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Abstract

Ensuring the functionality of airport operations amidst changing
weather conditions is crucial for maintaining operational efficiency and
ensuring safety. This thesis investigates using Machine Learning (ML)
techniques to predict icing weather events at airports, aiming to en-
hance aviation safety through improved forecasting. Leveraging input
data from Numerical Weather Prediction (NWP) models and real-
time observations extracted from Meteorological Aerodrome Reports
(METAR), probabilistic classifiers are developed and further assessed
through their efficacy in providing reliable predictions for freezing
weather occurrences. Due to the rarity of these events, the resulting
dataset is inherently imbalanced, necessitating heavy downsampling to
facilitate efficient model training. Despite the small dataset size, the
developed models demonstrate promising capabilities, exhibiting no-
table improvements in reliability and accuracy, particularly within the
temporal models. Notably, even with minimal training data, the mod-
els accurately predict freezing weather occurrences up to five timesteps
ahead, each representing one hour.

Hence, this study emphasizes the importance of collaboration be-
tween ML experts and domain specialists in aviation meteorology to
gain deeper insights and refine the models. The results serve as a solid
foundation for reflection and offer valuable suggestions for future re-
search directions to enhance ML models’ predictive capabilities in this
domain.
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1 Introduction

The collective occurrence of daily atmospheric events dictates the prevailing
weather conditions. Forecasting the weather is essential for ensuring safe
flight operations by providing pilots with the necessary details to make in-
formed decisions throughout their flights. The warming climate has increased
hazardous weather events of different types and intensities [9]. These events
encompass heavy rainfall, tornadoes, thunderstorms, and freezing weather,
each carrying potential risks such as cancellations and delays [19]. In severe
situations, extreme weather events can cause damage to aviation systems,
aerodromes, infrastructure, and human life.

Over the last few years, an increase in the intensity of the events and a
shortened time gap between occurrences has been observed [12]. The con-
cept of weather whiplash, a sudden and quick change in types of extreme
weather, presents challenges in producing accurate and long-lasting forecasts
[9]. Rapid temperature fluctuations, swinging above and below freezing tem-
peratures, can increase the risk of unprepared freezing weather incidents.

To highlight the importance of better understanding and further improv-
ing prediction of extreme weather events, Sillmann et al. [44] outline five key
questions addressing scientific challenges in predicting weather extremes:

a) What are relevant definitions of extremes on the respective time scales?

b) What are the necessary observations and model output requirements to
analyze these extremes?

c) What are the processes driving these extremes and their changes?

d) How do we best evaluate these extremes (including relevant processes)?
(i.e., is the model right for the right reason)

e) What are relevant sources for predictability of these events that can
support the attribution, prediction and projection of these extremes?

Although numerous studies demonstrate that ML can enhance the pre-
diction of typical weather events, there is still a need for more research on
extreme weather events [47]. The scarcity of samples containing extreme
weather incidents poses challenges, potentially causing ML models to strug-
gle or fail in the worst case. Despite this, integrating deep learning with
meteorological science holds promise and has already contributed to better
extreme weather forecasting [16].
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1.1 Background

The information in an aviation weather forecast differs from the standard
forecasts that most people can read and understand, as these are encrypted
strings of text consisting of letters and numbers. There are several types of
weather reports, but the most common ones are Meteorological Aerodrome
Reports (METAR), Terminal Area Forecast (TAF), and Significant Meteo-
rological Information (SIGMET). Each serves its purpose, where the main
difference is the period in which the report describes the weather. METAR
contains the weather status at a specific time, issued once every half hour.
TAFs give us an overview of how the weather will develop over the next 24
hours, some up to 30. When discussing SIGMETs, these reports warn about
upcoming extreme weather events in a given area in flight.

The quality and information communicated through these messages are
crucial and highly dependent on weather observations being as accurate as
possible. The Convention on International Civil Aviation (ICAO) issues
guidelines for constructing METAR and TAFS in Annex 3, titled ”Meteoro-
logical Service for International Air Navigation” [24].

In a TAF or METAR message, freezing weather is indicated by abbrevi-
ations like FZRA (freezing rain), FZFG (freezing fog), and FZDZ (freezing
drizzle). Freezing weather indicates that the precipitation is supercooled,
meaning the temperature is below freezing, but the water droplets have not
solidified. It freezes in contact with the ground or other surfaces with tem-
peratures lower than 0°C. Situations where icing occurs on an aircraft, can
cause a buildup of weight and drag, further reducing the lift for takeoff [20]
and in worst cases lead to catastrophic disasters [7]. In Figure 1, we observe
a simple drawing outlining this process.
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Figure 1: Visual description of how freezing rain occurs. Reproduced from https://

skybrary.aero/articles/freezing-rain, accessed on 14 December 2023.

Utilizing advanced technology enhances our ability to predict extreme
weather with increased accuracy [28]. A thorough examination of freezing
weather events is critical for improving preparedness and mitigating risks,
contributing to the safety of aviation systems in the face of challenging
weather conditions.

1.2 Contextualizing the Objective

Today, traditional forecast methods are done by observing the current con-
dition of the atmosphere and further predicting future atmospheric state.
The NWP models process the current weather observations to forecast future
weather by running large-scale simulations that describe how the atmosphere
moves and changes. From these results, the goal is to represent the current
and future atmospheric phenomena as accurately as possible.

Meteorologists rely on these values to issue METAR reports that precisely
describe the current weather conditions. This thesis explores the feasibility of
employing ML to predict freezing weather occurrences at airports. With this
in mind, the central question arises: Can these parameters serve as inputs
for an ML model and further be trained to generate reliable probabilities
for freezing weather occurrences at airports? A reliable prediction would
entail a probability that aligns closely with the observed occurrence rate.
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As a potential tool for meteorologists, this could enhance the accuracy of
METAR reports and facilitate more informed decision-making processes.

To address this inquiry, this thesis undertakes and presents a compre-
hensive process involving data extraction, preprocessing, and training of ML
models, serving as a foundation for further evaluation of this objective.

1.3 Limitations of the Study

1.3.1 Skewed Class Proportions

The abbreviation FZ in METAR and TAF reports, indicating freezing con-
ditions, is not frequently encountered. Consequently, it was impossible to
avoid significant class imbalance when creating the dataset with a column
indicating the presence or absence (True or False) of FZ occurrences in the
extracted METAR messages. The infrequent occurrence of FZ represented as
the boolean value True in the mentioned column led to skewed class propor-
tions, further impacting the effectiveness of Neural Networks (NN) trained
on this dataset for predicting these exact occurrences.

Initially, training the NN using the original imbalanced dataset led to an
apparent bias toward predicting the majority class, overlooking instances of
the minority class. To address this issue, downsampling the majority class
was implemented. This approach ensured a more balanced representation of
classes but significantly reduced the size of the training dataset.

The test dataset obtained after splitting the dataset remained unchanged,
and this part of the process was completed using imbalanced data. While
downsampling improved the model’s performance, extracting data from a
broader period or upsampling the data could further enhance the model’s
performance. This would enlarge the size of the minority class, ensuring a
higher number of occurrences of FZ and further provide the model with more
data to learn from, thereby potentially improving its ability to accurately
predict the likelihood of rare events.

1.3.2 Auto Generated METAR Reports

In the dataset, we classify METAR reports into four types based on their
generation method and whether they invalidate and correct a previous ob-
servation. Notably, several airports utilize automated software to generate
METAR reports, meaning that no human intervention occurs in the making
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of the report. However, according to meteorologists at MET, many of these
reports, mainly those forecasting freezing weather, often contain inaccuracies
due to the model’s limitations in effectively capturing such conditions. The
airports responsible for most reports forecasting freezing weather predomi-
nantly rely on auto-generated messages and, consequently, make up many of
the registered cases for the occurrence of FZ in a METAR.

During model training, efforts were made to remove all the ”AUTO”
metartype instances, resulting in a separate dataset. This action signifi-
cantly reduced the already small minority class by almost half the obser-
vations. Subsequent training and testing of the model with further reduced
data revealed that the model’s performance had no immediate drastic or neg-
ative change. As a result, this dataset was incorporated into the processes
involving the persistence and instantaneous models. However, considering
the time constraints, the main focus was directed towards the two datasets
where these instances were retained for the temporal models.

1.4 Structure of the Thesis

To enhance the objective’s theoretical foundation, Sections 2.1 and 2.2 delve
into weather forecasting for aviation and the underlying causes of freezing
weather. Section 2.4 provides a brief overview of machine learning concepts,
paving the way for a detailed exploration of Artificial Neural Networks and
their components in Section 2.5.1 The critical field of model evaluation is
assessed in Section 2.6, which introduces techniques such as confusion ma-
trices, ROC, and calibration curves in combination with AUC and AUC-PR
scores. Section 3 shifts the focus to the practical aspects of the research. It
begins with an examination of the processes involved in data acquisition and
preparation of the extracted METAR reports and meteorological parameters
in Section 3.1. Sections 3.2 and 3.3 elaborate on the development process
and decision-making in constructing the probabilistic classifier.

Then, there is a transition to Section 4, which thoroughly presents the
results obtained from the trained and tested models. This section compre-
hensively compares the persistence, instantaneous, and temporal predictions,
with a detailed evaluation and discussion of these results in Section 5. Fi-
nally, Section 66 encapsulates the thesis, offering conclusions and reflections
illuminating potential approaches for future work.
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2 Theory

This chapter will provide the necessary theory for understanding the concepts
behind weather forecasting for aviation and the different methods used today.
It will also present the principles behind NWP prediction. Last, we dive into
an explanation of ML and Artificial Neural Networks (ANN) as the primary
tools for the prediction work in this study.

