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Abstract

Wind power is expected to be an increasingly important part of the development in the

Norwegian energy sector. Knowing how the wind farms perform over their lifetime and how

this affects the power system as a whole, is important knowledge when considering further

investments. An important aspect in this regard is the degradation of wind turbines. This

thesis will therefore study the lifetime development of a wind farm�s performance.

The study consists of 15 wind farms spread across Norway. To find the rate of degradation,

the expected power production is calculated using ERA5 weather data and publicly

available information on the wind farms. This is then compared with actual production

data to find a "performance index". The changes in this index provides the basis for a

yearly degradation rate.

The average yearly degradation was found to be �1.00± 0.22%. This implies that after

20 years the wind farms will produce about 82% of their original capacity. Furthermore,

this degradation will lead to an increase in the LCOE of 6,8 %, which in turn could affect

electricity prices. These results call for a change in assumptions for future wind farm

projects, as this is significantly higher than what is assumed in the industry today.

To find potential factors affecting the degradation rates, three sub-studies were performed.

In the first test the wind farms were divided into three groups according to location

to find out if local climate would affect the results. The second test was performed to

find whether there were differences in degradation between turbines according to their

age. Lastly, the degradation was divided in four seasons to assess whether these effects

varied according to weather conditions. It was concluded that there were no significant

differences between the groups.

The degradation rate found in the thesis is higher than what is found in Sweden, but

lower than what was found in the UK. This may suggest that wind turbines degrade faster

in coastal climates than in inland climates. Factors such as high average wind speeds,

high precipitation and exposure to salt therefore seems to be more important causes of

degradation than low temperatures and icing.
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Sammendrag

Vindkraft er forventet å være en viktig del av utviklingen i den norske energisektoren.

Det er viktig å vite hvordan vindparkene presterer i løpet av sin levetid, og hvordan dette

påvirker kraftsystemet som helhet. Et viktig aspekt i denne sammenheng er hvordan

vindturbiner degraderer. Denne oppgaven vil derfor ta for seg hvordan en vindturbins

ytelse minker i løpet av levetiden.

Studien består av 15 vindparker spredt over hele Norge. Først beregnes forventet

kraftproduksjon ved hjelp av ERA5-værdata og offentlig tilgjengelig informasjon om

vindparkene. Denne sammenlignes deretter med faktiske produksjonsdata for å finne en

"ytelsesindeks" (performance index). Endringene i denne indeksen danner grunnlaget for

en årlig degraderingsrate.

Den gjennomsnittlige årlige degraderingen ble funnet til å være �1, 00± 0, 22%. Dette

innebærer at vindparkene etter 20 år vil produsere omtrent 82% av sin opprinnelige

kapasitet. Videre vil denne degraderingen føre til en økning i LCOE på 6,8 %, noe som

vider vil kunne påvirke strømprisene. Disse resultatene krever en endring i forutsetningene

for fremtidige vindparkprosjekter, ettersom dette er betydelig høyere enn det som antas i

bransjen i dag.

For å finne potensielle faktorer som påvirker degraderingsratene, ble det utført tre

delstudier. I den første testen ble vindparkene delt inn i tre grupper etter beliggenhet

for å finne ut om det lokale klimaet ville påvirke resultatene. Den andre testen ble utført

for å finne ut om det var forskjeller i degradering mellom turbinene avhengig av alder.

Til slutt ble degraderingen delt inn i fire kvartal for å vurdere om disse effektene varierte

med værforholdene. Det ble konkludert med at det ikke var signifikante forskjeller mellom

gruppene.

Degraderingen som ble funnet i oppgaven, er høyere enn i Sverige, men lavere enn

i Storbritannia. Dette kan tyde på at vindturbiner degraderes raskere i kystklima

enn i innlandsklima. Faktorer som høy gjennomsnittlig vindhastighet, mye nedbør og

eksponering for salt ser derfor ut til å påvirke degraderingsraten i større grad enn lave

temperaturer og ising.
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1 Introduction

The substantial expansion of wind power in Norway over the past two decades has allowed

for greater access to renewable energy. However, several challenges has been encountered

with this development, leading to considerable debate about the future direction of wind

power development (Nowell, Krange, Bakkestuen, & Ruud, 2020). One area that has

received limited attention in the research literature is the extent to which wind turbines

degrade over time, and the potential impact of this on factors such as the levelised cost of

energy (LCOE) and electricity prices.

Like most other machines with moving parts, wind turbines will experience some

degradation in performance over their lifetime (Staffel & Green, 2014). Although this

is known, the degradation rate considered when building a wind farm varies. As this

can have a significant impact on the lifetime performance and consequently the financial

viability of a wind farm project, a more thorough understanding of the causes and effects

of degradation would be valuable.

Two other important papers from other countries have been published on this subject. A

study of British wind farms calculated an average annual degradation of 1,6% per year,

which is significantly higher than what is normally expected in the industry (Staffel &

Green, 2014). A study from Sweden in 2017 found a much smaller degradation, of around

0.50 % per year (Olauson et al., 2017). The total loss in lifetime production was found to

be 12% in the UK study and 6% in the Swedish study. In Norway, a previous Master’s

thesis at NMBU looked at capacity factor losses for Norwegian wind farms. This study

showed an annual capacity factor degradation of 1,3 % per year (Drengsrud, 2024).

The method used by Drengsrud does not consider variations in the wind resources, and

therefore this study has some clear limitations. The studies by Olauson et al. and Staffel

and Green do account for variations in wind resource, but still studies changes in the

capacity factor (CF) of wind farms. The aim of this thesis was therefore to study the

degradation of Norwegian wind farms, accounting for variations in wind resource. Also,

an alternative method of calculating the power loss in wind turbines, where weather

variations are systematically accounted for, will be proposed.

To provide a better basis for comparison between different production years than capacity
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factors allow, a method using the wind farm’s performance index is introduced. This

index compares the simulated output of a wind farm based on weather data from the

region, with publicly available production data to see how the wind farm is performing

compared to what is expected.

The model will study the same wind farms as the previous NMBU master’s thesis on wind

farm degradation (Drengsrud, 2024). This is done to compare how the model performs

compared to a simpler approach of comparing capacity factors. In addition to providing

a fair basis for comparison, correcting for variations in wind resource may also allow a

deeper understanding of how different factors affect wind power degradation.

1.1 Problem statement

The aim of this thesis is to find out how the performance of Norwegian wind farms decline

with age. The method of using the performance index will also be a central part of the

discussion, as this method is relatively new and untested. An additional goal for the

thesis will be to find potential risk factors that increase the rate of degradation. The

implications of the results, such as how degradation impacts the total lifetime energy

production and the calculated LCOE of wind power in Norway, will also be discussed.

This leads to the following research questions:

• How does the performance of Norwegian wind farms decline with age?

• Is the performance index a good indicator of wind farm performance?

• Which factors impacts the degradation of wind turbines?

• What are the limitations of the model?

1.2 Limitations

During the work with this thesis, we were faced with several limiting factors, such as time

constraints, limited resources and being restricted to using publicly available data. This

will restrict both the scope of the thesis, as well as affecting the validity of the results.

The model is a simplification of reality, which allows for potential error sources impacting

the results. The scope of the thesis is also limited to the degradation of Norwegian wind
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farms. A specific selection of these has been made, so the results should be understood as

an average of the selected wind farms. This will correlate with Norwegian wind power as

a whole, although there may be some deviations from the national average.

1.3 Background

Norway’s wind power sector represents approximately 12% of the country’s annual energy

production. This makes wind the second most significant source of energy, trailing only

behind hydro power. The wind energy industry has experienced a remarkable expansion

over the past two decades, with Norwegian wind farms generating 70 times more energy

in 2022 than in 2003. Wind farms are now dispersed all across Norway. The majority of

wind farms are situated in coastal areas, where wind speeds are typically higher and more

stable. Consequently, the western, middle and northern regions of Norway account for the

largest shares of wind power production.(NVE, 2023c)

The development of wind power has received broad political support, although there has

been increasing criticism recently, mainly due to rising electricity prices and the siting

of wind farms in controversial areas. The intermittency of wind is also a challenge in

increasing the amount of wind power in the grid. It should be combined with other energy

sources that are easier to regulate, such as hydropower or fossil fuel power plants, to

ensure stable energy production. (NVE, 2023b)

Despite these challenges, wind power is seen as an important part of the move towards a

more sustainable energy market. With the potential for hydropower reaching its limits,

wind and solar are expected to be the fastest growing energy sources in the coming years.

As wind energy is both emission-free and one of the cheapest energy sources available,

combined with suitable weather conditions in Norway, most signs point to a continued

emphasis on wind farms in the future.(NVE, 2023c)
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2 Literature

The degradation of wind power has gained relatively little attention in academic milieus,

although it has gained some interest in the later years, as some major studies have been

conducted on this topic. The earliest major paper is a study of wind farms in Denmark and

UK, by Gordon Hughes (Hughes, 2012). The two largest studies of wind farm degradation

are SG14, where the degradation of British wind farms were studied, and OB17, which

focuses on Swedish wind farm degradation (Staffel & Green, 2014) (Olauson et al., 2017).

In Norway, one Master�s thesis on this topic have been published in 2024 at NMBU, where

the degradation of a selection of Norwegian wind farms were studied (Drengsrud, 2024).

A master thesis from Germany written by Sabine Haas, describes the implementation and

usage of Windpowerlib as a tool for simulating wind power, which is a Python library

made for simulating power output of wind turbines in virtual wind farms. These studies

provide the background and foundation for this thesis.

2.1 Hughes

The study by Gordon Hughes on Danish and British wind farms in 2012 is one of the first

attempts to systematically analyse wind farm degradation. Hughes uses production data

from onshore wind farms in Britain and Denmark, as well as some offshore wind farms

in Denmark. Changes in capacity factors, i.e. the actual production in a defined period

of time, compared to the theoretical maximum production, were used to determine the

loss in performance. Capacity factors is in the paper referred to as load factors. (Hughes,

2012)

Among the central findings is that British wind farms capacity factor deteriorate with a

rate of -0,9 pp/y, or -2,8% per year. This is a substantial loss of performance compared

to what is normally assumed, equating a loss of capacity factor from 24% to 11% from

year 1 to year 15. The equivalent findings for onshore wind farms in Denmark were lower,

showing a capacity factor loss from 24% to 18% in the same time span. Danish offshore

wind farms showed the largest decline in capacity factor, from 39% in year 0, to 15% in

year 15. (Hughes, 2012)

Since this study is quite old, a lot of the results are somewhat outdated. Later studies
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have shown a significantly lower decline in capacity factor for wind power. Still, it is

interesting as an early attempt to find decline in wind farm performance. The study

also seems to indicate that more mature technologies perform better when comparing

degradation rates. Offshore wind energy was quite new at the time, and is expected to

have improved since.(Hughes, 2012)

2.2 SG14

The study of British wind farms by Staffel and Green in 2014 was inspired by Hughes�paper

from 2012. It is however conducted with a more systematic approach that accounted for

other factors influencing the results. The study also included a much bigger data sample.

These improvements, combined with a slightly more mature industry, yields these results

much more relevant for modern day applications.(Staffel & Green, 2014)

The study uses free, available production data from 283 British wind farms in the period

2002-2012. As in Hughes� paper, Staffel & Green analyses changes in capacity factors to

find their loss in performance. It also accounts for variances in wind resource through the

period. Through linear regression the authors found an average decline in the capacity

factors of 1,6%, or 0,43 pp/year.(Staffel & Green, 2014)

The most notable improvement on Hughes� study is the corrections of capacity factor

based on wind resources. The study uses weather reanalyis data from the MERRA dataset

to find average monthly wind speeds. This is combined with the power curves of the

wind turbines at each wind farm to simulate expected power output. This information

is used to find a weather adjusted capacity factor, which is better suited for comparing

year-to-year energy production.

Although the degradation found in this study is small compared to what is seen in

Hughes�paper, it is substantially larger than what is assumed in the industry. Accounting

for this degradation, the LCOE of wind energy increases by 9%, which could impact the

financial viability of future wind farm projects.(Staffel & Green, 2014)
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2.3 OB17

A study of Swedish wind farms in 2017, which was a collaboration between the University

of Uppsala, Sweco and Vindforsk, looked at the decline in performance for a selection of

Swedish wind farms in the period between 1990-2015.(Olauson et al., 2017)

Using three different methods for linear regression, this paper improved on the method

used in Staffel and Greens research. The use of hourly production data also allowed

the researchers to identify downtime due to technical issues. This was found to increase

as the wind farms aged, and was found to account for roughly 1/3 of the decline in

performance.(Olauson et al., 2017)

The wind resource was adjusted for by using three different weather reanalysis models,

namely ERA-Interim, MERRA and ConWx. As with SG14, these were used to adjust the

capacity factors accordingly.

This study showed an average decline in yearly performance of 0,10-0,20 pp/y, which

corresponds to a percentagewise loss of 0,30-0,60 %. The study also showed that the

trend is steeper as the wind farms age. Also, wind farms with higher capacity factors

showed a greater decline than average. The suggestion from these results is to assume a

degradation in the upper end of this range, especially for wind farms with high capacity

factors. (Olauson et al., 2017)

A yearly degradation of 0,10-0,20 pp/y corresponds to a total energy loss over a wind

farm�s lifetime of 2,4%-6,3%, depending on initial capacity factors. This is significantly

lower than what is found in SG14, but higher than what is normally assumed in the wind

industry.(Olauson et al., 2017)

2.4 ED24

A Master�s thesis on the topic of degradation of Norwegian wind farms was published

earlier in 2024, by Erik Drengsrud at NMBU. The thesis analyses production data from

16 Norwegian wind farms, looking at how the capacity factors has declined over the wind

farms lifetime.(Drengsrud, 2024)

The thesis uses linear regression, like what is used in SG14 and OB17. It is however not
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adjusted for variations in wind resource. Instead this study uses a moving average to

account for some of these variances. As the time period of the analysis is quite short for

some of the wind farms, the variances in weather may have quite a large impact on the

results, which is a potential weakness of the study. This thesis also has a smaller sample

size compared to the larger studies from Sweden and Britain, but the results gives a good

indication of how Norwegian wind farms performs compared to what is found previously

in other countries.(Drengsrud, 2024)

Drengsrud finds an average decline in capacity factor of 0,43 pp/y, or 1,3% per year,

weighted according to the size of the wind farms. The largest wind farms in the study

also has the largest degradation, and will as such represent a big part of the overall

degradation.(Drengsrud, 2024)

2.5 SH19

Sabine Haas wrote a Master�s thesis describing implementation and validation of the

Windpowerlib model in 2019. The thesis was written published by Technische Universitat

Berlin. (Haas, 2019)

The thesis describes the implementation of Windpowerlib in Python. Firstly, it presents

functionalities for correcting climate related matter such as wind speed height correction

and density. It also includes functionalities for simulating wind power, such as power

output calculations, power curve smoothing, aggregated power curves and functionalities

for handling wake loss. (Haas, 2019)

After implementation of Windpowerlib the model was validated using measured feed-in

time series of several wind farms. Wind farms in Schleswig-Holstein serves as validation

of coastal region and Brandenburg serves as validation of the inland region in Germany.

The validation was carried out in 2015 and 2016. (Haas, 2019)

The clmate data sets MERRA-2 and FRED were used for validation. This showed an

annual deviation of 4.7 % in inland wind farms and a deviation of 3.4 % in coastal regions

from the actual energy output. The study showed that the wind farm feed-in simulation

is overestimation when using the FRED weather data. The deviations turned out to be

even higher when using MERRA-2 weather data. The deviation in the inland region was
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26 percentage points higher and the deviation at the coastal region was ten percentage

points higher. There is however as strong correlation between measured time series and

the simulated time series when looking at Pearson correlation coefficients. The coefficient

was calculated to be about 0.7 to 0.9. The study showed that the MERRA-2 data returns

a slightly higher correlation compared to the open FRED data. (Haas, 2019)
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3 Theory

3.1 Wind resource

Wind is regarded as a secondary form of energy, as the sun heats the earth unevenly,

which leads to differences in pressure and density in the air. These temperature differences

arises partly due to the various materials and terrains that is heated, such as water and

soil. This leads to coastal areas typically being more exposed to wind than inland areas.

The wind direction depends to a large degree on the rotation of the earth, as well as local

topography. This may lead to tops of hills and mountains, as well as valleys being exposed

to wind, depending on how the topography of the area coincides with wind directions.

(Letcher, 2017)

3.1.1 Global wind effects

As the solar radiation is absorbed in the ground, it heats up the surrounding air. The

hot air expands, and rises above the cold air. This effect is particularly strong near

the equator. Conversely, the air sinks near the poles. This produces looped convection

currents in the lower atmosphere ( 15 km). These convection currents are split in three

cells in each hemisphere. This picture is further complicated by the rotation of the earth,

which combined with the convection currents produces "trade winds" around the equator,

"Westerlies" in the mid-latitudes, and "Polar easterlies" around the poles. (Twidell, 2021)

The areas with the strongest average winds are in the oceans in the region between

30 and 60 degrees both north and south, as can be seen in Figure 3.1. These areas

coincides with densely populated areas in the northern hemisphere such as northern

Europe and Scandinavia, as well as Northern USA and Canada. In the southern strong-

wind regions there is generally less population, and therefore less suitable for large wind

power installments. (Twidell, 2021)

As can be seen in Figure 3.1, the average wind speeds in the north generally are highest

in the winter, peaking in January. Conversely, the wind speeds decreases in summer time.

Norway is therefore well suited for wind power production due to its location in these

high-wind speed areas, combined with a long coastline. The average wind speeds and
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temperatures in the regions defined in this thesis can be seen in Table A.

