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Abstract
This study explores the performance of reservoir-type and conventional arti-

ficial neural networks as saliency detectors, inspired by Li Zhaoping’s hypothesis
regarding the V1’s role as a saliency detector. A comparative analysis evaluates
various models on a simple input image time series task, focusing on their effec-
tiveness in training and out-of-sample validation data.

Results indicate that while reservoir models exhibit higher training data loss
compared to non-reservoir networks, they outperform other models on new data.
Modifications to the reservoir structure show promise in improving both loss
and Intersection over Union (IoU) score performance on the training and out-of-
sample validation data. However, the study does not find that imposing a more
visual cortex-like structure in the reservoir enhances its performance.

Further analysis suggests that while reservoir models offer advantages such
as cost-effectiveness and robustness for changes in input data, they may lack the
precision of more trainable models like CNNs. Limitations to the thesis include
the scope of hyperparameter exploration and the lack of overfitting mitigation
techniques like the use of dropout.

Future research should focus on refining all models to measure the potential
performance on both training and out-of-sample data. This includes exploring
ensemble methods and improving weight initialization techniques to enhance
model precision and adaptability, leading to advancements in various real-world
applications.
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Sammendrag
Denne studien utforsker ytelsen til reservoartype og konvensjonelle kunstige

nevrale nettverk som saliensdetektorer, inspirert av Li Zhaopings hypotese angående
V1s rolle som en saliensdetektor. Sammenlignings analyse evaluerer ulike mod-
eller med en enkel tidsrekke for inngangsdata, med fokus på modellenes effek-
tivitet i trening og validering av data utenfor treningrommet.

Resultatene indikerer at mens reservoarmodeller viser høyere tap på tren-
ingsdata sammenlignet med tradisjonelle nettverk, overgår de modellene på nye
data. Modifikasjoner av reservoarstrukturen viser potensiale om å forbedre både
tap og ytelse av IoU på trenings- og valideringsdata som er utenfor treningsdata.
Imidlertid finner studien ikke at påleggelse av en mer visuell cortex-lignende
struktur i reservoaret forbedrer ytelsen.

Videre analyse antyder at mens reservoarmodeller tilbyr fordeler som kost-
nadseffektivitet og robusthet for endringer i inndata, kan den mangle presisjonen
til mer trenbare modeller som CNN-er. Begrensninger i avhandlingen inkluderer
omfanget av hyperparameterutforskning og mangelen på teknikker for å motvirke
overtilpasning som bruk av dropout.

Fremtidig forskning bør fokusere på å forbedre alle modeller for å måle poten-
siell ytelse på både trenings- og valideringsdata utenfor treningsrommet. Dette
inkluderer utforsking av ensemblemetoder og forbedring av vektinitialisering-
steknikker for å forbedre modellens presisjon og tilpasningsevne, noe som fører
til fremskritt innen ulike anvendelser.
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1 Introduction
Understanding how the human mind perceives the visual world is a multifaceted puzzle.
From photons hitting the eye to the intricate computations within the brain, there are a
lot of unknowns [1]. Central to this process is the concept of attention selection - the visual
cortex’s ability to discern what is important in such a big pool of visual stimuli it receives.
Li Zhaoping’s hypothesis posits that the early visual system, specifically V1, plays a pivotal
role in this attention selection process [2]. By computing a saliency map, V1 determines
where in the visual field it is crucial to focus our attention.

Advancements in machine learning have led to the development of artificial neural net-
works, such as the expansive transformation models used in large language models today [3].
These networks, while simplified versions of their biological counterparts, can mimic complex
cognitive processes. Their reliance on vast amounts of data poses challenges, particularly in
avoiding overtraining - the phenomenon where the model learns the training data too well,
compromising its ability to generalize to new data.

A new architecture that promises performance with high resistance to overtraining and
less need for training data, is reservoir networks [4]. Unlike traditional artificial neural net-
works with trainable weights, reservoir networks leverage fixed internal dynamics, with only
a small output layer adapting to map reservoir output to desired predictions. This approach
aims to mitigate overfitting while promoting robustness and generalization.

Using knowledge from neuroscience and machine learning to explore different artificial
neural network architectures the goal is to see how the different models act like a saliency
detector. With a traditional way being the CNN model network [5], other models are ex-
plored to act as a more possible biological neural network counterpart. Lastly, reservoir-type
networks are explored as a potential biological network with a high resistance to overfitting.
The reservoir will also be modified to see if a configuration closer to V1 is beneficial or if
there are other ways to improve its performance.

1.1 Previous work and Motivation
Primates like humans can recognise objects in scenes with hierarchically interconnected net-
works in the visual cortex [6]. The likeness to deep neural networks and our visual cortex
might be useful to teach us how the neural networks of our visual cortex work. This is
because the ability to modify, save and rerun the networks in computer software is much
simpler than in an awake primate brain. By making lots of models to replicate a similar
task to what the visual cortex does, information about the visual cortex architecture can be
learned. Testing multiple architectures can then be compared to each other.

The Convolutional Neural Network (CNN) architecture draws inspiration from studies
of biological vision [7]. Research has revealed that certain neurons in the visual cortex re-
spond selectively to specific visual features, such as orientation. This insight served as the
foundation for the development of primitive CNNs. Extensive studies have demonstrated
that deep CNN architectures can achieve performance levels comparable to human visual
recognition capabilities [7]. So using a CNN model would seem like a baseline for making
saliency detectors.
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The process of determining the significance of various visual inputs mirrors the way our
visual cortex prioritizes different regions for focused attention. CNN models excel at cap-
turing and representing these hierarchical visual features, enabling them to simulate human
visual processing mechanisms effectively [5]. With the extensive studies done on CNNs and
their relationship to the visual system in biology, testing CNNs on a task to find saliency,
the important input information, should then also produce similar characteristics as the
visual system.

On the other hand, reservoir computing is proficient in learning dynamic systems charac-
terized by intricate temporal and spatial relationships, often with minimal training data [4].
Then having a reservoir as the saliency detector can yield results as minimal previous knowl-
edge is required for the model to make predictions. And if the task of the saliency detector
is to find something dangerous, needing previous knowledge might not be an option.

While reservoir computing has demonstrated efficacy, the absence of definitive design
rules for the reservoir weights poses a challenge in ensuring optimal predictive performance.
The performance of a reservoir heavily relies on the initialization of its weight matrix, a
pivotal factor that can determine whether the reservoir functions effectively or yields sub-
optimal outcomes [8]. Given that all weights in the reservoir are set during initialization,
this stage significantly influences the reservoir’s dynamics, ultimately shaping its ability to
serve as a saliency detector.

Brain experiments show different neurons select for specific orientations in the visual
cortex [9]. They also indicate that if the neurons go unused, the connections become weaker.
Blakemore and Cooper limited the visual stimuli in the development stages of the visual
cortex in cats. The result was that the cats did not recognize objects perpendicular to the
stimuli in the environment they had developed their visual cortex in [9]. Thus, if a model
is similar to the visual cortex, it would be reasonable to assume similar behaviour in the
models as in the visual cortex. Limiting the training data to just one orientation and testing
the models on test data perpendicular to the training data should then yield similar results.
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2 Theory
Biological neurons have largely inspired the development of machine learning algorithms to
make a simplified artificial neuron. As more artificial neurons were combined to form artifi-
cial neural networks and with improved architecture, the networks started to be more useful.
With more useful artificial neural networks more interest also came to research computer
science and computer vision. So these advanced artificial neural networks with similarities
to the biological neural networks mean the artificial neural networks can be useful in neuro-
science [7]. With the resulting similarities, neuroscience can learn how neural networks work
from these machine learning algorithms.

In this thesis, artificial neural networks are trained to function as saliency detectors. A
model is a good saliency detector when it can find what is important in the image.

2.1 Neuroscience
This explanation simplifies the visual cortex to give enough information to explain choices
made later in the thesis, such as the customization to make the modified reservoir and the
line dataset.

The primary visual cortex, known as V1 is the region responsible for early visual process-
ing [10]. The signal from the retina goes to the back of the brain. Looking in the primary
visual cortex information enters layer 4, which then sends information to layer 2/3. The
connections between layers 4 and 2/3 go both ways, with 66% bias towards layer 2/3 [11].
This structure will be attempted to copy in the modified reservoir neural network. Copying
the structure will benefit the reservoir if such a structure is beneficial to act as a saliency
detector.

Note, that the names of the six layers do not reflect information flow, but on the physical
layers of the brain. Layer 1 would be on the surface and then layer 6 would be the deepest
layer. Layers 2 and 3 are often not distinguished as they are very similar [2].

Experiments suggest that the V1 needs stimulus in the early stage of development to
register that stimulus later in life. C. Blakemore and G. F. Cooper limited the visual stimuli
in the development stages of the visual cortex to cats while their visual cortex was in
development. After the development of the visual cortex, the cats were released into a normal
living room where the cats struggled to perceive edges perpendicular to the visual stimuli
they got while in their development stages [9]. So if an artificial neural network architecture
is similar to that of V1 it should have a similar response. Therefore if networks are trained
on exclusively vertical stimuli, the networks should not be able to find horizontal stimuli
under testing. This will be the basis of the line dataset.

2.1.1 Neuron
Processing signals in the brain is the work of the neurons. A neuron can be split into three
simplified parts; The dendrites are the input to the neuron centre. This is where the neuron
receives information about its surroundings. The soma is the centre of the neuron. This is
where ion currents enter and the neuron either sends an impulse or not. The end is the
axons being responsible for the output. The axons send the signal out of the neuron for a
new dendrite to receive [12].
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Neurons send signals depending on their voltage over the membrane or membrane

potential that changes from received signals. A neuron can get excitatory or inhibitory
signals, meaning the potential goes up or down depending on the signals they receive, and
it is a combination of signals the neuron receives that determines if the neuron sends an
output signal or not [12].

2.1.2 Networks of Neurons
Although the mechanics of a single neuron are quite well understood, the mechanics of
networks of neurons work are not [1]. Simulations of networks of neurons come to a limit,
where they can either simplify the neurons or make the network smaller neither producing
an overview of real neural networks. Detailed measuring of neurons in an active brain is also
limited, due to the size of the neuron and the sheer size of our brain network [1]. Therefore
simplifications can be used to make an artificial neural network in the branch of machine
learning.

2.2 Machine Learning
2.2.1 Perceptron
The following subsection follows book [13] closely. McCulloch and Pitts looked at the bio-
logical neuron to make perceptron [14]. A simple neuron with input signal x⃗, weights w⃗ and
an activation function ϕ(...). Where the output is calculated with the equation

ŷ = ϕ(w⃗⊤x⃗+ b). (2.1)

Where ŷ is the Perceptron estimate on the label and b is the bias. The problem is finding
the optimal weights to solve the given problem. To optimize the weights in equation (2.1),
one can use

∆w⃗ = η(y − ŷ)x⃗. (2.2)

Where ∆w⃗ is the change in weights, η is the learning rate. y and ŷ are the class label
and estimated class label respectively [13].

Equation (2.2) provides a simple update function to work towards the optimal weights
for one neuron. Thereby being able to linearly separable data. Adding more neurons to make
a neural network can separate more complex connections.

An artificial neural network consists of multiple neurons that individually take in a
vector (here either the original input vector or the output vector of the previous neural
layer) and multiply it with their weights. Then they all get summed up and passed through
an activation function. Several stacks of nodes make a deeper neural network, sometimes
called a deep neural network. These deep neural networks can be useful in predicting data.
One common artificial neural layer is called the dense layer and is just a stack of neurons
where all neurons read all the neurons from the previous layer and is calculated with the
equation

ˆ⃗y = ϕ(Wx⃗+ b⃗). (2.3)
ˆ⃗y is the predicted label vector, W is the weight matrix and b⃗ is the bias vector.
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The only change from equation (2.1) to (2.3) is the rank of the variables and the output.
To make a deep neural network equation (2.3) is just applied several times. A more advanced
weight optimiser was needed for a bigger and deeper network.