2.1 Weather Forecast for Aviation

Annex 3 of the Convention of International Civil Aviation (ICAO) outlines
guidelines for international standards and recommended practices regarding
weather forecasting for aviation [24]. According to these specifications, a
weather forecast comprises a statement detailing expected conditions for a
specified time, area, or portion of airspace.

The following three sections describe the key messages and reports that
aviation weather forecasting relies on, including METAR, TAF, and SIG-
MET. The importance of this information is underscored by Sections 2.1.1
and 2.1.2 of ICAO Annex 3 [24], which articulate its objective: to provide
essential meteorological data to various stakeholders involved in international
air navigation:

”2.1.1 The objective of meteorological service for international air navigation
shall be to contribute towards the safety, regularity, and efficiency of inter-
national air navigation.”

”2.1.2 This objective shall be achieved by supplying the following users: opera-
tors, flight crew members, air traffic services units, search and rescue services
units, airport managements and others concerned with the conduct or devel-
opment of international air navigation, with the meteorological information
necessary for the performance of their respective functions.”

2.1.1 Meteorological Terminal Air Report (METAR)

A Meteorological Terminal Air Report (METAR) is a short report that gives
information about the current weather conditions at a specific location, where
usage is intended mainly for pilots and meteorologists. It is issued every half
or whole hour and is valid until the next issued METAR. The forecast con-
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tains a lot of information compressed into a short text string of coded data.
Table 1 shows the specific parts of a METAR issued in ICAOs Annex 3 [24].
Figure 2 illustrates a sample METAR message, deciphering its components
and corresponding forecasts.

Table 1: Overview of the content of a METAR message

Content Description
Type of report Informs about specific report type.

Possible reports are METAR or SPECI.
Location Indicator A unique code used to identify the sta-

tion for which the report is forecasted
for.

Time of the observation Two first digits are the date and the
four last represent the time.

Identifier if modified report Additional information about the re-
port, either informing about an auto-
mated (AUTO) or a corrected (COR)
report.

Wind Surface wind direction and speed.
Runway isibility Given in metres.
Present Weather Present weather occurring at the spe-

cific aerodrome. Describing, if present,
(freezing) precipitation with intensity,
thunderstorms, fog, or and freezing fog.

Sky condition Description of cloud cover and base of
clouds in hundreds of feet.

Temperature and dew point Air temperature and dew point temper-
ature in degrees Celsius, with temper-
ature first.

Pressure Current pressure at mean sea level
(QNH). Computed and reported in hec-
topascals.

Remarks Additional remarks about significant
weather phenomena not included in
other sections.
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Figure 2: An example of a METAR message and how to decode it.

2.1.2 Terminal Aerodrome Forecast (TAF)

Terminal Aerodrome Forecasts (TAF) are concise messages that give infor-
mation about the expected meteorological conditions for the surrounding
area of a specific airport. The TAF forecasts have a validity period of 24-30
hours and cover a radius of approximately 8 kilometers (5 miles) around the
specified airport. Typically, a TAF is updated four times daily: 00, 06, 12,
and 18. The message contains the same information as the METAR report,
details found in [24].

2.1.3 Significant Meteorological Information (SIGMET)

A Significant Meteorological Information (SIGMET) report is issued to in-
form aircraft operators about prevailing or anticipated weather phenomena
along a flight route that could affect the safety of aircraft operations [24].
These reports can remain valid for up to four hours and are canceled when
the specific weather phenomena cease or are no longer expected. However,
in certain circumstances involving volcanic ash clouds or tropical cyclones,
the report’s validity may be extended by two hours.

2.2 Freezing Precipitation

Freezing precipitation is a weather phenomenon in which frozen precipitation
encounters atmospheric layers with divergent temperature profiles, where the
air temperatures are between above- and below-freezing temperatures [6].
This results in the formation of icy coatings on the affected surfaces and can
further present hazards to infrastructure.
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When frozen precipitation, such as snow, encounters a layer of air above
freezing temperature, it will melt and turn into rain or drizzle. As this liq-
uid precipitation descends, it encounters a sub-freezing layer of air near the
ground. Here, the temperature is low enough to cause the liquid to become
supercooled, where the liquid remains unfrozen despite being below the freez-
ing threshold [18]. Upon contact with objects or surfaces with temperatures
below freezing, the supercooled droplets will instantly freeze and form a layer
of thin ice. This freezing process can also occur with fog. When fog forms in
sub-freezing conditions, its liquid water droplets remain liquid. Upon contact
with surfaces that have a temperature below 0 degrees, it freezes and creates
a layer of ice crystals.

The common denominator for characterizing freezing weather is the pro-
cess by which freezing precipitation melts into liquid precipitation before
turning into ice again. Figures 3a and 3b presents a rough sketch of how
the temperature profiles for the occurrence of snow and freezing rain can be
vizualised.

(a) Temperature profile for snow (b) Temperature profile for freezing rain

Figure 3: Visual comparison of temperature profiles for the occurrence of snow versus
freezing rain. Based on Figure 2, Forbes et al. [18]

2.2.1 Freezing Precipitation Effects on Airports and Aircraft

Weather and meteorological conditions present significant challenges for air-
craft in the air and ground. Unfavorable weather conditions can interfere
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with safe takeoffs and landings, disrupt flight paths, cause delays, and affect
overall flight operations. Therefore, preparing for existing weather conditions
and anticipating potential changes is crucial for ensuring flight safety. Pilots
rely highly on issued weather reports such as METAR, TAF, and SIGMET,
presentes in Sections 2.1.1, 2.1.2, and 2.1.3.

Freezing weather, such as freezing rain, drizzle, and fog, can cause icing
on the aircraft and the runway, affecting the aircraft in several ways. If ice
builds up on the aircraft, it increases its overall weight, making it harder
to take off because of the increased drag and decreased lift. Ice can also
affect the propellers by coating the blades, reducing the overall thrust. A
growing coat of ice on the wings and tail can disrupt proper airflow. There
are different severities of icing on an aircraft, where moderate, heavy, and
severe icing clearly affects the aircraft’s performance [8].

The most severe consequences of aircraft icing have resulted in tragic
accidents, with several documented cases. One such incident occurred in
Canada on December 13, 2017, involving a Saskatchewan airline [10]. The
aircraft, compromised by ice buildup, experienced a loss in altitude shortly
after takeoff, leading to a crash that tragically resulted in the death of a
passenger. Similarly, on January 9, 2011, in Iran, a Boeing 727-200 crashed
due to severe icing, which led to a blockage of air into the engines and a
subsequent loss of thrust [45]. As a result, the aircraft lost power and began
to descend, ultimately crashing and claiming the lives of eight out of the nine
crew members and 70 out of the 96 passengers aboard.

2.3 Numerical Weather Prediction

Numerical Weather Prediction (NWP) is a central component for predict-
ing the weather based on current weather conditions. NWP is based on the
numerical solution of the partial differential equations that govern the be-
havior of the atmosphere [37]. NWP models compute future values of vital
atmospheric parameters by utilizing initial values derived from meteorolog-
ical observations. Integration of these models into weather forecasting has
significantly improved prediction accuracy, equipping meteorologists with ad-
vanced tools for analysis and forecasting [13].
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2.3.1 MetCoOp Ensemble Prediction System (MEPS)

In 2010, MET Norway and the Swedish Meteorological and Hydrological
Institute (SMHI) initiated a collaboration called MetCoOp, short for Me-
teorological Cooperation on Operational Numeric Weather Prediction [31].
Following the operationalization of the MetCoOp Ensemble Prediction Sys-
tem (MEPS) by the end of 2016, the collaboration expanded with the in-
clusion of the Finnish Meteorological Institute (FMI), which joined in 2017.
In 2019, the Estonian Environment Agency (ESTEA) joined the cooperation
[23]. The project aims to expand further, with plans to involve several other
countries.

The MEPS files utilized for data extraction in this thesis comprise 30
lagged ensemble members within a 6-hour time window, operating at a reso-
lution of 2.5 km [3]. For this thesis, emphasis is placed on the control member
within the ensemble, designated as member 0, which serves as the primary
source for data extraction. This control member is derived from the most
accurate analysis and represents the most probable forecast.

Model runs are completed, and new forecasts are generated based on
observations every six hours, precisely at 00, 06, 12, and 18.

2.4 Machine Learning

Machine Learning (ML) springs out from Artificial Intelligence (AI) and com-
puter science, focusing on using data and algorithms to mimic how human
beings process and learn new information.

2.4.1 Learning Strategies and Methods

In the domain of ML, we have a selection of algorithms that can be employed
to tackle the specific tasks at hand, broadly categorized into four primary
types: supervised, unsupervised, semi-supervised, and reinforcement learn-
ing. However, for the scope of this discussion, the focus will primarily be on
supervised learning, as it is the chosen algorithm for the specific methodolo-
gies utilized within the study presented in this thesis.

Supervised learning is a fundamental approach in ML, where the data
used for training is labeled beforehand [38]. The model is trained to predict
a specific label or target value associated with each data point. The primary
objective of supervised learning is to train the model to recognize underlying
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patterns in the input features and, with a high degree of precision as the
aim, predict the associated labels on new, unseen data. Figure 4 depicts this
process.

Figure 4: Visual description of the process of a supervised machine learning model.

2.5 Model Selection

In this thesis, the motivation behind the model selection is guided by an eval-
uation of the research objective, the desired type of outcome and prediction,
and the characteristics of the data.

The objective of this thesis revolves around predicting the likelihood of
icing weather incidents at airports based on observed meteorological param-
eters and historical METAR reports. The predicted variable will be based
on boolean variables for the occurrence of FZ in a METAR report, making
it a binary classification problem because we want to differentiate between
True and False.