Figure 3.1: Global winds in January and July. Picture retrieved from
https://earthobservatory.nasa.gov/images/1824/global-wind-speed

3.1.2 Energy in wind

The available power of the wind passing a wind turbine, Pavailable, depends on the wind

speed, air density and the cross sectional area of the turbine, as given by the Equation 3.1:

Pavailable = 0, 5⇥ ⇢⇥ A⇥ ⌫3 (3.1)

where ⇢ is the air density in k/m3, A is the cross-sectional area of the wind in m2, and ⌫

is the velocity of the wind in m/s. (Letcher, 2017)

3.1.3 Turbulence

Turbulence is the change of both wind speed and direction in the vertical and horizontal

direction. All wind turbines is placed in the lowest part of the atmosphere, in what is
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known as the planetary boundary. In this part of the atmosphere, the wind is heavily

influenced by terrain and obstacles, which produces turbulence. (Twidell, 2021)

The turbulence may be given as a non-dimensional factor, known as turbulence intensity

(l), which is the standard deviation of the instantaneous wind speed, divided by the

average wind speed. (Twidell, 2021)

3.2 Wind modelling

3.2.1 Weather reanalysis and ERA5

Reanalysis is a process that combines observations from different sources, such as weather

stations, satellites, and ocean buoys, with a weather model to create a consistent record

of weather conditions over time. (Hersbach et al., 2023)

ERA5 is a weather reanalysis model that include weather data in Europe from 1940 to

2023, produced by the European Centre for Medium-Range Weather Forecasts (ECMWF).

This dataset includes global climate variables at high spatial and temporal resolutions. It

covers the period from 1940 to present and is updated regularly. Variables included in

ERA5 data are temperature, humidity, wind speed, precipitation, sea level pressure, and

many others. (Hersbach et al., 2023)

Due to ERA5 data being publicly available and of relatively high quality, it is widely

used in climate research, weather forecasting, environmental monitoring, and various

other applications. It is a significant improvement over its predecessor, ERA-Interim, as

it has better spatial resolution, a larger database and better representation of various

atmospheric processes. (Hersbach et al., 2023)

In ERA5, the weather data provided within a grid cell represents values for the entire

area rather than a specific point within it. Each grid cell in the dataset contains gridded

data representing an average value over the spatial extent of that cell. The size of the grid

cells in ERA5 varies depending on the variable and the chosen spatial resolution, but they

typically range from about 0.25 degrees to 1 degree in latitude and longitude. (Hersbach

et al., 2023)

The size of the grid cells is important to consider when using the data for analyses that
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require high spatial precision, such as analysing wind power generation. The wind speeds

at the actual site may therefore differ from the values provided by ERA5, as the wind

speeds varies according to topology and other factors. In sites where no recordings of wind

data exists, ERA5 data is a good alternative for predicting wind power production. It

must however be kept in mind that the data may be inaccurate at some sites with specific

topologies, as well as in shorter time periods, such as in hourly time-series. When using

longer time series, these inaccuracies tend to average out. Some sites may have a more

consistent difference in wind speeds and directions, which may lead to more systematic

errors. (Hersbach et al., 2023)

3.2.2 Wind speed and height

The wind generally increases with the height above flat ground. Near the ground the wind

is affected by local obstructions, and will therefore vary considerably. Above this region,

the wind speed will be more predictable, and may be estimated through a height to wind

speed relation described in Equation 3.2. (Twidell, 2021)

vz = vg ⇥ (
z

zg
)↵ (3.2)

where vz is the wind speed at height z, vg is the wind speed at a baseline height zg

(typically 10 or 100 meters), and ↵ is an exponential coefficient, which varies according to

the surrounding terrain.

3.2.3 Wind speed distribution

The wind speed at a location does not strictly adhere to a normal distribution. All wind

speeds are non-negative and the distribution is skewed to the right, as lower wind speeds

generally are more likely than higher wind speeds. There is no clear consensus on which

distribution that best describes this data, although the Weibull distribution seems to be

the most widely used. (Yu, 2020)

The shape of this distribution depends on the chosen parameters. These are estimated

based on recordings of wind speeds at site, and can then be used to forecast wind speeds.

How the specific parameters are determined is explained in detail in "Data science for
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wind energy" (Yu, 2020), but will not be described further here.

3.2.4 Wind direction and change points

The main direction of the wind at a location will prevail over a certain time period, before

it changes at a point. These fluctuations are often hard to predict, and the length of

each of these periods vary significantly. The point in time where the main wind direction

changes is called a change point. A study referred to in "Data science for wind energy"

found 119 change points across one year at location, with the average time period of one

main direction being 3,04 days. The longest period where one direction prevailed was

15,5 days, and the shortest period being 6 hours. This implies that wind direction and

speed will be autocorrelated. These periods do not follow arbitrarily selected calendar

periods, so adjusting based on dates and time of year will not be helpful. This makes it

challenging to control for wind direction in a data model. (Yu, 2020)

3.3 Wind turbine technologies

3.3.1 Basic principles of a wind turbine

A wind turbine converts the kinetic energy in the wind to rotational energy. This is

further used to produce electrical energy through a generator. (Letcher, 2017)

When wind encounters the blades of a wind turbine, it exerts a force on them. This force

is a result of the air molecules colliding with the surface of the blades. The shape and

angle of the blades are designed to efficiently capture this force. They are shaped to create

a pressure difference between the top and bottom surfaces as air flows over them. This

pressure difference generates lift forces, FL, which is the force that causes the blades to

move. In addition, a drag force FD is acting against the direction of motion. The net force

the blades experience is the rotational force Frotate, which equals FL - FD. The blades are

further attached to the rotor hub, also known as the nacelle. This is further connected to

a main shaft that transfers the rotational motion to the generator. (Twidell, 2021)

To optimize energy capture, wind turbines often have mechanisms to adjust the pitch, or

angle, of the blades. This allows the turbine to respond to changes in wind speed and

direction. When wind speeds are too high or too low, adjusting the blade pitch maintains
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optimal rotational speed to prevent damages and to ensure stable energy production.

(Twidell, 2021)

Wind turbines also have yaw control systems that allow them to turn and face into the

wind. This ensures that the blades are always positioned to capture the maximum amount

of wind energy, regardless of wind direction. This can be done in many different ways.

Some WTs are passively steered towards the wind with a fan tail. Others uses active

steering through side rotors or motors inside the nacelle. (Twidell, 2021)

3.3.2 Generator

The rotating shaft is connected to a generator, where the rotational energy is converted

to electrical energy. The generator consists of two main parts, a rotor and a stator. As

the rotor revolves around the stator, a voltage is induced. (Wildi, 2021)

A synchronous generator requires the frequency of the generator to match the frequency of

the grid. This means that the rotational speed of the rotor, and consequently the rotation

of the WT must be held constant. However, one may couple this with an inverter, which

allows the generator to rotate independently of the grid frequency. (Twidell, 2021)

An asynchronous generator does not require the generator to be synchronised to the

grid frequency. These generators are therefore the most frequently used for wind turbine

applications. (Twidell, 2021)

3.3.3 Dimensions of wind turbines

The hub height of a WT refers to the height of the rotor hub above ground level. The

height of turbines varies, and has tended to increase from year to year. Offshore turbines

are generally taller than onshore turbines. (Letcher, 2017)

The rotor diameter of a WT refers to the diameter of the cross-sectional area swept by

the blades. This tends to be related to the maximum power output of the turbine, as the

greater area swept, the more energy it may capture from the wind. (Letcher, 2017)

According to data from NVE, the average hub height of Norwegian grid-connected onshore

wind turbines is 88 meters, while the average rotor diameter is 108 meters. An overview

of the dimensions of the wind turbines selected for this study can be found in Section 4.
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3.3.4 Geared and directly driven wind turbines

Wind turbines can be split into two categories, namely geared and directly driven turbines.

A directly driven turbine drives the generator directly, where the rotational speed of the

generator will vary according to wind speeds. A geared wind turbine includes a gearbox

between the rotor and the generator that ensures an optimal rotational speed in the

generator. (Twidell, 2021)

A geared turbine offers an advantage as it will be more efficient in a greater range of wind

speeds. However, a directly driven turbine is a simpler construction, with fewer moving

parts, and may as such be less vulnerable to wear and tear in the machinery. (Twidell,

2021)

3.3.5 Tip-speed ratio

The tip-speed ratio � is the ratio between the wind speed and the speed of the tip of the

blade, and follows Equation 3.3:

� =
vtip
vwind

(3.3)

where vtip is the speed of the tip of the blade and vwind is the wind speed.

The optimal tip-speed ratio varies between different types of turbines. For the ordinary

3-bladed turbine the maximum efficiency is at � ⇡ 4. This is a result of more advanced

calculations that is not further discussed here.(Twidell, 2021)

3.3.6 Power coefficient and the Betz limit

A wind turbine cannot utilize all the energy in the wind, as the wind must continue past

the turbine to keep the turbine moving. The power coefficient Cp is a measure of how

much energy a wind turbine produces, relative to how much energy the wind contains. It

is given by the following Equation:

Cp =
P

PAvailable
(3.4)
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, where P is the power output of a WT, and PAvailable is the available energy in the wind

as calculated in Equation 3.1. (Twidell, 2021)

The theoretical maximum Cp of a WT is at 59,3%, which is known as the Betz limit. This

is a simplification of the more advanced Glauert-criterion, which states that the optimal

tip-speed is at the speed of sound, 353 m/s. This criterion converges with the Betz limit

at high values of �. (Twidell, 2021)

3.3.7 Wake loss

As the wind passes through a wind turbine, some of the kinetic energy will be lost. This

will affect the area behind the turbine, in the turbine�s wake, and is therefore known

as wake loss. This effect must be considered when designing a wind farm. The spacing

between wind turbines must be large enough to minimize this effect. This contradicts the

need for utilizing the natural areas effectively. The spacing of turbines must therefore

meet a compromise between these opposing factors. Calculating the wake losses in a wind

farm is complicated, but may be a significant factor affecting its performance. When

simulating the power production of a wind farm, the wake loss is estimated based on

recordings at the site, where the wind speed is reduced to account for the observed wake

loss. (Twidell, 2021)

3.3.8 Rated wind speed

A wind turbine is designed to produce power within a specified range of wind speeds. The

cut-in speed is the lowest wind speed where the wind turbine produces power, which is

typically at between 2-4 m/s. As the wind speed increases, the power output will also

gradually increase towards its rated power output, which it reaches at its rated wind

speed, typically in the range of 10-14 m/s. When exceeding this limit, the turbine will

adjust its blades to limit the output to prevent damages to the equipment. The cut-off

speed is the highest wind speed where the turbine produces power. If the wind speeds

exceeds this limit, the turbine is shut down. (Letcher, 2017)
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3.3.9 Maximum power output and yearly energy production

A wind turbine is constructed to produce a certain power output, known as rated power

output, which it reaches at rated wind speed. This is normally given in MW, where most

onshore Norwegian wind turbines have a power output in the range 1-5 MW. The average

yearly production is given in MWh or GWh, and is based on actual production data at

the site. In addition to depending on the power output of the turbines, this also depends

on the wind resource at the site and other factors.(NVE, 2023c)

3.4 Wind turbine performance

3.4.1 Power curve and power coefficient curve

The output of a wind turbine is characterized by its power curve. This is a plot of the

WTs energy output at varying wind speeds. An example of this can be seen in Figure

3.2, where the power curve of a Vestas wind turbine is shown (blue curve). This shows

how the WT starts power production at a specified cut-in speed. From this point the

output increases as the wind speed increases, until it reaches it rated output at rated

wind speed. As the wind speed increases further, the output is held more or less constant,

until it reaches cut-off speed, where the WT is shut down. These curves can be used

together with wind speed data at the site to estimate the power production of the turbine.

(Twidell, 2021)

The power coefficient curve plots the power coefficient, Cp, at varying wind speeds. This

can be seen in Figure 3.2 (red curve). As can be seen in the plot, the efficiency rises

rapidly up to a certain point, slightly before the WT�s rated wind speed. From this point,

the Cp decreases to maintain a constant power output.
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Figure 3.2: Power curve and power coefficient curve of V112-3.45 MW turbines used in
Hamnefjell wind farm.

3.4.2 Capacity factor

Capacity factor (CF), also known as load factor, is a regular measure of the performance

of power generators, such as a wind turbine. For wind energy, this is defined as the actual

production of a wind farm, divided by the theoretical maximum output. It typically

averages in the region of 20-40% over one year, depending on technology and weather

conditions.(NVE, 2023c)

3.4.3 Full load hours

Full load hours is the amount of hours a wind farm must produce at maximum capacity

to account for the total production in a year. It can also be the basis of calculating CF,

as CF can be defined as Full load hours divided by the total number of hours in a year

(8760 hours). (NVE, 2023c)

3.4.4 Availability

Availability is a measure of the amount of time a wind farm is available for production.

This is given in percentage, and is estimated based on the number of hours the wind farm

produced energy, divided by the total number of hours the wind speeds were in a range

that allowed operation. (NVE, 2023c)



3.4 Wind turbine performance 19

Downtime is the period of time where a wind farm is unavailable. A wind farm is in the

model presented in this thesis defined as unavailable if the power output has been zero

over a period of at least three hours. This is done to account for any inaccuracies in the

weather data that may arise due to challenges described in Section 3.2.1.

3.4.5 Performance index

The performance index (PI) shows how much energy a wind farm produces, relative to

what one would expect based on the available resources. This is a more complicated

calculation than capacity factor, as it makes use of both production data, weather data

and the specifications of the specified wind farm. The performance index follows the

relation described in 3.5.

PI =
Eproduced

Eexpected
(3.5)

where PI is the performance index, Eproduced is the amount of energy produced in a period

of time in kWh, and Eexpected is the amount of energy the wind farm is expected to produce

based on the wind resource in kWh.

A performance index of 1 implies that the wind farm produces energy as expected based

on the wind speed at the site. Values greater than 1 indicate that the wind farm produces

more than expected. Conversely, values less than 1 indicate that it produces less than

expected.

Since this index accounts for changes in weather, it is a more accurate measure of the

performance of a wind farm than capacity factor. It is however a more complicated

approach, it may be harder for the industry to adopt this method, and the use of capacity

factors may be sufficient for most purposes. As this also introduces some potential error

sources, specifically due to inaccuracies in the weather data, it may in some cases be

less accurate. How these calculations are made and how sources of error are handled is

described in depth in methodology.

NVE uses the term "production index" to describe the same relation between expected

and actual production. This number is however only given for all Norwegian wind farms

as a whole, and is based on comparisons to observations in previous years rather than
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simulations based on weather data.(NVE, 2023c)

3.4.6 Degradation and performance loss

A wind turbine will experience a loss in performance over its lifetime, due to wear and tear

in the components. The amount of degradation can be found by analysing changes in the

performance of the turbine over time. This is typically done through linear regression, and

thus finding an average yearly degradation. The usual way of doing this is by analysing

the capacity factor, which is the main method used in the available literature on this

topic, such as in OB17 and SG14 (Staffel & Green, 2014) (Olauson et al., 2017). However,

one may also make use of other measures of performance to find this trend.

The causes of degradation has not been studied to a large degree, but it is however known

that exposure to salt, such as in coastal areas may cause corrosion, and thereby loss in

performance (Olauson et al., 2017). Also the effects of icing and snow is known causes

of downtime of Norwegian wind farms, as can be seen in NordPool�s maintenance logs

(Nord Pool - Market Messages , n.d.).

In OB17, two significant factors affecting degradation are found. The age of the turbine

was found to be significant, as older WTs degrades faster than newer ones. Also, WTs

placed in forests degraded slower compared to those placed in more open environments.

No conclusion is drawn as to why this is the case, but it is discussed whether the exposure

to higher wind speeds and salt spray (WTs in the open typically are located on the coast)

may be a contributing factor in increasing degradation. (Olauson et al., 2017)

3.4.7 Windpowerlib

By combining weather data and information on the wind turbines in a wind farm, it is

possible to simulate the performance of the wind farm. Windpowerlib is a Python library

with information on a wide range of wind turbines. With information on how many of a

certain type of turbine a wind farm consists of, combined with weather data at the site,

one is able to predict the expected power output. This method has some limitations, and

it is necessary to do some simplifications, as the dynamics of wind are quite complicated.

The model will be increasingly accurate as one gather more accurate weather data and

information of the site, such as wake loss, distribution of the turbines and surrounding
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terrain. Publicly available data can be quite limited regarding information on this, which

is a clear limitation that must be considered when utilizing this tool.(Haas, 2019)

3.4.8 Power output data

NVE publishes a public dataset containing hourly energy production at all Norwegian

wind farms. There is no public access to the individual power output of each WT. This is

a challenge when modelling wind power, as the individual performances of WTs may vary

within a wind farm. Production data containing hourly-time series could hide relevant

information, as the power output will vary over this time period. A study of a 30-minute

time-series weather model shows that about 50% of instances of zero production is hidden.

This number is probably higher in an hourly time-series. This will not have great impact

on a study such as this, but could be significant for energy systems relying on the constant

energy production of a wind turbine. (Ward, Bamisile, Ejiyi, & Staffel, 2023)

3.5 Financial considerations of wind power

3.5.1 LCOE

LCOE stands for Levelized Cost Of Energy, and is a measure of the average cost of

producing one energy unit. In Norway this is typically measured in øre/kWh. The

calculation takes into account both investments costs and operational and maintenance

costs, divided by the average energy output over a year. It is described by the following

relation:

LCOE =
I0 +

Pn
t=1

At
(1+r)tPn

t=1
Mt,el

(1+r)t

(3.6)

where I0 is total investment costs, At is annual operational and maintenance costs,Mt,el is

the amount of energy produced in kWh per year, r is the interest rate, n is the expected

lifetime of the installation and t is the number of years it has operated.(NVE, 2023a)

LCOE is useful when comparing the costs of various power producing technologies, as it

gives a fair estimate of the average cost of an installment over its lifetime. Renewable

energy alternatives such as wind, hydro and solar are typically characterized by relatively
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large initial investment costs, which can be a barrier for investing in these technologies.

However, low annual costs due to no need for fueling and little need for maintenance,

makes renewable technologies among the cheapest alternatives available.(NVE, 2023a)

3.5.2 How wind power affects electricity prices

LCOE does not translate into low electricity prices directly, as there are several factors

affecting this. The main issue with wind power is the intermittency of wind, which makes

the reliability of the power generation relatively low. A power system that depends to

a large degree on wind power may experience large fluctuations in electricity prices. To

even out such variances, it may be necessary to have backup systems, which in turn

will increase the total costs in the power system. Studies from other countries, such as

Australia and Denmark, indicate that larger shares of wind power contributes to lower

electricity prices in general, but also increases the fluctuations in prices (Mwampashi,

Nikitopoulos, Konstandatos, & Rai, 2021). In Norway, similar studies have indicated a

positive relation between share of wind power in the power system and electricity price

volatility (Gjerland & Gjerde, 2020). This is however a topic of much debate, and the

effects will likely vary between countries.

