape[0]
n intervals = len(self .breaks) = 1
timegap = self.breaks [1:] = self .breaks[:=1]
breaks midpoint = self.breaks[:=1] + 0.5 * timegap
y train = np.zeros((n samples, n intervals * 2))
for i in range(n samples):

# if failed (not censored)
if f [ i ]:

# give credit for surviving each time interval
# where failure time >= upper limit
y train [ i , 0: n intervals ] = 1.0 * (t [ i ] >= self.breaks [1:])
# if failure time is greater than end of last time interval ,
# no time interval will have failure marked
if t [ i ] < self .breaks[=1]:

# mark failure at first bin where survival time < upper break=point
y train [ i , n intervals + np.where(t[i] < self .breaks [1:])[0][0]] = 1

# if censored
else:

# if censored and lived more than half=way through interval,
# give credit for surviving the interval .
y train [ i , 0: n intervals ] = 1.0 * (t [ i ] >= breaks midpoint)
# add the true time and event data at the end

return data, np.concatenate([y train, targets ], axis==1)
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A.3 AUC Class

class AUC scorer:
def call ( self , y true, y pred, **kwargs):

true = y true [:, :10]
return roc auc score(true, y pred)

A.4 C-index Class

class HCI scorer:
def call ( self , y true, y pred, num year=5, **kwargs):

event = y true [:, =2]
time = y true [:, =1]
no time interval = y pred.shape[=1]
breaks = np.arange(0, 61, 60//no time interval)
predicted score = np.cumprod(y pred[:, 0: np.where(

breaks >= num year*12)[0][0]], axis=1)[:, =1]
return concordance index(time, predicted score, event)

A.5 IBS Class

class IBS scorer:
def call ( self , y true, y pred, **kwargs):

event = y true [:, =2]
time = y true [:, =1]
survival train = np.array(list(zip(event, time)))
dtype = [(’event’ , bool), ( ’time’, np.float64 )]
structured survival train = np.array(

list (map(tuple, survival train)), dtype=dtype)
times = [0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60]
score = integrated brier score ( structured survival train ,

structured survival train , y pred, times)
return score
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Appendix B

Ensemble Model Performances

B.1 OUS Ensemble Model Performances

Table B.1: Ensemble model performances on the OUS dataset.

Test Fold Endpoint C-index AUC IBS
CT + PET

4 OS 0.62 0.66 0.20
3 OS 0.66 0.63 0.18
2 OS 0.65 0.64 0.19
1 OS 0.84 0.76 0.12
0 OS 0.68 0.69 0.20

PET
4 OS 0.61 0.63 0.21
3 OS 0.67 0.65 0.18
2 OS 0.76 0.67 0.17
1 OS 0.77 0.73 0.13
0 OS 0.72 0.67 0.18

PET + 20 intervals
4 OS 0.65
3 OS 0.67
2 OS 0.73
1 OS 0.78
0 OS 0.68

PET + GTVp
4 OS 0.70 0.70 0.19
3 OS 0.80 0.72 0.15
2 OS 0.79 0.71 0.17
1 OS 0.72 0.73 0.14
0 OS 0.71 0.69 0.17

PET + GTVp + GTVn
4 OS 0.69 0.73 0.20
3 OS 0.75 0.73 0.14
2 OS 0.87 0.80 0.15
1 OS 0.78 0.66 0.13
0 OS 0.63 0.68 0.21

CT
4 OS 0.61 0.51 0.19
3 OS 0.68 0.65 0.18
2 OS 0.69 0.65 0.19
1 OS 0.75 0.68 0.16
0 OS 0.69 0.69 0.20

CT + PET + GTVp
Continued on next page
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Table B.1 – Continued from previous page
Test Fold Endpoint C-index AUC IBS

4 OS 0.73 0.78 0.18
3 OS 0.75 0.66 0.16
2 OS 0.81 0.78 0.16
1 OS 0.75 0.73 0.13
0 OS 0.75 0.65 0.19

CT + PET + GTVp + GTVn
4 OS 0.59 0.60 0.20
3 OS 0.76 0.71 0.15
2 OS 0.65 0.64 0.17
1 OS 0.68 0.68 0.16
0 OS 0.78 0.73 0.19

