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Samandrag

I energiforsyningskjeder vert forsyninga av gass og væske nøye overvaka ved m̊alestasjonar.

Allokering av ein del av forsyninga fr̊a dei forskjellige energikjeldene krevjar ein

forst̊aing av usikkerheita i m̊alingane utført ved kvar m̊alestasjon, samt forst̊aing av

korleis uvissheit forplantar seg og korrelerer i systemet som ein heilskap. For å f̊a

eit klart bilete av forsyninga i systemet, tek vi i bruk matematiske modellar som

beskriver systemets eigenskapar som til dømes systemets energi. Ein uvisseanalyse

utført p̊a desse modellane aleine gir ikkje ei tilstrekkeleg forst̊aing av dei uvisse

parameterane si p̊averknad p̊a modellens output. Det er essensielt å supplere uvis-

seanalysen med ei sensitivitetsanalyse, da den kvantifiserer sensitiviteten kvar av dei

uvisse parameterane har p̊a modellens output.

Denne avhandlinga understrekar verdia av ei sensitivitetsanalyse ved å studere ei

spesifikk casestudie best̊aande av fire utg̊aver av ei syntetisk problemstilling, som

undersøkjer eit system fr̊a ei hydrogenforsyningskjede. Systemets oppsett best̊ar av

to gasstraumar, A og B, som kjem fr̊a to forskjellige energikjelder, og som vert

kombinert i ein uspesifisert prosess til ein enkel gasstraum, C. Modellen kvantifis-

erer den relative usikkerheita i den allokerte energien til straum A. Casane varierer

i størrelsen p̊a uvissheita til parameterane og staumningshastigheita til straum A.

Hovudm̊alet er å evaluere den auka innsikta og fordelane ved å utføre ei sensitivitet-

sanalyse ved å samanlikne dei to kategoriane innan feltet: lokal og global. Samt å

utforske nokre metodar innan den sistnemnte kategorien, global sensitivitets Analyse

(GSA). Desse metodane er Sobol-metoden, Fourier Amplitude Sensitivitets testen

(FAST) og Delta moment-independent metoden. I den lokal analyse vert one-at-a-

time metoden anvendt.

Funna favoriserer GSA, meir spesifikt Delta moment-independent metoden, da den

gir ei grundigare evaluering av dei uvisse parameterane si p̊averknad p̊a output-

fordelinga. Sobol-metoden vil likevel være å føretrekkje om ein ynskjer å undersøkje

interaksjonane mellom parameterane, da denne gir m̊al p̊a sensitiviteten til desse

interaksjonane. Den største p̊averknaden p̊a output-variabiliteten kjem fr̊a trykket

til kjeldestraumen B og den kombinerte straumen C, for b̊ade tilfella med l̊ag og

høg straumningshastigheit. Staumningshastigheita til straum B har ogs̊a ei bety-

deleg innverknad n̊ar staumningshastigheita til straum A er l̊ag. Noko som skiftar



ii

til ein betydeleg innverknad i staumningshastigheita til straum A n̊ar staumning-

shastigheta til straum A er høg. Hydrogengassen fr̊a B sin reinleik og temperatu-

rane til kvar av straumane viser seg derimot til å ha ein ubetydeleg innverknad p̊a

modellens output. Denne avhandlinga gir innsikt i bruken av sensitivitetsanalyse

p̊a matematiske modellar som eit viktig verktøy for å vurdere innverknaden til dei

uvisse parameterane til modellen. Det inkluderer ogs̊a ei omfattande gjennomgang

av val av analyse metode for ei gitt problemstilling.





Abstract

The supply of gas and liquids through energy supply chains is closely monitored

via measurement stations. Allocating the share of supply from various sources re-

quires understanding the uncertainty in measurements at each measurement station

and, more importantly, understanding how uncertainty propagates/correlates in the

system as a whole. We use mathematical models to describe properties such as en-

ergy to understand the system’s supply fully. An uncertainty analysis applied to

those models alone does not offer a comprehensive understanding of the uncertain

parameters’ impact on the model output. Complementing the uncertainty analysis

with sensitivity analysis is essential, as it quantifies the sensitivity of each uncertain

parameter to the output.