3.6 Linear regression

In linear regression, it is assumed that there exists a linear relationship between the

independent variables (Xi) and the dependent variable (Y ). This relationship can be

represented as:

Y = �0 + �1X1 + �2X2 + . . .+ �kXk + "

where: Y is the dependent variable. Xi are the independent variables. �i are the

parameters of the model. " represents the error term, which captures the difference

between the observed and predicted values of Y . (Wackerly & Schaeffer, 2008)

3.6.1 Least squares estimation

The goal in linear regression is to estimate the parameters that minimize the difference

between the observed values of the dependent variable Y and the values predicted by the
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model. This is typically done using the method of least squares. Mathematically, this can

be expressed as:

minimize
nX

i=1

(Yi � (�0 + �1Xi1 + �2Xi2 + . . .+ �kXik))
2

where n is the number of observations.(Wackerly & Schaeffer, 2008)

After the parameters are estimated, they must be understood in the context of the problem.

For example, �1 represents the change in the expected value of Y for a one-unit change in

X1, holding all other variables constant.(Wackerly & Schaeffer, 2008)

3.6.2 Assumptions

Linear regression relies on several assumptions, including linearity, independence,

homoscedasticity and normality of errors. (Wackerly & Schaeffer, 2008)

Linearity

The relationship between the independent variables (Xi) and the dependent variable

(Y ) is assumed to be linear. This means that the effect of a one-unit change in any

independent variable on the dependent variable is constant, regardless of the values of the

other independent variables.(Wackerly & Schaeffer, 2008)

Independency

The observations used to estimate the regression model should be independent of each other.

The value of one observation should therefore not be influenced by the values of other

observations. Independence ensures that each observation contributes new information

to the model estimation process and prevents bias in parameter estimates.(Wackerly &

Schaeffer, 2008)

Homoscedasticity

The variance of the errors (") should be constant across all the independent variables.

This means that the spread of the residuals should be approximately the same across

the range of predicted values. If the variance of the errors is not constant, the model’s

predictions may be unreliable, especially for extreme values of the predictors.(Wackerly &

Schaeffer, 2008)
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Normality of Errors

The errors (") are assumed to be normally distributed with a mean of zero. This assumption

is important for hypothesis testing and constructing confidence intervals for the regression

coefficients. The normality assumption is less critical for large sample sizes, but violations

of normality can affect the precision and accuracy of statistical inference.(Wackerly &

Schaeffer, 2008)

3.6.3 Evaluation of the model

After fitting the linear regression model, it is important to evaluate its fit and consider

whether the model captures the relationship between the variables. This can involve

examining diagnostic plots, such as residual plots, and performing hypothesis tests, such

as testing the significance of the coefficients. Confidence interval is also used to evaluate

the result. (Wackerly & Schaeffer, 2008)

3.6.4 p-value

The p-value in statistics is the probability of obtaining at least as extreme values as the

observed values in a hypothesis test. This assumes that the null hypothesis is correct. A

p-value less than the significant level would result in rejecting the null hypothesis. (Beers,

2024)

3.6.5 Confidence interval

A confidence interval is an interval which is estimated to cover the true parameter with a

pre-determined significance level ↵. A significance level ↵ is interpreted as the probability

that the interval covers the true parameter. When the statistical parameter ✓ is unknown,

a T-critical value and standard error to ✓ is used instead of a Z-critical value and the

standard deviation to the parameter. The calculation is conducted on a given data set,

where the upper limit are estimated by adding a term consisting of a T-critical value times

the estimated standard error to the parameter that the confidence interval are estimated

for. The lower limit are calculating by subtracting this term. (Confidence Intervals , 1997)

This is shown in Equation 3.7:
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✓̂ ± t↵/2,n�2 ⇤ SE(✓̂) (3.7)

, where ✓̂ is the estimated parameter to which the interval is constructed for. t↵/2,n�2 is the

T critical value and SE(✓̂) are the estimated standard error to the estimated parameter.

(Confidence Intervals , 1997) The standard error are estimated using Equation 3.8:

SE(✓̂) =
�p
n
=

sPn
i=1(xi � x̄)2

n� 1
⇥ 1p

n
(3.8)

, where n is number of observation, yi is true observation ŷi is the predicted observation.

xi independent variable of the observation and x̄i is the average over all observations.

(Variance, Standard Deviation and Standard Error , 2024)

The pooled standard error is used to calculated the confidence interval to the final result

in this thesis. A measurement is an weighted average of the standard error to multiple

groups. More weight are given to groups with larger samples sizes. In this thesis, the two

groups compared have equal sample size, resulting in an equal weight. (Pooled Standard

Deviation: Formula, Definition, Example, n.d.) This is calculated by Equation 3.9:

SEpooled =

s
(n1 � 1) ⇤ SE2

1 + (n2 � 1) ⇤ SE2
2

n1 + n2 � 2
(3.9)

, where n1 and n2 � 1 are the samples to respectively group 1 and group 2. SE1 and SE2

are the estimated standard error to group 1 and 2. Degrees of freedom are also included in

the expression and are represented by: n1 + n2 � 2. (Pooled Standard Deviation: Formula,

Definition, Example, n.d.)

3.7 Regression with Seasonal ARIMA errors

In order to be able to utilise linear regression with autocorrelated residuals, ARIMA or

seasonal ARIMA is used. By modeling residual error from the linear regression with the

ARIMA model, the autocorrelation is corrected. (Date, u.d.)

The ARIMA model comprises seven components. The auto-regressive component is a

linear combination of past values from the time series, with a specific number of lags, p,
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permitted. The equation for this parameter is illustrated in Equation 3.10. (Date, u.d.)

yi = b�1yi�1 + b�2yi�2 + · · ·+ b�pyi�p + ✏i (3.10)

, where yi is observed value at time step i. �i are the fitted regression models coefficients.

✏i represents the residual error of the model at time step i. The order p is determined by

applying a combination of rules. The rules for establishing the parameter can be further

read in Forecasting: Principles and Practice written by Rob J Hyndman and George

Athanasopoulos. This is not part of the scope in this thesis. Date (u.d.)

The second component to the ARIMA model is the The moving Average. This is a linear

combination of the past model�s past errors up to a p number of lags. The errors are

calculated by subtracting the past prediction from the actual values. The expression for

this component are visualized in 3.11 Date (u.d.):

yi = � b✓1✏i�1 � b✓2✏i�2 � · · ·� b✏pyi�q + ✏i (3.11)

, where yi is the observed value at time step i. b✓i are coefficient from the fitted regression

model. ✏i is the residual error of the regression at time step i. q is the order of the moving

average component. Date (u.d.)

By combining these two components, the expression looks like:

yi = b�1yi�1 + b�2yi�2 + · · ·+ b�pyi�p � b✓1✏i�1 � b✓2✏i�2 � · · ·� b✏pyi�q + ✏i (3.12)

If the time series has a trend, the ARMA model expressed in figure 3.12 cannot be used. If

the dataset demonstrates a trend such as a linear, quadratic and exponential or logarithmic

trend, a number of differencing is applied to remove the trend. The first order is used to

remove a linear trend. Second order and higher order remove polynomial trends. The

order is denoted by the parameter d. Differencing is applied before the AR and the MA

operation are applied. (Date, u.d.)

The ARIMA or Seasonal ARIMA model is an extension of the components above. A

Seasonal AR (SAR) of order P , a Seasonal MA (SMA of order Q, and a Seasonal Difference
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of order D are implemented. A seasonal period m is the final parameter. The rules for

establishing the values for P, D, Q and m can be further read in Forecasting: Principles

and Practice written by Rob J Hyndman and George Athanasopoulos. This is not part of

the scope in this thesis. (Date, u.d.)

If (p,d,q),(P,D,Q) and m are chosen correctly, the residual errors of the model would be

expected to be independent, identically distributed (i.i.d.) random variable with zero

mean and some constant variance. The residual errors would also be expected to not be

auto-correlated.(Date, u.d.)

By modeling residuals in a linear regression model with the ARIMA model the auto-

correlated is properly handled. The final model is called Regression with Seasonal ARIMA

errors (ARIMA). (Date, u.d.)
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4 Methodology

The methodology used in the thesis is mainly based on parts of the framework Cross-

Industry Standard Process for Data Mining, or CRISP-DM. Data understanding and

collection are important parts of the methodology. These parts of the framework lead to

the data preparation, modelling and evaluation of the results (Chapman, Clinton, Kerper,

Khabaza, & Shearer, 2000) The workflow is shown in Figure 4.1. The data used in the

thesis, as well as the model used is further discussed.

Figure 4.1: The workflow is shown in the figure using parts of the CRISP-DM framework.
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4.1 Business understanding

The first phase of CRISP-DM is Business Understanding. This will lay the foundation

for the rest of the project. In this phase it is determined what data will be collected and

how the data will be managed. This is an important step in creating a model that is

appropriate to achieve the objectives of the project. (Chapman et al., 2000)

As previously mentioned, this thesis builds on the work of another master thesis written

at NMBU, ED24. Correcting for local wind resources in the modeling of the degradation

rate is the main objective as low capacity factor can make the degradation rate look larger

than it is.

The overall objective of the thesis is to estimate the degradation of Norwegian wind farms

using a constructed performance index (PI). Calculating this index requires production

data from the selected wind farms, as well as local weather data and information on the

technical specifications of the wind farms. This includes turbine types, number of turbines

and hub heights. PI is as mentioned the ratio between actual production and simulated

production and will be the foundation to the estimation of degradation rate through a

linear regression model.

It is also of interest to identify factors that contribute to an increase in the degradation

rate. A geographical analysis of degradation will therefore be conducted to check whether

there is a significant difference in degradation across the country. Moreover, it would be of

interest to conduct an analysis to find whether the decline in performance is influenced by

the different seasons of the year. Whether degradation rates are impacted by technological

differences are also studied. Lastly, the degradation of newer and older wind turbines will

be compared.

4.2 Data Understanding

The subsequent phase in the framework after Business understanding is Data

Understanding. This includes collecting the required data as well as examining it. The

understanding of the data used in the model is important. This include getting an

understanding of the structure and quality in the data. This is essential to be able to

process and construct it to fit the desired model. If the criteria are not met, new or more
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data should be collected. (Chapman et al., 2000)

4.2.1 Data Collection

Collecting data of good quality is fundamental to making a good model. As mentioned,

different data sources will be used when modelling the degradation. The data sources

used is:

• Production data from NVE

• ERA5 data set

• Data regarding different wind farms

Production data

Firstly, production data is retrieved from The Norwegian Water Resources and Energy

Directorate (NVE). This is public production data in a hourly time-series format from

2002 to 2022. This data is retrieved from NVE�s website in an Excel file where each

column correspond to one wind farm. The columns of wind farms installed in later years

contain empty cells in years before installation. Statistics regarding all Norwegian wind

farms are listed in Table 4.1.

Table 4.1: Statistics for modelling data

Description of production data
Wind farms 65
Turbines 1392
Rated power output 5083 MW
Temporal resolution Hourly
Wind farm capacity 0.225 - 400.0 MW
Average Wind farm capacity 78.2 MW
Median Wind farm capacity 54 MW
Commissioning period 1998- 2023

ERA5 Reanalysis

The climate data used in the simulation of power production are retrieved from Copernicus.

The data is named ERA5 as this is the fifth generation ECMWF reanalysis. The dataset

consist of data from 1940 till present time. A summary of the data properties are listed

in Table 4.2. (Hersbach et al., 2023)



4.2 Data Understanding 31

Data description
Data Type Gridded
Projection Regular latitude-longitude grid
Horizontal Coverage Global
Horizontal Resolution Reanalysis: 0.25°x 0.25°
Temporal Coverage 1940 to present
Temporal Resolution Hourly
File format NETCDF (experimental)
Update frequency Daily

Table 4.2: Description of ERA5 data

As mention in Theory, reanalysis data combines observations with model data creating

a consistent worldwide dataset. ERA5 provides a hourly estimates on many different

quantities. In this thesis five different measurements; 100m u-component wind, 100m

v-component wind, Instantaneous 10m wind gust, Surface pressure, 2m temperature and

Forecast surface roughness, are retrieved from the ERA5 dataset.(Hersbach et al., 2023)

100m u- and v-component of wind

This parameter is the measurement of horizontal wind speed. 100m u-component is the

measurement of air flowing towards east and 100m v-component is the measurement of air

flowing north. The wind speed is measured in metres per second [m/s] at a height of 100

metres above the surface. Care should be taken when comparing model parameters with

real observations as observations are bound to a specific geographical point at a specific

time whereas the model parameter is an average over a model grid box. The u and v

component are used to derive wind speed in a specific direction.(Hersbach et al., 2023)

2m temperature

2m temperature is the measurement of the temperature in the air. This is measured

at a height of 2m above the surface, and the quantity is measured in Kelvin [K]. This

parameter is calculated by interpolating between the lower model level and the surface

of the Earth. The atmospheric conditions are also taking into account. (Hersbach et al.,

2023)

Forecast surface roughness

Forecast surface roughness is the aerodynamic roughness length. This is a measurement

of the surface resistance measured in metres [m]. This measurement is used to determine

the air to surface transfer of momentum. Higher surface roughness cause a slower near-
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surface wind speed at determined atmospheric conditions. Surface roughness over land is

determined from the vegetation type and snow cover at a specific site. (Hersbach et al.,

2023)

Instantaneous 10m wind gust

At time t, this parameter refers to the maximum wind gust at that t. This is measured at

a height of 10 m above the surface. Since the WMO definition of wind gust is shorter than

the model time step, ECMWF extracts the magnitude of a gust within each hour from

the averaged surface stress, surface friction, wind shear and stability. As a result, care

should be taken when comparing model parameters with observations. Local observations

is often specific to a specific geographic point and time. In other words, this does not

represent an average over model grid boxes. (Hersbach et al., 2023)

Surface pressure

Surface pressure include the pressure of the atmosphere at the surface of land, sea and

inland water. This is the vertical measurement of the weight of air at a specific point on

the surface of the Earth. The unit used for surface pressure is Pascal [Pa]. (Hersbach et

al., 2023)

ERA5 data is retrieved from https://cds.climate.copernicus.eu/cdsapp#!/

dataset/reanalysis-era5-single-levels?tab=form. Several parameters must be

defined when downloading data, including the geographical area and the time period of

the request. All reanalysis data were downloaded with the chosen weather parameters

mentioned above. However, during the thesis, Instantaneous 10m wind gust, was found

irrelevant to the scope of this project. This parameter was therefore not used in the

modeling.

The geographical area from which the data is to be downloaded must also be determined.

For this project, the weather data at the location of each wind farm were downloaded

separately. As the resolution of ERA5 data is 0.25°x 0.25°, the geographical area chosen

was the rounding of the wind farm�s coordinates to nearest 0.1 in both directions. A more

accurate geographical area was deemed unnecessary as the resolution of the data is worse

than this rounding.

The time period and time resolution of the data must also be chosen. To get the best

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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possible resolution, hourly data were downloaded. As there is a download limit of 120

000 data points per request, files consisting of two years of climate data at each area are

downloaded separately. To limit the amount of data, only weather data for the operational

years at each wind farm are downloaded.

When downloading data from Copernicus, a download request is sent to the database

and in-queued. Whenever the request is first in line, the process of retrieving the data

from the database starts. After a certain time the data are ready to be downloaded. A

total number of 104 NETCDF files were downloaded containing the relevant climate data.

These files were stitched together using Python to a total of 15 files, one for each wind

farm.

Wind farm data

To be able to model different wind farms data regarding its position, the number of turbines

and their hub heights are relevant. Wind farm data are imported from https://pvexpect

.com/Vind/Vindturbine_portfolio_2.csv. This is a csv-file made by Jesper Frausig

containing information about all wind farms in Norway and are based on information by

NVE. Relevant data from the file was kept, and some data were added or updated.

Other data regarding wind farms is collected from each wind farm�s individual websites

from NVE. This includes information such as first production year, number of turbines,

maximum power output etc. As part of the quality check, the data from the mentioned

csv-file was checked against the information from NVE.

Power curves are essential to model the power output in Windpowerlib. The library

contains a set of different wind turbines with corresponding power curves. However, some

turbines were not implemented in Windpowerlib and were missing a power curve. Turbines

with missing power curve were:

• SWT-9.3-2300

• SWT-8.2-2300

• SWT-10.1-3000

• V27/225

• NM48/750

https://pvexpect.com/Vind/Vindturbine_portfolio_2.csv
https://pvexpect.com/Vind/Vindturbine_portfolio_2.csv
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The power curves of the mentioned wind turbines were constructed manually in Excel

by making a table of wind speeds with corresponding power output. The data has a

resolution of 0.5 m/s. Power curves are gathered from https://www.thewindpower.net/

turbines_manufacturers_2_en.php. Other relevant information regarding the turbine

types were also retrieved from the same site. The construction of power curves was

exported a csv-file which is then imported into Google Colab. Power coefficient curves

were also constructed in the same spreadsheet using the power curve. The power coefficient

is defined in Equation 3.4.

When modeling one wind farm, the model uses power curves from Windpowerlib. Whenever

the model analyses one wind farm it checks whether the wind turbine is present in

Windpowerlib or not. Whenever the object is not present, it constructs a turbine object

with external information regarding hub height and rated power output. The power

curve is constructed at standard air density using the create_power_curve -method with

imported power curve data.

Figure 4.2: Bar plot showing the different dimensions of turbine types found in the
selected wind farms.

There are multiple types of wind turbines found in the selected wind farms. These have

different turbine dimensions. Figure 4.2 shows the different dimensions of the different

turbine types.

Downtime can have great influence on the degradation rate wind farms. Classifying

the downtime of the wind farms are of interest to be able to adjust for the downtime

https://www.thewindpower.net/turbines_manufacturers_2_en.php
https://www.thewindpower.net/turbines_manufacturers_2_en.php
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when analysing degradation. Nord Pool have published some maintenance reports with

information regarding maintenance and therefore downtime. These reports have been

downloaded for a manual inspection to try to match with registered downtime periods in

the model. The maintenance logs includes an explanation of the downtime and whether

the event was intentional or not. The duration of the downtime period is also registered

here, as well as specifications on how much of the power output that was unavailable. Out

of the selected wind farms only two had available maintenance reports, namely Egersund

and Tellenes. These will be studied as examples to find information on typical downtime

periods in Norway.