CT + PET + GTVp
4 DFS 0.54 0.46 0.26
3 DFS 0.61 0.63 0.23
2 DFS 0.79 0.61 0.20
1 DFS 0.47 0.49 0.26
0 DFS 0.68 0.63 0.23

CT + PET
4 DFS 0.53 0.52 0.25
3 DFS 0.52 0.60 0.25
2 DFS 0.72 0.56 0.21
1 DFS 0.60 0.57 0.23
0 DFS 0.73 0.57 0.23

PET
4 DFS 0.69 0.62 0.25
3 DFS 0.51 0.51 0.26
2 DFS 0.77 0.59 0.19
1 DFS 0.55 0.52 0.25
0 DFS 0.74 0.66 0.21

PET + GTVp
4 DFS 0.70 0.61 0.25
3 DFS 0.61 0.60 0.22
2 DFS 0.79 0.60 0.21
1 DFS 0.42 0.47 0.30
0 DFS 0.66 0.65 0.21

CT
4 DFS 0.48 0.46 0.25
3 DFS 0.55 0.58 0.24
2 DFS 0.60 0.51 0.23
1 DFS 0.57 0.56 0.24
0 DFS 0.62 0.58 0.24
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B.2 MAASTRO Ensemble Model Performances

Table B.2: Ensemble model performances on the MAASTRO dataset.

Test Fold Endpoint C-index AUC IBS
CT + PET

4 OS 0.64 0.58 0.18
3 OS 0.66 0.64 0.17
2 OS 0.62 0.60 0.17
1 OS 0.61 0.57 0.18
0 OS 0.63 0.60 0.18

PET
4 OS 0.67 0.64 0.17
3 OS 0.66 0.65 0.17
2 OS 0.70 0.66 0.18
1 OS 0.67 0.63 0.17
0 OS 0.65 0.61 0.17

PET+GTVp
4 OS 0.66 0.60 0.17
3 OS 0.64 0.63 0.17
2 OS 0.64 0.64 0.18
1 OS 0.65 0.65 0.19
0 OS 0.66 0.65 0.17

PET+GTVp+GTVn
4 OS 0.65 0.63 0.17
3 OS 0.67 0.66 0.17
2 OS 0.67 0.64 0.17
1 OS 0.63 0.60 0.18
0 OS 0.64 0.63 0.17

CT
4 OS 0.62 0.60 0.18
3 OS 0.61 0.58 0.18
2 OS 0.62 0.59 0.18
1 OS 0.61 0.57 0.19
0 OS 0.62 0.57 0.18

CT+PET+GTVp
4 OS 0.68 0.66 0.17
3 OS 0.66 0.65 0.17
2 OS 0.66 0.66 0.17
1 OS 0.68 0.69 0.17
0 OS 0.67 0.63 0.17

CT+PET+GTVp+GTVn
4 OS 0.67 0.63 0.17
3 OS 0.69 0.66 0.16
2 OS 0.71 0.70 0.16
1 OS 0.67 0.65 0.18
0 OS 0.66 0.64 0.17

CT+PET+GTVp
4 DFS 0.59 0.57 0.22

Continued on next page

89



Table B.2 – Continued from previous page
Test Fold Endpoint C-index AUC IBS

3 DFS 0.64 0.61 0.21
2 DFS 0.63 0.62 0.21
1 DFS 0.62 0.63 0.21
0 DFS 0.62 0.61 0.22

CT+PET
4 DFS 0.63 0.62 0.21
3 DFS 0.66 0.66 0.21
2 DFS 0.63 0.62 0.22
1 DFS 0.63 0.64 0.21
0 DFS 0.62 0.59 0.22

PET
4 DFS 0.67 0.62 0.21
3 DFS 0.66 0.62 0.21
2 DFS 0.65 0.61 0.22
1 DFS 0.65 0.61 0.22
0 DFS 0.64 0.61 0.22

PET+GTVp
4 DFS 0.59 0.60 0.22
3 DFS 0.62 0.62 0.22
2 DFS 0.60 0.60 0.22
1 DFS 0.61 0.62 0.23
0 DFS 0.61 0.60 0.22

CT
4 DFS 0.65 0.60 0.21
3 DFS 0.64 0.60 0.21
2 DFS 0.63 0.58 0.22
1 DFS 0.63 0.61 0.22
0 DFS 0.60 0.58 0.22
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