The decision to employ an Artificial Neural Network (ANN) is grounded
in research that has demonstrated promising weather forecasting outcomes
using this model implementation [34, 1, 30]. The ANN’s ability to capture
nonlinear relationships within the data is particularly appealing, presenting
itself as a good fit for the outlined objective. While the objective of this study
does not involve traditional weather forecasting, it utilizes meteorological
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parameters. It further explores the relationship between them to predict the
probability of a specific weather phenomenon.

2.5.1 Artificial Neural Network
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Figure 5: Fully connected neural network with three hidden layers.

A neural network has three main layers: one input, one or more hidden, and
an output. The input layer introduces the information into the network, the
hidden layers perform computations, and the output layer presents processed
information.

Figure 5 presents a fully connected network, meaning that each neuron
connects with every node in the preceding layer or output.

The input layer consists of nodes, x1, x2, ..., xn, where xn is the input from
the n-th feature or neuron in the input layer. In forward propagation, each
unit in the layer l is connected to all the units in layer l+1 through a weight
coefficient. If we want to calculate the activation unit of the hidden layer
a
(1)
1 , we do the following:

z
(l)
j =

N(l−1)∑
i=1

w
(l)
ij · a(l−1)

i + b
(l)
j (1)

a
(l)
j = ϕ(z

(l)
j ) (2)

Figure 6 shows what this looks like for the first layer in our neural network
in Figure 5.
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Figure 6: Explanation of activation function in neuron in addition to one full layer.

The activation function, ϕ(z), depends on what you want to predict.
Incorporating an activation function introduces non-linearity into the output
of each neuron, where the lack of an activation function would reduce the
network to a simple linear regression model.

2.5.2 Activation Function

In a neural network, the activation function determines the output of a neu-
ron based on the input. The activation functions compute the weighted sum
of inputs and biases, acting like a decision-maker for whether or not the
neuron should be triggered to send a signal to the next layer in the network.
While an activation function can be linear, the real strength lies in the option
to introduce non-linearity in a model [15]. Non-linearity allows the model to
learn more intricate patterns and relationships within the data. Each acti-
vation function offers various properties, and selecting the most optimal one
depends on the specific objective and dataset.

In the context of the final ANN presented and discussed in Sections 3.2
and 3.2.1 of this thesis, the focus lies on the chosen activation functions,
which both introduce non-linearity to the model: the Rectified Linear Unit
(ReLu) and the Sigmoid function. Figures 7a and 7b illustrate the ReLu
and Sigmoid plots. In Equation (1) in section 2.5.1, the variable z represents

14



the weighted sum of inputs and biases. The specific activation function is
computed based on this sum, as shown in Equation (2).

(a) ϕ(z) = 1
1+(e)−z (b) ϕ(z) = max(0, z)

Figure 7: ReLu and Sigmoid activation functions.

The Sigmoid function is often used in the output layer of a neural network
because of its range. Producing outputs between 0 and 1 can be interpreted
as probabilities, which makes it a good match for binary classification and
the objective of this thesis [43].

The ReLu is computationally efficient compared to other activation func-
tions because of its simple mathematical structure, where the output value
is always one for positive values and otherwise returned as zero. This prop-
erty of ReLu addresses the vanishing gradient problem, where the partial
derivative of the activation function diminishes to near-zero values, resulting
in it vanishing and terminating weight updates [38]. In ReLu, the derivative
remains constant at one for positive inputs, ensuring that the gradients do
not vanish. Because of the output values produced by ReLu, it is primarily
suitable as an activation function in the hidden layers [43, 38].

2.5.3 Regularization

Finding the right balance between complexity and performance in an ML
Model can be challenging. Section 2.6.1.1 highlights some commonly en-
countered issues in this process, such as overfitting and underfitting. Regu-
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larization is a technique used to tackle overfitting, which works by control-
ling the values of the model’s parameters by introducing specific rules or
constraints. This prevents the model from learning overly complex patterns,
including noise and irrelevant information, ultimately improving its ability
to generalize to new data.

Of the various regularization techniques available, this work focuses on
L1 regularization, early stopping, and batch normalization as the primary
methods.

The L1 regularization method is also known as LASSO, an abbreviation
for ”the least absolute shrinkage and selection operator.” The penalty term
added by LASSO is the absolute value of the weights multiplied with a reg-
ularization parameter that can be adjusted in strength to control its overall
effect [38, 33]. LASSO also contributes to feature selection by shrinking the
coefficients of irrelevant features toward zero, because large absolute values
of the model’s parameters are penalized.

Early stopping is another technique employed to mitigate overfitting.
This feature monitors the model’s performance during training and termi-
nates the process when it no longer observes further improvement, overriding
the pre-defined number of training epochs This intervention occurs if the per-
formance improves on the training data but worsens on the validation data
after an initial improvement period [36]. A stopping criterion determines the
specific conditions under which training ceases.

Batch normalization is usually added between the hidden layers to ac-
celerate and stabilize the training process [42]. It normalizes the inputs by
calculating the mean and variance for each mini-batch, where a mini-batch
is a smaller portion of the dataset used in one training iteration [25, 38].

2.5.4 Loss Function

During training, the main goal is to work towards the most efficient model.
Part of this is comparing the predicted values with the actual ground truth
and minimizing the difference between them.

Loss functions are chosen based on the objective. Since we are dealing
with a classification problem with probabilistic outputs, binary cross-entropy
is the loss function used in the final ANN model [38].
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2.5.5 Optimization

Training the neural network involves optimizing the parameters appropriately
to work towards a minimized loss function. Among the available options for
optimization algorithms, Adaptive moment estimation (Adam) is a popular
and widely used method [38]. Adam is a gradient-based optimization algo-
rithm known for its computational efficiency and ease of tuning [26]. It only
requires specifying a learning rate before training.

2.6 Model Evaluation

A comprehensive evaluation of predictive models, from training to actual
testing, is essential for understanding their performance and generalization
capabilities. Rigorous evaluation throughout the training process ensures
that the model learns from data effectively. Further, estimating the per-
formance when fed with new unseen data is equally important, providing
insights into its predictive accuracy and ability to generalize new input.

The following two sections present the evaluation methods utilized for
training and testing the model employed in this thesis.

2.6.1 Training Data

Training and testing a model by partitioning the data into separate datasets
for training and testing is also commonly known as the holdout method [38].
This is one of the simplest methods to evaluate a model’s performance by
exposing it solely to a portion of the data during training and evaluating
it with the unseen test data after training [40]. The data can be split into
three parts to refine this approach, introducing a validation set alongside
the training and test data. The validation data makes evaluating the model
during training possible by giving insight into how to further tune the model’s
hyperparameters and enhance the overall performance.

For the model developed and used for this thesis, the validation data is
specified within the built-in method by Keras when instantiating the training
process. Within this method, an argument enables the definition of the
desired portion of training data allocated for use as a validation set. During
the training phase, the model does not have access to this data segment but
utilizes it for evaluation following each epoch.
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After training, a graphic analysis of the training and validation loss is eval-
uated before tuning the model’s hyperparameters to improve performance.

Figure 8: Illustration of how the concept of holdout cross-validation is performed. The
original data is split into training and test data, where a portion of the training data is
selected as a validation set used throughout the model training [38].

For the model developed and used for this thesis, the validation data is
specified within the built-in method by Keras when instantiating the training
process. Within this method, an argument enables the definition of the
desired portion of training data allocated for use as a validation set. During
the training phase, the model does not have access to this data segment but
utilizes it for evaluation following each epoch. Figure 8 presents a visual
representation of the concept of holdout cross-validation.

Post-training, an essential step in model refinement, involves thoroughly
analyzing the training and validation loss. Visualizing the learning curves
presented in Figure 9 enables conclusions about performance. Additionally,
this method aids in identifying potential instances of underfitting and overfit-
ting, which gives essential insights into how the model learns from the input
data.

Throughout the model’s training process, the F1 score has been imple-
mented as an evaluation metric for both the training and validation datasets.
In the subsequent section, more detailed information regarding the F1 score
will be provided, which covers evaluation metrics for the test data.
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(a) Example of learning curves for model
t0 + 1 with 1% of majority class.

(b) Example of learning curves for model
t0 + 1 with 3.6% of majority class.

Figure 9: Plot of learning curves for the same model, but varied size of the majority class
included in training. Same model and parameter values have been used for both.

2.6.1.1 Model Fitting
Acquiring the most optimal ML-model for the objective requires finding a
balance among all the various aspects of the model that can be fine-tuned
and explored. A well-fitted model demonstrates promising performance on
the training data and its capacity to generalize effectively to new and unseen
data, as evidenced by robust performance on the validation set, see Figure
10b. The balance between the performance on the training and validation
set can reveal potential issues, and analyzing the learning curves from the
training phase can show if the model is showcasing a good fit, or if it is
underfitting or overfitting.
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(a) Underfitted model: Not able to cap-
ture the complexity in the data.

(b) Well-fit model: Captures the most es-
sential patterns in the data, creating a
balanced fit.

(c) Overfitted model: Model captures
noise and randomness in the data, will not
regularize well on unseen data.

Figure 10: Comparison of how different model fits capture the data.

When a model suffers from underfitting like in Figure 10a, also referred
to as having a high bias and low variance, the algorithm fails to adequately
capture the underlying patterns in the data because of its lack of complex-
ity. The bias is the difference between the predicted variable and the ground
truth, and the variance describes how sensitive the model is to small changes
in the input data. Consequently, the model is unable to learn the relation-
ship between the independent and target variables, leading to a model that
performs poorly on training and unseen data.

Underfitting, Figure 10c, can be detected visually when the training loss
decreases over time while the validation loss remains consistently high or
displays irregular spikes of relatively high values.

Increasing the complexity of the model is a typical solution to address
underfitting. For ANNs, this can be achieved by experimenting with adding
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more layers and increasing the number of units within each layer. Addition-
ally, increasing the number of training epochs and, if available, adding more
features to the input can provide the model with additional information. If
regularization techniques are applied, these could be decreased in strength.