Back-propagation optimises the equation (2.2). In back-propagation, the derivative of the
activation function is taken backwards from the prediction, and every weight is then nudged
in the direction of the lowest error. The amount the neuron gets pushed is determined by
the size of the error and the learning rate

∆W = −η∇J(W). (2.4)

Where ∆W is the change in the weight matrix, η is the learning rate and ∇J(W) is the
gradient of the cost function with the weights, W [13].

The result of equation (2.4) is that the weight change is in the direction of the fastest
decrease in the cost function, later called loss. The equation is called gradient descent [13].

2.2.2 Convolutional Neural Network
Convolutional neural networks (CNN) use kernels that slide over the input tensor and mul-
tiply their kernel weights with the input images underneath. The output of these kernels
should therefore contain spatial information about the input image making it more compu-
tationally efficient than the standard neurons in the dense layer. The output is then a new
tensor called a feature map.

Fm,n =
∑
j

∑
k

Am−j,n−k ∗ Kj,k. (2.5)

Where F is the feature map, m and n are the indexes for the feature map, j and k are the
indexes for the kernel, A is the input image and K is the kernel. More about the CNN
network can be read in [13].

2.2.3 Recurrent Neural Network

x h
Wx

Wh

y
f⃗y(...)

Figure 1: Simplified node representation of a Recurrent Neural Network (RNN) architecture
with input weights, recurrent weights and the activation function

Recurrent neural networks (RNN) are as the name suggests, recurrent. Recurrence means
that the network layer can receive connections from its layer in the previous time step.
The connection from the previous timesteps makes the neurons able to take their past into
account and is therefore especially good at handling time series data. The RNN can be
explained mathematically with the formula

h⃗t+1 = f⃗h(Wxx⃗t + Whh⃗t + b⃗h). (2.6)

Where h⃗t+1 is the hidden state vector at time step t+1, f⃗h(...) is the activation function
for the hidden state, Wx is the weight matrix for the input vector x⃗t at time step t, Wh
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is the weight matrix for the previous hidden state vector h⃗t and b⃗h is the bias vector for
the hidden state. Figure 1 shows a node diagram off the RNN. The hidden state is the next
layer input.

2.2.4 Reservoir Networks

xn−1

xn

xn+1

rn−1

rn

rn+1

γf⃗h(...) 1− γ

γf⃗h(...) 1− γ

yn−1

yn

yn+1

Figure 2: Simplified node representation of an unfolded reservoir

The Reservoir network in figure 2 is based on [8] and is similar to an RNN network. The
main difference is that the reservoir weights are not updated, instead having a small trainable
layer after the reservoir to map the reservoir state to the output. This implementation has
also added a pass-through rate to equation (2.6) making the updated equation for the state
of a simple reservoir.

r⃗n+1 = (1− γ) ∗ r⃗n + γ ∗ f⃗(Wr r⃗n + Wxx⃗n + b⃗). (2.7)

where r⃗n+1 is the next step in the reservoir state vector, γ is the pass-through rate, f⃗(...)
is the activation function, Wr is the recurrent reservoir weight matrix, r⃗n is the reservoir
state at time step n, Wx is the input weight matrix, x⃗ in the input vector at time-step n

and b⃗ is the bias vector.

Note that the weights are not trainable but semi-randomly assigned at initialisation,
Wr is chosen so it is an orthogonal matrix where WrW⊺

r = I, this is done with initializers
explained more in section 2.2.7.

Keeping the eigenvalues absolute values at one ensures that even with repeated multi-
plication of r⃗ some neuron values do not result in zeros or infinity. The activation function
also constrains the values of the neurons in the reservoir. r⃗0 and b⃗ are set as small vectors
sampled from uniform distributions so that they are not zero nor the main contributor to
r⃗, and γ is a hyper-parameter.

The dense layer is used to map the reservoir to the desired output. The idea is by having
a big network that is not trainable but calculates different dynamics in a reservoir, a small
trainable network can find relevant patterns in the activity of the reservoir, and the network
as a whole has less ability to optimize for the specific problem and has to learn the general
rules of the training data. It can therefore be more resilient to changes in the data.
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2.2.5 Modified Reservoir

x1

x2

r1

r2

r3

r4

Hidden
Layer

r1

r2

r3

r4

y1

y2

Wr,c

Figure 3: The arrows show the connections of the modified reservoir, the input nodes are only
connected to the first half of the hidden layer, the hidden layer is connected to itself with the
weights from figure 4 and only the last half of the reservoir is connected to the output.

To make the modified reservoir, the reservoir is split into two parts to mimic the L4 and
L2/3 in the visual cortex. This requires custom changes to the input, recurrent weights and
output. Already having an input matrix it can be modified with a matrix Wx,c =

( I O
O O

)
.

Where I is the identity matrix, and O is a zero matrix. Changing the input to be
Wx,cWxx⃗n in equation (2.7). This results in the input information only affecting the first
half of the reservoir. The output can be modified similarly by making a matrix Wy,c =(

O I
)
, reducing the output size to half of the reservoir by only taking information from the

second layer.

The modification of Wr is more involved. To mimic the connections in L4 and L2/3 as in
[11], the weights need to make the two layers mostly connected to themselves and somewhat
connected to each other. To ensure the stability of the network the weight matrix should
have eigenvalues, whose absolute value is not above one. This will ensure that the values
in the reservoir r⃗ do not go to infinity with consecutive self-multiplication. Though a gate
of activation function compensates for this, that ensures the values do not supersede the
absolute value of one.

By letting Wt and Wb be two orthogonal matrices, and placing them in the top left and
bottom right corner of weight matrix Wr,c that otherwise is zeros, it is ensured that Wr,c

is also orthogonal.

Wr,cW⊤
r,c =

(Wt O
O Wb

)(Wt O
O Wb

)⊤
=

(WtW⊤
t O

O WbW⊤
b

)
=

( I O
O I

)
= I. (2.8)
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This makes Wr,c a recurrent weight matrix that only the first half of the input will affect
the first half of the output, and only the second half will affect the second half of the output.
At the same time, both changes will be stable with multiple multiplications.

Figure 4: An example of the recurrent weight matrix for the modified reservoir Wr,c. Note that
the weight density and value are higher on the on-diagonal quadrants than on the off-diagonal
quadrants. Note the density is also lower in the bottom left than the top right. This makes the
matrix have a forward bias. This example is of a 100 × 100 matrix.

By populating the zero diagonal with a small number of weights representing the con-
nection between the first and second layer, ensuring that the absolute value of each weight
and the amount of weights on the off-diagonal is small and sums to a total zero, the stability
is affected but this can be controlled by how much of the off-diagonals have non-null weights
and the absolute value of the weights in the off-diagonal.

With all the modifications the new equation for updating the reservoir is

r⃗n+1 = (1− γ) ∗ r⃗n + γ ∗ f⃗(Wr,cr⃗n + Wx,cWxx⃗n + b⃗). (2.9)

Where r⃗n+1 is the next step in the reservoir state, γ is the pass-through rate, f⃗(...) is the
activation function, Wr,c is the modified recurrent reservoir weight matrix, an example of
this can be seen in figure 4. rn is the reservoir state at time-step n, Wx,cWx is the modified
input weight matrix, x is the input and b⃗ is the bias vector.

The output of the reservoir is being modified with

y⃗ = Wy,cr⃗n. (2.10)

Where y⃗ is the output vector, Wy,c is the output matrix and r⃗n is the state of the
reservoir. The nodes resulting from equations (2.9-2.10) are visualized in figure 3 where a
smaller example for the modified recurrent weights shown in figure 4.
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2.2.6 Convolutional LSTM
Long-Short Term Memory (LSTM) is a version of RNN, where four gates are used to increase
stability and give the neurons the ability to remember more [13]. Instead of modifying the
RNN to a reservoir, one can modify the recurrent neural network to adapt the features of a
convolutional neural network.

First, the equations for a conventional LSTM, equations follow [13]. Being a modification
of the RNN explained it has similarities. The hidden state and the input goes to the sigmoid
output gate.

o⃗t = σ(Wx,ox⃗t + Wh,oh⃗t + b⃗o). (2.11)

Where o⃗t is the output vector at time-step t. Wx,o and Wh,o are the weights for the input
x⃗t, and the hidden state h⃗t respectively. The b⃗o is the output gate bias. However, the out-
put vector does not become the output before it does a point-wise multiplication with the
internal state.

The internal state makes the LSTM able to remember longer time series. To compute
the internal state two more gates are introduced. First, a forget gate to remove old unneeded
information, which is a sigmoid of the hidden state and the input,

f⃗t = σ(Wx,f x⃗t + Wh,f h⃗t + b⃗f ). (2.12)

With all gates weights and bias equivalent from the output gate in equation (2.11). Then
an input gate decides what information should be added to the internal state from an input
node, the input gate is calculated with this equation

i⃗t = σ(Wx,ix⃗t + Wh,ih⃗t + b⃗i). (2.13)

To calculate the input node, the equation uses hyperbolic tangent as the activation
function

n⃗ = tanh(Wx,nx⃗t + Wh,nh⃗t + b⃗n). (2.14)

With the input node weights and bias equivalent from the output gate equation (2.11).
Finally, the internal state can be updated with the equation

c⃗t+1 = f⃗t ⊙ c⃗t + i⃗t ⊙ n⃗. (2.15)

Where c⃗t is the internal state, ⊙ is element-wise multiplication, f⃗t and i⃗t are the vectors
from the forget gate from equation (2.12), and the input gate from equation (2.13). n⃗ is
the vector from the input node from equation (2.14). With the internal state calculated in
equation (2.15), the hidden state can be updated for the next time-step

h⃗t+1 = o⃗t ⊙ tanh(c⃗t+1) (2.16)

Where h⃗t+1 is the hidden state at time-step t+1, o⃗t is the vector from the output gate from
equation (2.11) and c⃗t+1 in the internal state for the time-step t+ 1.

To modify the LSTM to be a convolutional LSTM the input vector becomes an input
matrix, and the neurons in the LSTM are used as the CNN as in the equation (2.5). To
adapt to the input matrix all the tensor parameters in the normal LSTM have to be one
rank higher. This configuration of the neuron model is a more integrated version of the
combination model CNN-RNN so more complex spatial information can be processed, more
info about the convolutional LSTM can be found in [15].
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2.2.7 Weight Initializers
The correct choice of weights is crucial for a performing model, especially for the reservoir-
type models that can not update their weights afterwards [8].

A random uniform initializer was used for the initialization of the parameters of the
reservoir. The probability is calculated with the formula

P =
1

b− a
. (2.17)

Where P is the probability distribution, b and a are the maximum and minimum values of
the weights.

Equation (2.17) shows that the probability of the weights is the same for all possible
values. This distribution was chosen to make the bias and start state of the reservoir only
have a small influence on the reservoir’s output.

The recurrent weights need stability with repeated multiplication therefore the orthogo-
nal matrix weight initializer was chosen. The orthogonal initializer generates an orthogonal
matrix with the QR decomposition of a matrix of random numbers drawn from a normal
distribution. The output will have orthogonal columns [16]. This is expressed in the following
equation

A = QR. (2.18)

Where the matrix A is made to the set size with random numbers, then using the Gram–
Schmidt process it gets decomposed to QR, where Q is the orthogonal matrix and R is an
upper triangular matrix [17].