4.2.2 Data Exploration and Quality assessment

To ensure good modelling results, data of good quality is necessary. When all data is

collected, the data must be visualized. A quality assessment of the data is also necessary

to ensure that the data are complete without any missing values. An assessment of the

correctness of data must then be committed. This showed that Valsneset wind farm

included data out of range, as it included negative values. Some production data were

also found to be greater than their rated power. If the data consist of errors decisions

regarding the treatment of errors must also be made. (Chapman et al., 2000)

4.3 Data Preparation

All activities necessary to feed the final dataset into the model is covered by the Data

Preparation phase. This phase can be redone multiple times and include table, record

and selecting data. Cleaning and transforming data into a final format is also included in

this phase. (Chapman et al., 2000)

4.3.1 Select data

One should decide on what data subset is to be used in the model. Data should be selected

based on objectives, quality and technical constraints. This includes limitations to data

access and volumes, which in turn may affect the results. (Chapman et al., 2000) Specific

Norwegian wind farms have also been chosen to narrow the scope of the project, which

were chosen based on the previous master thesis, ED24, to get a basis for comparison.
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Figure 4.3: The production plot show that Karmøy Hywind produces more than its
rated power as many production points are above the red line.

The main requirement for the selected wind farms was that they only had one installation.

Including wind farms with several installations would be a challenge when modelling

degradation, as their production would not be comparable over their lifetime. With only

one installation, all the turbine have the same age. Having the same turbine type is also

an advantage when modelling degradation.

Karmøy Hywind was removed from the selection of wind farms as this was found to be an

offshore wind farm. In a dataset published by NVE, it was registered with coordinates on

land. The production data was also discovered to be incorrect as the production in later

years were higher than its rated power. This can be seen in Figure 4.3. It was discovered

that the numbers of turbines was wrong in NVE�s database as Karmøy Hywind consists

of two turbines, as a new turbine was installed in 2021 in that area by Shell. (Rustad,

2021) After removing wind farms that did not fit the criteria, 15 wind farms are selected

for further study. These are listed in appendix A.

The locations of the selected wind farms are displayed in Figure 4.4. As can be seen here,

the wind farms are all located near the coast of Norway. There are mainly three clusters,

one in south-west Norway, one in mid Norway and one north in Norway. These belong to

respectively price zones NO2, NO3 and NO4. These areas will further be used to study

the impact of the local climate.

As the production data from NVE have records from 2002 and onwards, a subset of the
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Figure 4.4: Map showing the location of selected wind farms in Norway. The wind
farms are color coded showing the different geografic clusters. Blue, green and red colors
represent respectively south-west, mid and north clusters.(Frausig, 2023)
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climate data are also chosen from 2002. This means that the first production years at

Sandøy are not in the data set.

4.3.2 Data cleaning

Data cleaning is an essential part of the data management. Missing entries or data out of

range may be a concern and can lead to inaccurate results (Chapman et al., 2000). The

non-selected wind farms are removed from the production data set to make the model

more efficient. The data should be at a certain level of quality to be able to trust results

from the model. This may include choosing a subset of clean data, insertion of suitable

defaults, and techniques for estimating missing data. (Chapman et al., 2000)

Furthermore, the timestamps containing null before first production hour are removed

from the time series. This ensures that the first timestamp at each wind farm corresponds

to the first production hour. From the constructed downtime plots, it can be seen that the

wind farms have quite significant downtime the first production year. This may have a

large impact on the resulting degradation. The first production year is hence removed to

ensure a more robust result, only using data from normal production years. This was also

done in SG14, whereas OB17 only removed the first four month of production. (Olauson

et al., 2017)

There were also discovered some irregularities in the data. Valsneset was the only wind

farm affected by missing values. A total of 1104 hours had missing values since the

commissioning year and onwards. Missing values in the time series were replaced by the

average of the predecessor and successor of that timestamp. This was also the only wind

farm containing negative production values. There were 334 cases of negative production

values. These values were replaced by zero. Some of these production hours are considered

downtime. All of the selected wind farms are affected by zero values. Production over

rated power output are also occurring. These values are replaced by the maximum possible

production for that hour. Further detail regarding the data statistics can be found in

Appendix I.
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4.3.3 Data construction

Construction of data include production of derived attributes or creating new records.

Transforming values for existing attributes are also included in this task. This may include

converting the data to the right format and/or concatenating different sets into a common

dataset(Chapman et al., 2000)

The climate data are downloaded as netCDF files. This is a multidimensional data

structure where wind speed in u- and v-component are kept separate. These components

are used to calculate the magnitude of the wind speed in the specific direction. This is

calculated by:

|�!V | =
p
u2 + v2 (4.1)

, where |�!V | is magnitude of the wind speed, u is the wind speed in u- direction and v is

the wind speed in v direction (ERA5 - Documentation and user guides, 2024).

To include the wind speed at each site, the objective is to include this parameter when

constructing the regression model. The performance index is calculated by dividing actual

production by simulated power output. This way the local wind resources are taken into

account. The performance index gives an indication of how the wind farms performs.

4.3.4 Integrate data and formatting data

Combining information by merging multiple tables or creating new records or values

may also be relevant before modeling. Formatting refers mainly to syntactic adjustment.

This does not change the meaning of the data, but may be a requirement of the model.

(Chapman et al., 2000) Windpowerlib requires the input data to have specific attributes

and column names before simulating power output. A dataframe consisting of wind speed,

temperature, pressure and surface roughness is required for the simulation. Figure 4.5

shows the format of datasets feed into Windpowerlib. Wind speed and temperature is also

adjusted to the height specified in the ERA5 dataset. Wind speed are adjusted to 100 m

above surface and the temperature are adjusted to 2 m above surface. The treated data

are further to be used for modelling. This is also shown as a second header in the figure.
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Figure 4.5: Screenshot of a dataset used to feed into Windpowerlib.

The data used in modeling have different properties. These are listed in Table 4.3. While

there is some missing and negative values, are there quite many values that are zero or

above the rated power. These are further treated. Properties regarding the selected wind

farms are also listed in this table.

Table 4.3: Statistics and diagnostics for selected treated data.

Description of selected and treated production data
Valid observations 1393761
Zero production [Count / [% of total observations]] 141464 / 10.15%
Negative production [Count / [% of total observations] 334/0.024%
Missing values [Count / [% of total observations] 1104/0.079%
Production over capacity [Count / [% of total observations] 14623/ 1.05%
Temporal resolution Monthly/Weekly
Wind farms 15
Turbines 240
Total capacity 660.325 MW
Average Wind farm capacity 44 MW
Median Wind farm capacity 39.1 MW
Wind farm capacity 0.225 - 160 MW
Commissioning period 1999- 2017

4.4 Modelling

4.4.1 Selection of modeling technique

Selecting the modeling technique is the first step of modeling (Chapman et al., 2000). As

discussed, linear regression was used for calculating degradation rates in the British and

Swedish papers. As these assume a linear degradation, this is also assumed in this thesis.

The recently written master thesis regarding the degradation of wind turbines at NMBU
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also used linear regression as the main model for estimating the degradation. Whereas

the British and Swedish studies have taken the wind resources into account by using

simulated wind as an expected power output, this is still yet to be done with Norwegian

wind farms. The aim of this thesis is hence to include a simulated power output to correct

the variation in wind speeds.

Linear regression is the main modeling technique used in this thesis. There are mainly

four assumption when using a linear model. These are:

• Linearity

• Independence

• Homoscedasticity

• Normality

According to the first assumptions, there should be a relationship between the predictor

variable (x) and the response variable (y). The residual should also be independent. This

is especially important when working with time series data such as in this thesis. Any

pattern in the residuals is unwanted. The assumption regarding homoscedasticity, tells

that residuals should have a constant variance at every level of x. If this is not the case,

the residuals are affected by heteroscedasticity. The results are not to be trusted when

this assumption is not met, as the variance of the regression coefficient is too large. This

may result in a model making statistically significant results when they are not. The

fourth assumption tells that the residual should be normally distributed. (Bobbitt, 2020)

4.4.2 Sklearn Linear regression

A linear regression model from Sklearn is used to model in this thesis. This algorithm

uses Ordinary least squares. LinearRegression-function fits a model by minimizing the

residual sum of squares between the observations and the target predicted by the linear

approximation. (scikit learn, n.d.)

4.4.3 RANSAC- algorithm

Results from the ordinary linear regression were impacted by outliers. An outlier is a data

point/observation that lies an undesirable long distance from the majority of observations.
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As a result, outliers have great leverage and impact on the results of the regression model.

(Statistical Methods: Process Monitoring Charts, n.d.)

There are multiple statistical tests and ways to detect and treat outliers, which leaves the

analyst to make a subjective decision on these matters. To classify an observation as an

outlier, the normal observation has to be characterized first. In this thesis an algorithm

called RANSAC is used in the attempt of automatically detecting outliers.

Random Sample Consensus (RANSAC) is a method for addressing and treating outliers

when conducting regression analysis. Rather than removing outliers, the algorithm selects

a subset of the dataset, which are then classified as inliers. These observations serve as

the complement to outliers. (Raschka & Mirjalili, 2017)

The algorithm initially selects a random number of samples to be inliers. Subsequently,

the model is fitted with the selected observations. The remaining observations are then

compared with the fitted model. Those that are within a user-defined distance to the

model are then classified as inliers. The model is then fitted again using all observations

classified as inliers. An estimation of the error between the fitted model and inliers is

then calculated. The algorithm runs through all steps until it meets a specified criteria by

the analyst or if it reaches a specified number of iterations. (Raschka & Mirjalili, 2017)

The algorithm has several hyperparameters to be optimized. The minimum number of

observations to be used for fitting is determined by the parameter min_samples. The

parameter max_trials restricts the algorithm in the way that it terminates the algorithm

if it reaches a certain number of iterations. Those observations that are closer to the fitted

model than the residual_threshold hyperparameter are classified as inliers. The loss

hyperparameter is used to measure the residuals or loss. (Raschka & Mirjalili, 2017)

Selecting an appropriate value for the various hyperparameters can be a challenging

task, as it my depend on the specific case in question. In this thesis a method known as

grid search is used in order to optimise the performance of the model. This method is

used to identify optimal combinations of values for hyperparameters. Grid search is a

relatively straightforward method, as it runs through a model multiple times with a set of

different values for each hyperparameter. Upon completion of the model, it will return the

optimal value for each chosen hyperparameter. This approach is however computationally
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demanding and time consuming, but can result in a higly performing model. (Raschka &

Mirjalili, 2017)

In this thesis, grid search are utilized to optimise min_samples, max_trials and

residual_threshold. With a set of different values the model has attempted to return

an optimal combination these. However, to prevent the model from becoming too simple,

a certain amount of samples and trials are needed to prevent underfitting. During the

optimisation process, a number of the lower values very removed as the model choose

hyperparameters that made the model too simple. This returned worse outcome when the

entire model was fitted with the selected hyperparameters. (Raschka & Mirjalili, 2017)

4.4.4 Linear Regression with ARIMA errors

Due to dependent residuals in the data, a Linear regression model with ARIMA residual

was also used in the thesis. An ordinary least squares -model, OLS, from statsmodel was

used to fit the original model. (statsmodels.regression.linear_model.OLS , 2023) This

library works quite well when analyzing autocorrelated data as this python-package

also has functions for making autocorrelation plots and ARIMA models. A plot was

used to visualize the autocorrelation between residuals. This was done by using the

plot_acf-function. (Time Series Plots — statsmodels , 2023)

To account for the variability in data to different wind farms, an auto-ARIMA model was

used. This model is fitted several times with different values to the mentioned parameters

(p, d, q)x(P, D, Q, S) to ensure the best possible output. An auto_arima model from the

Python package pmdarima is used in this thesis. This model discovers the optimal order

for an ARIMA model automatically. This is achieved by testing many combinations of

the mentioned parameters. The identified optimal parameters are used in a final fitted

ARIMA model. (Smith, n.d.)

Auto_arima determines the optimal differencing (d) by conducting different tests.

Kwiatkowski–Phillips–Schmidt–Shin, Augmented Dickey-Fuller, or Phillips–Perron are

some tests that are conducted. To limit the search for optimal parameters model parameters

are set before fitting the model. start_p, max_p, start_q, max_q are set making ranges

of 1-3 for both parameters p and q.(Smith, n.d.)

The seasonal-parameter is set to True as the Production Index is affected by seasonal
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patterns. Seasonal differencing is found by conducting a Canova-Hansen test. Furthermore

the model seeks to find optimal P and Q-parameters by by testing with different values.

(Smith, n.d.)

There are multiple criterias to use when optimizing the model. In this thesis, an information

criterion called Akaike Information Criterion is used (AIC). The model returns the ARIMA

parameters that minimize the AIC value. (Smith, n.d.)

4.4.5 Generate test design

A method for measuring the quality and validity of the model is important before making

the model. Since linear regression is a supervised model where the target value is known,

the data is split into two datasets; training and test set. The model is fitted or modelled

on training data and the test data is used to make an estimation of the models quality. It

is important to keep the test set unseen to the model until the quality assessment of the

model. (Raschka & Mirjalili, 2017)

Residual plots are also used to discover non-linearity and outliers. They are also used to

check if errors are randomly distributed. Since, a model realistically never would make a

perfect prediction, observation is not align with the zero-line. However, if the residual are

randomly scattered around the line, it would indicate randomly distributed residuals. This

would fulfill the assumption e ⇠ N(0, �2). A pattern in the residual plot would however

indicate that some of the variance within the data are not captured by the regression

model. Outliers can also be observed in residual plot if single data points are observed

with a great distance from the centerline. (Raschka & Mirjalili, 2017)
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Figure 4.6: Residualplot showing the variance within the residuals.

In figure 4.6 the residuals are not properly aligned around the zero line. The residuals are

mostly random, but there are some points that seem to belong to a separate cluster.

Mean Squared Error (MSE) is a useful method for measuring performance in a quantitative

way. This is the averaged value of Sum of Squares Error (SSE). SSE is the error that are

minimized when fitting a linear regression model. (Raschka & Mirjalili, 2017)

Confidence interval are calculated to the slope of the main regression model. The interval

is calculated with a confidence of 95% using the t-statistic and the pooled standard error

of an average result and a weighted average result. This means that it is 95% confident

that the interval covers the true value of the degradation rate.

�̂1 ± t↵/2,n�2 ⇤ SE(�̂1) (4.2)

, where �̂1 is the estimated slope, t↵/2,n�2 is the t-critical value and SE(�̂1) are the

estimated standard error to the estimated slope.

Validation of regression model

To evaluate evaluate the model and test whether a linear model is suitable in this project,
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several statistical tests are conducted.

To check whether the observations contain autocorrelation, a Ljungbox test was conducted.

This is a statistical test used to test the lack of fit in a time series model. It is applied to

the residuals to test the correlation between them. When the autocorrelation is small,

the model does not show significant lack of fit.(of Standards & Technology, n.d.) The

hypothesis test are formulated as:

H0 - model does not show lack of fit.

Ha - model does show lack of fit. (of Standards & Technology, n.d.)

The output of the Ljung-box test is a test-statistic and a p-value. As this p -value was

less than the significance level at 0.05, it means that the time series are dependent. The

residuals are suffering from autocorrelation. An autocorrelation plot also indicate that

the data are dependent as multiple point exceed the confidence interval visualized in the

Figure 4.7. The first point is the correlation with itself and the correlation is consequently

1.

Figure 4.7: Autocorrelation plot of the monthly data points showing that the production
data suffers from autocorrelation.

A diagnostic plot to the ARIMA model are plotted in Figure 4.8. The residual plot

indicate that the residuals to the model are placed around zero, but skewed a little in
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positive direction. However, there are also abnormal residuals indicated by the peaks of the

plot. The histogram indicate that the residuals are close to normal distribution, but there

exist some deviation. The plot of theoretical quantiles implies that the distribution are

not significantly skewed. There are however, some deviation are present in the residuals.

The correleum indicate that the model have removed the autocorrelation between the

residuals.

Figure 4.8: Diagnostic plot showing that the ARIMA improved some of the linear
assumptions.

Dividing the data into several component is a strategy to highlight different patterns

in time series data. Performance index data are divided into three main components;

Trend, Seasonal and Residuals. Trend refers to a long-term increase or decrease in the

data. This can either be linear or non-linear. In figure 4.9 there is naturally a decrease in

the data. When seasonal patterns are present in the data, the data varies in a fixed and

known frequency. From the mentioned plot, there is a seasonal pattern in the data with a

yearly frequency. The last subplot in Figure 4.9 shows the residuals of the data. This

plot shows the unsystematic variation in the data. The data points are modestly random

meaning that there are not any clear pattern explained by the residuals. (Hyndman &
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Athanasopoulos, 2021)

Figure 4.9: Decomposition of the performance index showing that it has a linear trend
and a seasonal pattern. The residual are mostly random meaning that it does not contain
any model information.

A Goldfeld Quandt Test is used to test homoscedasticity of a regression model. The

test compares two subgroups of the data, one set with low values and one with high. If

the variances between the sets are significantly different, the null hypothesis is rejected

meaning that the variance is not constant. The test returns a p-value. (StatisticsHowTo,

n.d.) The hypothesis test is formulated as:

H0 - homoscedasticity is present in the residuals

Ha - heteroscedasticity is present in the residuals (StatisticsHowTo, n.d.)

Since the p-value is greater than the significance level, the null hypothesis can not be

rejected. This indicate that homoscedasticity is present in the residuals.

The normality assumption was tested using a statistical test called Shapiro-Wilk test. This

test assess whether a sample is likely to originate from a normal distribution. (Malato,

2023) The hypothesis test are formulated as:

H0 - the sample originates from a normal distribution

Ha - the sample does not originate from a normal distribution. (Malato, 2023)
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Shapiro-Wilk returns a test-statistic and a p-value. Since this p-value are close to zero,

the null hypothesis is rejected. This means that the data are is not normally distributed.

4.4.6 Build model

After choosing of model, and determining the method of assessing the quality, the model

itself should be created. (Chapman et al., 2000)

In order to create the performance index to be used in the model, it is necessary to carry

out a simulated production output. In this thesis a Python library called Windpowerlib

is utilised. This package provides a set of functionalities to calculate the power output

to wind turbines by creating virtual wind farms. The library has been constructed in

such way that it can be readily adapted to construct real wind farms. The Windpowerlib

library takes climate data as input data to simulate power output. (Haas et al., 2023)

Input to the Windpowerlib model

The primary input to the Windpowerlib is climate data in a hourly time series format.