Conversely, overfitting implies that the model learns the structure of the
input data too well. Overfitting means that potential noise or random in-
stabilities are considered meaningful patterns by the model, decreasing the
model’s ability to generalize to new unseen data where this exact pattern
does not exist. From a visual perspective, this scenario would present itself
with training loss that decreases over time, while validation loss decreases to
a point where it starts to increase again.

Since overfitting describes models that are low in bias and high in vari-
ance, regularization is a technique that increases the bias and decreases the
variance to obtain better generalization from the model. There are several
implementation strategies [46], and the ones used in this thesis are Batch
Normalization and L1 regression.

2.6.2 Test Data

Following the training phase, the test dataset is introduced as input for the
model to assess how it performs with new and unseen data. In the context of
this thesis, various methods are employed for evaluating the test data, each
offering additional insights into the model’s overall performance and further
enhancement.

2.6.2.1 Confusion Matrix
A confusion matrix is a typical method for describing how well a model
distinguishes between different class labels when dealing with a classification
problem [38]. The information is presented through the four components in
Figure 11 and represented in a tabular format, as shown in Table 2.
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Figure 11: Representation of a confusion matrix.

Table 2: Description of the compontents making up the confusion matrix in
Figure 11.

Component Description

True Positives (TP) Predicted class is positive when actual label is

positive

True Negatives (TN) Predicted class is negative when actual label is

negative

False Positives (FP) Predicted class is positive when actual label is

negative

False Negatives (FN) Predicted class is negative when actual label is

positive

Various performance metrics, including accuracy (ACC), recall (REC),
precision (PRE), and F1 score, can be calculated from the components of a
confusion matrix. Accuracy is computed by taking the sum of all correctly
predicted labels and dividing it by the sum of all predicted labels, presented
in Equation 4 [38]. One can compute the same metric through the error rate
(ERR) in Equation 3.

Given the imbalance in the data used in this thesis, it is essential to note
that accuracy can be misleading for evaluation [5]. If the model performs
well in classifying the majority class but poorly predicts the minority class,
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it could still achieve a high accuracy score. Accuracy as a metric will then fail
to provide a nuanced assessment of the overall performance. To address this
limitation, evaluating the False Positive Rate (FPR) and (TPR) can better
indicate the performance [38].

ERR =
FP + FN

FP + FN + T + TN
(3)

ACC =
TP + TN

FP + TN + FN + FP
= 1− ERR (4)

PRE =
TP

TP + FP
(5)

FPR =
FP

N
=

FP

TN + FP
(6)

TPR = REC =
TP

P
=

TP

FN + TP
(7)

In this thesis, the FPR would indicate the proportion of instances where
non-icing weather phenomena are incorrectly classified as occurrences of ic-
ing weather. A low FPR score suggests that the model seldom misclassifies
negative instances as positive, and overall, there are fewer false positive er-
rors.

On the other hand, TPR, also called recall, measures the model’s ability
to correctly identify actual instances of icing weather phenomena from the
entire set of recorded icing weather instances. The desired outcome of the
ANN is to identify freezing weather phenomena at airports, which could be
indicated by achieving a high TPR score that reflects the model’s ability to
identify the positive cases correctly. To this end, we also consider the F1
score:

F1 = 2
PRE ∗REC

PRE +REC
. (8)

The F1 score in Equation (8) combines the strengths of precision and recall,
offering a balanced measure by assessing the model’s performance on false
positives and false negatives [38]. With values ranging from one to zero,
a higher F1 core signifies better performance, reflecting a balance between
precision and recall. As mentioned in Section 2.6.1, this metric serves as a
way to evaluate the model during training and further applied during the
prediction phase for comparison.
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2.6.2.2 Receiver Operating Characteristic Curve
A Receiver Operating Characteristic (ROC) curve is a standard tool for
model evaluation [38, 21]. It plots the TPR against the FPR at various
thresholds for the specific classifier. The model is evaluated based on the
ROC curve by computing the Area Under the ROC Curve (AUC), result-
ing in a value between zero and one. A value around 0.5 indicates that the
model is just making random guesses, while an excellent model would achieve
a value above 0.9. A fair to good model falls within the range of 0.7 to 0.9
[29].

Figure 12: Visual representation of how a ROC curve could be plotted and how they differ
in performance evaluation [39].

2.6.2.3 Reliability Diagrams and Brier Score
A reliability diagram, often called a calibration curve, is another graphical
tool for evaluating probabilistic classification models. In the context of this
thesis, the ANN functions as a probabilistic classifier, predicting values be-
tween zero and one to represent the likelihood of icing weather occurrences
at specific times. Assessing the model’s calibration quality depends on how
accurately these predicted probabilities align with the observed frequency of
events [14]. The Brier score, closely related to the reliability diagram, serves
as a measure of the calibration performance of probabilistic forecasts, com-
monly used in meteorology [17, 22]. It estimates the accuracy of probability
forecasts, where a perfect forecast would yield a score of zero, while complete
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inaccuracy would result in one. An ideal score approaches zero, indicating
optimal performance.

3 Methodology

The Methodology section of this thesis provides a structured overview of the
research approach, surrounding data collection, model selection, implemen-
tation, and prediction methodologies. First, the Data subsection gives an
overview of the collection process, data quality assessment, and further fea-
ture selection. Subsequent sections cover Model Selection and Model Imple-
mentation and Development, also addressing issues such as over- and under-
fitting, regularization of the data, and model evaluation. The whole section
is rounded off by detailing the prediction stage, exploring predictive tech-
niques, examining instantaneous and future predictions, and finalizing them
by using ROC as an evaluation metric for the result.

3.1 Data

3.1.1 Collection of Data

The data utilized in this study was collected from two different sources, both
of which are part of MET’s databases. The target variable we want to predict
is the occurrence of the FZ in a METAR report, indicating the presence of
freezing weather. As for the independent variables, the second part of the
data consists of meteorological parameters with corresponding values aimed
at predicting the target variable.

3.1.1.1 Airports
This study employs data linked to the geographical locations of land-based
airports across Norway. The location of each specific airport, defined by
longitude and latitude coordinates, is derived from a PostgreSQL database at
MET, which contains historical METAR reports from all airports in Norway,
including offshore installations such as oil platforms and airports on Svalbard.
The number of airports in the final dataset, which is further discussed in
Section 3.1.4, is 54.
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3.1.1.2 METAR Reports
METAR reports serve as the ground truth in this study, also called the de-
pendent variable, as the variable we want to predict. These reports document
meteorological conditions observed at the airports included in the research.
The content of the collected historical METAR reports gives detailed in-
formation about past conditions. As mentioned in Section 2.1.1, they are
issued every 30 minutes, and in this case, at 20 minutes past the hour and
50 minutes to the hour.

The extraction process involved accessing a dedicated PostgreSQL database
at MET, specifically designed to store METAR reports. Data from January
1, 2021, until December 31, 2023, was easily extracted from the database. To
ensure the inclusion of exclusively Norwegian airports, identifiers beginning
with ’EN’ representing Europe Norway were specified. The extracted data
contains the METAR report, the time of issuance, the airport identifier, and
the airport location defined by longitude and latitude coordinates. Before
preprocessing the data, the total collection of archived METAR reports was
3,405,525. Notably, in terms of message issuance, Kristiansund (ENKB),
Kristiansand (ENCN), Sandefjord (ENTO), Hammerfest (ENHF), and Gar-
dermoen (ENGM) emerged as some of the most prominent airports, with
each contributing approximately 50,000 METARs each.

Analyzing the retrieved messages involves identifying instances containing
the abbreviation ”FZ,” indicative of freezing weather incidents. Incorporat-
ing this information into the query reveals that Namsos (ENNM), Garder-
moen (ENGM), Røros (ENRO), and Andøya (ENAN) are airports where
freezing weather is most frequently forecasted. Comparing the count of
METAR messages with FZ to the total METAR count yields the following
statistics presented in Table 3.

Table 3: Information about registered METAR messages and FZ registration
at specific airports from 2021-01-01 until 2023-12-31.

Airport Identifier Total METAR Total METAR with FZ
Namsos (ENNM) 35961 2324

Gardermoen (ENGM) 53059 1133
Røros (ENRO) 52357 623

Sandefjord, Torp (ENTO) 53056 569

The registered messages containing FZ account for 6 percent of the total
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registered messages for Namsos. The remaining three messages with FZ
account for 1-2 percent of the total.

As highlighted in Section 1.3.2, the issue of faulty data, mainly originating
from airports with auto-generated METAR reports, is a potential concern.
Auto-generated messages are known to contain inaccuracies and wrongly
forecast freezing weather events. In complement to the data outlined in
Table 3, an additional query is executed to assess the frequency of occurrences
where auto-generated METAR messages include the abbreviation FZ.

Table 4: Information about auto-generated METAR messages and FZ regis-
tration at specific airports from 2021-01-01 until 2023-12-31.

Airport Identifier Total AUTO METAR with FZ
Namsos (ENNM) 2225

Gardermoen (ENGM) 0
Røros (ENRO) 438

Sandefjord, Torp (ENTO) 205

At Gardermoen, there are no auto-generated METAR messages containing
FZ. However, in two of the three remaining airports, the number of auto-
generated METAR messages with FZ exceeds the manually forecasted count.
For Namsos, it accounts for almost all the instances. Further observation
shows that, when factoring in the geographical locations of the mentioned
airports, there is no indication that freezing weather incidents are more preva-
lent in one location than another based solely on registered messages.