Figure 5: Shows the recurrent weight distribution used in the reservoir-type networks, the red line
is the normal distribution with a mean of zero and a normal distribution of 0.05.

Figure 5 shows the distribution of weights from Q from equation (2.18), and is the one
used for the reservoir models. Here it is also shown that the resulting orthogonal matrix
follows closely a normal distribution that is indicated with the red bell curve.
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For the input weights to the reservoirs, the Glorot normal initializer was chosen. The
Glorot normal initializer generates a truncated normal distribution with a mean at zero with
the standard deviation calculated with the equation

σ =

√
2

Win +Wout
. (2.19)

Where Win is the number of inputs for the weight and Wout is the number of inputs for the
weight [18]. One benefit found with using this distribution is to give faster convergence as
it has more balanced gradients.

Figure 6: Shows the input weight distribution used in the reservoir-type networks. The distribution
comes from the Glorot initializer. The red line is the normal distribution with a mean of zero and
a normal distribution of 0.07.

As seen in figure 6, the Glorot normal gives a flatter distribution than the normal distri-
bution with the standard deviation from equation (2.19). This truncated distribution means
more weights have values further away from zero and fewer values at or near zero than what
would have been expected from a normal distribution.

2.3 Metrics
Several metrics give a bigger picture of how the models act under training. The model needs
a metric to optimise the trainable weights in the model, for this loss will be used. Although
computers easily read loss it is not an easily understandable metric for humans as it is only
comparable to different models doing the same task. To get an understanding of the model’s
performance, some human-readable metrics will be used as well.
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2.3.1 Loss
The metric to minimise is loss. The model uses a mean square error

MSE =
1

n
∗

n∑
i=1

(Yi − Ŷi)
2. (2.20)

Where n is the number of samples, Yi is the true value and Ŷi is the predicted value [13].
Since the object is small in the input, the contribution to the loss is much greater from

the non-object part of the input than the object part of the input. Mitigating the focus can
be done by applying a bias to where the object is, so the contribution from the errors in the
object is the same as the non-object portion.

Weighted MSE =
1

n ∗ k
∗

k∑
j=1

n∑
i=1

δi,j(Yi,j − Ŷi,j)
2. (2.21)

Where n is the number of rows, k is the number of columns, and δi,j is the inverse of the
fill factor if the object is at i, j. Yi,j is the true value at i, j and Ŷi,j is the predicted value
at i, j.

Equation (2.21) can be easily calculated by calculating the fill factor, ff . Then weighted
the errors, Weighted SE to then take the average to get the Weighted MSE

ff =
1

nT
∗

nT∑
i=1

Yi. (2.22)

Weighted SE = (
1

ff
∗ Y + (1− Y)) ∗ (Y − Ŷ)2. (2.23)

Weighted MSE =
1

nT

nT∑
i=1

Weighted SEi. (2.24)

Here the nT is the number of entries in the tensor Y, Y is the true labels tensor and Ŷ is
the predicted tensor from the model. Note that Weighted SE, Y and Ŷ are tensors of rank
5.

Weighted MSE from (2.24) gives a good metric for telling the code what to minimise
but does not give insight into how well the model is at predicting.

2.3.2 Intersection over Union
A good human-readable metric goes from zero to one, with one being perfect. The metrics
used here are taken from Keras, more can be read in citation [19] or in Keras documentation.

One metric that does this is Intersection over Union (IoU) which is simply calculated by

IoU =
TP

TP + FP + FN
. (2.25)

Where TP are the true positives, FP are false positives and FN are false negatives. The
name explains that the intersection is where the prediction and the true values overlap, over
(or divided by) the union of the predicted and true values. An example of this can be seen
in figure 7.
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Figure 7: An example with a picture size 10×10 and a line that is 2×6. The pixels are labelled TN ,
FN , TP and FP , meaning true negative, false negative, true positive and false positive respectively.
The prediction placed the line there 4 pixels are true positives, 4 false negatives and 4 false positives,
using equation (2.25) it gets an IoU of 0.33

One problem with Intersection over Union is that it is a classification metric, meaning it
expects a one or a zero. The model’s output is somewhere in between reflecting how certain
the model is for that specific pixel. To fix this a cutoff was implemented at 0.5, meaning
if one pixel is at 0.6 this is read as a positive for the classification metrics. Getting an IoU
below one does not tell what kind of mistake the model makes, precision and recall do.

2.3.3 Precision and Recall
Precision and Recall are also classification metrics. They will use the same cutoff for positive
and negative labels. Precision asks; given any predicted positive pixel, what is the probability
that it is a true positive? This can be written as

Precision =
TP

TP + FP
. (2.26)

Where TP are true positives and FP are false positives.
Precision only measures true and false positives therefore a prediction that is a small

subset of the real positives gives a high precision score even though a lot of the real positives
can be falsely predicted as negative.

Recall, on the other hand, asks given any real positive pixel, what is the probability that
it is predicted to be positive? This can be written as

Recall =
TP

TP + FN
. (2.27)
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Where FN are false negatives. The recall score falls with false negatives. Calculating recall
from figure 7, recall becomes 4

4+4 = 0.5.

Precision or recall alone does not give a good metric for how good the model is, but
together they make a clearer picture of the model’s behaviour.

2.4 Smoothing kernel

Figure 8: A visualisation of the averaging kernel that is made from in equations (2.28-2.29) to make
the input have less noise.

To reduce the noise in the input picture a kernel is made. With a simplified normal distri-
bution, the noise reduction kernel is

P (x, y, σ) = exp

(
− (x− 1)2 + (y − 1)2

σ

)
. (2.28)

Where exp(...) is the exponential function, x is the x-axis, y is the y-axis and σ scales
the sharpness of the kernel [20].

To normalize the function, normalization is applied,

kernel =
P (x, y, σ)∑
P (x, y, σ)

. (2.29)

With P (...) coming from equation (2.28).
Equation (2.29) ensures that the sum of the matrix before and after the kernel is the

same.
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3 Method
3.1 Use of AI tools
In the process of writing the thesis help from language models was used. Flowcharts and
code are made with the help of ChatGPT 3.5 and spellchecking was helped with Grammarly.

3.2 Code Explanation
To compare various artificial neural network architectures, it was necessary to produce both
input and the desired output data, alongside metrics enabling a comparison between the
models. This is done with Python and the code is available on GitHub. More details on
hardware and dependencies are in Appendix B.

Models were made to check their ability to be saliency detectors. They were trained with
input data checked against the desired output data. How the data were made, the metrics
implemented and the training done is explained. The choices for how the artificial neural
networks are made are also in this section

3.2.1 Input and Desired Output Data
The input data to the models are a time series of different images where the object’s location
is constant and becomes clearer with each step, with a linear fade. The background is just
noise made from uniformly random values between zero and one and smoothed over by the
kernel shown in figure 8 and there is a new background for every time step. Many parameters
can be changed in the input data, the table A.1 in Appendix A shows the variables.

After the background is made the object of interest is placed. There is no line in the first
step (step 0), whereas from step 1 to step 9, the line gradually becomes opaque with pixel
values at zero. The line’s position is chosen randomly so the line’s top left corner has an
equal probability of being in every possible position so that the whole object fits inside the
input.

The desired output data is just the line’s position on the image. Step 0 has no line and
is, therefore, a blank picture, with the other steps having a line of value one for all pixels
the line takes. This time series makes Y in equations (2.20-2.24).

3.2.2 Metrics
To implement the metrics the were some minimal changes, the loss follows the customizations
made in equations (2.22-2.24) to make the loss increase the importance of the line in the
predictions. This rapidly increases the convergence of the models.

To better understand the model’s behaviour per timestep, a custom class was made to
have the IoU score per time step. This was done by separating the timesteps in both the
predicted and desired tensors. Then a threshold is applied making the two tensors either
ones or zeros. Then the equation (2.25) can be used to provide the metric.

A threshold was applied for precision and recall then equation (2.26) and (2.27) were
used respectively. All the metrics were run on the data, averaged per epoch and saved.
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3.2.3 Training and Validation
Given the sizes of the datasets the models were trained on, it was beneficial to produce
generators. Generators produce the data as it is needed meaning that each batch of data
only exists while the model is training on it. Two generates were made, one for training data
and the other for out-of-sample validation data.

The out-of-sample validation data is data that is outside the space of the training data
and gives an insight into how overspecialized the model has become. An in-sample validation
is not measured as it results in the same scores as the training data. The models are run
with 20 batches of training data and one batch of out-of-sample validation data, this leaves
most of the runtime to training while keeping the uncertainty of the out-of-sample validation
data small.

3.3 Choice of Model Architecture
The different models have hyper-parameters that need to be optimised for the best perfor-
mance, but first, the size of all models was decided at close to one Mb of parameters per
model. Parameters like layer size and the total number of layers were optimised by hand
and were done without the out-of-sample data so the tuning did not optimise for the out-
of-sample validation that is supposed to be unknown data for the model. This was not a
complete search of the hyper-parameter space as there are a lot of parameters, the training
time is long and due to limited resources. The absolute optimal performance is not the aim
of the paper, this is an exploration of different models, and to see how the reservoir type of
model compares.

The models implemented and used are;

Model Name Short explanation
(CNN) basic CNN model
(RNN) basic RNN model

(Res) basic reservoir model
(CNN-RNN) CNN followed by RNN

(Mod-Res) Modified reservoir with eq. (2.9)
(Deep-Res) A reservoir two layers deep
(De2-Res) Deep-Res where the second layer input is trainable

(CNN-Res) CNN added in front of the reservoir
(CNN-LSTM) CNN in front of the convolutional LSTM

Table 1: The names for models used later in the plots for the models.

3.3.1 CNN
The CNN layers do not have an input for time so the network is run for every timestep.

The chosen architecture starts with few but big kernels. This makes each filter see a lot
of the picture without adding too many parameters to the beginning of the network. For
the next layer, a smaller kernel size and a larger number of kernels were chosen to make a
more abstract feature space. This pattern was continued for four layers, then a last layer was
added to bring the feature maps back to one dimension, as the output is one colour only.

The padding was chosen to be same for all layers in the network, meaning that the size
of the feature maps is the same for the whole network.
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A U-net type architecture was also tried, this network does not use padding in the same
way and instead decreases the size of each feature map to a bottleneck to then up-sample it
with decoder steps. The U-net did not achieve a lower loss nor did it train faster. The idea
of using a U-net is that they are commonly used in pixel segmentation, a task similar to this
problem. More about U-nets can be found in [21].

3.3.2 RNN
The LSTM neurons were used for the network. The input was flattened and then the network
starts with an LSTM layer of 110 neurons that can find simple correlations in the input.
The second layer is 150 neurons to make the more complex calculations for the network.
The LSTM neurons have many parameters so only two layers are needed to reach the size
limit.

The networks got lower loss when the neuron number was close to the input size, some
other numbers of neurons were tested, but the testing did not show any indication that they
would be better in terms of a lower loss. A GRU network was also looked at but did not
indicate a lower loss. A GRU network aims to do the same as an LSTM with two gates
instead of four, making it more efficient, more can be found in [13].

The dense layer was added at the end of the network to work as the pixels in the output
image similar to what is seen in figure 14.