The data will be used to estimate the power output of a pre-determined wind farm.

In this thesis, the selected wind farms are constructed in Python based on different

parameters, including turbine types, the number of wind turbines, and hub height.

Furthermore, the time series weather data can be employed to simulate the power output

of the constructed wind farm. The output from Windpowerlib will be employed in several

regression models. (Haas et al., 2023)

The processed data should further be used in a model to achieve the objective introduced

in the introduction. Windpowerlib contains a set of different functions and classes that

enable the user to simulate the power output from a virtual wind farm. This is achieved

by feeding weather data in a time series format into the model. (Haas et al., 2023)

The most essential modules will be introduced below as these are essential to achieve

the objective of identifying the degradation of different wind farms. The wind_turbine

module contains of the WindTurbine class, which represents a wind turbine with additional

functions. The output is a power curve or power coefficient-curve. The module also contains

various of the most common wind turbines. (Haas, 2019)

The wind_farm module contains the WindFarm class, which is used to model wind farms.
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The module also contains functions for calculating the mean hub height and installed

power. Power curves are an important feature to export simulated power curves (Haas,

2019). The other mentioned modules are described in the Windpowerlib�s documentation.

The WindTurbineCluster class is part of the wind_turbine_cluster module. This class

represents a cluster of different wind farms, which will have the same reference when

considering the weather data. All the calculations regarding wind turbine specifications

are also the same. (Haas, 2019)

The modules (wind_speed, temperature and density), regarding the weather, include

functions for making sure the respective values are correct at hub height to the wind

turbine. (Haas, 2019)

The power_output and the power_curves modules contain functions for calculating the

power output and the power curve. Tools provide tools for the different functionalities of

the Windpowerlib. (Haas, 2019)

4.4.7 Wake losses

Windpowerlib provides two options for implementing wake losses in a wind farm; reduction

of wind speeds and wind farm efficiency (reduction of power in power curves). The first

option provides wind efficiency curves that determine the average reduction of wind speeds

within a wind farm induced by wake losses, which varies depending on the wind speed.

The second option is to consider wake losses, is to apply them to the power curves, thereby

reducing the power output. This is achieved by applying a constant or a wind speed

depending on the efficiency of the wind farm. One advantage of using this method is that

it allows for the use of aggregated power curves in order to obtain turbine cluster curves.

(Haas et al., 2023)

4.4.8 Partial downtime

It is important to ensure that wind turbines are adequately maintained in order to

prevent them from suddenly failing and to ensure their continued operational efficiency.

Whenever a wind farm is not operative due to planned maintenance or due to failure,

this is defined as a downtime period. The primary objective in regard to downtime

is to exclude downtime hours from the model when estimating the degradation rate.
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Furthermore, an overview of the development of downtime is of interest as this affects

the number of production hours. While Nord Pool contains service logs for some of wind

farms, it does not contain such records for all the selected farms. Despite the effort to

map downtime using Nord Pool data, the result were not entirely consistent. However,

maintenance logs for two of the selected wind farms were available. Egersund and Tellenes

had public available maintenance logs. The information were retrieved from Nord Pool

at:https://umm.nordpoolgroup.com/#/messages.

Egersund experiences periods of downtime due to a combination of planned and unplanned

incidents. The wind farm had foreseen maintenance due to transformer outage and

planned grid outage. Furthermore, Egersund also experienced downtime due to unplanned

incidents such as Fault on overhead lines (OHL). (Nord Pool - Market Messages , n.d.)

According to the maintenance logs at Nord Pool, Tellenes experienced a greater degree

of downtime compared to Egersund. Tellenes experienced a period of downtime due to

unplanned grid outage and other grid failures. As a result of grid outage, it also had

foreseen maintenance with turbines in 24 h dry out after planned grid outage. Additionally,

it underwent scheduled maintenance due to repair of switch gear in the 132 kV station and

work on the 132 kV bus bar. Planned maintenance on the internal grid and substations

was also causes of planned downtime. Furthermore, ice on turbine blades was identified

as a contributing factor to downtime. (Nord Pool - Market Messages , n.d.)

In order to get an comprehensive understanding of downtime, a project-specific definition

of downtime has been developed to identify downtime in the selected wind farms. This

definition aligns somewhat with the definition of downtime in OB17. (Olauson et al., 2017)

A wind farm is considered to be in a state of downtime whenever it does not produce for

three hours in a row despite the wind speed being within operational production interval,

between the cut-in and cut-off speed.

The production data from various wind farms showed a clear horizontal pattern when

plotting the production data against the wind speed. The addition of horizontal cumulative

effect lines to the plot, resulted in the horizontal production pattern aligning with the lines.

Figure 4.10 illustrates the production at Sandøy against its corresponding wind speed.

The navy blue line is the power curve for the entire wind farm. The red lines represents

the cumulative maximum effect of the wind turbines in the farm. A separate power curve

https://umm.nordpoolgroup.com/#/messages
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is plotted with 80% of the original curve�s magnitude. The aforementioned curve is also

shifted to the right. The objective is to identify and mark abnormal production point that

lie beneath the original power curve. By detecting all points beneath the 80% curve this

objective somewhat achieved. Furthermore, a horizontal pattern is identified among the

green production points. These are marked by a yellow color. One possible explanation

for this phenomenon is that some wind turbines are not operational at these times. In this

thesis these points are considered to be instances of downtime. Consequently, these points

are excluded from the analysis, along with all production points with zero production for

three consecutive hours.

Figure 4.10: Production plot of Sandøy showing how partial downtime are identified
near the cumulative effect lines.

4.4.9 Potential factors contributing to wind farm degradation

One aspect of this study is to identify potential contributing factors to the deterioration

of wind turbines. The first case is to study whether the geographical location impacts the

degradation of turbines. As discussed when selecting wind farms, there are mainly three

clusters of wind farms. A significant difference in degradation between these clusters may

indicate that the local climate impacts the degradation to the clusters differently. The

three clusters are as visualized in Table 4.4. The clusters are quite balanced, but small

sample sizes may result in unreliable results.
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Region Wind farm Climate properties

South West

Egersund

Avg. temp: 8.69 °C
Avg. wind speed: 8.20 m/s

Karmøy Hywind
Lista
Røyrmyra
Tellenes
Åsen II

Mid

Hitra

Avg. temp: 6.77 °C
Avg. wind speed: 7.06 m/s

Rye Vind
Sandøy
Skomakerfjellet
Valsneset
Ytre Vikna

North

Fakken
Avg. temp: 1.94 °C

Avg. wind speed: 6.61 m/s
Kjøllefjord
Raggovidda
Hamnefjell

Table 4.4: Wind farms divided into three clusters with yearly average temperatures and
wind speeds.

It is also of interest to investigate the improvement of wind turbine technology. The

second case therefore involves the study of the five first years of each wind farm. This will

ensure equal basis of comparison and a significant difference in degradation can indicate an

improvement or worsening of wind power technology. Old and new turbines are grouped

into cluster where turbines newer than 2011 are classified as new turbines and turbines

older are classified as Old. This distinction also ensures that there are an approximately

equal number of wind farms in each group. The groups are listed in table 4.5.
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Categories Wind farm Manufacture year

New turbines

Egersund 2014
Hamnefjell 2015
Raggovidda 2011
Skomakerfjellet 2015
Tellenes 2014

Old Turbines

Fakken 2002
Hitra 2004
Kjøllefjord 2004
Lista 2005
Rye Vind 1989
Røyrmyra 2004
Sandøy 1997
Valsneset 2005
Ytre Vikna 2005
Åsen II 2004

Table 4.5: Wind farms divided into three clusters together with manufacture year.

A third case is to check how different seasons impacts degradation. A regression model is

conducted on four quarters:

• Q1: January, February, March

• Q2: April, May, June

• Q3: July, August,September,

• Q4: October, November, December

Firstly, an average degradation is calculated for each quarter to each wind farm. Then an

average and weighted average is calculated to get the final result for each cluster. The

regression with ARIMA errors is not fitted with the data as there are too few data points

in each yearly quarter. The objective of dividing into each quarter is however, to test if

there is a significant difference between the cluster. The grouping are made on the basis

of assumed somewhat equal production rates. These data will consequently not suffer

significantly from seasonal pattern.

To test whether there is a significant difference between these groups, a Mann-Whitney

U-test is conducted. The test checks whether two sampled groups are likely to derive

from the same population This is an alternative test to a standard students t-test where

the data does not need to be normally distributed. This test does also work on groups
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with smaller sample sizes. (McClenaghan, 2022) The hypothesis is formulated as:

H0 - the two groups are equal.

Ha - the two groups are not equal. (McClenaghan, 2022)

The regression models fails on three of the four tests. Firstly, the Ljungbox test fails,

meaning that there exists autocorrelation in the residuals. Furthermore, the Rainbow test

fails. This means that the null hypothesis saying that the data are linear also fails. The

Shapiro-Wilk test also fails, which means that the data is not normally distributed. The

fact that confidence intervals cannot be trusted is the main impact from the violation of

the normality and independence assumptions. (Olauson et al., 2017) Knief and Forstmeier

found that linear models are robust to violation of the normality assumtion. (Knief &

Forstmeier, 2021) The main focus of this thesis is to estimate long-term degradation rate,

resulting in this not being a too serious issue. The implementation of regression with

ARIMA error also results in a violation of the assumptions of normality and linearity.

However, the ARIMA model passes the test for independence. Through the regression

with ARIMA error, seasonal patterns are introduced into the model as an attempt of

handling this issue. Linear regression, RANSAC regression and regression with ARIMA

errors is conducted and evaluated to find the most reliable model.
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5 Results

Multiple regression models have been made to estimate degradation of Norwegian wind

farms. Chosen models in this thesis has been a ordinary least square, a RANSAC model

using ordinary least square and a linear regression using ARIMA errors. Degradation has

been estimated for each wind farm individually based on the slope of the regression line.

Furthermore, downtime has also been excluded to check whether it influences the results.

5.1 General results

When analysing the degradation to wind farm using linear regression, the objective is to

determine the slope of the regression model. Regression plot of Rye Vind are plotted in

Figure 5.1. The training set contains the green and yellow points. The blue points are

the training set. The model have classified many of the data points in training set to be

outliers. This have made the RANSAC regression line, marked in light blue, decrease

compared to the navy blue line representing an ordinary linear regression. This model is

fitted based on classified inliers.
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Figure 5.1: Regression plot from model, both linear and RANSAC model.

The monthly performance index is used in the regression models when modelling general

degradation. This means that the slope, �1 is the average monthly degradation rate.

Hence, the yearly degradation rate is the slope (�1) * 12, as the degradation rate is

assumed to be linear. The individual results can be found in Appendix B. Results from

the regression models are showed in Table 5.1. The table consists of average results using

all data points from linear, RANSAC and ARIMA model. It is clear that removing partial

downtime from the data makes the estimated degradation rate smaller. Additionally, it

consists of results without partial downtime. The degradation values without downtime is

shown in the main results, but not in the later sub-studies. A weighted average was also

calculated with respect to each wind farms� rated capacity.

The result from the linear regression and RANSAC-regression gave results within the same

order of magnitude. Generally, the degradation rate is estimated to be higher when using
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Table 5.1: General results from regression models using all data.

With Downtime Without Downtime
Linear Average degradation -0.0089 -0.0035
Linear Weighted average degradation -0.0169 -0.0148
RANSAC Average degradation -0.0108 -0.0082
RANSAC Weighted average degradation -0.0138 -0.0118
ARIMA Average degradation -0.1179 -0.0653
ARIMA Weighted average degradation -0.0255 -0.0710

weighted average compared to normal average. This is mainly because of Tellenes wind

farm, which accounts for approximately 24 % of the total installed capacity. Removing

partial downtime decreases the estimated degradation rate, which indicates an increase in

downtime over the period. The degradation rate estimated by the regression model with

ARIMA-error is significantly larger than the other two models. The histogram in Figure

5.4a shows that the model returns a greater variation in degradation rates compared to the

linear and RANSAC model. There is especially one calculated degradation rate estimated

at Røyrmyra that influences the total results from the model. Since regression with

ARIMA errors return results with greater variations with respect to a linear degradation

rate, the model is excluded from the rest of the result. It also contains more predictor

variables than the other models and hence does not return a reliable degradation rate.

A regression model with ARIMA errors does however return better forecast predictions

compared to the other models. The model will be further discussed in section 6.

The degradation rate is plotted for each individual wind farm. Figure 5.2 shows the

results from the linear regression model. Figure 5.3 shows the results from the RANSAC

model. Both figures show ordinary degradation rates, as well as weighted degradation

rates. The plots are colored according to their location, as is described in the figure. The

RANSAC model tends to return a larger degradation rate compared to the linear model.

The result from Rye Vind has changed from positive to negative when comparing the

models. The regression plot, figure 5.1, shows that this wind farm have several points

where the performance index is unusually high. This can be due to errors in the power

prediction or reported energy production. RANSAC has classified many of these points

to be outliers, resulting in a negative degradation rate.
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Figure 5.2: Individual degradation rates to each wind farm estimated by the linear
regression model. The left plot visualizes degradation rates and the right plot visualizes
the weighted degradation rates. Wind farms are marked to a color specifying which region
the wind farm belong to.

Figure 5.3: Individual degradation rates to each wind farm estimated by the RANSAC
regression model. The left plot visualizes degradation rates and the right plot visualizes
the weighted degradation rates. Wind farms are marked to a color specifying which region
the wind farm belong to.

A histogram containing the distribution of the degradation rate is plotted in Figure 5.4.

In Subfigure 5.4a it is shown that the regression with ARIMA errors have estimated

degradation rates with larger spread compared to the linear and RANSAC model.

Subfigure 5.4b shows that the linear and RANSAC have quite similar distributions,
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but the distribution to RANSAC regression is even more compact.

(a) Degradation rates from Linear-, RANSAC-

and ARIMA models.

(b) Degradation rates from Linear- and

RANSAC model.

Figure 5.4: Histograms show the distribution of calculated degradation rates. 5.4a show
all models whereas 5.4b show the linear and RANSAC model.

Each regression model has accompanying metrics tables containing various error

measurements in the model. This table can be found in Appendix F. The metrics

are used to select the best regression model. As can be seen here, the linear and RANSAC

regression models return quite similar metrics.

5.2 Partial Downtime

As mentioned in Section 4.4.8, downtime is present at all production sites. Ideally, all

these downtime hours should be removed when estimating degradation rates. As this is

quite challenging considering the data quality and the scope of the data, partial downtime

is estimated in this thesis. Partial downtime is defined in Section 4.4.8, which states that

if the power output is zero for three consecutive hours while the wind is within the range

of operation, it is defined as downtime. Data points close to "capacity lines" are also

considered downtime. These correspond to the cumulative rated power of n numbers of

turbines in that wind farm. This is defined as downtime as this is interpreted as n number

of turbines being shut down for a period of time. Data points considered downtime are

removed in some regression models to get a more accurate result.

Figure 5.5 shows a plot of the partial downtime based on the definitions in this thesis. The

downtime is plotted on a quarterly basis where all instances of downtime is counted. The



5.2 Partial Downtime 61

partial downtime peaks during the summer quarters, where Egersund makes the majority

of downtime in this plot.

Figure 5.5: Quarterly partial downtime to all wind farms in the last five years.

The number of annual downtime hours are plotted in Figure 5.6. There are generally

more downtime at the second half of the measurement period, than in the first, which

implies an increase in downtime across the wind farms� lifetime.

Figure 5.6: Annual partial downtime over the entire production period to the individual
wind farms.
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The total annual downtime is also calculated and plotted in Figure 5.7. This plot shows

that there is an increase in annual downtime at the selected wind farms. Each point

corresponds to annual downtime in percent. Only operating wind farms are taken into

account when estimating the annual downtime, meaning that there are less wind farms

at year 0 compared to year 22. The annual downtime ranges between 0.30 % and 1.80

%. The average annual increase is estimated to be 0.04 pp/y. This increase is estimated

using a linear regression model.

Figure 5.7: Regression model shows that there is an increasing partial downtime during
the lifetime of selected wind farms.

5.3 Geographical factors

To assess whether the local climate has a significant impact on wind turbines degradation

rate in Norway, the selected wind farm are grouped into three clusters, which are compared

to each other. The results from the linear regression model are showed in table 5.2.
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Table 5.2: Estimated degradation rates on data clustered into geographical locations.

Region Regression model Degradation rate

South West
Linear Average Degradation -0.0047
RANSAC Average degradation -0.0047
RANSAC Weighted average degradation -0.0054

Mid

Linear Average degradation 0.0137
Linear Weighted average degradation -0.0021
RANSAC Average degradation -0.0168
RANSAC Weighted average degradation -0.0020

North

Linear Average degradation -0.023
Linear Weighted average degradation -0.0068
RANSAC Average degradation -0.015
RANSAC Weighted average degradation -0.0040

The Mann-Whitney u-test gave a p-value above 5% for all regions, and consequently the

null hypothesis, namely that the groups are similar, is not rejected. This means that there

are no significant differences between the groups. Although there are some differences

between the regions, these are not large enough to imply that geographical factors have

significant impacts on degradation based on the study sample. The test result is listed in

Table 5.3.

Table 5.3: Results from the Mann-Whitney U-test on the regression model fitted on the
different geographical location.

Linear Regression RANSAC Regression
Test Group 1 Test Group 2 Test Statistic p-value Test Statistic p-value
South_west Mid 7.0 0.18 7.0 0.17
South_west North 12.0 0.73 11.0 0.90
Mid North 18.0 0.26 17.0 0.34

5.4 Technological factors

To study whether there are differences in degradation between new and old wind turbine

technologies, the wind farms are grouped into two groups: Wind farms constructed before

2011 are classified as old, while wind farms constructed from 2011 and onwards are

classified as new. A degradation rate based on the first five years is calculated to get

a common basis of comparison. The monthly production index is used as the predictor

variable in the analysis. The regression model output results can be found in Table 5.4.
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Table 5.4: Average Degradation

Linear regression Old Turbines New Turbines
Average Degradation -0.0297 -0.012
Weighted Average Degradation 0.008 -0.0098
RANSAC regression Old Turbines New Turbines
Average Degradation -0.0173 -0.016
Weighted Average Degradation 0.0078 -0.011
ARIMA regression Old Turbines New Turbines
Average Degradation 0.0013 -0.0183
Weighted Average Degradation 0.001999 -0.0109

The results from the Mann-Whitney u-test is listed in Table 5.5. The p-value indicate

that the null hypothesis should not be rejected, as there is no sign of significant difference

between the groups.