This thesis highlights the importance of sensitivity analysis by examining a specific

case study involving four instances of a synthesized problem, which investigates a

system of hydrogen supply chains. The system setup involves two gas flows, A and

B, which originate from two different energy sources and merge in an unspecified

process to form a single gas flow, C. The model quantifies the relative uncertainty in

the allocated energy of flow A. The cases differ in the magnitude of parameter uncer-

tainty and flow rate of flow A. The main objective is to evaluate the increased insights

and advantages of performing a sensitivity analysis, comparing the two categories

of analyses within the field: local and global. And to explore the methods within

the latter category, global sensitivity analysis (GSA), such as the Sobol method,

the Fourier amplitude sensitivity test (FAST) and the Delta moment-independent

method. Local analysis is performed using the one-at-a-time method.

The findings favour GSA, specifically the Delta moment-independent method, as

it provides a more thorough evaluation of uncertain parameters’ influence on the

output distribution. However, the Sobol method would be preferable if further in-

vestigation into parameter interactions is of interest, as it quantifies sensitivity from

interactions. The greatest impact on the output variability comes from the pressures

in the source flow B and the combined flow C, for both low-flow rate cases and high-

flow rate cases. Also, flow rate of flow B has a significant impact when flow rate A is

low, and flow rate A has a significant impact when flow rate A is high. The purity of

the hydrogen in gas B and the temperatures from each flow seem to have an insignif-

icant impact on the model output. The thesis provides insight into the applications

of sensitivity analysis on mathematical models as an important tool to assess the
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impact of the model’s uncertain parameters. It also includes a comprehensive review

of the choice of method for a given problem.
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Chapter 1

Introduction

1.1 Background

Norwegian Research Centre NORCE has a long history within the field of fiscal

metering, leading back to the founding of the institute, carrying the legacy of the

Christian Michelsen Research (CMR) institute 1 [23]. Custody transfer metering

is the measurement practice used to describe the transaction within the oil and

gas industry, which includes allocation, sales and emission measurements [22]. On

behalf of the Norwegian Society for Oil and Gas Measurement (NFOGM) and with

financial support from the Norwegian Petroleum Directorate (NPD) and Norwegian

Society of Graduate Technical and Scientific Professionals (Tekna), NORCE (CMR

in the past) have been handed the task of developing a handbook of uncertainty

calculations on custody transfer metering stations [5]. The handbook ensures that

the metering is performed according to the defined standards, which are stated in

the ISO guide, commonly referred to as the ISO GUM [1]. The handbook provides a

standard for expressing uncertainty in measurement, with a standard methodology

for such uncertainty analyses [5].

1CMR is one of the institutes that was merged in NORCE when the institute where fully
integrated in 2018.

1
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Such an uncertainty analysis is valuable to the oil and gas industry. It quantifies the

uncertainty due to the uncertain variables in the metering processes, providing a

basis for important decision-making. However, such an analysis should be extended

where it also identifies each of the uncertain variables’ impact on the variability of

the system. The latter could be solved by supplementing the uncertainty analysis

with a sensitivity analysis.

As stated in the IEA report Emissions from Oil and Gas Operations in Net Zero

Transitions [12], today, oil and gas accounts for 15% of the energy-related emissions

globally, which is the same as 5.1 billion tonnes of greenhouse gas emissions. These

emissions are, by now, a well-established problem having devastating consequences

for the global climate.

In light of the global problems, governments worldwide work against the target

of reducing greenhouse gas emissions. The Norwegian government is no exception,

pursuing an ambiguous climate and environmental policy, with the main target of

becoming a low-emission society by 2050 [36]. This implies that greenhouse gas emis-

sions in 2050 will be reduced by 90–95% from the emissions in 1990. To achieve this

goal, new technology with reduced emissions must be applied to meet the continuing

growth in energy demand. In 2020, the Norwegian government presented a hydro-

gen strategy, which included increased hydrogen-related research and technology

development, as a contribution to becoming a low-emission society by 2050 [36].