3.3.3 Reservoir
The considerations for optimizing the reservoir differ from the other models, as the reservoir
size is only constrained by the size limit for all networks. Therefore the number of neurons
is the biggest possible with a dense layer mapping the reservoir to the output. Optimizing
the selection of the weights in the reservoir becomes more important, this is where the
initializers are used. Different rules for initializing the random weights were tested. Small
random distributions for the bias and the start state of the reservoir r⃗0 weights gave good
results, as they do not overshadow the input. The GlorotNormal was used for the input
weights. With the orthogonal initializer used for the recurrent weights. The pass-through
rate was not optimized during training.

3.3.4 CNN-RNN
As a combination of two previous networks, the relative size of the two networks is smaller
than the basic versions. The CNN-RNN has a lot of different architectural choices that can
affect the model’s characteristics. Two layers in each network part were chosen to have a
network with half CNN and half RNN to get aspects of both types of networks. To keep
down the weights in the model max-pooling was used. This parameterless layer takes in a
map and returns the maximum in the designated kernel space [7].

The max-pooling layer cuts what is hopefully unnecessary information and makes room
for a bigger RNN network. Two layers of LSTM with the same size, followed by a dense
layer for the output make the whole network the right number of weights.
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3.3.5 Modified Reservoir
The modified reservoir is a one-layer network, so the network size is just the biggest for the
size limit. The same hyper-parameters as the reservoir were used so the models could be more
easily compared. The strength of the off-axis weights, top left and bottom right quadrants,
was optimised by hand. All the interconnected weights were of a constant value with half of
them negative so the sum of all values added is equal to zero for ease of implementation.

Other hyperparameters specific to the modified reservoir, which were optimized manually,
included determining the number of weights connecting the two halves of the reservoir, as
shown in figure 4. The ratio between the feed-forward and feed-backwards was also explored
with little difference so the ratio was kept at 33% as in paper [11].

3.3.6 Deep Reservoir
Splitting the reservoir in two by making two separate reservoirs with a feed-forward connec-
tion between them makes the deep reservoir. The thought is a deeper reservoir can make
more complex connections in the input image without the limiting structure of the modified
reservoir. The reservoir performed the best with two identical reservoirs, tests with asym-
metrical and deeper networks were tried without a better performance. So two layers both
at 250 neurons were chosen.

Two different models came out of this architecture, the first model the dense layer reads
from both reservoirs to avoid the loss of information by forcing the input through both
reservoirs. This network was named the deep reservoir.

The second model has reservoirs with a trainable layer in between. This deep reservoir
has a normal reservoir followed by a reservoir with a trainable input weight matrix. So the
information goes into the first normal reservoir and then to a second reservoir with its input
weights set as trainable. This resulting network has two distinct layers where the connective
weights are trainable, though this network still has no feedback to the first layer like the
modified reservoir. This reservoir has a dense layer that reads the last reservoir to the output,
this network will be nicknamed deep reservoir 2 or de2-res for short.

3.3.7 CNN-Reservoir
Using the same idea from the CNN-RNN the CNN-Reservoir was made with two CNN
layers with the first layer having a big kernel, and the second layer having double the filters.
Max-pooling was used for the same reason as the CNN-RNN. The rest of the network is the
biggest possible reservoir with a dense layer at 100 neurons at the end to map the reservoir
to the prediction. The backpropagation still works even though the reservoir is not trainable
as the code still knows the weight matrix values and can go backwards through it.

Another idea of having the CNN-RNN and the CNN-Reservoir similar in architecture is
that the later comparison will make more sense. The difference is not in the CNN layer but
in whether a reservoir can benefit from being used in an abstract space.
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3.3.8 CNN-LSTM
The conv-LSTM is an expensive layer to use in terms of parameters, so delaying the use and
starting with a two-layer CNN seems beneficial. Then the conv-LSTM can work in a more
abstract space. To avoid upsampling the picture padding of the image was used, more about
upsampling is in [13].

Having the same layer amount for both network types and then a layer to collapse the
feature space to one dimension, gave good results. The cost of running this model resulted
in less hyper-parameter tuning, but the idea was to follow the CNN model to make them
comparable.
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4 Results
The models are run with the same amounts of time series, not the same training time, the
comparison metrics are valid for all models as they are solving the same problem with the
same number of matrices. Their learning rate was also kept the same for this reason.

4.1 Performance
Each run has two sets of data, one for training and one to test if the network is becom-
ing overspecialised for training data. With two sets of different data combinations, the first
training data is a rotating line of 6×2 resulting in 90 unique line positions and off-validation
data that consists of a rotating block of 4 × 3. This dataset of training and out-of-sample
validation data will be called box. The second set of training data and out-of-sample val-
idation data consists of a non-rotating line of 6 × 2 and a non-rotating line of 2 × 6, this
combination will be called line.

Every model was trained with the same training parameters: batch size = 500, number
of batches per epoch = 20 and epochs = 100, the out-of-sample validation data has the
same batch size but only one batch per epoch. These parameters came from being short
enough to train multiple models yet have most of the models learn close to saturation. This
gives the plots a knee point and is close to showing the peak performance of the models. As
an example, these parameters in the box dataset have the models see 1,000,000 time series
or 10 million individual pictures. Given that there are 90 unique positions for the line, the
models have seen all positions for the line about 11 thousand times. Note that the models
are evaluated on the block as well, but it can not be said to have seen them as it did not
learn from seeing the block.

By splitting the time series and making IoU scores for each step in the time series, the
different model’s characteristics become clearer. It is also clear that some of the models
perform differently on loss, a regression metric, then on IoU, a classification metric. The
difference has two main causes, some can be attributed to some models predicting fewer
pixels than others because of the loss being heavily weighted for true positives, and giving
heavy loss to false positives. This is counter to IoU, as IoU is not weighted at all. The other
is uncertainty. If the model is uncertain but still predicts above the cutoff, the loss function
will give a higher loss while the IoU score still is high.

The models differ by the type of parameters, the reservoir-type models have non-trainable
parameters while the other models only have trainable parameters. It is the total number of
parameters that are kept close to each other.

20



Model Free parameters
CNN 192,897
RNN 240,900
Res 24,060

CNN-RNN 250,524
Mod-Res 13,560
Deep-Res 30,060
De2-Res 77,560
CNN-Res 20,116

CNN-LSTM 283,028

Table 2: Number of free parameters per model. A short explanation of the models can be
found in table 1. Though the total number of parameters should be the same for all models,
this is only the trainable weights. Note that for non-reservoir models free parameters and
total parameters are the same.

Table 2 shows the free parameter count of the models or the number of trainable weights
in the network. The trade-off of having non-trainable weights on the reservoirs means the
network should not be able to customize its features as well as the others but the reservoir’s
mechanics should find the system’s dynamics. The CNN model is also somewhat smaller than
the other models, this was not seen as a problem as the thesis only aims to indicate if the
reservoir is viable. The smaller size of the CNN model seems not to decrease its performance
as can be seen in sections 4.2.1 and 4.3.1.

4.2 The Box Dataset
Setting the models to train on finding a rotating line 6 × 2 and having the out-of-sample
validation data as a 4 × 3 rotating block, the plots in this section show how fixated the
models are on the shape they are trying to find, or how easily they become overspecialized.

Training time on the two datasets can be seen in Appendix C, CPU usage was not
recorded directly. The memory speed seemed to be the bottleneck for all models except for
CNN and CNN-LSTM where the CPU was the bottleneck.
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4.2.1 CNN
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Figure 9: Plots of the CNN model during training, with loss (top left) calculated with equation
(2.24). With blue as out-of-sample validation (val) and orange as training data. Precision and recall
are in the top right plot with val precision in blue and training in orange. Val recall is in green and
training is in red. They are calculated with equation (2.26) and (2.27) respectively. The IoU score
is per time-step (step 0 is excluded as it has no true positive) calculated with equation (2.25), the
line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom left plot
and val IoU in the bottom right plot.

Figure 9 shows the measured performance metrics during training, which are split into
training data that the model remembers and out-of-sample validation data that the model
does not remember. The CNN model does very well, the loss is below 0.05, lower than
all other models tested. Both precision and recall are approaching 1 with their knee point
somewhere around epoch 5 to 10. The IoU training scores do not bunch up like other models
that have a form of recurrence and one clear distinction is in the IoU step 1. All the other
models have a low IoU step 1 score while the CNN can get a score of 0.6 with a continued
linear increase. It would be reasonable to think that the model is searching for the darker
average in the picture and optimising the filters with more epochs.

Looking at the out-of-validation data for the CNN model, the model spikes up fast and
keeps the high score for about 20 epochs before overspecializing on the line and achieving a

22



lower score on the block. Step number 9 starts on top but after 60 epochs it is at the bottom,
with the flowing steps scoring higher, suggesting that as the boundaries become more clear
the model is more certain that the line is not there. Which is correct, it is a block.

Why the CNN model does so well in a time series can be because the picture is quite small
compared to the kernel size used. The big kernels can then imitate the line and calculate
where the kernel sum is the darkest per step. If this is the case it would explain why step 9
in out-of-sample validation IoU is lower than the previous steps.

4.2.2 RNN
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Figure 10: Plots of the RNN model during training, with loss (top left) calculated with equation
(2.24). With blue as out-of-sample validation (val) and orange as training data. Precision and recall
are in the top right plot with val precision in blue and training in orange. Val recall is in green and
training is in red. They are calculated with equation (2.26) and (2.27) respectively. The IoU score
is per time-step (step 0 is excluded as it has no true positive) calculated with equation (2.25), the
line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom left plot
and val IoU in the bottom right plot.

The difference between precision and recall is the expected behaviour for all models. Return-
ing to how the loss is weighted means that false negatives are very costly, but overshooting
and having false positives are not as costly. The line accounts for half of the loss but is small
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compared to the rest of the image (12 %). Giving the true positives/false negatives more
than 8 times the importance of false positives.

The training data in figure 10, shows that the RNN model performs worse and learns
slower than the CNN model having the loss knee-point at epoch 15. The fact that the RNN
model learns slower can be somewhat attributed to the fact that the whole CNN model is
training per time step while the RNN model is only training the whole network per 10 steps
or one time per time series.

The lowest loss the model reaches is 0.1, significantly higher than the CNN model in
figure 9, and the biggest difference is the lower precision of the model. This means that
the model predicts the line to be in a bigger area than the actual position of the line. The
IoU scores before step 7 are also way lower and there is almost no improvement on step 1,
suggesting that the model uses the fact the line stays still and becomes darker and darker
to consecutively make a better prediction.

Looking then at the data to see if the model has specialised on the out-of-sample valida-
tion data, one can see that the RNN model outperforms the CNN model. The RNN model
is more consistent than the CNN model, this is expressed in their out-of-sample validation
loss. The RNN model’s out-of-sample validation loss also goes below 0.2, something that the
CNN model did not. The RNN model’s out-of-sample validation loss slowly increases with
more training so with more training it does specialize more but not to the degree of the CNN.

The RNN out-of-sample validation IoU score for steps 7 and up keeps the peak value of
0.7 throughout the epochs as opposed to the CNN, suggesting that the RNN has learned
something more general about the task than the CNN. The out-of-sample validation IoU
score is significantly lower at epoch 20 than the CNN model, the loss is lower for the RNN
than the CNN model, this shows the different behaviour of a regression and a classification
metric. The RNN model has a fundamentally different calculation method than the CNN
model. This becomes clear when looking at the IoU plots broken down per step. While the
RNN gains some information per step, the CNN out-of-sample validation has step 9 at the
bottom of all IoU scores at the end of the training.

24



4.2.3 Reservoir
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Figure 11: Plots of the reservoir model during training, with loss (top left) calculated with equation
(2.24). With blue as out-of-sample validation (val) and orange as training data. Precision and recall
are in the top right plot with val precision in blue and training in orange. Val recall is in green and
training is in red. They are calculated with equation (2.26) and (2.27) respectively. The IoU score
is per time-step (step 0 is excluded as it has no true positive) calculated with equation (2.25), the
line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom left plot
and val IoU in the bottom right plot.