Table 5.5: Results from the Mann-Whitney U-test on the regression model fitted on the
first five production years.

Regression type Test Group 1 Test Group 2 Test Statistic p-value
Linear model Old Turbines New turbines 31.0 0.69
RANSAC model Old Turbines New turbines 35.0 0.39

5.5 Seasonal variations

In order to assess the impact of different seasons, regression models are fitted with quarterly

data (Q1-Q4). The results of the calculated degradation at each quarter are presented in

Appendix E. Each row corresponds to an average degradation across all production years

for the specific wind farm. The average degradation and weighted average degradation are

calculated based on the data presented in the table and the results are plotted in Table

5.6. The table includes results from both ordinary linear regression and the RANSAC

regression.

The Mann-Whitney U-test was conducted on all combinations of the four groups and

the results are listed in Table 5.7. The majority of tests show no significant difference

between the test groups, except the groups Q1 and Q4, which are shown to be significantly

different.
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Table 5.6: Estimated degradation rates on seasonal data using Linear and RANSAC
models.

Linear regression Q1 Q2 Q3 Q4
Average Degradation 0.0016 -0.0023 -0.0292 -0.0128
Weighted Average Degradation -0.0060 0.0003 -0.0161 -0.0008
RANSAC regression Q1 Q2 Q3 Q4
Average Degradation 0.0017 -0.0024 -0.0292 -0.012764
Weighted Average Degradation -0.0029 0.0024 -0.0262 -0.0043

Table 5.7: Results from the MannWhitney U-test on seasonal regression model.

Linear Regression RANSAC Regression
Test Group 1 Test Group 2 Test Statistic p-value Test Statistic p-value
Q1 Q2 132.0 0.43 122.0 0.71
Q1 Q3 149.0 0.14 160.0 0.05
Q1 Q4 140.0 0.26 163.0 0.04
Q2 Q3 131.0 0.46 143.0 0.21
Q2 Q4 111.0 0.97 139.0 0.28
Q3 Q4 95.0 0.48 109.0 0.91

5.6 Summary of the results

The results from the RANSAC regression model without downtime turns out to be the

most robust and are therefore used as the main results. In order to balance the impact

between wind farms with large installed effect and wind farms with low installed effect,

the average between the average and the weighted average are calculated. The linear and

weighted annual degradation rates were estimated to be -0.82% and -1.19%, respectively.

This gives an average degradation rate of -1.00%. Pooled standard error is estimated to

approximately 0.22% This leads to a final result of �1.00 ± 0.22% In general, there is

no significant difference between the tested groups defined in Section 4.4.9. The p-value

from the test between Q1 and Q4 in the RANSAC model is lower than 5%, resulting

in a rejection of the null hypothesis. This indicates that there could be a significant

difference in degradation rate between these two groups. The other tests do not indicate

significant differences based on the three factors of location, seasonality or technological

improvements.
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6 Discussion

6.1 Limitations

As there are many complicated factors impacting wind power production and degradation,

it is necessary to make several assumptions. How this affects the results obtained from

the model is not known. A detailed description of the choices and assumptions made in

the model is described in Section 4, and an estimation of how this affects the validity of

the results is further discussed.

The model should be viewed as a simplification of reality. Although it involves relatively

complex calculations, it still simplifies a lot of factors impacting the performance and

degradation of a wind turbine. A large limiting factor has been a restriction to use publicly

available data. This will undeniably lead to increasing the uncertainty of the results.

Time limitations have also contributed to reducing the accuracy of the model, as well as

forcing some factors and potentially interesting topics to remain unexplored. As several

problems were encountered along the way, multiple functions and adjustments have been

implemented to make the model more accurate.

6.1.1 Weather data

The use of ERA5 data allows the model to use relatively precise measurements everywhere

in Norway to model wind power output. However, this dataset has some limitations that

may affect the results. The main issue with ERA5 is that the grid size is 0.25 degrees in

both longitude and latitude, where the wind speeds are average values across the spatial

extent of the grid cell. This means that there may be some disparity between dataset

values and actual wind speeds at the site. How this affects the results depend on whether

these errors occur more randomly as noise, or more systematically.

If the ERA5 data have a random error relative to actual recordings at site, it would have

little impact on the findings in this study. This could have an effect on single data points

in an hourly time-series, but would be expected to average out over longer time periods

to produce results that would be satisfactory.

A more systematic error could occur if the wind speeds at the wind farm site is consistently
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higher or lower than the average of the surrounding area. Wind speeds may vary a lot

over short distances, especially in hilly terrain, where the wind speeds increase over hill

tops and through valleys. As manufacturers will want to maximize energy production, it

is probable that many wind farms are placed where the average wind speeds are most

favourable. This will lead the model to underestimate the energy production, which in

turn will increase the calculated performance index.

The use of hourly time-series also presents an issue. As wind speeds may vary significantly

within an hour, variations within each hour may be hidden, which may affect wind power

production. This will not necessary be of great importance, but could affect the data

when the wind speeds are near cut-in- or cut-off speed. This could affect the model to

assume stable power production across one hour, where in fact the WT were cut off at a

large proportion of the time period.

In the model it is also assumed that the wind farms stands at the average height of the

grid cell. The 100-meter above ground wind component is compared to the hub height of

the turbine, and the difference in height is adjusted for, according to the relation between

wind speed and height above ground described in Equation 3.2. This assumption is hard

to verify, and could be a source of error in the study.

Although these inaccuracies is likely to affect the performance index, it does not necessarily

have the same impact on calculations on degradation. As long as the differences between

ERA5-data and actual wind speeds are stable and comparable from year to year, the

degradation rates should be accurate over longer time periods. This implies that results

on average yearly degradation will be little affected. However, the results that are based

on shorter time periods, such as seasonal variances and especially downtime, which is

based on hourly data, may be subject to greater impacts due to such discrepancies.

6.1.2 Improving weather data quality

There are multiple ways to improve the wind speed data. In Wind energy engineering

(Letcher, 2017), the authors suggests a method called "measure-correlate-predict". This

involves making measurements of the wind speeds at the wind farm, and then see how this

correlates with ERA5 data. This may then be used to more accurately predict wind speeds

at the site, without continuous measurements at the wind farms. These measurements
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should be done over a time period of at least some months, and ideally over a whole

year as the patterns might change according to seasonal variances. This method was not

feasible for our study due to limitations in both resources and time, but may be a way to

improve on the model.

Weather reanalysis methods have become better over the last years, and ERA5 offers

much better spatial resolution than its predecessor, ERA-Interim (Hersbach et al., 2023).

If this development continues, weather reanalysis might become more suitable for wind

energy purposes in the future.

More accurate data could of course be attained with access to weather data at the site of

the wind farm. There is however not publicly available data on this, and obtaining this

would require considerable effort and resources. In addition, a goal for this thesis was to

make a model that could be applied for future studies on wind power degradation. If

it is possible to use ERA5 data for this purpose, this method could be applied in other

European countries.

6.1.3 Wind farm data from NVE

The wind power production data is gathered from public available data published by NVE.

In addition, all information about the wind farms, such as the number of wind turbines,

wind turbine models and locations of the farms are gathered there. This information is

mostly assumed to be correct, except where the data were abnormal. The wind farm

"Karmøy Hywind" is one such case that was present in our model, but had to be removed

as the information in the dataset was flawed. Both the coordinates of the wind farm and

the number of turbines was found to be incorrect.

6.1.4 Wake loss and turbulence

The wake loss at a wind farm provides a challenge for calculating the output. Finding

how wake loss impacts each individual wind farm is a challenging task, as these effects

are highly complicated, and will vary according to factors such as wind direction, wind

turbine placements and the topography of the surrounding terrain. There were limited

amounts of such data available online, so simulations including these factors was not

possible. Simulating the effects of wake loss would also demand advanced data models,
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accounting for the complicated dynamics of wind.

A potential method for estimating how the wind farms are affected by wake loss with

respect to wind direction was attempted to be included in the model. The idea was to

look at how the average power output varies in each wind direction, which then could be

adjusted for in the model. This would however further complicate the model, and it was

also unclear to what extent this would improve on the results. It was therefore decided

not to include this in the model.

There is a functionality in Windpowerlib for including wake loss in the simulation. This

seems to lower the wind speed at the turbine with a given factor, such that a wake loss

coefficient of 0,1 will lower the wind speed with 10% in the model. This seems like a gross

oversimplification, as the wake loss will affect wind turbines in a wind farm differently.

This will also vary according to wind direction and other factors, and it was therefore

decided not to correct for this factor.

6.1.5 Distance

In Appendix H, the coordinates of the wind farms are presented alongside the weather

coordinates. The values of the weather coordinates represents the middle point of the grid

cell. From this the distance from the grid cell center point to the wind farm is calculated.

In general, one may assume that the center point is closer to the average values in the

grid cell, although this is not necessarily true. This means that larger distances between

these coordinates will on average imply a greater uncertainty, and this information may

be used as a guideline to investigate the uncertainties of each wind farm.

6.2 Evaluating the model

6.2.1 Wind farm selection

The study consists of 15 wind farms, spread across Norway in three clusters. These were

partly chosen as the results could then be compared to ED24, which studied the same

wind farms with a simpler model. In addition, these wind farms adhered to some criteria

that made them suitable for this study, namely that:

• Relevant information was publicly available. This includes production data and
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specifications of the wind farms, such as wind turbine model, number of wind

turbines, hub height and location.

• The wind farm was built as one installation, with no new expansions after the first

year in production. This makes it easier to compare production data from year to

year.

• The wind farm consisted of only one wind turbine type. This allows a much simpler

modelling process.

• The wind farm was in operation in the time period 2017-2023. This allows comparable

results between the wind farms, as well as a minimum of data points. There is

one exception to this requirement, namely Sandøy, which was rebuilt in 2023, and

therefore only production data up to 2022 is used. This is however one of the oldest

wind farms in Norway, being in production in more than 20 years.

These requirements were all made to make the model both simple enough to handle, as

well as comparative across the time period.

The study sample has a cumulative power output of 660,3 MW from 240 wind turbines.

Their total yearly production is on average 2,1 TWh, about 20% of the total wind power

production in Norway.

The average wind farm in the dataset consists of 16 wind turbines and a maximum power

output of 44 MW. The average of all Norwegian wind farms is 22 wind turbines with an

output of 75 MW. Also, the average starting year for the wind farms in the dataset is 2011,

compared to 2014 for all Norwegian wind farms. This means that the wind farms selected

are smaller and older than the Norwegian average. This is likely to be a consequence of

the requirements set when selecting wind farms. The minimum requirement of 6 years in

production causes newer wind farms to be excluded. The additional requirement that the

wind farm was built during a single installation period, with only one turbine type, may

also have excluded larger wind farms, as these are more likely to have been expanded

during their lifetime.

Despite these factors, the dataset is a good representation of the Norwegian wind power

industry. Geographically, it represents a balanced number of wind farms within the regions

where wind power is most prominent. Also, it includes wind turbines from the three
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largest manufacturers in the market, as well as wind farms built across a 18 year period,

from 1999 to 2017.

It should be noted that the degradation rate is specific for the dataset studied, and

may not be completely representative for all Norwegian wind farms. As the wind farms

selected is on average slightly older compared to the industry as a whole, technological

advancements since could have made modern wind turbines less exposed to degradation.

The literature studied may indicate such developments, as degradation rates seems to

have dropped from the older studies to the more recent. Nevertheless, the wind farms

studied in this case represent such a large part of the industry that they are at least

indicative of what can be expected.

6.2.2 Performance index as a measurement of wind turbine

performance

The use of a performance index for measuring wind power performance has its clear

benefits compared to using their capacity factor. Adjusting for wind resource is a clear

benefit, that allows for comparisons between seasons and years with varying weather.

If one were able to adjust for all disturbing factors perfectly, with information on exact

weather conditions, downtimes and wake losses, the model should be able to predict

production exactly, thus making the performance index 1. Since it is impossible to adjust

for all the aforementioned factors exactly, the results do show considerable spread, as can

be seen in Figure 6.1. The largest contributing factor to this is the weather data, which as

discussed previously is a large source of uncertainty. This makes the model quite poor at

predicting power output over shorter time periods. Over longer time periods this spread

averages out across a mean, which makes it more reliable for long term predictions.

Some of the wind farms also show an average performance index above 1, while others

have a performance index under 1. This points at more systematic errors in the model.

For wind farms with performance indices consistently above 1, the model underestimates

the power production. This may indicate that the wind resource at the site is greater

than in the surrounding area . For under-performing wind farms with performance indexs

below 1, the opposite may be the case, namely that the wind resource at the site is less

than the data indicates. These wind farms may also be influenced by wake losses, which
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as mentioned are not adjusted for by the model. Both under- and over-performing wind

farms are however subject to systematic errors that leads to the model wrongly predicting

power output.

Although the issues of large spread and systematic errors constitutes a challenge for the

model, they do not necessarily render the results useless. As the study of degradation

involves analysing trends, the key is whether one time period is comparable to the next.

As there is a clear relation between predicted and actual production, this assumption still

holds true.

However, as an unproven method, that does come with its limitations and sources of error.

Optimizing it further, through acquiring better weather data and expanding the sample

size would improve on the reliability of the model, as well as allowing for studying more

aspects on this topic.

6.2.3 Linearity

The method of linear regression relies on the assumption that the data follows a linear

pattern. From what is seen in the trends from the various wind farms, this assumption

does not always hold true. The older wind farms (pre 2015), seems to show a linear

pattern for the first years, but the trend worsens as the wind farms age. An example

of this can be seen at Sandøy wind farm in Figure 6.1a, where the trend is linear for

the first 16 years, but significantly worsens the 4 last years of production. One point

that is worth noting is that Sandøy invested in new turbines the year after the cut-off of

this analysis. These results may therefore be affected by this project, for example due

to partially turning off turbines. Figure 6.1 show a comparison of the development in

performance index to Sandøy and Hitra. The plot shows that the PI to Hitra is more

linear than the PI to Sandøy. Hitra is also quite old with 20 years of production. This

may indicate that the results seen at Sandøy are more site-specific, and therefore not

necessary applicable for other wind farms.
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(a) Plot of PI at Sandøy. (b) Plot of PI at Hitra.

Figure 6.1: Plot showing the development of Performance Index over time. Subfig. 6.1a
PI to Sandøy and fig. 6.4 show the PI to Hitra. This show a more linear trend compared
to Sandøy.

6.2.4 Linear degradation with or without RANSAC

Ordinary least squares (OLS) and RANSAC regression behave in similar ways. Many

results when comparing wind farms are exactly the same. This is natural as RANSAC

is a linear regression model, but removes potential outliers. When looking at different

regression plots it is clear that many wind farms do not have abnormal Production Index

points. The treatment of outliers is however an important consideration when doing

statistical analysis. When doing regression analysis, abnormal data points have great

impact on the results. Although outliers in the regression models not necessarily are

wrongful, they may have great impact on the result. The right lower cluster in Figure 6.1a

have a great impact on the regression line. RANSAC identifies and removes abnormal

data points for some wind farms when fitting the model.
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6.2.5 Regression with ARIMA errors

The regression model with ARIMA errors treats the data good according to the diagnostic

tests and plots. Data used in the model are not suffering from autocorrelated residuals,

and the residuals are more or less randomly distributed around zero. This is visualized in

Figure 6.3. The model does however not perform much better when comparing metrics to

the other models.

Regression with ARIMA is a more complicated model than ordinary least squares and

RANSAC. The model performs better than the other models when comparing statistical

tests and when looking at predictions. Figure 6.2 summarises the results of an ARIMA

model from Hitra wind farm. The Ljungbox test returns a p-value of 0.88, meaning that

the null hypothesis is not rejected. The p-value of heteroscedasticity is calculated to

be 0.00 meaning that the null hypothesis of having heteroscedasticity in the residuals is

rejected.

Figure 6.2: Screenshot of results from a ARIMA model fitted on Hitra data.
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Figure 6.3: Diagnostic plot of the ARIMA model used on Hitra data.

Figure 6.4 shows that the predicted performance index are quite close to the actual

Production Index.

Figure 6.4: Production plot of Hitra with prediction from the ARIMA model.

From the plot in Figure 6.3 the residuals are quite centered around zero with the same

magnitude. There are still some abnormal residuals. Jarque-Bera is a test to test the
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normality of the residuals. The null hypothesis is rejected as the test returns a low p-value.

The plot of the distribution and the Quantile-Quantile the figure in indicate that the

data are not far from being normally distribution, but there are deviations from a Gauss

distribution. Even though the statistical test returns better result, it does however, return

quite unrealistic degradation rates. The rate are calculated based on the slope of the

time-component as done with the other models. Since Regression with ARIMA error is

more complex model it additionally have other components regarding the AR and MA

terms. It is a multivariate regression model making it dependent of more variables. This

makes the model unsuitable for calculating the degradation rate.

6.2.6 Statistical tests

The Ljungbox-test failed when modelling with a simple linear regression and when using

RANSAC-regression. Complete results are listed in Appendix F. Since the result are close

to zero for all wind farms the null hypothesis assuming independent residuals is rejected.

This corresponds naturally well with this ED24 as the same wind farms were studied

(Drengsrud, 2024). However, this result shows that the correcting of wind resources do not

entirely correct the autocorrelated residuals. The p-value is however larger in this study

compared to ED24. This implies that correcting for wind resource has had a positive

impact on the autocorrelation between the residuals. The study of autocorrelation also

match the result found in OB17. In that study an extra term was added to the regression

model to take autocorrelation into account. (Olauson et al., 2017) Autocorrelation in the

constructed Production Index may be natural as this index is constructed using actual

production data. One can clearly see that the actual production has a seasonal pattern

meaning that one production point will be closely related the the point before in time.

As the wind resources at a specific time also are related to the the wind resources before

that time stamp, the simulated data are also containing autocorrelation. By adding an

ARIMA term to the residuals, the autocorrelated residuals are corrected. This is shown

in the visualized result for Hitra wind farm in Figure 6.2.

According to Shapiro Wilk test, the production index data are not normally distributed.