Since the METAR reports are issued every 30 minutes, precisely at 20
minutes past and to the hour, adjustments to timestamps were necessary
to align them with the meteorological parameters’ whole-hourly timestamps.
The method for addressing this involved rounding off the timestamps for
issuance to the whole hour, which resulted in several reports with identical
timestamps. The first step in handling these duplicates was to create a
priority list of the available METAR types, with SPECI, COR, MANUAL,
and AUTO in their respective order. The data was then sorted based on this
priority list and the timestamp for issuance. Duplicates were removed by
retaining the first occurrence of each METAR type according to the sorted
list.
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3.1.1.3 Meteorological Parameters and Data Processing
The meteorological parameters are selected in cooperation with and follow-
ing discussions with meteorologists at MET. Collaborating with professionals
who deal with this daily ensures that the decision is grounded in solid in-
sights, further enhancing the foundation for the study and reliability of the
attempted forecasts and predictions presented later in this thesis.

Determining freezing weather involves analyzing various factors. While
a temperature reaching the freezing point is needed to cause the formation
of ice or frost and stands as an essential contributor, the interaction of ad-
ditional parameters is equally significant. These factors collectively cause
diverse scenarios of freezing weather. Table 5 presents all the chosen param-
eters extracted from MET’s databases, displaying the parameter name, unit,
and brief description.

The final dataset includes all of the parameters presented, with some mod-
ifications. Parameters with Kelvin as the unit, such as air temperature 0m,
air temperature 2m, air temperature pl 850, and air temperature pl 925, have
been converted to Celsius. Furthermore, the accumulated precipitation amount,
denoted by the parameter precipitaion amount acc, has been substituted
with a parameter representing the hourly calculated precipitation amount.
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Table 5: Extracted parameters from MEPS data.

Parameter Unit Description

air temperature 0m Kelvin Surface temperature (T0M)

air temperature 2m Kelvin Screen level temperature (T2M)

air temperature pl 850 Kelvin Temperature 1.5 km above sea level

air temperature pl 925 Kelvin Temperature 750-800m above sea level

relative humidity 2m Screen level relative humidity (RH2M)

precipitation amount acc kg/m² Accumulated total precipitation

x wind 10m m/s
Horizontal component of
wind 10m above sea level

x wind pl 850 m/s 1.5km above sea level

x wind pl 925 m/s 750-800m above sea level

y wind 10m m/s Meridional 10 metre wind (V10M)

y wind pl 850 m/s 1.5 km above sea level

y wind pl 925 m/s 750-800m above sea level

surface air pressure Pa Surface air pressure, height=0

air pressure at sea level Pa Mean Sea Level Pressure

fog area fraction % Ratio of fog coverage

liquid water content of surface snow kg/m² Snow Water Equivalent

The data extraction process involved accessing the databases at MET.
Data produced by the MEPS model is stored in a NetCDF (network Common
Data Form) format. This format can store multidimensional scientific data
and can contain multiple arrays of shape and size, making it optimal for
meteorological variables.

Each NetCDF file contains various parameters, all of which share the
standard dimensions time, x, and y, alongside additional descriptors like
height and pressure. A custom Python function was employed to traverse the
folder structure in the database and pinpoint the necessary files for extrac-
tion. This function enabled identifying and extracting the desired parameters
from 2021, 2022, and 2023. This process employed the registered location
for each airport, accessible within the same database as the METAR reports,
in longitude and latitude measurements. The extracted data corresponds to
the nearest coordinates with parameter values for each airport.

Due to the size of the extracted data and the time-consuming nature of
the process, this process was carried out individually for each month within
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each year. The extracted data, in turn, was saved in pickle files, a choice
made for the same practical reasons. Following this, the data underwent
further processing and conversion into Pandas format, subsequently saved as
CSV files, and finally concatenated to consolidate the dataset. This approach
facilitates storage in a two-dimensional format, optimizing accessibility and
efficiency for subsequent analysis and manipulation.

Observation of the extracted data revealed that certain periods and times-
tamps exhibited missing values for specific parameters. To address this, the
chosen approach was to use forward linear interpolation to address all in-
stances of missing data across all parameters. This method estimates and
fills the missing values by assuming a linear relationship between neighbor-
ing instances and utilizing the subsequent available data points in a forward
direction [38, 4].

3.1.2 Data Cleansing and Examination

The data examination process was conducted with a specific focus on freezing
weather occurrences and key meteorological parameters that could serve as
reliable indicators of these events. This involved a deeper exploration of
the relationship between temperature and observed freezing weather at each
airport. Figure 13 illustrates the highest and lowest registered temperatures
across all airports for registered METAR reports containing FZ. Specifically,
the highest and lowest recorded temperatures within these specifications were
5.68◦C and −28.51◦C, respectively. Based on these findings, all temperature
values above 6◦C were excluded from the final dataset. This decision to
remove unnecessary data points will streamline analysis and ensure the data
is better prepared for the models.
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Figure 13: A bar diagram of maximum and minimum registered temperatures for observed
freezing weather occurrences at each airport.

An analysis of the distribution of METAR reports containing freezing weather
indicators throughout the year revealed a notable contrast among the months,
as outlined in Table 6. Notably, due to higher temperatures, a decrease
in instances is naturally observed during May, June, and August, with no
reported occurrences in July. The information from these months was not
included in the final dataset to retain only the most suitable data.
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Table 6: Overview of the distribution of recorded FZ occurrences in METAR
reports during the period 2021-01-01 until 2023-12-31.

Month METAR containing FZ
January 1062
February 900
March 1034
April 403
May 84
June 12
July 0

August 10
September 49
October 307
November 758
December 1274

3.1.3 Data Manipulation

Following the process of cleaning and examining the data of the two extracted
datasets, a few steps remain before merging them into a final dataset and
initiating the implementation of the ANN.

The ground truth serves as the reference, which is compared to the pre-
dicted target variable from the model to further evaluate the model’s perfor-
mance. In this thesis, the information derived from the extracted METAR
data serves as the ground truth, specifically regarding the occurrence of icing
events at the locations of aerodromes.

The focal point of the ANN in this thesis is to predict the possibility of
icing at aerodrome locations. This dependent variable relies on the presence
or absence of the abbreviation ”FZ” in reported METARs. A boolean vari-
able is added in its separate column, flagging METAR messages that report
either freezing rain (FZRA), freezing drizzle (FZDZ), or freezing fog (FZFG).
These flags also include FZUP, indicating an undefined precipitation.

When predicting several timesteps ahead of the current one, the model
requires input data comprising information from the current timestep up to
the one just before the prediction horizon. For instance, if we aim to forecast
6 hours into the future, the input dataset must encompass observations from
the current timestep (t0) and subsequent timesteps up to t0 + 5. To prepare
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the dataset for this type of prediction, each parameter was extended with ex-
tra columns representing values for n timesteps ahead of the current observa-
tion and the values for each parameter. Using air temperature 0m as an ex-
ample, the original parameter value at t0 serves as the observation at this mo-
ment, with additional columns appended to account for t0+1, t0+2, ..., t0+5.

The meteorological parameters are scaled through standardization before
feeding this data to the models, ensuring uniform properties and distribution
with a mean of zero and a standard deviation of one [38].

3.1.4 Final Dataset

After preprocessing, examining, and manipulating the data, the final dataset
comprises 555313 rows × 126 columns. It includes meteorological parameters
and METAR reports for the location of 54 unique airports from January 1,
2021, until December 31, 2023. Among these instances, the total number of
freezing weather observed and documented in METAR reports, denoted by
the FZ abbreviation, is 5,313.

3.2 Model Implementation and Development

Implementing and developing the ANN model for this project is completed
through continuous testing and refinement of hyperparameters to achieve op-
timal performance. This iterative optimization process encompasses a multi-
faced exploration, including adjusting various architectural components and
applying essential regularization techniques to balance complexity and per-
formance.

Exploring different configurations of hidden layers and the number of
units within each layer and systematically evaluating the learning curves
from the training and validation data to indicate the model’s status has
been the most significant source of consistently improving the model little
by little. Downsampling the majority class in the training data resulted in
a relatively small dataset for training and validation. The reduced dataset
enabled swift training iterations, allowing for efficient exploration of various
model configurations and experimentation with different hyperparameters.
However, the downside of having a restricted amount of training data is that
it limits the availability of sufficient information for the model to learn from.
This will compromise the model’s ability to capture the full complexity of
the underlying patterns in the data.

33



The following section will present the architecture of the final network,
representing the completion of efforts within the available time constraints.
This composition reflects the structure and configurations that yielded the
most promising results during the training and testing.

3.2.1 Model Complexity and Architecture

Refining the ANN persisted until additional hyperparameter tuning ceased
to produce noticeable improvements, signifying the conclusion of further ar-
chitectural refinement. Figure 14 presents the final architecture of the ANN
model.

Figure 14: An overview of the final architecture of the ANN.

Each unique categorical airport identifier is assigned a numerical airport
ID. Within the model’s input processing stage, an embedding layer first con-
verts the airport ID into a predetermined fixed-length numerical represen-
tation in vector form [38]. This transformation enhances the ML model’s
efficiency in handling categorical data. The embedded airport IDs are con-
catenated with the other inputs: the meteorological parameters and corre-
sponding observations of icing weather occurrence.
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The model contains two hidden layers alongside one input and output
layer. Each layer depicted in Figure 14 is dense, indicating that every neuron
in one layer connects to every neuron in the subsequent layer. Fewer hidden
layers proved insufficient for effective information processing, while additional
layers introduced needless complexity, even with heightened regularization
strength. 64 units allocated to each layer achieved optimal performance.
This was the sweet spot for balancing the model between capturing enough
of the data patterns and avoiding excessive complexity, which could lead to
overfitting. Alterations to the number of units caused similar outcomes to
adjustments in hidden layers.

In addition to maintaining an identical number of units, each layer, ex-
cluding the output layer, sticks to the exact specifications concerning the
initializer, regularizer, and activation function. In light of the binary classifi-
cation task, the output layer is structured with a single unit and employs the
Sigmoid activation function. Section 2.5.2 elaborates on the motivation be-
hind these choices, providing insights into the selection process for activation
functions.