The similarities between figures 11, the reservoir, and 10, the RNN, are clear. This im-
plementation of the reservoir is in principle an RNN layer with frozen weights so this is
expected. The RNN did reach an IoU of one while the reservoir stagnated at 0.8. The input
dynamics are not represented in the reservoir. Despite the worse training performance, the
reservoir keeps its recall higher than the RNN on the out-of-sample validation. This results
in a non-increasing loss and a non-decreasing IoU score. This demonstrates the reservoir’s
resilience to change in data. One interesting quirk of both IoU plots is that the latest step,
step 9, is not the one with the highest score. One would assume that the step with the most
information is the easiest to predict, but this can be a result of the random initialisation of
the model, so the option of having the highest step 9 IoU score would result in a lower score
for earlier steps and ultimately in a higher overall loss.
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Figure 12: The first column is the input time se-
ries. The middle column shows the desired out-
put time series. The last column is the output of
the model. The rows show the progression of the
line from step 0 to step 9

Figure 12 shows the images the code and
the model produce. The first column shows
how smooth the input image background is
and the line fading in. The second column
shows the true label Y from equations (2.22-
2.24) and is the desired output. The last
column shows the output of the model, here
the rows show the progression of the model
as the line becomes clearer.

The first row has no line (step 0) and the
model knows this as the model has time as
an input. It should predict that there are not
any lines in the input image but is not able
to produce a black picture with the reservoir
weights. The second row (step 1) has a line
but the model can not find the line’s location.
Looking at the input image it is unclear what
logic is behind the prediction but it seems to
have located some of the darker spots in the
image.

Looking at step 2, row number three, the
reservoir still can not give a precise location
for the line. The model predicts a large block
in the middle where the lightest lines are ig-
nored. At step 3 the model should have an
IoU score of 0.4, and it has predicted most
of the line’s position, although it is hard to
know what is above the threshold. The limit
in the IoU score seems to mostly come from
false positives as it predicts a circle next to
the line.

The less clear the pixels the more uncer-
tain the model is of the pixels, even in the
last steps there is still some uncertainty even
though the last row in the first column is
clear. This shows that the reservoir struggles
to give clear boundaries from start to fin-
ish. The input information seems to be too
much interfered with in the reservoir to make
strong boundary predictions.
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4.2.4 CNN-RNN
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Figure 13: Plots of the CNN-RNN model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

Following the CNN with an RNN network results in figure 13. This results in an interesting
plot that is somewhat of a superposition of the networks, and it once again becomes clear
that the two networks are training at two different speeds. The IoU score has an early knee
point around epoch 10 and then again at epoch 30. The model loss score also ends opp
between the CNN and the RNN models.

The CNN-RNN model has a lower recall than the CNN model and does not get the
impressive step 1 high IoU score as the CNN but beats the RNN model. Going over to
the out-of-sample validation data the combination has a less overspecialized network. It
outperforms both individual networks on the loss while not being far worse on the IoU score
than the RNN network.
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Figure 14: The first column is the input time se-
ries. The middle column shows the desired out-
put time series. The last column is the output of
the model. The rows show the progression of the
line from step 0 to step 9

Figure 14 shows the images the CNN-
RNN model produces. Looking at the input
image it seems to be looking for the darker
edges in the input image and therefore the
model predicts two lines one vertical and one
horizontal.

By step 2, row number three, the model
should have an IoU score of about 0.5. Note
this is an average so not necessarily true for
this time series. The model has the location
of the line but also predicts a horizontal line
that if the values are over 0.5 will decrease
the IoU score. This miss also shows the mis-
match in precision and recall seen in figure
13. The green colour is around 0.5 in value so
it is hard to know what pixels are counted by
the classification metrics but it seems reason-
able to give step 2 an IoU score of around 0.5.

The IoU scores tell us the biggest im-
provement is in steps 2 and 3, where step
2 looks good enough that the 12 strongest
pixels are correct with step 3 removing most
of the uncertainty. Even if the classification
metrics show a perfect model for one time-
step, the loss if it was split per timestep
would not show a perfect score of zero for
the later timesteps as there are still non-zero
values for pixels outside the line.
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4.2.5 Modified Reservoir
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Figure 15: Plots of the modified reservoir model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

Restricting the reservoir model to look like the weights shown in figure 4, gives less trainable
weights for the dense layer to map the reservoir’s output. This naive approach to making
the reservoir weights does result in a working model, although worse than the other models
on loss. Figure 15 shows the training progression of the modified reservoir. The difference
between the training and out-of-sample validation is very small and more optimized weight
rules would result in a better working reservoir. The model learning slower can be because of
the difficulty of mapping the reservoir output to a prediction. Learning rate and optimizers
are not modified per model to be able to compare them and to the time constraints. The
modified reservoir has the highest training loss of all models tested, probably because this
model has the smallest amount of trainable weights and the modified reservoir does not seem
well fit for the problem at hand.
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4.2.6 Deep Reservoir
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Figure 16: Plots of the deep reservoir model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

Splitting the reservoir into two parts, to create a deeper reservoir so the network can find
more complex combinations does not seem to improve any metric as can be seen in figure
16. The change in the network results in more trainable weights in the dense layer. Table 2
shows the number of parameters in the respective models. The increase could lower the loss,
but the deeper reservoir produces the same plot as the normal reservoir in figure 11. These
changes to the reservoir architecture did not improve the loss or IoU but the second version
of the deep reservoir, the deep reservoir 2, tells a different story.
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Figure 17: Plots of the deep reservoir model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

Changing the reservoir to the deep reservoir 2 with a trainable connective layer in between
improved its performance compared to the normal reservoir seen in figure 11. Figure 17 shows
this performance improvement in a lower loss than the reservoir and as higher training
IoU scores. The de2-res peak Iou training score has increased by one point, to 0.9. Its
performance increase comes from both an increase in precision and recall. This increase in
training performance has translated to higher validation scores, still showing resistance to
over-specialization. The peak IoU validation score of the normal reservoir is 0.7 while the
deep reservoir 2 is at 0.75, an increase of 0.05.
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4.2.7 CNN-Reservoir
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Figure 18: Plots of the CNN-Reservoir model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

Adding a CNN network to the front of the reservoir, but keeping the total network the
same size, the network produces figure 18. The CNN-Reservoir improves on the earlier steps
compared to the normal reservoir as can be seen in figure 11. It is allowing the network
some improvement in training loss. The CNN-Reservoir network does not improve the peak
IoU score as it seems the reservoir makes a lot of noise in the output. Borrowing the earlier
performance of the CNN network also gave the CNN-Reservoir a worse IoU score on the out-
of-validation data. It seems this combination borrowed both networks’ good and bad aspects,
meaning it overspecializes like the CNN network, and its peak performance is decreased like
the reservoir network.
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4.2.8 CNN-LSTM
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Figure 19: Plots of the CNN-LSTM model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

Changing the CNN-RNN network to a CNN network followed by a convolutional LSTM
network does not inherit the early predictions of the CNN network, but beats the CNN-
RNN network in terms of loss. Comparing the CNN-LSTM model in figure 19 with the
CNN-RNN model in figure 13, the out-of-sample validation data characteristics are similar,
with the performance on the out-of-sample validation data being higher on the CNN-LSTM.
The model shows the difference between the regression metric, aka loss, and the classification
metrics, as the out-of-sample validation data loss is the same as the CNN-RNN while having
higher IoU scores. The CNN-LSTM learns extremely quickly, training could have stopped
at epoch 10 and had close to saturation results, with the best out-of-sample validation score
of all models.
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Figure 20: The first column is the input time se-
ries. The middle column shows the desired out-
put time series. The last column is the output of
the model. The rows show the progression of the
line from step 0 to step 9

The CNN-LSTM seems to be the only
model to produce a completely blank picture
for the first step. This is likely because the
last neuron responsible for the output has a
time input. The second row has a line that is
not visible, yet the model’s prediction is in
the right location with two other lines next
to it. Looking at the input image it seems to
be looking for the spots where the summing
of the line’s shape would produce the lowest
sum.

In the third row, step 2, the line is not
clear but it is likely in the middle as the
model predicts, even though the model pre-
dicts a shape that is impossible for the line
to be it predicts it with full certainty as if
the model has a cutoff in the network. Step
2 predicted output shows a line that is too
long but in the right position with a block
sticking out, looking at the input it would
be reasonable to predict a similar pattern.
With all the consecutive steps being clear
the model predicts them better till step 4
where it has a perfect IoU score.

From the input it is also possible that the
model learns where the model is not, as step
1 has a clear black line for the brightest line
in the input image, this then shows up in
step two where the model predicts on both
sides of the line but is certain that there is
not any line in-between, this would also ex-
plain the weird half line in step 2 that is too
short to be a real line.

The CNN-LSTM model seems to predict
a more binary than the CNN-RNN, which is
clearer in the later steps of the figure. In step
2 the model makes two distinct line predic-
tions with sharp edges, while the CNN-RNN
in figure 14 makes a line prediction with more
unclear boundaries.
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4.2.9 All models

Figure 21: Comparing the loss at epoch 100 of all trained models, where blue is training data and
val_loss is the out-of-sample validation. Here the out-of-sample validation is the rotating box

Figure 21 shows the training loss and the out-of-sample validation loss on the box dataset,
sorted with the highest training loss on the left. The figure shows the Mod-Res performing
the worst and the CNN performing the best. The figure shows the pair-wise similarities
between the CNN-RNN, CNN-LSTM and the reservoir and the deep reservoir, where the
loss and out-of-sample validation is almost the same.

The figure also places all the reservoir-based models on the left and all the non-reservoir-
based models to the right, meaning the reservoir-based models all perform worse on training
data. There is a different story looking just at the box out-of-sample validation loss. All
models except for the CNN and the modified reservoir perform very similarly, with the
RNN network performing the worst of the good group and the deep reservoir 2 performing
the best.

This looks like a minimal difference, as the out-of-sample validation has a bigger uncer-
tainty, but from the IoU plots, it is clear that the deep reservoir 2 is the best out-of-sample
detector. The modified reservoir does worse than the rest by a significant margin with a loss
of about 0.05 points higher than the group. Worst of all is the CNN model which has a loss
of over 0.6, more than double that of the modified reservoir.
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4.3 The Line Dataset
Going from line to block does not seem like a big change when looking at the loss in figure
21. Changing the training data to be a non-rotating 6 × 2 line, and out-of-sample data to
be a non-rotating 2× 6 line can be a bigger difference. Now that the networks are training
on a line that is perpendicular to the out-of-sample validation line.

4.3.1 CNN
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Figure 22: Plots of the CNN model during training, with loss (top left) calculated with equation
(2.24). With blue as out-of-sample validation (val) and orange as training data. Precision and recall
are in the top right plot with val precision in blue and training in orange. Val recall is in green and
training is in red. They are calculated with equation (2.26) and (2.27) respectively. The IoU score
is per time-step (step 0 is excluded as it has no true positive) calculated with equation (2.25), the
line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom left plot
and val IoU in the bottom right plot.

Figure 22 shows a faster training of the CNN model on the box dataset in figure 9, this is
explained by the training data being a subset of the box training dataset. Instead of having
a linear increase on step 1 like the CNN in figure 9 it has an S shape. The CNN model is
exceedingly good on training data, with a 0.75 IoU score on step 1, while steps 3 and up are
perfect scores. The CNN model gets a recall above 0.9 around epoch 10 and then increases
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the precision with an increase at epoch 70. This increase is not easily seen on the loss plot
suggesting that the sharp increase in precision is the model allocating firstly the surrounding
pixels with a value just above 0.5 and then lowering it below the threshold.