The null hypothesis is rejected as the p-value are close to zero far from a significance level

at 0.5. Regression with ARIMA errors does not correct the distribution either. The most

serious consequence of a failing normality is that the confidence interval and p-value not
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being trustworthy. (Kilde) The objective of this thesis is to determine a long-term trend

in production index.

The linearity test conducted are also failing. Ideally this should be linear with the models

that is implemented. The Production Index is created to see how much a wind farm

produces versus how much it is expected to produce. Ideally a decreasing production

index is only caused by degradation as production is corrected for wind. By implementing

a simulated production into the production index, more uncertainty are introduced to

the model. There is a linear trend in the Production index plot even though there is

large variance. It may be natural that the model implemented in this thesis fail on the

rainbow-test compared to the model in ED24 which is exclusively based on production

data and capacity factor of low uncertainty compared to the uncertainty in the ERA5

climate data.

6.2.7 Weighted and normal degradation

Both average and weighted average degradation rates are calculated from each windfarms�

estimated degradation rate. The weighting is done with respect to the total installed

effect in each wind farm. There are pros and cons of both, and it may not be clear which

measure to use. In Appendix A the installed effect to each wind farm as well as the

the proportion to the total effect are plotted. One can see that Egersund and Tellenes

account for around 41% of the installed effect. By using weighted average degradation

these wind farms have a great impact on the total result. The two wind farms are quite

new compared the majority of the selected wind farms. Egersund does also have a long

downtime periods by the definitions specified in the thesis. As many of the wind farms

lose their impact on the total calculated degradation rate when using weighted average.

Average degradation rate on the other hand result in Rye Vind having an equal impact on

the total degradation rate even though it only have approximately 0.14% of the installed

effect compared to Tellenes. It would not make sense letting Rye Vind have the same

impact as Tellenes. SG14 combines results from the different models to get an average of

all the models. (Staffel & Green, 2014) To decrease the impact of Tellenes and Egersund

in the weighted model and decrease the impact of small wind farms such as Rye vind in

the average measurement, an average of the two results are used as the final result.
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6.3 Comparisons to previous studies

6.3.1 Comparing the model

Although similar studies have been conducted previously, the method used in this thesis

differs substantially from previous studies. In the former study on degradation of Norwegian

wind farms, the capacity factor of the wind farms were studied without correcting for

wind resource (Drengsrud, 2024). This allows for the results to be influenced by variations

in wind, which could be a large source of error. Improvements on this study was therefore

necessary to get a more robust result.

In SG14, the authors clearly states how variances in weather is accounted for. Although

how this is done differs significantly from this thesis, their method relies on many of the

same basic principles. The power output is calculated based on the weather reanalysis

dataset MERRA, combined with the power curves of the turbines at each site. As the

temporal and spatial resolution in this dataset is low, the weather for all of Great Britain

was assumed to be similar and was analysed with a monthly time-series. The model

in other words uses the average wind speed over a month in Great Britain to estimate

wind power production. This does not account for losses due to turbulence, wake losses,

downtime and loss due to technological inefficiencies. This, combined with a low spatial

and temporal resolution, makes it quite inaccurate in predicting power output. (Staffel &

Green, 2014)

The use of ERA5-data in this thesis allowed for much more accurate power prediction,

providing access to weather data of the area of each wind farm. As power production data

also is available as hourly time-series from each wind farm, predicted power output could

be compared to actual production more directly than in SG14, where the estimated power

production is used to adjust capacity factors. The use of performance index is therefore a

more direct use of the predicted power output, which necessitates more accurate weather

data than SG14 had access to.

In OB17, Olauson et al. also states that wind resource is accounted for. Three different

weather reanalysis datasets are used, including MERRA and ERA-interim, the predecessor

of ERA5. It also uses several statistical methods to account for disturbing effects, such as

seasonal variances. It has clear similarities with SG14, as this was the inspiration of their
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analysis, although several improvements were made. As in SG14, the simulated power

output was used to adjust capacity factors. OB17 therefore is a further development of

the methodology used in studying wind power degradation.

The clear weakness of this thesis compared to OB17 and SG14 is the sample size. These

studies have access to far more data, and as such the results are more robust. Still, seeing

how Norwegian wind farms compare to other countries provides additional knowledge to

the field.

6.3.2 Comparing results

As the results in the other papers is presented as the change in percentage points per year

(pp/y), they are converted to changes in percentage to be comparable to the results in

this thesis. Their results is therefore divided by the average CF of the study sample to

find the result in terms of percentage.

This study showed a yearly degradation rate of �1.00%. The most natural basis for

comparison is the study by Drengsrud (2024), as it looked largely at the same wind farms.

Here, a yearly degradation of �1, 3% per year is found. As can be seen, this is a slightly

larger degradation rate, with about a 30% increase compared to this study. These results

are however relatively similar, which is to be expected when comparing two studies of a

similar sample. These similarities can be seen as providing further credibility to the study.

SG14 found a yearly decline in wind turbine performance of -1,6 ± 0,2% (Staffel & Green,

2014). This is a 60% increase compared to the results of this thesis. The causes of this

discrepancy is not obvious, but as this study was conducted 10 years ago, the technological

developments since may be a cause for the improvements. The weather in Great Britain

is also similar to coastal regions in Norway, so the results is otherwise expected to be

relatively similar.

OB17 found a degradation rate lower than the other studies. The annual degradation is

here estimated to be 0,50% (Olauson et al., 2017), which is about half of the degradation

found in this thesis. The study also indicated that new turbines have less decline in

performance compared to older turbines. This effect was also studied in this thesis, without

any significant result. Due to the larger sample size in OB17, it is probable that turbine

age is a significant factor on degradation, and it would be interesting to see whether this
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is shown in a larger scale study on Norwegian wind farms.

Comparing the results with the other studies gives additional credibility to the results in

the thesis. Although there are variations in the degradation rates found in the studies,

the results in this thesis is in the same order of magnitude as what is seen elsewhere.

6.3.3 How different climates affects degradation

Olauson et al. (2017) argued that harsher climate with stronger wind speeds and more

salt spray may be the reason why the UK experienced a larger degradation rate. Still,

this is unlikely to account for the whole difference. Sweden has on the other hand a

colder climate compared to UK, which should result in more icing, potentially increasing

degradation rates (Olauson et al., 2017).

The climate in Norway is interesting in this regard, as it can be seen as a combination of

the climate in Sweden and the UK. Figure 4.4 shows that all the selected wind farms are

located at the coastal line of Norway. These regions are characterised by high average

wind speeds, a lot of precipitation, as well as exposing the to salt spray. This will be

similar to typical climate in the UK. At the same time wind turbines in Norway experience

a colder climate, which may result in icing, like what is seen in Sweden.

Norway seems to be more similar to UK than Sweden in terms of wind turbine degradation.

An interesting point that this seem to indicate, is that exposure to salt and harsh wind

conditions are far more important factors on degradation rates than cold climate and icing.

This point will be discussed further as this is seen together with the rest of the results.

6.4 Downtime

The model showed a significant increase in downtime, with an average of 0.04 pp/y

increase per year. This correspond well with ED24, which found and increase of 0.06

pp/y. (Drengsrud, 2024) This may indicate that the increase in downtime is in the right

order of magnitude. The annual downtime is estimated in this thesis to be in the range

approximately 0.30 % and 1.80 %. This is lower than the downtime found in ED24 which

ranges from approximately 10 % to 17 %. OB17 states that the annual downtime ranges

from 1% - 6%. (Olauson et al., 2017) SG14 suggests a downtime of 4-7%. (Staffel & Green,
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2014). There is large spread in suggested downtime in the mentioned studies, and it is

challenging to assess the reliability of the results found in this thesis. However, it is likely

that the real downtime is higher than what is estimated. ED24 might have overestimated

the downtime as the study has defined all production points equal to zero as downtime.

This excludes the downtime affecting only parts of the wind farms. At the same time,

production hours outside of the production interval are defined as downtime.All studies

mentioned, conclude that an increasing downtime is natural over the lifetime of wind

turbines.

An increasing amount of downtime is a large contributing factor to the overall degradation.

The results show that excluding downtime from the results reduces the total annual

degradation by approximately 0.2 - 0.5 %. This difference is calculated by taking the

difference between the degradation with partial downtime and the degradation without

partial downtime. The difference is however varying depending on which model is used to

estimate the degradation.

Egersund and Tellenes both had publicly available maintenance logs through NordPool.

By the definition of partial downtime in the thesis, Egersund has by far the most downtime

of the selected wind farms. Detected downtime was compared with the log from NordPool

to find if these correspond. However, little correspondence is seen between NordPool logs

and the defined partial downtime. There may be several reasons for this. Firstly, the

downtime in the model relies on a definition in that may be inaccurate. In addition, some

of the downtime might not be reported into this register, so one would not expect these

to line up exactly. The downtime peaks during the summer and this is especially clear

when looking at the detected downtime at Egersund. This makes sense when comparing

to NordPool data, as downtime lasting for more than one day often takes place in June.

The maintenance logs indicate that this is often due to foreseen maintenance work, and

rarely unforeseen events.

Another reason for downtime may be periods with negative prices, where wind farms may

be shut down. Such events may disturb the results, and not all registered downtime should

therefore be interpreted as due to maintenance or operational issues. This is still a quite

uncommon occurrence in Norway, with most wind farms operating at their maximum

throughout the year. However, this phenomenon has been seen more frequently in recent
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years, and is expected to rise with the increase of intermittent energy sources such as solar

and wind. (Avoiding Negative Electricity Prices: What Measures Should TSOs Take? ,

2019)

6.5 Factors affecting degradation

6.5.1 Geographical factors

The test for whether location affected the degradation of the wind farms showed that

there were no significant differences between the three defined regions. As the climate

in the coastal regions in Norway are pretty similar, characterized by high wind speeds,

a lot of downfall as well as exposure to salt, the wind farms seems to operate similarly

in the selected regions. However, the northern region do experience more days below

the freezing point and as such involves a higher risk of icing. This was hypothesized to

lead to an increase in downtime, but such a correlation was not shown. As the study

consists of a relatively small sample size of only 4-6 wind farms in each group, other

factors than location may have affected the degradation. Still, it is interesting to see that

the degradation is relatively similar in each region, which may point to the fact that icing

and colder climates do not play as large a role on degradation as what was hypothesized.

Another study with a larger sample size would however be needed to conclude on whether

such factors play a significant role.

6.5.2 Technological factors

To see whether there are significant differences between newer and older wind turbines,

the wind farms were grouped into two groups listed in Table 4.5. A Mann-Whitney u-test

was conducted to test if there was a significant difference between the groups. To get an

equal basis for comparison when studying the technology, the estimated degradation rate

for the first five year was used in the test. Based on the p-value in the test, no significant

difference between the groups were found. This means that the null hypothesis is not

rejected and the groups are considered equal. This indicate that there are no significant

differences in degradation rates when comparing new and old turbines.

According to the study by Staffel and Green, wind farms built before 2003 have a greater
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average decline rate than wind farms built after 2003. As the Norwegian wind power

industry is much less mature, the dataset in this thesis only included three wind farms

built before 2003. Due to this, such a divide was not feasible. OB17 found that new

turbines does not behave significantly different from older units the first five year of

production. (Olauson et al., 2017). This matches the result found in this thesis. The

small sample size in this thesis makes the result hard to confirm, but as this aligns with

the results in OB17, it is probable that the effects of turbine age are relatively small.

6.5.3 Seasonal variances

A test was also conducted to find whether there were significant differences between

seasons. Initially, the wind farms were divided into four seasons: winter (December-

February), spring (March-May), summer (June-August) and autumn (September-

November). However, this proved challenging, as this divide lead the winter season

to span two years. Consequently, the seasons were divided into quarters to avoid this

issue.

The u-test of the RANSAC model did show a significant differences between Q1 and Q4,

although it is unclear what caused this. As with the other tests the relatively small sample

size may lead to individual factors at each wind farm being more significant than more

general factors.

This test was proposed to see how weather conditions affected degradation, where one

theory would be that icing in winter times would lead to higher degradation. The way this

test was conducted may have lead to the results being affected by several other factors

however. For example, maintenance is often conducted in summer, as the electricity prices

generally are lower. In addition, the average wind speed is higher in autumn and winter,

and it is unclear as to how this have influenced the results. A better way to test how

weather influences degradation would be necessary to conclude on this topic, where one

would need to adjust for other factors influencing the results.

6.5.4 Causes of degradation

Although no conclusions can be drawn purely from the results of these tests alone, they

do point to some interesting discoveries. The fact that no significant difference was found,
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between geographically divided groups, may imply that colder temperatures, snow and

icing has little effect on degradation. This aligns well with a finding in OB17, where the

study showed that turbines placed in forests had a lower degradation rate than turbines

placed in open land. Turbines in forests are typically placed inland, while wind turbines

in the open are often located in coastal regions. This also coincides with the fact that the

degradation of Norwegian wind farms is more similar to British than Swedish wind farms.

This seems to imply that exposure to salt and more precipitation, as well as more extreme

wind conditions affects degradation to a larger degree than exposure to temperatures

below freezing and consequently icing.

Early in the process of this thesis, it was planned to compare inland WTs to coastal WTs,

but as too few wind farms inland fit the criteria for the study, this was not possible. If a

study is done in a few years, as more data can be gained from inland wind farms, such

a study would be possible. It would then be interesting to see whether this pattern is

shown in Norway as well, where based on the results mentioned, it is hypothesized that

coastal WTs degrade faster than inland WTs.

Whether this effect also applies to offshore WTs is not known. It should be expected

that they are subject to a lot of the same weather conditions as WTs on the coast, with

high wind speeds and exposure to salt. Only one of the studies in the literature included

offshore wind, namely the study of Danish and Britsh wind farms in 2012 (Hughes, 2012).

This study showed that Danish offshore wind turbines degraded from a capacity factor of

39% at year 0, to 15% at year 15, which equals a degradation rate of 6% each year. As

the offshore wind industry still was quite immature at this stage, as well as including a

small sample of offshore WTs, these results probably are not representative for modern

offshore wind power. A separate study on the degradation of offshore wind turbines would

be necessary to find how these are affected by their surrounding climate.

6.6 Total lifetime energy loss

A degradation rate of 1,0 % corresponds to a yearly loss of 220 GWh from year to year

for all Norwegian wind farms. Over their expected lifetime of 20 years this will lead to a

loss in energy production of 9,8 %, or 21,6 TWh.

These results also indicate that the wind farms are expected to produce 82% of the
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wind energy at the end of their lifetime compared to today�s level. According to NVEs

assumptions of 0,1% yearly degradation, one would expect a performance of 98% at year

20 compared to year 1 (NVE, 2023a). This means that the current wind farms in Norway

will produce 1,3 TWh less in 20 years than NVE assumes. This gap needs to be covered

with further investments in energy production.

6.7 LCOE

The loss in yearly production will have effects on the calculated LCOE of the wind farms.

Using similar assumptions as NVE, with an interest rate of 6%, this will contribute to an

increase in LCOE of 6,8 %, or an additional 4 øre/kWh compared to NVEs calculations.

If these results are indicative of the performance loss of all Norwegian wind farms, it calls

for a change in the underlying assumptions for the future development of the industry.

An increase in LCOE of 6,8% compared to NVEs calculations is substantial, and could be

decisive when assessing the financial viability of a wind power project. These results do

not take into account an increase in maintenance costs, which also would be expected to

increase along with greater degradation and increasing downtimes.

6.8 Industry applications

A degradation rate of 1,0%, as was found in this study, is significantly larger than what is

assumed in the industry. It is also similar to results in the literature, where all point to

the fact that degradation rates are higher than expected.

In LCOE calculations, NVE have used a degradation rate of 0.1% (NVE, 2023a). This

will likely have resulted in overestimating the profitability of wind turbines, as this is

significantly lower than what is estimated in this thesis, as well as in other studies. Even

though this model is a simplification of reality, it will together with the other studies give

a better estimate of the decline in performance compared to the rate that has been used

so far when estimating the profitability. Using a degradation rate of 1,0% is proposed to

get a more realistic picture of the effects of degradation. This could potentially be the

difference between a profitable and unprofitable project.

As both the literature and results from this study imply, exposure to salt and high wind
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speeds, such as is found in coastal regions in Norway, lead to a higher degradation rate.

This means that higher degradation rates should be assumed when building wind farms

in coastal regions, than inland regions. Although no inland WTs are studied in this thesis,

one may expect the loss in performance to be more similar to what is seen in Sweden.

Based on this a degradation rate of 1,0% could be assumed in coastal regions. If one

assumes that degradation rates inland is similar to what is seen in Sweden, a rate of 0,5%

might be assumed inland. This might in turn have an impact on decisions in the wind

power industry in Norway, where most wind farms currently are built along the coast.

The results could suggest that there should be a larger emphasis on developing inland

wind farms in Norway.

The model could also be suitable for industry applications, although improvements would

be necessary as previously discussed. It is likely that a wind farm operator have access to

better weather data at the site, as well as more detailed information of the turbines, wake

loss, et cetera, which would allow for a more precise prediction of power production.

As discussed, the weather data was a large source of uncertainty. Furthermore, obtaining

all relevant information of the wind farms proved difficult at times. NVEs database

on Norwegian wind farms both lacked important data, as well as containing incorrect

information. Establishing a better system for sharing information between wind farm

operators would therefore be valuable, both for academic and industrial purposes.
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7 Conclusion

The model shows a yearly degradation rate of �1.00±0.22%. Comparing these results with

another study on an almost identical sample, ED24, shows a relatively similar degradation

rate. This is significantly higher than what is found in Sweden, presented in the article

OB17, but lower than what was found in Britain, in SG14.

If this rate is applicable to all Norwegian wind farms, it calls for a change in assumptions

of degradation of wind farms. In NVE�s LCOE-calculations, a degradation rate of 0,10%

is used. The results found in this study indicates that this should be increased. This

should also be considered when developing new wind farm projects,

The use of ERA5 data as the basis for modelling wind farms was a significant error source.

Specifically the large grid cell sizes made the wind data somewhat inaccurate, causing a

large spread in the results. Inaccuracies related to height and wake loss, as well as the use

of hourly time-series data also contributed to increasing the uncertainty of the model.

Linear regression model was utilised for estimating the degradation rate. To check whether

the model satisfied the necessary requirements, several statistical tests were conducted.