As hydrogen has great potential as an energy carrier, hydrogen solutions are expected

to become more dominant in the future, replacing other well-established energy

carriers such as oil and gas.

This raises the need for a comprehensive uncertainty analysis for hydrogen supply

chains, similar to previous assessments in the oil and gas industry.
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1.2 Motivation

The main objective of an uncertainty analysis is to quantify the uncertainty in the

output due to model assumptions and uncertainties in the input factors. This differs

from a sensitivity analysis, where the fundamental goal is to evaluate how sensitive

the systematic uncertainty is to uncertainty in the input parameters. Sensitivity

analysis could either be done locally, varying the values of input parameters around

the nominal value, or globally, capturing the characteristics of the entire input space.

The study is motivated by the need to compare the advantages of global sensitivity

analysis with local sensitivity analysis and to evaluate different global sensitivity

analysis techniques.

1.3 Objective

This work aims to complement the uncertainty analysis of hydrogen supply chains

with sensitivity analysis to evaluate the importance of uncertain input factors such

as hydrogen composition, pressure, temperature, and flow rate. Both local and global

sensitivity analysis (GSA) are implemented to investigate the potential for an ex-

panded perspective provided by the GSA.

As there are many different methods within the field of GSA, another important part

of this analysis is to implement different methods and compare their performance

and results.

Four synthesised cases of hydrogen transport are studied. Each case has the same

problem setup: two gas flows originating from two different energy sources are com-

bined into one gas flow. Pressure, flow rate, temperature, and gas composition are

measured at three different measuring stations and are used to calculate the energy.

The allocated energy, i.e. an amount of energy of the total energy assigned to a par-

ticular source, is calculated using these energies. The analysis raises some important

questions:



• What is the importance of the different uncertain factors, i.e. the measured

values, to the relative uncertainty in the allocated energy?

• What could a sensitivity analysis uncover that is not uncovered by an uncer-

tainty analysis?

• What value is the increased insight from a GSA compared to a local sensitivity

analysis?

Another important consideration is integrating these methods with NORCE’s oper-

ational framework, which would provide a valuable tool for future analyses.
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Theory

This chapter provides a brief introduction to uncertainty analysis, including meth-

ods such as stochastic finite element methods and Monte Carlo simulations. It also

explains the process of selecting the appropriate method.

Additionally, sensitivity analysis is introduced, which is an important complement

to uncertainty analysis. It discusses different sensitivity analysis settings, introduces

some important sampling methods, and, most importantly, explores and compares

the two categories that divide the field: local and global sensitivity analysis.

Both analyses complement each other and should always be carried out side by side.

However, this thesis will focus on the sensitivity analysis.

2.1 Uncertainty analysis

Uncertainty is a statistical measure used to describe the behaviour and the char-

acteristics of a distribution of values in a given data set. This distribution could

be described using its variance, which can be defined as a statistical measure that

captures the scale of the spread of the values in the given data set [38].

Regardless of the extent of care and discretion, every physical measurement is suscep-

tible to uncertainty. In everyday language, uncertainty is often seen as something

4
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negative, referring to a mistake. However, as the Danish novelist Peter Høeg [11]

outlined in his work, uncertainty is not an accident of the scientific method, but

its substance [31]. Therefore, applying tools to locate and evaluate a measurement’s

uncertainty is essential. This is where uncertainty analysis comes into play. Gener-

ally, uncertainty analysis’s primary objective is understanding the output variance

following from variance in the input [7].

Uncertainty analysis has a broad range of applications in several different fields.