The increased performance on training data shows the out-of-sample data losses even
more. Looking at the metrics from the line data, the bigger difference in the datasets means
the model can not find the line at the end of the training, and looking at the loss of around
0.5 it does not perform worse, or in other words, it overspecialises with the training data. The
CNN has a bump at epoch 20 on IoU scores to a score of 0.5 on step 9, a similar bump can
be seen on both dataset combinations. This increase is the model learning some correlation
that is more transferable to the out-of-sample validation datasets. It also indicates that this
dataset combination is more different than the box dataset.
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4.3.2 RNN
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Figure 23: Plots of the RNN model during training, with loss (top left) calculated with equation
(2.24). With blue as out-of-sample validation (val) and orange as training data. Precision and recall
are in the top right plot with val precision in blue and training in orange. Val recall is in green and
training is in red. They are calculated with equation (2.26) and (2.27) respectively. The IoU score
is per time-step (step 0 is excluded as it has no true positive) calculated with equation (2.25), the
line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom left plot
and val IoU in the bottom right plot.

The RNN model in figure 23 has a similar but faster increase in IoU scores than the RNN
model in figure 10, the RNN model learns the training data faster and gets a lower overall
loss in the line datasets. Still, the RNN network performs worse than the CNN network on
the line dataset. On this dataset, however, it is the RNN network that ends with a higher
loss on the out-of-sample validation, not the CNN.

The training data on the RNN model is not very interesting as it is very similar to the
RNN model on the box dataset. The small increase in the IoU out-of-sample validation scores
at the very end is different from the other models but it still is a very low score at just 0.3
on step 9. There is not a visible improvement in loss either. It might be that to find the
earlier steps in the training data, it has found some connection that also fits somewhat with
the out-of-sample validation.
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4.3.3 Reservoir
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Figure 24: Plots of the reservoir model during training, with loss (top left) calculated with equation
(2.24). With blue as out-of-sample validation (val) and orange as training data. Precision and recall
are in the top right plot with val precision in blue and training in orange. Val recall is in green and
training is in red. They are calculated with equation (2.26) and (2.27) respectively. The IoU score
is per time-step (step 0 is excluded as it has no true positive) calculated with equation (2.25), the
line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom left plot
and val IoU in the bottom right plot.

The reservoir in figure 24 reaches beyond 0.8 on the training IoU score. Otherwise similar
to the reservoir training on the box dataset. The interesting part is the loss and IoU scores
on the out-of-sample validation data, although not reaching the same height as the CNN in
figure 22 which peaked at 0.5, the reservoirs out-of-sample validation IoU score reached 0.4
with consistency and does not decrease with training. The reservoir’s loss is also closer to
0.3 compared to CNN’s 0.5, a big difference in performance.

Even with such a big difference between the training data and the out-of-sample data,
the reservoir keeps a consistently lower loss than the other models. The reservoir also tells
that there is a bigger difference in the line dataset, than in the box dataset by the bigger
difference in the performances in loss, precision, recall and IoU.
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4.3.4 CNN-RNN
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Figure 25: Plots of the CNN-RNN model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

The CNN-RNN in figure 25 does well on the training dataset as it achieves a loss below 0.1.
Looking at the training it seems to have distinct learning phases. A similar phenomenon is
faintly seen on the CNN for the line dataset in figure 22 and on and on the box dataset the
CNN-RNN model’s training in figure 13. The first training phase is from epoch 0 to 20, the
next is from 20 to 40 and the last is from 40 to 60.

Why the model is training in phases is hard to explain, but it can be that one part of the
network gives a large decrease in loss and that optimization is largely disconnected from the
other optimization areas. For example, maybe changing the first layer in the CNN network
can decrease loss without the need to change the rest of the network. Therefore the network
training focuses on that part til that part is saturated, and then the training algorithm finds
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a new way to train itself. It should be noted that for each phase the rate of increase in IoU
score for step 9 is decreasing. This can be because the training with most of the potential
was the previous phase.

4.3.5 Modified Reservoir
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Figure 26: Plots of the modified reservoir model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

The modified reservoir in figure 26 results in a similar but even worse than the modified
reservoir with the box data. The training results are like the other models better for the line

data than the box data but not by much. The modified reservoir for the box datasets as seen
in figure 15 ended with a training IoU step 9 score of about 0.55 while this modified reservoir
score is just above 0.6. Some of this learning performance is transferred to the out-of-sample
validation as the model reaches an IoU score of 0.3 and an out-of-sample validation loss just
above 0.4. Beating all of the non-reservoir type models in this metric.
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4.3.6 Deep Reservoir
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Figure 27: Plots of the reservoir model during training, with loss (top left) calculated with equation
(2.24). With blue as out-of-sample validation (val) and orange as training data. Precision and recall
are in the top right plot with val precision in blue and training in orange. Val recall is in green and
training is in red. They are calculated with equation (2.26) and (2.27) respectively. The IoU score
is per time-step (step 0 is excluded as it has no true positive) calculated with equation (2.25), the
line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom left plot
and val IoU in the bottom right plot.

The deep reservoir shown in figure 27 performs again the same as the reservoir, and the
extra trainable weights do not seem to help the network in any significant way, nor does the
potential for deeper connections. A description of this figure will just repeat figure 24 for
the reservoir on the line dataset. Deep reservoir 2 achieves again a different metric scores.
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Figure 28: Plots of the reservoir model during training, with loss (top left) calculated with equation
(2.24). With blue as out-of-sample validation (val) and orange as training data. Precision and recall
are in the top right plot with val precision in blue and training in orange. Val recall is in green and
training is in red. They are calculated with equation (2.26) and (2.27) respectively. The IoU score
is per time-step (step 0 is excluded as it has no true positive) calculated with equation (2.25), the
line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom left plot
and val IoU in the bottom right plot.

The deep reservoir 2 in figure 28, performs better on the training data than the reservoir
with a peak IoU score of 0.05 points higher. This increase seems to come from the higher
precision. The interesting result is in the out-of-sample validation, as the deep reservoir has
a similar path in the first 60 epochs, reaching the same peak as the deep reservoir, but from
epoch 60 to epoch 100 it starts to be over-specialised for the training data.

The loss ended at 0.4 somewhat higher than the normal reservoir. The loss comes from the
decrease in the recall, meaning the model loses its ability to find the line with more training.
This indicates that the more trainable network also allows the reservoir to over-specialise
for only the training data orientation of the line.
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4.3.7 CNN-Reservoir
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Figure 29: Plots of the CNN-Reservoir model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

The CNN reservoir has an interesting training curve shown in figure 29. This network seems
to not be done with its training as the precision and IoU scores are at an increase at epoch
100. The training IoU score for steps 4 and up starts to increase more at epoch 60 after the
first knee-point at epoch 15. This is unlike the CNN reservoir for the box dataset in figure
18. This can be because the CNN network needs to be of a certain size compared to the
training data space to achieve this, or it can be that this would happen on the box dataset
with more training.

The performance improvement in training data does not translate to the out-of-sample
validation data, as the model performs worse in terms of the measured metrics than the
reservoir. The improvement step over step is still there but the graph is about 0.1 points
lower for all steps.
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4.3.8 CNN-LSTM
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Figure 30: Plots of the CNN-LSTM model during training, with loss (top left) calculated with
equation (2.24). With blue as out-of-sample validation (val) and orange as training data. Precision
and recall are in the top right plot with val precision in blue and training in orange. Val recall is in
green and training is in red. They are calculated with equation (2.26) and (2.27) respectively. The
IoU score is per time-step (step 0 is excluded as it has no true positive) calculated with equation
(2.25), the line starts the weakest at step 1 and is fully there at step 9. Training IoU in the bottom
left plot and val IoU in the bottom right plot.

The CNN-LSTM network in figure 30 is training similar to the CNN-LSTM on the box

dataset, although it has a five epoch period where it seemingly does not learn much compared
to the CNN-LSTM on the box dataset, which uses about two epochs before starting the
rapid learning spike. Going to the out-of-sample validation data the CNN-LSTM does have
a short period where its loss is about similar to the modified reservoir, but the CNN-LSTM
loss increases to around 0.8 after epoch five.
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4.3.9 All models

Figure 31: Comparing the loss at epoch 100 of all trained models, where blue is training data and
val_loss is the out-of-sample validation. Here the out-of-sample validation is the rotating line

From figure 31 the similarities between most of the models that were seen in figure 21 with
the box dataset are gone. The models have in general higher out-of-sample validation loss
than the box dataset and there is not a level of loss that most models held.

The training loss is still in roughly the same order with only the CNN-LSTM and CNN-
RNN changing place. The plot shows more of the benefits of the reservoir networks, as
the normal reservoir has the best out-of-sample score with the deep reservoir right behind.
All the reservoir-type models outperformed the non-reservoir-type models on out-of-sample
validation. However, all of the models perform badly, especially the CNN-LSTM which is
the worst. The deep reservoir 2, the best out-of-sample loss scorer performs nearly as badly
as the modified reservoir with the line dataset. It would seem that a more trainable network
improves loss performance only when the datasets are close like in the box dataset and
decreases the loss performance with datasets further apart like the line dataset.
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5 Discussion
In summary, nine different models have been tested as saliency detectors. This was done by
making time series data with a noisy background and an object that fades in. The task of
the models is then to predict where the object is. The models got two datasets each con-
taining training and out-of-sample validation data, with the metrics loss, precision, recall
and IoU measured under training and testing of the models. The metric results were then
plotted. The research question is whether artificial neural networks, especially reservoir-type
networks, can be saliency detectors like Li Zhaoping hypostasized the visual cortex is [2].
Without metrics from the visual cortex, the metrics measured could only be used to compare
the different artificial neural networks with each other. The models got training data and
test data that was outside of the training sample data to see how the models acted with
input data they were not trained on. The models also got two different sets of training and
out-of-sample data to tell if the results are dependent on the combination of training and
out-of-sample data.

The basic CNN model is expected to perform well as the model is made for pictures
and has spatial relations between the neurons as a standard. One of the main applications
of CNNs is to segment images and to minimise the number of neurons needed to get a
good segmentation [13]. The drawback of a basic CNN model is that it does not have any
perspective on time. Therefore giving the model time series data where the only constant is
the line makes it less likely that the model will excel. It is expected to perform worse than the
models that have a combination of different neuron types, like CNN-RNN or CNN-LSTM.

This was not the case, the CNN has the lowest training loss on both datasets with an
unprecedented step 1 IoU training score on both datasets. The mismatch in expectations
was an overemphasis on the models needing consecutive timesteps to predict where the line
is. This was not the case, the CNN network is good at image segmentation and this task
seems to fit well inside that.

The RNN model lacks the kernel that organizes the spatial input information like the
CNN has. The RNN’s trainable network needs therefore to figure out the spatial relations
but unlike the CNN, the RNN can remember the past to predict the spots that are getting
consistently darker. It can therefore be expected that an RNN achieves a higher score than
the reservoir but below the networks that are a combination of CNN and RNN.

The RNN performed as expected, it outperformed all reservoir-type models on training
loss but was worse than all non-reservoir models.

The reservoir has connections through time and can therefore find connections with the
change in the input, like the RNN network. But unlike the RNN, the reservoir can not update
and specialise its network for the training data and is therefore expected to score lower than
the other models with a fully trainable network. Especially if the specific configuration of the
input dynamics is not captured in the reservoir. The limitation of the reservoir’s trainability
is supposed to make the reservoirs more resilient to changes in out-of-sample data because
the reservoir has to learn more general correlations between input and the desired output
in the training data.