Two of these tests failed, but the model was still deemed useful. The unreliability of the

confidence intervals is the most serious consequence due to the test failures. Even though

the linearity test failed, scatter plots show a long-term linear trend to the majority wind

farms, although it showed considerable variance. The objective is to find a long-term trend

in the data, meaning that a regression model can give a good estimation of degradation

rate despite failing tests.

The study also included tests to find potential risk factors for increased degradation,

grouping the wind farms by age and location, as well as studying their performance in

four seasons. None of these tests showed any significant differences between the selected

groups, which could be affected by the small sample size of the study. If a large-scale

study is done on the same topic in the future, it would be interesting to see whether these

factors have significant impacts.

One interesting point that these results may point to, is that cold climate and icing

have relatively small effects on degradation. Comparing the results to other studies, the
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degradation of Norwegian wind farms are relatively similar to what is found in the UK.

However, these rates are considerably higher than in Sweden. As the climate along the

coasts of Norway is quite similar to the climate Great Britain, this may imply that being

exposed to a coastal climate causes higher degradation rates. This may be due to factors

such as high precipitation, large average wind speeds and exposure to salt.

The model was created so that it could be implemented in future studies on similar

topics. Using this as a framework, one may expect to get a better performing model if

improvements as discussed is made. The use of publicly available resources throughout

also allows for similar usage in future studies, and therefore could be replicated in all

areas with publicly available production data.

7.1 Future research

The two greatest limiting factors in this study were the sample size and inaccurate weather

data. Due to both time restrictions and lacking information on several wind farms, a

study with a greater sample size was not feasible. The data model grew quite large, so a

study on a greater number of wind farms with a similar model would need to be more

effectively designed. It would however be interesting to see a bigger study on a more

representative number of wind farms, similar to what has been done in Sweden and Great

Britain. This could also provide a better basis for studying the underlying risk factors for

performance loss, thus providing a better understanding of this phenomenon.

Secondly, better weather data would be a significant improvement of the study. If the

technology of weather reanalysis improves, it could be more suitable for such usage. The

most accurate solution would be to have access to wind speeds data at the site of the

wind farm. If a collaboration study with firms in the wind industry had been done, this

could have allowed collection of better data.

The study suggests that WTs in coastal regions are more vulnerable to degradation than

inland WTs. This seems to be a more important factor for degradation than exposure to

low temperatures and icing. A more thorough understanding of these phenomena would

be interesting, as well as a separate study in Norway looking at these two groups. How

offshore wind farms are affected by degradation would also be an interesting topic for

further studies. The results imply that these could be more vulnerable to degradation, so
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further research on this would be valuable.
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Appendices

This section contains different data such as wind farm and turbine information. Furhermore,

it also contains selected results from the different regression models to individual wind

farms. Selected metrics and residuals to different models are also included in this section.

A Selected Wind farms

An overview of the selected wind farms with supplied specification are listed in Table A.1.

Table A.1: Chosen wind farms with associated information

Wind farm Turbine type First
production
year

Manufacture
year

Maximum
effect

Proportion
of selected
farms

Egersund 3.4M114 2017 2014 112.200 0.17
Fakken V90-3.0 2012 2002 54.000 0.08
Hamnefjell V112-3.45 2017 2015 51.750 0.08
Hitra SWT-2.3-CS 2009 2004 55.200 0.08
Kjøllefjord SWT-2.3-82VS 2006 2004 39.100 0.06
Lista SWT-2.3-93 2012 2005 71.300 0.11
Raggovidda SWT-3.0-101 2014 2011 45.000 0.07
Rye Vind V27/225 2015 1989 0.225 0.0003
Røyrmyra E-48 2015 2004 2.400 0.004
Sandøy NM48/750 1999 1997 3.750 0.006
Skomakerfjellet V112-3.3 2015 2015 13.200 0.02
Tellenes SWT-3.2-113 2017 2014 160.000 0.24
Valsneset E-70 2006 2005 11.500 0.02
Ytre Vikna E-70 2012 2005 39.100 0.059
Åsen II E-48 2012 2004 1.600 0.002
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B General results

Individual wind farm results of all production years are listed in Table B.1. This tables

presents results from the three main models.

Table B.1: Estimated degradation Rates for wind farms using all data.

Wind Farm Linear Degradation Ransac Degradation Arima Degradation
Egersund -0.0119 -0.0119 -0.0075
Fakken -0.0087 -0.0089 0.0053
Hamnefjell -0.0522 -0.0182 -0.0436
Hitra -0.0083 -0.0058 -0.0130
Kjøllefjord 0.0022 0.0022 -0.0456
Lista -0.0011 -0.0011 -0.0012
Raggovidda -0.0433 -0.0407 -0.0243
Rye Vind 0.0622 -0.0058 0.1716
Røyrmyra -0.0164 -0.0164 -1.3002
Sandøy -0.0109 -0.0105 -0.3258
Skomakerfjellet -0.0056 -0.0056 -0.0079
Tellenes -0.0243 -0.0243 -0.0254
Valsneset -0.0050 -0.0050 -0.1405
Ytre Vikna -0.0034 -0.0034 -0.0065
Åsen II -0.0067 -0.0067 -0.0043



96

C General results without downtime

Results to individual wind farm without downtime are listed in Table C.1. This tables

presents results from the three main models.

Table C.1: Estimated degradation rates for all wind farms using data without partial
downtime.

Wind Farm Linear Degradation Ransac Degradation Arima Degradation
Egersund -0.0120 -0.0120 -0.2620
Fakken -0.0091 -0.0093 0.0049
Hamnefjell -0.0422 -0.0080 -0.0393
Hitra -0.0056 -0.0046 -0.0118
Kjøllefjord 0.0029 0.0039 -0.0436
Lista -0.0010 -0.0010 -0.0781
Raggovidda -0.0378 -0.0352 -0.0218
Rye Vind 0.1282 0.0190 0.1489
Røyrmyra -0.0185 -0.0185 0.0841
Sandøy -0.0112 -0.0108 -0.4063
Skomakerfjellet -0.0074 -0.0074 -0.0071
Tellenes -0.0214 -0.0214 -0.0204
Valsneset -0.0053 -0.0053 -0.1405
Ytre Vikna -0.0035 -0.0035 -0.0066
Åsen II -0.0092 -0.0092 -0.1806
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D Degradation the first five years

The estimated degradation rates to individual wind farm for the first years are presented

in Table D.1. This tables presents results from the three main models.

Table D.1: Estimated degradation rates for all wind farms using data from the first five
years.

Wind Farm Linear RANSAC ARIMA
Degradation Degradation Degradation

Egersund -0.0066 -0.0066 0.0000
Fakken 0.1025 0.1025 0.0289
Hamnefjell -0.0375 -0.0505 -0.0289
Hitra 0.0238 0.0238 0.0124
Kjøllefjord 0.0011 0.0011 -0.0076
Lista -0.0061 -0.0061 -0.0001
Raggovidda -0.0313 -0.0328 -0.0486
Rye Vind -0.3232 -0.2112 -0.0000
Røyrmyra -0.0497 -0.0497 -0.0280
Sandøy -0.0104 -0.0104 -0.0028
Skomakerfjellet 0.0023 -0.0067 -0.0203
Tellenes -0.0241 -0.0241 -0.0247
Valsneset 0.0020 0.0020 0.0073
Ytre Vikna 0.0045 0.0045 0.0009
Åsen II 0.0092 0.0092 0.0122
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E Seasonal degradation

The estimated seasonal degradation rates to individual wind farms are presented in this

section. The first table (E.1) shows the degradation rate estimated by ordinary least

squares. Table E.2 shows the degradation rates estimated by RANSAC regression.

Table E.1: Quarterly Linear Rates for Wind Farms

Wind Farm Q1 Q2 Q3 Q4
Egersund -0.0076 -0.0020 -0.0040 0.0020
Fakken -0.0355 -0.0438 -0.0332 0.0348
Hamnefjell 0.0087 0.0579 -0.0785 -0.0136
Hitra 0.0050 0.0123 -0.0296 -0.0139
Kjøllefjord 0.0056 -0.0229 -0.0071 -0.0046
Lista 0.0005 0.0002 0.0018 -0.0021
Raggovidda 0.0143 0.0791 -0.1324 -0.0527
Rye Vind 0.0420 -1.2677 -0.8087 1.7155
Røyrmyra -0.0018 0.0107 0.0083 -0.0035
Sandøy -0.0012 0.0180 -0.0057 -0.0002
Skomakerfjellet 0.0146 -0.0027 0.0088 -0.0080
Tellenes -0.0188 -0.0195 0.0203 0.0071
Valsneset 0.0081 -0.0108 0.0016 0.0028
Ytre Vikna -0.0025 -0.0023 0.0050 0.0048
Åsen II 0.0056 -0.0024 -0.0007 -0.0075

Table E.2: Quarterly Degradation Rates Ransac for Wind Farms

Wind Farm Q1 Q2 Q3 Q4
Egersund -0.0076 -0.0020 -0.0040 0.0020
Fakken -0.0355 -0.0438 -0.0332 0.0348
Hamnefjell 0.0087 0.05 -0.0785 -0.0136
Hitra 0.0050 0.0123 -0.0296 -0.0139
Kjøllefjord 0.0056 -0.0229 -0.0071 -0.0046
Lista 0.0005 0.0002 0.0018 -0.0021
Raggovidda 0.0143 0.0791 -0.1324 -0.0527
Rye Vind 0.0420 -1.2677 -0.8087 1.7155
Røyrmyra -0.0018 0.0107 0.0083 -0.0035
Sandøy -0.0012 0.0180 -0.0057 -0.0002
Skomakerfjellet 0.0146 -0.0027 0.0088 -0.0080
Tellenes -0.0188 -0.0195 0.0203 0.0071
Valsneset 0.0081 -0.0108 0.0016 0.0028
Ytre Vikna -0.0025 -0.0023 0.0050 0.0048
Åsen II 0.0056 -0.0024 -0.0007 -0.0075
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F Metrics

Metrics to the individual wind farms are included in this section. Table F.1 show the

metrics from to the general results presented in Table B.1. Metrics to RANSAC-model

and ARIMA-model results are presented in Tables respectively F.2 and F.3.

Table F.1: Metrics to the Linear Regression model used on all data.

Wind Farm R2 MSE MAE
Egersund 0.042 0.0019 0.039
Fakken -0.187 0.513 0.499
Hamnefjell -0.153 0.091 0.219
Hitra 0.138 0.043 0.147
Kjøllefjord 0.042 0.022 0.113
Lista -0.072 0.002 0.038
Raggovidda -0.106 0.231 0.426
Rye Vind -0.465 1.645 1.042
Røyrmyra -0.169 0.032 0.136
Sandøy 0.473 0.031 0.140
Skomakerfjellet 0.017 0.009 0.075
Tellenes 0.150 0.007 0.070
Valsneset -0.040 0.007 0.066
Ytre Vikna -0.034 0.005 0.056
Åsen II 0.013 0.012 0.087

Table F.2: Metrics to the RANSAC Regression model used on all data.

Wind Farm R2 MSE MAE
Egersund 0.042 0.001 0.038
Fakken -0.288 0.556 0.523
Hamnefjell -0.084 0.085 0.210
Hitra 0.137 0.044 0.146
Kjøllefjord 0.045 0.022 0.111
Lista -0.073 0.0024 0.038
Raggovidda -0.077 0.226 0.398
Rye Vind -0.045 1.173 0.863
Røyrmyra -0.169 0.032 0.136
Sandøy 0.473 0.030 0.140
Skomakerfjellet 0.018 0.009 0.075
Tellenes 0.150 0.007 0.070
Valsneset -0.048 0.007 0.068
Ytre Vikna -0.034 0.005 0.056
Åsen II 0.013 0.012 0.087
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Table F.3: Calculated Mean Squared Error (MSE) and Mean Absolute Error (MAE)
from the ARIMA model

Wind Farm MSE MAE
Egersund 0.002 0.039
Fakken 0.257 0.408
Hamnefjell 0.060 0.181
Hitra 0.053 0.196
Kjøllefjord 0.089 0.265
Lista 0.004 0.052
Raggovidda 0.104 0.279
Rye Vind 5.162 1.563
Røyrmyra 0.019 0.072
Sandøy 0.366 0.590
Skomakerfjellet 0.032 0.149
Tellenes 0.008 0.068
Valsneset 0.045 0.139
Ytre Vikna 0.006 0.069
Åsen II 0.014 0.089

G Statistical tests

Results from statistical tests used to test the linear assumptions are listed in this section.

Table G.1 shows the results from the test made on the linear model, and Table G.2

presents the test results from the RANSAC-model.

Table G.1: Statistical Tests from Linear regression used on all data

Wind Farm Ljungbox Test Rainbow Test Shapiro-Wilk Test Goldfeld Quandt
Egersund 7.99e-02 8.89e-05 2.55e-13 0.25
Fakken 1.78e-01 1.26e-03 1.04e-18 0.82
Hamnefjell 5.90e-01 4.48e-05 2.31e-13 0.14
Hitra 9.65e-02 1.46e-12 9.74e-25 0.69
Kjøllefjord 1.51e-01 2.18e-12 2.20e-23 0.02
Lista 3.30e-02 6.30e-08 9.28e-19 0.04
Raggovidda 3.95e-01 3.78e-04 8.11e-17 0.37
Rye Vind 1.20e-02 3.52e-01 1.05e-14 0.14
Røyrmyra 6.97e-01 2.43e-04 1.55e-15 0.004
Sandøy 1.88e-42 5.94e-12 1.08e-25 1.00
Skomakerfjellet 3.26e-02 2.38e-05 3.02e-15 0.53
Tellenes 4.58e-01 6.11e-04 2.07e-13 0.12
Valsneset 1.39e-03 2.54e-08 2.51e-23 0.03
Ytre Vikna 5.38e-01 9.56e-09 6.58e-19 0.94
Åsen II 8.64e-01 3.26e-12 4.06e-19 0.07
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Table G.2: Statistical from RANSAC regression used on all data

Wind Farm Ljungbox Test Rainbow Test Shapiro-Wilk Test Goldfeld Quandt
Egersund 7.99e-02 8.89e-05 2.54e-13 0.25
Fakken 1.78e-01 1.26e-03 1.04e-18 0.82
Hamnefjell 6.10e-01 4.48e-05 2.31e-13 0.14
Hitra 7.99e-02 1.46e-12 9.74e-25 0.70
Kjøllefjord 1.51e-01 2.18e-12 2.20e-23 0.02
Lista 3.30e-02 6.29e-08 9.28e-19 0.04
Raggovidda 3.93e-01 3.78e-04 8.11e-17 0.37
Rye Vind 1.17e-02 3.52e-01 1.05e-14 0.14
Røyrmyra 6.97e-01 2.43e-04 1.55e-15 0.01
Sandøy 1.70e-42 5.94e-12 1.08e-25 0.99
Skomakerfjellet 3.26e-02 2.38e-05 3.02e-15 0.53
Tellenes 4.58-01 6.11e-04 2.07e-13 0.12
Valsneset 1.39e-03 2.54e-08 2.52e-23 0.03
Ytre Vikna 5.38e-01 9.56e-09 6.58e-19 0.94
Åsen II 8.64e-01 3.26e-12 4.06e-19 0.07
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H Distances

The distance between from given point in the climate data and the wind farms are listed

in Table H.1. The distance are measured in kilometres and are calculated from the

respectively coordinates using a Python library geopy.distance.

Table H.1: Wind Farm Coordinates and Distances

Wind Farm Weather Coordinate Windfarm Coordinate Distance [km]
Egersund (58.4, 6.0) (58.4330, 6.0855) 6.198248
Fakken (70.0, 20.0) (70.0980, 20.0502) 11.100324
Hamnefjell (70.6, 29.7) (70.6673, 29.7191) 7.543222
Hitra (63.5, 8.8) (63.5256, 8.8042) 2.862820
Karmøy Hywind (59.2, 5.2) (59.2924, 5.2846) 11.371548
Kjøllefjord (70.9, 27.2) (70.9222, 27.2667) 3.478261
Lista (58.1, 6.6) (58.1556, 6.6562) 7.025415
Raggovidda (70.7, 29.0) (70.7649, 29.0835) 7.866564
Rye Vind (63.4, 10.1) (63.4181, 10.1181) 2.210809
Røyrmyra (58.5, 5.7) (58.5906, 5.7275) 10.217946
Sandøy (62.7, 6.4) (62.7631, 6.4464) 7.422359
Skomakerfjellet (64.2, 10.4) (64.2156, 10.4167) 1.919253
Tellenes (58.3, 6.3) (58.3439, 6.4356) 9.330275
Valsneset (63.8, 9.6) (63.8164, 9.6183) 2.038473
Ytre Vikna (64.8, 10.8) (64.8875, 10.8622) 10.191766
Åsen II (58.7, 5.7) (58.7369, 5.7519) 5.092905
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I Data diagnostics

Table I.1 shows the diagnostics of the production data retrieved from NVE. Data cleaning

and construction prepared the data for modelling.

Table I.1: Data diagnostic before cleaning and construction

Location Observations Missing
Value

Negative
Values

Zero
Values

Production
o/ capacity

Egersund 47270 0 0 3544 0
Fakken 92030 0 0 9440 0
Hamnefjell 47857 0 0 3681 1
Hitra 161081 0 0 17114 317
Kjøllefjord 142609 0 0 13354 39
Lista 90683 0 0 5338 0
Raggovidda 74004 0 0 5570 1068
Rye Vind 61368 0 0 25590 9
Røyrmyra 63481 0 0 2598 4020
Sandøy 175320 0 0 26406 4942
Skomakerfjellet 61094 0 0 7016 0
Tellenes 47864 0 0 3916 205
Valsneset 142105 1104 334 9069 2182
Ytre Vikna 92099 0 0 3784 0
Åsen II 94896 0 0 5044 1840
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J Code used in analysis

The code used to estimate the degradation can be found at url: https://github.com/

olavfg/Masterthesis2024_Degradation_of_Norwegian_wind_farms or by scanning

the QR-code beneath. Only a selected part of the result are included in this thesis

and in the script. It is however, possible to extract more result from the different models

in the attached script.

Figure J.1: The code used to estimate the degradation rate can be found using the
QR-code

https://github.com/olavfg/Masterthesis2024_Degradation_of_Norwegian_wind_farms
https://github.com/olavfg/Masterthesis2024_Degradation_of_Norwegian_wind_farms


  