The model architecture applies batch normalization between each layer.
Initially, the testing rounds only featured dropout between the layers. How-
ever, performance improved upon experimenting with a combination of dropout
and batch normalization. In the end, the best results were achieved solely
by implementing batch normalization.

When compiling the model, a learning rate of 0.001 is assigned to the
Adam optimization algorithm, employing binary crossentropy as the loss
function and the F1 score as a metric. Increasing or decreasing the learning
rate did not improve the model’s performance. Additionally, early stopping
is initialized, configuring it to monitor the validation set with patience of ten
epochs. This setup ensures that training will halt if there is no improvement
in performance for ten consecutive epochs.

The batch size is set to 32, and the number of epochs is 100. With early
stopping implemented, training will cease when no further improvement is
noticeable.

3.3 Probabilistic Classifier

Once the model has been defined, compiled, and fitted, it transitions into
the training phase. Figure 15 provides an overview of the data structure
encircling the meteorological parameters and how it is employed as input
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Table 7: Overview of the hyperparameters and corresponding values.

Hyperparameter Value
L1 Regularization 0.002

Adam 0.001
Batch Size 32
Epochs 100

for the model depending on the predictive task. These features are then
concatenated with the embedded airport ID and corresponding observation
of icing weather occurrences before it is ready for the model. See Section
3.2.1 and Figure 14 for more information.

The dataset is divided into training and test sets with an 80/20 ratio.
When fitting the model, a validation split of 20% from the training set is
specified to evaluate performance during this phase. The F1 score is also
implemented as a metric alongside the training and validation loss.
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Figure 15: Detailed overview of how the extracted data is utilized in the prediction process,
both as instantaneous prediction and predicting n timesteps ahead.



Table 8: Overview of the different datasets with identifiers for easier refer-
encing.

Dataset Identifier
1% of majority class D1
3.6% of majority class D2

All AUTO metartypes removed and classes balanced D3

Table 9: Overview of the different predictive classifiers and datasets used
together with the specific input.

Model Prediction Dataset Details Model Input
1 Instantaneous D1, D2, D3 Current

timestep
Embedded airport ID,
and meteorological
parameters.

2 1H ahead D1, D2, D3 One timestep Embedded airport ID,
meteorological param-
eters and FZ observa-
tions for t0, t(0+1)

3 2H ahead D1, D2 Two
timesteps

Embedded airport
ID, meteorological
parameters and FZ
observations for
t0, t(0+1), t(0+2)

4 3H ahead D1, D2 Three
timesteps

Embedded airport
ID, meteorological
parameters and FZ
observations for
t0, t(0+1), t(0+2), t(0+3)

5 4H ahead D1, D2 Four
timesteps

Embedded airport
ID, meteorological
parameters and FZ
observations for
t0, t(0+1), ..., t(0+4)

6 5H ahead D1, D2 Five
timesteps

Embedded airport
ID, meteorological
parameters and FZ
observations for
t0, t(0+1), ..., t(0+5)

7 Persistence D1, D2, D3 Current
timestep

Embedded airtport ID



After identifying the architecture and parameter values that produced the
most promising results, consistency was maintained by keeping the founda-
tional parameters for each model while exploring various datasets and inputs.
Table 5 explains the different datasets, while Table 7 provides an overview
of the different types of prediction, what datasets have been used, and the
specific inputs utilized.

(a) (b)

(c) (d)

Figure 16: Training and validation plots showcasing four different data inputs.

Figure 16 illustrates four training and validation plots with three different
datasets and four distinct types of inputs. In plots Figure 16a and Figure
16c, the same dataset, containing 1% of the majority class, is utilized for
training. The plot in Figure 16a involves instantaneous prediction, whereas
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the plot in Figure 16c predicts one timestep. In Figure 16b, the dataset is
modified by removing the AUTO metartype, further balancing the majority
and minority class with a difference of 300 instances more of the majority.
Finally, Figure 16d illustrates the prediction of one timestep using a dataset
containing 3.3% of the majority class.

The remaining models have not been included as their plots closely re-
semble Figure 16c for the dataset with 1% of the majority class and Figure
16d for the dataset with 3.3% of the majority class.

The number of epochs displayed on the x-axis varies depending on when
early stopping has interfered with and stopped the training. An ideal plot
showcasing a well-fit model would exhibit both training and validation loss
decreasing concurrently and plateauing where the validation can be higher
than the training loss. This behavior is observable in Figure 16a.

In Figures 16b and 16c, a similar pattern emerges, with both training and
validation loss decreasing before leveling off. However, the model performs
notably better on the training data than the validation data, suggesting
a reduced ability to generalize to new and unseen data. This observation
suggests that the model is overfitting slightly.

These results arise from the final version of the model architecture and
hyperparameter values that offer the best overall performance after the iter-
ative phase of training and hyperparameter tuning. Figure 14 and Table 7
contain the details about the final architecture and hyperparameter values
used.

3.4 Code

The code used for the work and experiments in this thesis is available for
reference, ensuring reproducibility of the models presented. Additionally,
high-resolution images of the figures and plots included throughout this thesis
are provided for clarity and detailed examination.
https://github.com/tomaloki/2024_msc_tonje_metar

3.5 Usage of Additional Tools in the Thesis Writing

In crafting this thesis, the author has employed various tools to enhance the
flow and diversity of the language. Given that English is the author’s second
language, additional support and guidance were sought through specialized
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AI-based software, notably Grammarly1 and ChatGPT2. These tools have
helped identify grammatical errors, enhance formulation, and suggest alter-
native phrasings, contributing to the overall clarity and effectiveness of the
writing.

The majority of figures presented in this thesis were created by the au-
thor using a software program called Lucidchart3. This tool facilitated the
visualization of complex concepts, data, and architecture, enabling better
explanation and representation throughout the thesis.

4 Results

This section presents the outcomes of the model evaluation following the
completion of the final test phase and analyzes the final results and predic-
tions. The test dataset, comprising 20% of the total data obtained through
the test and training split, remains unaltered, unlike the training data, and
maintains its inherent imbalances.

An overview of the dataset reveals 111,063 instances, with a mere 1070
freezing weather events observed. The small size of the minority class high-
lights the significant skewness in the data, posing a notable challenge in
accurately assessing the model’s efficiency in predicting freezing weather con-
ditions, especially given the small size of the better-balanced training set.

It is important to note that dataset D3, see Table 6 for reference, has
been excluded from training in the temporal models. However, it has been
retained for comparison in the persistence and instantaneous models. The
removal of all AUTO METAR reports resulted in an even smaller portion
of the minority class compared to the majority. Considering the size of the
data and the time constraints, the decision was made to exclude dataset D3
from training the temporal models.

4.1 Prediction

This study categorizes the predictions into two subsections. The first method,
instantaneous, predicts the likelihood of freezing weather occurring at the
current timestep. The second method involves predicting freezing weather

1https://www.grammarly.com/
2https://www.chatgpt.com/
3https://www.lucidchart.com/
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occurrences n timesteps ahead, aiming to provide accurate predictions of
freezing weather possibility in the near future.

A persistence model serves as an additional baseline and is trained and
evaluated differently from conventional models. Instead of training to learn
patterns and make predictions, the persistence model remembers the last
observed target value and assumes that the current condition will persist
into the future [35, 32]. For instance, if we observe icing weather today, the
persistence model assumes the exact condition will occur in the following
defined timestep.

The persistence models have undergone testing using the datasets detailed
in Table 8. All three models, presented in Figure 17, demonstrate relatively
high values upon examining the ROC curve and corresponding AUC scores.
However, the AUC-PR scores reside on the lower end of the scale. A desirable
plot would feature a larger area under the curve for the precision-recall plot,
resulting from high precision and recall.
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Figure 17: Persistence model for dataset D1, D2, and D3 and its resulting ROC Curve
and Precision-Recall Curve with corresponding AUC and AUC-PR scores.

Precision tends to be higher for all three models at lower recall values.
However, there is a notable drop as recall increases, particularly evident
beyond a recall of 0.2 for models 1 and 2. Model 3 experiences an immediate
decline in precision. These observations are further detailed in Table 10 which
presents the precision, recall, and F1 scores across the thresholds 0.1, 0.4,
and 0.8, which will be used throughout the evaluation of all models. Models
2 and 3 had notably no probability values above the 0.8 threshold.
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Table 10: Overview of precision, recall, and F1 values for the three persistence
models at three different thresholds.

Model Threshold Precision Recall F1
Persistence Model 1 0.1 0.01 0.99 0.02
Persistence Model 1 0.4 0.02 0.74 0.05
Persistence Model 1 0.8 0.03 0.54 0.06
Persistence Model 2 0.1 0.03 0.62 0.05
Persistence Model 2 0.4 0.11 0.21 0.15
Persistence Model 2 0.8 - - -
Persistence Model 3 0.1 0.01 0.83 0.02
Persistence Model 3 0.4 0.03 0.37 0.06
Persistence Model 3 0.8 - - -

The low AUC score in the precision-recall plot underscores that these
models were trained solely on observed data without additional parameters
as input features, implying there is no additional data for the models to
learn from. These results will serve as a baseline for comparison, with the
expectation that the remaining trained models will ideally surpass their per-
formance.

4.1.1 Instantenous Model

The instantaneous model predicts the probability associated with the current
temporal state. Unlike prognostic models that conclude into the future, it
limits its analysis solely to the immediate present. As such, the outputs of an
instantaneous model could serve as a verification or indication of the forecast
for the specific hour and offer insights into the immediate state of affairs.