The reservoir did perform worse than the other model on the training data as expected,
suggesting that the full input dynamics were not represented in reservoir dynamics. And as
expected the reservoir did outperform the other models with a lower out-of-sample valida-
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tion loss on both datasets, suggesting it did learn something more general from the input
dynamics.

Making the combination network CNN-RNN, it is expected that the drawback of CNN’s
inability to remember between timesteps and the RNN’s lack of spatial information will be
fixed. Therefore this model should outperform both the architectures it is based on. With
the CNN encoding patterns and the RNN remembering the previous pattern and making
calculations on the more abstract patterns instead of the pixel values it should be easier to
find the part that is consistently getting darker. So the CNN part should allow the RNN
part to discern the noisy background from the object quickly, making the CNN-RNN one of
the best models for training data.

The CNN-RNN did outperform the RNN as expected but with the surprising perfor-
mance of the CNN, the CNN-RNN did not manage to outperform the CNN. The CNN-RNN
was mostly in the middle of their performance. Again this shows the lack of need for con-
nections in time. The CNN-RNN is, however, outperforming both the CNN and the RNN
on the box out-of-sample validation data but is worse than both on the line out-of-sample
validation data.

Adding the structure from the example in figure 4 to the reservoir to make the modified
reservoir. The modified reservoir is expected to improve the loss only if this structure benefits
saliency detectors. However, from looking at the weights with a general lens this structure
would be expected to perform worse since they are less stable, less connected and have
a smaller output. Therefore it seems reasonable to expect a higher loss than the normal
reservoir. The network as a whole also has fewer free weights to fit so it is only if this
structure is really beneficial that any improvement will be shown.

The modified reservoir did not perform better than any of the models tested. So the
more general view seems more correct than the structure benefiting saliency detectors. Of
course, with the recurrent weight matrix less stable than the normal reservoir, and with the
whole network having a smaller output it could be performing worse regardless of whether
the structure is beneficial. But with the network being as it is the only positive that can
be taken is that the network produces the most similar metrics on the training and out-of-
sample validation data for both datasets.

Making two layers instead of splitting the weight matrix can give the deep reservoirs more
of an opportunity to find more complex functions and therefore give a better prediction.
The first deep reservoir is the two-layer deep reservoir where the output can read the whole
reservoir so it also has more trainable weights and is therefore expected to have a better
performance than the normal reservoir. However, it might be that smaller reservoir layers
can not encapsulate the input dynamics and having two of them just introduces more noise in
the reservoir state. If it is the case that reservoir states become too noisy having a trainable
layer in the middle of the two layers should fix this issue. The deep reservoir 2 is expected
to outperform the normal reservoir as it should be able to more efficiently utilize the two
layers. To make the deep reservoir 2 more similar to the two layers of V1, layer 4 and layer
2/3, the output layer of the deep reservoir can only read the last reservoir layer. If there are
useful dynamics in the first layer the trainable layer in between should get the second layer
to have useful information for the output layer.

What the results show from the deep reservoir are the same as the reservoir. There is no
benefit or drawback from this kind of reservoir configuration. The deeper reservoir did not
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find any useful dynamics nor did the larger amount of trainable weights help the model. The
deep reservoir 2 performance was closer to its expected performance as it outperformed the
reservoir model. The deeper network did lower loss, suggesting that the task benefits from
a deeper reservoir but the random weights from the deep reservoir were not able to capture
this potential.

Given the similarities between the RNN and the reservoir, testing a CNN-Reservoir
combination in a network seems relevant. Adding a CNN layer to the reservoir gives the
reservoir more potential to process spatial data, it can therefore perform better. Building
spatial information into the reservoir might change the reservoir neuron’s dynamics as they
would be calculating different inputs. This can lead to an earlier prediction. In this new
network, the reservoir neuron does not need to encode the spatial data in the same way
as the normal reservoir network thereby allowing the reservoir to find correlations that can
lead to a lower loss. Adding the CNN layers also gives the network more trainable weights to
optimize its behaviour for the specific task at hand giving it a chance for a higher IoU score
in the training data, which can also decrease the out-of-sample validation scores. Therefore
this network can become more over-specialized than the other reservoir-type models.

The CNN-Reservoir did improve the training performance and gave the lowest loss of all
reservoir-type networks so the benefits from the CNN performance also transfer over to the
CNN-Reservoir. The CNN-Reservoir did not gain a lot of performance from the CNN with
the loss being more close to the other reservoirs than the other models and the CNN part
also gave the CNN-Reservoir some higher loss on out-of-sample data

The CNN-LSTM model addresses the limitations of individual models by combining
them. It solves the issue faced by CNN by using LSTM neurons in the convolutional layer
that can remember past data. This gives the model an understanding of time and space,
enabling it to identify important features accurately. Given the input as a time series of
images, the CNN-LSTM seems like the model made for this task. The CNN-LSTM is similar
to CNN-RNN but with the spatial aspects more integrated throughout the network, it should
outcompete the CNN-RNN. The CNN-LSTM is expected to perform very well if not the
best of all models tested.

The same problem arises for the CNN-LSTM as the other models. The CNN model per-
formed better than expected and beat out all other models. The time connections and the
model’s ability to remember do not help the model enough. The increase in parameters from
the convolutional LSTM lowers the neuron number of the network, and this could have cost
the network an earlier prediction. Having the fully integrated time and spatial features in
the network is then not as big of an advantage as expected. The CNN-LSTM trades second
place with the CNN-RNN depending on the dataset so it is a well-performing network but
not the best.

The box dataset, where the training data is a 2 × 6 rotating line and a 3 × 4 rotating
box is out-of-sample validation data. Training the models on the box dataset shows that the
reservoir is an inferior model in loss on the training data compared to the non-reservoir type
networks. It also shows that with unknown data a reservoir-type network can perform better
than non-reservoir models, at least all models tested here. The fact of the reservoir’s higher
loss score is expected but the results are promising for the reservoir as its predictions are
mostly correct as can be seen in the reservoir plot of the time-series in figure 12. Changing
the reservoir with the right modifications to make the deep reservoir 2 can improve loss
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and IoU score performance on both training and off-sample validation. The results did not
however show an improvement with the network mostly inspired by the visual cortex.

The training and the out-of-sample validation dataset in the box data combination were
not too different so most models performed well. They have seen the line go both ways,
so only the shape was changed for the out-of-sample validation. This penalizes the CNN
model the most as the CNN’s kernels are so big that one kernel can encapsulate the whole
line, therefore, it might be that a kernel shape that can only find edges results in worse
training loss but better out-of-sample validation loss. So changing the line to a box confuses
only the CNN, as the other models are not looking for the specific line but seem to look
for something like edges instead. Looking at just the loss on out-of-sample validation gives
the deep reservoir 2 the best score, but looking at IoU scores instead gives the CNN-LSTM
model the best score.

Going to the line dataset, with a non-rotating line of size 6 × 2 as training and a non-
rotating line of size 2 × 6 as the out-of-sample validation data. All the models did better
on training data than on the box training data as the input space is smaller in this dataset.
Most of the models also failed to have any precision on the out-of-sample validation data,
with only the reservoir-type models getting a stable IoU score over 0.3 though a score of 0.3
is not that good either. The best peak score came from the CNN model with a peak IoU
score on out-of-sample validation data at about 0.5 but the score goes quickly down again.
All models gained more loss going from the training data to the out-of-sample validation
data on the line dataset than on the box dataset suggesting that the data spaces are further
apart than in the box dataset.

The difference seems further apart in the line dataset, where the training and out-of-
sample validation are perpendicular to each other. This generates higher losses for all models
and this time the recurrent features of some networks did not stabilize the out-of-sample
scores like they seem to have done in the box datasets. The reservoirs showed their value as
they had the lowest out-of-sample loss of all the models.

The CNN and RNN networks are solving this problem very differently and therefore
produce very different results. The small number of epochs for the CNN model to get its
loss below 0.1, which is lower than all reservoir-type models, indicates that the problem
is highly spatial and that a simple CNN network is enough to produce a sailiency detec-
tor. The large number of epochs needed for the RNN to get a similar result suggests the
task is not as good of a fit for the RNN. It should also noted that the learning rate is not
changed on any of the models. This is done so the number of epochs can be compared. But
the CNN network is run every time step while the whole RNN network is run every time
series, this is likely not the difference though as the CNN-LSTM has a similar learning spike.

Freezing big parts of the network to make a reservoir still resulted in good results and
minimal increase in loss compared to other models even with big differences to the evalua-
tion data. A fully trainable network can learn correlations in the training data that do not
necessarily reflect the nature of all data given in this problem. Therefore this overspecializa-
tion will lead to an increase in loss when measured on the data in out-of-sample validation.
This loss is also present in the reservoir as it is also trainable but the reservoir is forced to
more general patterns in the training data. The reservoir benefits from this by decreasing
the loss when tested on out-of-sample data.

The reservoir achieved scores of 0.8 and higher on the peak training IoU, what a score of
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0.8 IoU roughly translates to can be seen in figure 12. How a visual cortex saliency map looks
if it has run on this dataset is unknown, but the strongest output signal from the reservoir
is at the line’s location. This can be compared to the IoU score of one with for example the
CNN-LSTM in figure 20. As can be seen in the comparison: the reservoir’s calculations do
not tend to produce sharp edges, this is true for even the final row. By comparison, consider
the progression of the CNN-LSTM, where the output appears almost binary. This indicates
that the input information to the reservoir is being smoothed out rather than highlighting
contrasts. Alternatively, it seems the reservoir is introducing too much noise into the input
signal to make a precise prediction. It can be that forcing the reservoir to have a binary
prediction by adding a cutoff to the model would resolve the issue. But this is the predic-
tion data classification metrics receive so the reservoir might have a similar response to the
results gained from those. However, adding a cutoff will affect the loss and thereby affect
training so the reservoir has the potential to perform better with the cutoff as a part of the
network.

Imposing the more layered structure in the modified reservoir did not improve the learn-
ing rate or peek score of the model. This can be attributed to a crude method to generate the
custom reservoir weights. This method resulted in an even stronger randomness as the abso-
lute value of the eigenvalues was not equal to one. There might be a significant improvement
in enhancing the stability of the recurrent weight matrix. Changing the distribution of the
off-diagonal weights from a constant to having a distribution of weights could also improve
the dynamics of the modified reservoir. However, it can also be a sign that the visual cortex
structure is imposed more by biology and physics, not by the mathematical efficiency of
having this kind of network. So finding this structure in biological neural networks is more
about physical possibility and not the most efficient neuron configuration.

Increasing the number of free parameters or trainable weights in the reservoir to make
the deep reservoir 2 led to the best out-of-sample validation data of the models on the box

data. With the line dataset, the less trainable reservoir models show the benefit of a larger
resistance to over-specialisation, showing that the behaviour of the networks can be tuned
to improve its score or resistance to change in validation data. So the optimal amount of
trainable weights in the network is dependent on the combination of training and the test
data which in many cases are unknown and therefore hard to optimize for.

The time aspects of the model’s task seem to have been overplayed, as there is not any
strong correlation between the model that knows what time step the time series is in, as
opposed to the CNN model that does not know. Adding time connections to CNN with net-
works such as CNN-RNN and CNN-LSTM did not improve the network performance. But
at least for the box dataset adding the recurrent connections did stabilize its prediction re-
sults for the out-of-sample validation data. It might also be that the results from the models
would change significantly if their datasets were changed. This means the results of the two
datasets tested might not be the results received if other datasets were tested on the models.