When designing a power plant, a factory, or any other construction, the character-

istics of the fuels and materials one plans to use must be known in precise detail

to ensure that the resulting product can withstand future obstacles. For example,

when designing and building a wave power plant, every material choice is crucial,

considering the power plant’s survival. The material must withstand the force from

the waves at the plant’s location. This was not the case for Norway’s first wave

power plant Toftestallen, built outside Bergen in Øygarden in the 1980s [16]. The

plant operated for three years before the waves ruined it in a storm. As a second

attempt, another plant was later built beside the first one; this survived only for

six years. Uncertainty analysis is not only applied in purely scientific fields. Another

example of such an analysis is in manufacturing products, such as clothes, where

uncertainty analysis is applied in the form of quality control [35].

As demonstrated in the examples above, it is clear that uncertainty analysis is crucial

in decision-making problems and that each analysis is case-dependent. Therefore, it

also includes a broad range of analyses and techniques. This includes qualitative

identification of the uncertainties, quantitative pinpointing of its consequences, and

communication of the uncertainty itself [32].

Uncertainty is a statistical measure used to describe the variance of a distribution

of values, often typically a set of measurements gathered from an experiment. When

reporting such measures, consistency is important for the result to be reproducible

and easily understood by other than the scientist reporting them.

Generally, any measurement of a quantity x can be reported as
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(measured value of x) = xbest ± δx, (2.1)

where xbest is the scientist’s best value of the measured quantity, and δx is the

measure’s corresponding uncertainty [35]. Typically, the best estimate of x xbest is

assumed to be the mean X over all the n measured values i.e.,

xbest ≈ X =
1

n

n∑
i=1

xi. (2.2)

This assumption requires that all the measured values of the quantity x follow a

Gaussian distribution. This Gaussian distribution describes independent and ran-

domly generated values, forming a bell-shaped curve symmetrical around the mean

at the centre of the ‘bell’ [10]. If the number of measurements is significant, a rule

of thumb is to assume that x follows a Gaussian distribution. The uncertainty in

the best measure, as shown in equation (2.1), δx, quantifies how the measured value

could be spread around the best estimate. The uncertainty is obtained from what

is called the standard deviation σx, which is computed using the mean x̄ of the

measurements, as shown in the given equation [35]:

σx =

√∑n
i=1(xi − x̄)2

n− 1
. (2.3)

If the assumption of a Gaussian distribution from equation (2.2) is valid, the distri-

bution curve of measured values can be used to report the target value with a certain

degree of certainty. Approximately 68% of the results are expected to lay within the

range of one standard deviation from the mean value. This concept follows from

the definition of definite integral, where it is said that the area under a curve f(x)

between a and b is given by the integral

b∫
a

f(x)dx. (2.4)
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The area represents the probability that the measurements, following the distribution

f(x), fall between a and b [15].

The Gaussian distribution is defined as

GX,σ(x) =
1

σ
√
2π

exp

(
−(x−X)2

2σ2

)
, (2.5)

where X and σ represent the distribution’s centre and width, respectively [35]. By

integrating equation (2.5) setting the boundaries to x = X − σ and x = X + σ,

Prob(within ± σ) =

X+σ∫
X−σ

GX,σ(x)dx

=
1

σ
√
2π

X+σ∫
X−σ

exp

(
−(x−X)2

2σ2

)
, (2.6)

the result will be equivalent to the probability of a measurement falling ± σ from

the centre (mean value). By performing the substitution (x − X)/σ = z, equation

(2.6) can be written as

Prob(within ± σ) =
1√
2π

−1∫
1

exp

(
−z2

2

)
dz

≈ 0.68. (2.7)

This shows that the measurement’s probability of ending up within one standard

deviation from the mean value is 68 %. Equation (2.7) can be generalised to find

the probability of a measurement falling within ±σ from the mean value, where t is

a positive number, i.e.
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Prob(within ± σ) =
1√
2π

−t∫
t

exp

(
−z2

2

)
dz. (2.8)

This gives the entire context for what is called confidence level and confidence in-

terval, which is a way of connecting the sample and the population using a value

referred to as Student’s t-value, which is the same value as introduced in equation

(2.8) [35]. This value originates from the Student’s t-test, a statistical hypotheses

test used to determine if there is a significant difference between the two groups. If

the confidence level is 95%, the Student’s t-value equal to approximately 2, i.e. the

confidence interval of a measurement x span is

X − 2σ < x < X + 2σ, (2.9)

which is a range that is commonly used in science. When stating the uncertainty of

a given variable forward in this thesis, the value referred to is really two times its

standard deviation.