Table 9 presents the datasets used alongside the selected input for the
model. Notably, these three models are only provided with values for the
meteorological parameters at the specific timestamps and the embedded air-
port ID as input and independent variables. In contrast, the observational
METAR data, serving as the target variable, is solely used as the variable
we want to predict.
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Figure 18: Instantaneous model for dataset D1, D2, and D3 and its resulting ROC Curve
and Precision-Recall Curve with corresponding AUC and AUC-PR scores.

All three models, plots depicted in Figure 18, deliver high values for
the ROC AUC, with two at or exceeding 0.90. However, the AUC-PR val-
ues are notably lower, ranging between 0.12 and 0.14, indicating a subop-
timal precision-recall trade-off. The models struggle to maintain precision
at higher recall thresholds, where the challenge is accurately predicting true
positives. Consequently, while these models successfully capture positive in-
stances, they do so at the expense of increased false positives, where negative
cases are incorrectly classified as positive.
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Table 11: Overview of precision, recall, and F1 values for the three instan-
taneous models at three different thresholds.

Model Threshold Precision Recall F1
Instantaneous Model 1 0.1 0.02 0.97 0.04
Instantaneous Model 1 0.4 0.04 0.84 0.08
Instantaneous Model 1 0.8 0.14 0.45 0.22
Instantaneous Model 2 0.1 0.04 0.73 0.08
Instantaneous Model 2 0.4 0.16 0.30 0.21
Instantaneous Model 2 0.8 0.57 0 0.01
Instantaneous Model 3 0.1 0.01 0.84 0.02
Instantaneous Model 3 0.4 0.03 0.40 0.06
Instantaneous Model 3 0.8 - - -

All three models, plots depicted in Figure 18, deliver high values for
the ROC AUC, with two at or exceeding 0.90. However, the AUC-PR val-
ues are notably lower, ranging between 0.12 and 0.14, indicating a subop-
timal precision-recall trade-off. The models struggle to maintain precision
at higher recall thresholds, where the challenge is accurately predicting true
positives. Consequently, while these models successfully capture positive in-
stances, they do so at the expense of increased false positives, where negative
cases are incorrectly classified as positive.

This observation is reflected in the precision, recall, and F1 scores for
the three selected thresholds in Table 9. This trade-off highlights that the
model struggles to accurately identify positive instances while minimizing
false positives.
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(a) (b)

Figure 19: Confusion matrix showing the predictions from the Instantaneous models 1
and 2 with a threshold >= 0.8.

One interesting observation in Table 9 pertains to the values for Model 2
at a threshold of 0.8. The resulting recall value is 0, but the precision is 0.57.
To explain these values, we need to observe the resulting confusion matrix
in Figure 19b.

Using the formulas for precision and recall from Equations (5) and (7) in
Section 2.6.2.1, we have the following:

PRE =
TP

TP + FP
=

4

4 + 3
= 0.57 (9)

REC =
TP

P
=

TP

FN + TP
=

4

1066 + 4
= 0.0037 (10)

Because of the high imbalance between false negatives and true positives, the
recall value is reduced to near zero and is rounded off.

Figure 19a shows a confusion matrix of Model 1 at the same threshold
for comparison. This model achieves recall and precision values of 0.14 and
0.45, respectively. Compared to Model 2, Model 1 has a significantly lower
number of false negatives but a higher count of true positives. Model 1 also
has a higher number of false positives.
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4.1.2 Temporal Model

The temporal models forecast the probability of freezing weather occurrences
from 1 to 5 timesteps ahead, where one timestep equals one hour. Individual
models are trained for each specified timestep, and the input features are
adjusted accordingly to accommodate the desired prediction horizon. Table
9 in Section 3.3, presents a detailed overview of the input configurations for
each temporal model.

The results obtained from the models trained on dataset D1 exhibit di-
verse performance levels across various timesteps and thresholds. Analysis of
the plots alongside the precision, recall, and F1 values in Table 12 illustrates
a spectrum of effectiveness in predicting positive instances while concurrently
minimizing false positives.

Figure 20: ROC and Precision-Recall plot of the temporal model trained on dataset D1.
In Table 6 this includes Model 2-6.
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To better illustrate the witnessed performance, we can compare the re-
sults in Table 12 with Tables 10 and 11. With the temporal models, there
are consistently better precision values and an increased balance between
precision and recall values. The overall F1 scores are higher, underlining a
better balance between these metrics.

Table 12: Overview of precision, recall, and F1 values for the instantaneous
model trained with dataset D1.

Model Dataset Threshold Precision Recall F1
t0 + 1 D1 0.1 0.37 0.55 0.44
t0 + 2 D1 0.1 0.27 0.47 0.33
t0 + 3 D1 0.1 0.25 0.35 0.29
t0 + 4 D1 0.1 0.23 0.32 0.27
t0 + 5 D1 0.1 0.13 0.36 0.19

t0 + 1 D1 0.4 0.62 0.41 0.50

t0 + 2 D1 0.4 0.64 0.22 0.33

t0 + 3 D1 0.4 0.60 0.19 0.29
t0 + 4 D1 0.4 0.58 0.15 0.23
t0 + 5 D1 0.4 0.38 0.15 0.21
t0 + 1 D1 0.8 0.83 0.09 0.16
t0 + 2 D1 0.8 0.90 0.02 0.03
t0 + 3 D1 0.8 - - -
t0 + 4 D1 0.8 1.00 0.01 0.02
t0 + 5 D1 0.8 - - -

As the prediction horizon extends across the five models forecasting for
different timesteps, model performance varies noticeably. The trend here is
diminishing precision and recall values, where the model struggles more to
predict positive instances as the forecast horizon lengthens.

In the ROC plot, an optimal model typically exhibits a curve closer to
the top-left corner, suggesting outstanding discriminatory ability. Achieving
a higher TPR before the curve deviates from the y-axis signifies that the
model is better at discriminating between positive and negative instances. As
we extend the prediction horizon, this deviation occurs earlier, underscoring
the model’s ability to anticipate outcomes over longer timeframes.

Although all five models yield AUC scores surpassing 0.80, with the high-
est at 0.87, caution is necessary due to the class imbalance in the test data.
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High AUC scores may obscure performance issues, particularly concerning
the minority class, where the model may struggle despite accurately classi-
fying the majority. The precision-recall curve is an important addition here,
providing more insights into the performance of the models across different
thresholds, particularly in scenarios with imbalanced data.

The model for t0+1, achieving an AUC of 0.86, demonstrates a robust dis-
criminatory power in distinguishing between positive and negative instances.
However, with an AUC-PR of 0.42, it only exhibits moderate performance
in capturing true positives without introducing too many false positives.

Considering the four remaining models showcasing an AUC score exceed-
ing 0.80, a notable decline in AUC-PR is evident for all remaining timesteps.

Figure 21: ROC and Precision-Recall plot of the temporal model trained on dataset D2.
In Table 6 this includes Model 2-6.

Figure 21 presents the performance of the five temporal models trained
on dataset D2, aimed at investigating potential improvements with a dataset
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featuring a higher proportion of the majority class. While there is minimal
difference between the AUC scores for these models compared to dataset D1,
models t0 + 1 and t0 + 2 reveal slightly elevated values. The AUC-PR scores
register marginal decreases across all models. Upon examining the precision,
recall, and F1 values in Table 13, the models demonstrate similar behavior
to those trained on dataset D1. Both groups of models achieve their most
optimal results with a threshold of 0.4.

Table 13: Overview of precision, recall, and F1 values for the instantaneous
model trained with dataset D2.

Model Dataset Threshold Precision Recall F1

t0 + 1 D2 0.1 0.50 0.53 0.51
t0 + 2 D2 0.1 0.41 0.37 0.39
t0 + 3 D2 0.1 0.30 0.32 0.32
t0 + 4 D2 0.1 0.20 0.32 0.25
t0 + 5 D2 0.1 0.19 0.27 0.22

t0 + 1 D2 0.4 0.57 0.44 0.50

t0 + 2 D2 0.4 0.59 0.24 0.34
t0 + 3 D2 0.4 0.60 0.14 0.23
t0 + 4 D2 0.4 0.55 0.12 0.20
t0 + 5 D2 0.4 0.46 0.11 0.18
t0 + 1 D2 0.8 1.00 0.00 0.01
t0 + 2 D2 0.8 0.69 0.01 0.02
t0 + 3 D2 0.8 1.00 0.00 0.01
t0 + 4 D2 0.8 0.67 0.00 0.00
t0 + 5 D2 0.8 0.76 0.01 0.03
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Table 14: Overview of the AUC and AUC-PR scores for all models for dataset
D1 and D2.

Model Dataset AUC AUC-PR Brier
t0 + 1 D1 0.86 0.42 0.0065
t0 + 2 D1 0.85 0.30 0.0078
t0 + 3 D1 0.84 0.25 0.0077
t0 + 4 D1 0.83 0.22 0.0084
t0 + 5 D1 0.80 0.16 0.0093
t0 + 1 D2 0.87 0.40 0.0067
t0 + 2 D2 0.86 0.28 0.0078
t0 + 3 D2 0.82 0.22 0.0079
t0 + 4 D2 0.82 0.18 0.0086
t0 + 5 D2 0.81 0.16 0.0089

To complement model performance evaluation, we examine the calibra-
tion of the probabilistic classifiers using the calibration curve in Figure 22
and the Brier scores in Table 14.

A well-calibrated model would have points along the 45-degree diagonal
line, represented by x = y. In predicting freezing weather occurrences, this
alignment indicates that the model’s estimated probabilities accurately re-
flect the actual likelihood of such events, mirroring the observed occurrence
rates from the data.