The sensitivity of the results to the tested dataset becomes apparent when comparing the
performance of the CNN and CNN-LSTM models on the two datasets. In the box dataset,
the CNN exhibits the highest loss during out-of-sample validation, whereas the CNN-LSTM
still demonstrates proficient prediction capabilities. The opposite is true in the line dataset.
Here, the CNN-LSTM incurs a high loss and consistently fails to make accurate predictions,
while the CNN performs comparatively better, resembling reservoir-like networks such as
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the modified reservoir in the loss. The CNN also has the highest peak IoU score among all
models. Therefore, the introduction of a new dataset could potentially alter some of the
results. However, it’s worth noting that across the two tested datasets, reservoir-type net-
works consistently outperform other models in terms of out-of-sample validation loss scores,
indicating a more robust trend.

When developing a saliency detector, it might be more beneficial to have a good predic-
tion on data similar to training data than having a more robust network capable of predicting
data far outside of training data. Then using reservoir networks as saliency detectors might
not be that beneficial. The reservoir models also seem to learn as fast as the RNN model
in terms of epochs, so the benefit of quick learning is not shown either. Looking at the
training time in Appendix C the training times on the hardware are almost the same on
the reservoir type models as the non-reservoir model, except for the CNN-LSTM and CNN
models. This is of course dependent on the nature of the input data that needs to be pre-
dicted. If the saliency detector needs to predict something crucial where a wrong prediction
would be a disaster then a reservoir-based network as a saliency detector would be beneficial.

From the experiments on the visual cortex of cats in development from paper [9], it could
be interpreted that the network would be unable to find the lines and therefore have an IoU
score of around 0.12 or less, 0.12 since it is the relative size of the object to the total input
so a random guess is expected to be somewhere close to that. An IoU score of 0.12 or lower
can be seen in the non-reservoir models but the reservoirs are better than that, with the
best model getting an IoU score of 0.4. Of course, the cats in the paper did not produce an
IoU test so it does not make it clear how they compare. The same can be said about the
training results, it can not be stated that a 0.8 IoU score is too bad to be a salience detector
either. It can only be said that deep reservoir 2 is performing better on the training and
worse on the off-sample validation data for the line dataset. This is more in line with the
expectation from the research done on the early development of the visual cortex in cats in
paper [11].

If one looks at the predictions from the input pictures and takes that as what is close
to what the human brain can predict then the IoU score from step 1 should be should be
very low as there is not enough contrast to see the step one performance. This is however
not seen in the CNN model as it scores 0.6 on training data, with a linear increase. Then it
could be argued that the CNN network performs too well to be a representation of its bio-
logical counterpart. With models like the CNN-RNN or CNN-LSTM having a more realistic
prediction. They also result in perfect prediction of the IoU scores with a fine transition to
the out-of-sample validation on the box dataset. This is also true for the RNN model. And if
the saliency detector should mimic the behaviour of the cats from [11] then it is good none
of the tree models did very well on the out-of-sample validation on the line dataset.

From the results found, there does not seem to be a definite reason why reservoirs can
not be saliency detectors. Many of the models perform well as a saliency detector and give
promising predictions. Meaning there are potentially many ways to solve this task. However,
it might be that the result of the modified reservoir indicates that the neuron configuration
is limited by physical or biological limitations.
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The reservoirs have a clear advantage when it comes to out-of-sample data. Their re-
silience to very different environments compared to training data beats out all the models
tested. Having artificial neural networks that have good predictions the first time seeing new
data can be very useful. However, it does not seem to be one reservoir that fits all types of
datasets but the best model has to be tuned to the data.

The results also imply that if the training data encapsulated most of the test data
there is no need to use a reservoir-type network. The non-reservoir models outperformed
all reservoir-type models on the training data so using them for prediction on data similar
to training data would result in the best predictions. Therefore the best model is highly
dependent on the environment. It might be that a precise network that knows only what it
has been trained on is optimal for the visual cortex, as in the real world there are not that
many shapes at this low of a level that are fundamentally new. This does not exclude the
possibility that later in the visual system, there are networks that have features more like
those of a reservoir.
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5.1 Limitations
The exploration of hyperparameters in each model was not exhaustive, and overfitting miti-
gation techniques like dropout or regularization were not implemented, potentially impacting
the thesis’s results. Optimal hyperparameters could have sped up training, and changing the
parameters like learning rate would have given a different progression for models, potentially
increasing their peak performance. With robust overfitting mitigation, it could be that the
overspecialization resistance found in the reservoirs is not that much better than what would
be found in the improved non-reservoir type models. Additionally, there are additional ways
for making training and out-of-sample data and combining them, implying that the testing
conducted in this thesis may not fully capture the diverse range of the model’s resistance to
over-specialization. Time and calculation limitations meant only a selected part of the pos-
sible training and out-of-sample data could be used. There is also no biological counterpart
to compare the data to, so concluding that a model is too bad or too good for a saliency
detector is difficult.

5.2 Future Research
Further research is warranted to explore the potential of reservoir networks. Getting an IoU
score above 0.8 with such a limited exploration of the reservoir and showing an advantage
over non-res in both out-of-sample validation datasets, suggests that with more research
both the training and the out-of-sample validation will perform better. There could also be
benefits to adding a cutoff for the prediction on the reservoirs to make the prediction binary.
There is also a more general need for more resilience in artificial neural networks doing tasks
like driving cars, where there are huge possibilities for novel input data. Similar problems
might be helped with a network where under normal conditions a traditional network is
trained and in an unsure situation the reservoir can help with making the best guess. This
could apply to every artificial neural network acting as an agent in the real world. A way to
decrease the loss in both training data and off-sample data might be to make the network
somewhat trainable. There might also be other initializers or rules for the choice of weights
that perform better. The reservoirs did not generate sharp edges in their outputs so there
is some loss in the high noise of the reservoir and finding a way to alleviate that might be
beneficial.
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6 Conclusion
This thesis has explored the potential of reservoir computing and other artificial neural
network architectures as saliency detectors for the visual cortex, inspired by the work of
Li Zhaoping [2]. To test the potential of the artificial neural network architectures different
models were made and they were tested on two datasets. Each dataset contained training and
out-of-sample validation data consisting of time series. Several key findings have emerged
through a comparative analysis of reservoir-type models and other conventional artificial
neural networks.

All of the artificial neural network architectures tested produced a saliency map. Even the
worst model, the modified reservoir, got a training IoU score of just above 0.6, meaning all
tested networks can somewhat function as a saliency detector. Using CNNs for this kind of
task does make the most sense if all data is similar to the training data. However, if the nature
of the data is not, then other alternatives might be highly relevant. The results indicate that
reservoir-based models exhibit higher training loss compared to traditional networks, but
they outperformed the non-reservoir models on new data. Modifying the reservoir to make a
trainable layer between two reservoir layers decreased the loss on training data and on new
data. The ability of reservoirs to achieve promising predictions without previous data can
be invaluable in many artificial neural networks and shows their potential utility as saliency
detectors.

In interpreting the findings, it is crucial to recognize that while demonstrating the ef-
fectiveness of a reservoir as a saliency detector, it does not inherently imply a direct re-
semblance to the architecture of the primary visual cortex (V1) as the architecture and
functioning of V1 differ significantly. Furthermore, the results of out-of-sample validation
on the line dataset indicate performance levels potentially surpassing expectations based on
V1’s characteristics from experiments on the visual cortex in development [11], hinting at
the versatility and potential of reservoir networks are beyond their biological counterparts.

It should also be noted that limitations in hyperparameter search on all the models and
the necessity for further exploration of reservoir weight choices must be acknowledged. There
are also methods to combat overfitting like dropout or regularization have not been explored
and can therefore affect the difference observed between reservoir-type models and the more
conventional models.

The implications of this research extend beyond theoretical understanding of different
network choices, with potential applications in computer vision and artificial intelligence.
The resilience of reservoir networks to diverse environments suggests it would be beneficial
for more research. Future research should focus on refining reservoir networks, exploring en-
semble methods, and investigating alternative weight initialization strategies. Additionally,
further examination of reservoir performance in real-world scenarios and the integration of
reservoirs with traditional networks could provide insights into improving network robust-
ness and precision.

The potential utility of reservoir networks in computer science is underscored by their
inherent ability to score on out-of-sample data, as evidenced by their performance in the
box dataset’s out-of-sample validation. The adaptability and generalizability of reservoir
learning mechanisms highlight their significance in addressing a wide array of computational
tasks. However, while the results suggest promise, further research is warranted to fully
ascertain the suitability of reservoir networks for the specific task at hand. Refinement and
optimization of the current implementation are essential steps towards elucidating the role
of reservoir networks in computational problem-solving.
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A Appendix A: Data Parameters

Variable name Standard value Explanation of the variable
matrix size (10, 10) the size of the input image
steps per time-series 10, number of steps in each time series
subsets False if the placement is a subset of all possible
strength and kernel (2, 3), the sigma and size of the kernel
size (6, 2), the size of the object
rotate True, if the object can be rotated 90°
new background True, if the background changes every step
shape line, the type of object
val data True, if there is out-of-sample validation data
val strength kernel (2, 3), out-of-sample validation dataset versions
val size (3, 4),
val rotate True,
val new background True,
val shape line,

Table A.1: A table of the variables used in the code to make the training and out-of-sample
validation data
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B Appendix B: Hardware and Dependencies
The GitHub Code was run on a laptop with an Intel i7-12700H CPU with a base clock of
2.3 GHz with 16 GB of memory running at 4.8 GHz.

With the dependencies:

Package name Version
keras 2.15.0

matplotlib 3.5.0
numpy 1.26.3
pandas 2.1.4

raster-geometry 0.1.4.2
scipy 1.11.4

tensorflow 2.15.0

Table B.2: The imported Python package names and versions used in the code to produce
the results

59

https://github.com/Georg325/Master_filer


C Appendix C: Training Times

Figure C.1: Plots of the Time in hours and the resulting loss on the different models on the box
dataset

Figure C.2: Plots of the Time in hours and the resulting loss on the different models on the line
dataset

60





Norges miljø- og biovitenskapelige universitet
Noregs miljø- og biovitskaplege universitet
Norwegian University of Life Sciences

Postboks 5003
NO-1432 Ås
Norway


	Introduction
	Previous work and Motivation

	Theory
	Neuroscience
	Neuron
	Networks of Neurons

	Machine Learning
	Perceptron
	Convolutional Neural Network
	Recurrent Neural Network
	Reservoir Networks
	Modified Reservoir
	Convolutional LSTM
	Weight Initializers

	Metrics
	Loss
	Intersection over Union
	Precision and Recall

	Smoothing kernel

	Method
	Use of AI tools
	Code Explanation
	Input and Desired Output Data
	Metrics
	Training and Validation

	Choice of Model Architecture
	CNN
	RNN
	Reservoir
	CNN-RNN
	Modified Reservoir
	Deep Reservoir
	CNN-Reservoir
	CNN-LSTM


	Results
	Performance
	The Box Dataset
	CNN
	RNN
	Reservoir
	CNN-RNN
	Modified Reservoir
	Deep Reservoir
	CNN-Reservoir
	CNN-LSTM
	All models

	The Line Dataset
	CNN
	RNN
	Reservoir
	CNN-RNN
	Modified Reservoir
	Deep Reservoir
	CNN-Reservoir
	CNN-LSTM
	All models


	Discussion
	Limitations
	Future Research

	Conclusion
	References
	Appendix A: Data Parameters
	Appendix B: Hardware and Dependencies
	Appendix C: Training Times