The uncertainty itself can originate from multiple sources within the system with

several different sources. However, an approximate partitioning of the potential un-

certainty sources could be [19]:

• Physical variability;

• Data uncertainty;

• Model error.

Physical variability arises from natural or inherent variations and is often called

independent and irreducible uncertainty. Data uncertainty is often referred to as re-

ducible or knowledge uncertainty. It decreases when the amount of data is increased,

i.e., increased knowledge about the system reduces the uncertainty. An example of

this type of uncertainty is measurement error. The model error comes from the
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estimated mathematical models formed to imitate the system behaviour and the

numerical estimations during the computation [19].

2.1.1 Choosing uncertainty analysis methods

As there are several different methods within the field of uncertainty analysis, the

first step before conducting an uncertainty analysis is to define the model input in

relation to its essence and objective of the model [31].

The definition of the model input depends on the model in the study. There are many

different ways of categorisation models. The model can be diagnostic or prognostic,

which means that the model can be used to either understand a law or predict

a system’s behaviour given an already acknowledged law. Also, the model can be

data-driven or law-driven, where the latter uses a set of accepted laws that have

been attributed to the system to predict its behaviour, and the former will be built

custom to the system at hand to describe the behaviour with a minimum adjustable

parameters [31].

For an uncertainty analysis, we can define the model input as all the factors changing

the model output [31]. The methods used to quantify this uncertainty depend on

the sources of the uncertainty. In this thesis, the uncertainty source being studied

is a system’s physical variability and its propagation from input to output. For this

case, various probabilistic methods could be applied to give the desired overview of

the uncertainty propagation.

2.1.2 Stochastic finite elements methods

Stochastic finite element methods (SFEM) are numerical techniques, which are an

extension of the finite element method (FEM). FEM is a numerical method used

to solve complex physical and engineering problems, such as complex differential

equations, by breaking the problem down into a manageable set of equations. It

involves the following steps [20]:



Theory 10

1. Dividing the problem domain into subdomains, called finite elements.

2. Approximation of a solution of the behaviour within each subdomain.

3. Assembling all the resulting contributions to a system of equations.

4. Solving the system of equations by using numerical techniques.

5. Analyse and interpret the results.

The extension for the SFEM includes the incorporation of random parameters.

SFEM studies a system’s uncertainty and intrinsic randomness using methods such

as Monte Carlo Simulations (MCS) [20].

2.1.3 Monte Carlo Simulation

A Monte Carlo simulation (MCS) is a stochastic simulation that uses random sam-

pling to explore the behaviour of complex systems [2]. By introducing randomness

into the input parameters, MCS generates a diverse set of potential outcomes. Run-

ning the simulation multiple times with different random inputs allows us to esti-

mate the probability distribution of the outcomes. This method provides a detailed

understanding of how different variables might influence the results, enabling the as-

sessment of risks and uncertainties in the model. To perform an MCS, the probability

distribution of the model parameter must be defined before the sampling process. If

an input parameter follows a normal distribution, its mean X and standard devia-

tion σ must be defined before the simulation. MCS uses a random number generator

to generate a sequence of independent pseudo-random numbers given the defined

distribution of the input parameters. This is done through an algorithm specified by

the software being used [2]. The course of an MCS can be divided into the following

steps:

1. Determine the mathematical model under study.

2. Defining the input parameters. Assumptions and parameters of the problem

must be defined prior to the simulation, including their distributions
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3. Generating samples of the input parameters using the knowledge of their pre-

defined distributions, as described in the section above.

4. Calculation of the output, using the generated samples as input in the model

under study.