For datasets D1 and D2, the Brier score is optimally low across all models,
with D1 models showing slightly better performance. Observing the calibra-
tion plots, it becomes apparent that models trained on D1 exhibit smoother
and less broken trends than those trained on D2. Notably, models t0 + 2,
t0 + 3, and t0 + 4 for D1 demonstrate tighter adherence to the perfectly
calibrated line, particularly up to threshold values of 0.4 for both mean pre-
dicted probability and the fraction of positives. The plots for D2 models
display more apparent changes, indicative of instances of boht under- and
overconfidence.
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Figure 22: Calibration curves for all temporal models trained on dataset D1 and D2.

5 Discussion

The ML models developed and evaluated in this thesis aimed to explore the
viability of predicting icing weather occurrences at airports. Leveraging input
data from an NWP model and real-time observations at airports through reg-
istered METAR reports formed the basis of model training and testing. The
overarching goal was to assess whether these classifiers could provide valuable
and reliable probabilities, possibly supporting meteorologists in generating
METAR reports.

This section will discuss and analyze the results of this process, empha-
sizing the promising insights obtained from the study. We will revisit the
limitations outlined in the introduction, discussing potential challenges, po-
tential areas for enhancement, and reflections on alternative approaches that
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could have been pursued.
The expectations for the models were varied, as the dataset underwent

significant downsampling of the majority class to achieve balance, thereby
providing the model with a more robust foundation for generalization be-
tween negative and positive instances. Some positive side effects of having a
small dataset are faster training, facilitating efficient hyperparameter tuning,
and enabling exploration of various architectures and hyperparameter values
[41]. It also prevents the model from getting too complex, where keeping
the number of layers and units relatively low resulted in lower indications of
overfitting and better performance on the validation set.

The results obtained from the temporal models demonstrate the effi-
cacy of incorporating multi-timestep meteorological data development and
METAR report observations. The most significant improvements are ob-
served in the shorter time horizons, as more insecurity builds up as the
timesteps move further away from t0. Nevertheless, improvements are ev-
ident across all timesteps compared to the instantaneous and persistence
models.

The difference in performance between the temporal models for datasets
D1 and D2 is marginal, and determining which outcome is more optimal
depends on the intended outcome. Considering the thesis objective, priori-
tizing the reduction of false positives emerges as a desirable goal. Precision
takes precedence over recall in this scenario, emphasizing the importance of
the model’s ability to capture freezing weather instances confidently. This
prioritization is particularly relevant for imbalanced datasets, where positive
instances are scarce, necessitating accurate prediction and capture.

Conversely, minimizing false negatives is also in focus. Incorrectly classi-
fying instances of icing weather as negative could lead to overlooking critical
weather conditions. Thus, enhancing recall is necessary. It follows that there
often is a trade-off between the two, where elevating the performance of one
impacts the other. Another approach is to opt for a balance between the
two.

Analysis of the data presented in Tables 12 and 13 reveals a delicate bal-
ance between precision and recall across all models and datasets. The most
favorable outcomes are consistently achieved when observing the resulting
values for a threshold of 0.4. Examination of dataset D1 at threshold 0.1
shows that recall values surpass precision. In contrast, for dataset D2, pre-
cision outperforms recall in models t0 + 1 and t0 + 2, with a slight decline
observed in the following timesteps.
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(a) (b)

(c) (d)

Figure 23: Confusion matrix for models t0 + 1 and t0 + 2 for datasets D1 and D2 at
thresholds 0.1 and 0.4.

Figure 23 presents further insights into the difference between precision
and recall for datasets D1 and D2, with the resulting confusion matrices
for models t0 + 1 and t0 + 2 across both datasets at thresholds 0.1 and 0.4.
For dataset D1 at threshold 0.1, depicted in Figure 23a recall values exceed
precision, which is evident from the confusion matrix showing more false
positives than true positives. Contrarily, false positives are markedly lower
for the same model with dataset D2 at the same threshold, showcased in
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Figure 23b.
When the threshold is increased to 0.4, both models exhibit a higher

number of true positives over false positives, which is also reflected in the
elevated precision values. Although the D2 dataset delivers a slightly higher
number of false positives, it has fewer false negatives than D1.

(a) (b)

(c) (d)

Figure 24: Confusion matrix for models t0 + 4 and t0 + 5 for datasets D1 and D2 at
threshold 0.4.

As discussed earlier in this section, extending the prediction horizon with
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additional timesteps introduces heightened uncertainty. With each increment
in timesteps, there is a corresponding increase in false positives and false
negatives, along with a decrease in true positives. Despite these challenges,
the models still manage to capture positive instances. In Figure 24, the
models t0 + 4 and t0 + 5 are represented with their respective confusion
matrices for datasets D1 and D2 at a threshold of 0.4. Particularly for
dataset D2 and model t0 + 4 compared to t0 + 5, Figure 24b and 24d, the
transition from timestep four to five shows minimal fluctuations in prediction
values, indicating the model’s resilience in maintaining accuracy despite an
expanded prediction horizon.

Revisiting the question about which dataset performs better after evaluat-
ing the results, the temporal models trained on dataset D1 provide marginally
better performance. The overall difference in resulting values for AUC, AUC-
PR, and Brier scores alongside the precision, recall, and F1 is slight but, as
stated, slightly better for the D1 dataset.

The distinction between datasets D1 and D2 is the ratio of instances be-
longing to the majority class. Dataset D1 exhibits a more balanced distribu-
tion between the minority and majority classes, providing a slight advantage.
This observation is consistent with the inherent challenges of class imbalance
in ML and DL [41, 2]. Furthermore, the small size of the dataset aggravates
performance limitations.

The skewed class proportion is one of the highlighted limitations of this
study, introduced in Section 1.3.2. Downsampling the data, as performed in
this study, leads to a considerable loss of information. Upsampling the data is
an alternative approach to tackling the skewness in the data [27]. Such meth-
ods can involve duplicating existing data points or employing techniques such
as the Synthetic Minority Over-sampling Technique (SMOTE), which gen-
erates new synthetic data points based on the existing ones [11]. Combining
the downsampling of the majority class with the upsampling of the minority
class could potentially enhance the model’s performance by augmenting the
training data.

The calibration curves depicted in 22, alongside the Brier scores detailed
in Table 14, affirm the temporal models’ reliability. A model’s calibration
refers to the alignment between its predicted probabilities and the actual
outcomes. A well-calibrated model should accurately reflect the likelihood
of events occurring. For instance, if the model predicts an 80% chance of
icing weather in the next hour, the forecast is expected to match reality
approximately 80% of the time. The results demonstrate a consistency be-
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tween the models’ predictions and observed outcomes, further indicating a
trustworthiness of the produced information.

Another notable limitation highlighted in Section 1.3.2 is the AUTO-
generated METAR reports. These reports are often inaccurate when fore-
casting icing weather occurrences, and the AUTOMETAR reports containing
FZ can almost be considered false positives. An approach to address this was
to exclude these instances as a whole, which resulted in dataset D3, lower
than half the size of D1. Because of that, in addition to the time constraint,
it was only included in this thesis for training and testing in the persistence
and instantaneous models for comparison. There were experiments with D3
and temporal models, but there was no evident or drastic change in the
performance. An optimal approach here would be to upsample the data.

6 Conclusions

The objective of this thesis revolves around exploring the feasibility of em-
ploying ML techniques to predict icing weather events at airports. By lever-
aging input data derived from NWP models and real-time observations ex-
tracted from METAR reports, this study sought to assess the efficacy of
the developed ML models and their potential implications for meteorology
and aviation safety. Comprehensive evaluation and analysis have provided a
better understanding and insight into the performance of these models, offer-
ing valuable and essential perspectives on their role in enhancing predictive
capabilities in the field.

The motivation behind this work is to develop tools that can complement
and validate meteorologists’ efforts, particularly in the form of METAR re-
ports. Integrating ML methodologies with human expertise aims to stream-
line this process, enhancing efficiency and reliability in weather forecasting
endeavors.

The findings discussed in Section 5 demonstrate that the developed ML
models exhibit promising abilities in forecasting icing weather events, with
notable improvements observed in the temporal models’ reliability and accu-
racy. Performing the training process with mainly two datasets, D1 and D2,
where the primary difference was the size of the majority class, proposed the
possibility of evaluating the effect of class imbalance and observed perfor-
mance. Even with the resulting datasets being significantly smaller than the
original and a loss of information through downsampling, the models demon-
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strate their capability to deliver valuable and precise predictions, particularly
evident when tested with a dataset that retained the original imbalance.

By integrating multi-timestep meteorological data and real-time observa-
tions in the input during training, these models delivered improved predictive
capabilities compared to the persistence and instantaneous models. While
there is an observed decrease in accuracy as the prediction horizon extends,
it is essential to highlight that the models maintain the ability to accurately
predict positive instances at four and five time steps ahead, as presented in
Figure 23.

Building on the achievements of the study, several ideas for future research
and potential approaches come into focus.

One potential approach, initially considered for inclusion in this thesis,
was to explore whether incorporating meteorological data from a specified
grid surrounding the airport could offer additional insights into the factors
contributing to icing weather occurrences. Expanding the data coverage
to encompass a larger geographical area, with a 10-30 km radius around
the airport, would provide the model with more extensive training data. It
could enhance the model’s ability to make predictions by providing a stronger
foundation to understand better the factors that lead to icing weather events.

Exploring alternative strategies to increase the volume of data is essen-
tial. These methods could involve extending the period from which data is
collected or employing a combination of up- and downsampling techniques.
By expanding the dataset, the models can discover hidden patterns more
efficiently and gain more insights from the data. As the present study was
data-driven by design and nature, future collaboration with domain experts
in aviation meteorology can offer deeper insights and enhance the develop-
ment and evaluation of the models. This could include incorporating the
nuanced relationship between the different meteorological parameters and
the processes leading to icing weather in the model design.
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Figures of neural networks adapted from https://tikz.net/neural_

networks/.

Figure 1: Figure created with dummy METAR data, selfmade with Lu-
cidChart.
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