2.2 Sensitivity analysis

As previously mentioned, an uncertainty analysis involves quantifying the variance

in the output resulting from the variance in the input. When the main objective

is to quantify the uncertainty contributions from each input variable in the output

uncertainty, a sensitivity analysis could be performed, which is defined, by Saltelli

et al. [30]: “The study of how the uncertainty in the output of a model (numerical or

otherwise) can be apportioned to different sources of uncertainty in the model input”

[30]. The results of a sensitivity analysis are commonly presented using sensitivity

indices, which quantify the variation in output resulting from changes in input vari-

ables. In other words, these indices indicate the influence that each input parameter

has on the model output [31].

For a long time, sensitivity analysis was recognised as and sometimes defined as,

a local measure quantifying the impact of a specific input parameter on a given

output. The measure’s value is gathered by computing the partial derivative of the

system Si = ∂Y/∂Xi, where Y is the desired output and Xi is the i-th input factor

[37]. Varying the model parameters around specific reference values gives insight into

how small input perturbations impact the model variation. Such a local approach

is highly valuable due to its limited computational demand and straightforward

implementation, making it a popular method in the literature. However, the major

limitation of this approach is its reliance on the assumption that the model being

studied is linear. If the model does not meet the requirement of independence and

if the model parameters interact, the results from the sensitivity analysis could

be highly biased. This may result in an inability to capture interactions between

parameters and lead to an underestimated importance of the model factors [26].
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To deal with this limitation, the local approach of the sensitivity analysis should

be replaced with the global approach. A GSA gathers information from the entire

input parameter space, not just from a limited set of values located around a specific

reference value, as with the local sensitivity analysis [26].

When conducting a sensitivity analysis, steps should be followed to ensure the right

choice of method and to answer the defined research questions. The procedure is

covered in the following seven steps [30].

1. Set the main objective of the analysis and specify the form of the output

function answering the defined research questions of the analysis.

2. Determine what input parameters should be included in the analysis.

3. Set the characteristics of the input factors by choosing a distribution function

for each of them. This function could either

(a) be found in literature,

(b) derived from available data,

(c) defined by experts,

(d) be given using weighted probabilities,

(e) be defined using known correlations in the input factors,

(f) or be set to a truncated normal distribution

4. Choose what sensitivity method to use. The choice should be based on the

following considerations:

(a) The research questions: The output of the given analysis method should

be able to answer the research question.

(b) The computational expense: The execution time of the model may affect

the number of model evaluations. A model with many input factors may

exclude the choice of some more computationally expensive methods.
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(c) The relations of the input factors: If correlations appear between input

factors, one should consider limiting the choice of factors due to complex-

ity.

5. Generating samples of the input factor using their predefined distribution. The

sampling method will depend on the choice of analysis method.

6. Produce the output using the generated input samples as input in the model

under study.

7. Analyse the output from the model, making conclusions or tweaking the design

of the analysis before doing new iterations.

Hopefully, by following these steps, the sensitivity analysis method of our choosing

will be ideal for the problem under study and give the desired output. However, it

is not easy navigating a sea of methods, capturing the best possible match. There

are, however, some desirable properties the methods should include, and these are

the following [30]:

• The method can handle the impact caused by the shape and scale. ‘Scale’ refers

to the magnitude and ranges of the input parameter values, while ‘shape’ refers

to the distribution and functional form of the input and output values.

• The method incorporates multidimensional averaging. This means that the

effect of a factor is evaluated while the other factors are also varying, in contrast

to a local approach where the variation of a factor is only evaluated when the

others are kept at a constant nominal value.

• The method is model-independent. The characteristics of the model, for in-

stance, linear or additive effects, should not affect the method’s performance.

• The method can handle factors similarly, despite them being grouped or single.

In addition to the properties listed above, the sensitivity analysis setting should

be established before the analysis. Different sensitivity analysis methods may give
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different and non-comparable results, answering specific research questions. This

may be a problem if the choice of method does not justify the objective of the

problem and does not provide sufficient answers to the problem at hand.

2.2.1 Settings of sensitivity analysis

The method used in sensitivity analysis is rooted in the specific objectives of the

analysis which can be referred to as its setting. Defining a setting is a way of framing

the sensitivity analysis so that the output can be confidently entrusted to a well-

defined measure [26]. In the field of sensitivity analysis, there are three settings that

are most commonly used: factor prioritisation, factor fixing and factor mapping [31].

2.2.1.1 Factor prioritisation

The factor prioritisation setting, also referred to as factor ranking, is related to

cases where the main objective of the analysis is to identify the input factors that

significantly impact the output variability [31]. These factors can identified as the

factors that give the most significant reduction to the model’s output variability

when their contributing uncertainty is assumed to be zero [26].

2.2.1.2 Factor fixing

Factor fixing, also referred to as factor screening, is related to cases where the main

objective of the analysis is to pinpoint those factors that have a negligible effect

or no consequential contribution to the variability of the output, i.e. identifying

a non-influential factor [31]. These factors can further be eliminated or set to a

nominal value to reduce the complexity of the analysis. This may result in a less

complex analysis without compromising the output. Before making a conclusion and

fixing a factor, all factors’ effects must be assessed, both their individual effects and

interactions.
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2.2.1.3 Factor mapping

Factor mapping is used to localise the value ranges to the uncertain input factors that

produce specific and desired ranges in the model’s output space [31]. This setting

could be used when filtering undesirable ranges in the output space is required. In

the case of sensitivity analysis, those cases are often referred to as ‘non-behavioural’,

and consequently, the cases in the desirable ranges are ’behavioural’. Another way

of defining factor mapping is the process of localising the input factors that produce

behavioural model outcomes in the output space [26].

2.3 Sampling methods (experimental design)

The model under study in an uncertainty/sensitivity analysis often represents some

physical process in the real world. Capturing the full complexity of real-world scenar-

ios with a response function in analytical form is not always possible. In those cases,

it is impossible to compute the sensitivity of the output to each uncertain input

factor analytically. A numerical procedure that uses different sampling strategies to

sample the parameter space must be applied [26].

The sampling process in sensitivity analysis is called a design of experiments. The

specific sampling strategy is often directly related to the sensitivity analysis method

itself. The main idea behind the concept of experimental design is to create a frame-

work extracting all plausible and relevant information from each of the factors in the

system contributing to the output of the model, with a minimal computational cost.

Models representing a system in ‘real life’ often have many factors. Despite their

uncertainty, not all of these substantially impact the output itself. An adequate de-

sign of the experiment will result in a set of samples that successfully explore all the

influences and interactions of the factors, i.e. mimicking all influential possibilities

of the output, without increasing the computational expense. As mentioned, the

approaches to the design of experiments are often directly related to the sensitivity

analysis method itself. They could vary in their treatment of factor domains and in

the factor interactions considered [26].
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2.3.1 One-at-a-time (OAT) sampling

The One-at-a-time (OAT) sampling method is rather simple. It changes only one

factor at a time in a given sampling sequence, while the other factors are set to a

fixed value [31].

Consider the model Y = f(x1, x2, ..., xn) with n input parameters x = (x1, x2,-

..., xn). Each parameter has its base value, therefore, x0 = (x01 , x02 , ..., x0n) is the

set of base values. For each n parameter xi, increment the base by a small value δxi

while keeping all the other parameters at their base to get the changed set of values.

When using this sampling technique, the model’s factors must be assumed to be

linearly independent and the model assumed to be linear. When these assumptions

cannot be fulfilled, the sampling technique will not give further insight to the anal-

ysis. There are, however, exploratory techniques developed to overcome these chal-

lenges. This method is mostly used as a preliminary analysis to study the individual

effects of each factor [26].

2.3.1.1 Latin Hypercube Sampling

In a model withN uncertain input parameters, the Latin Hypercube Sampling (LHS)

method gathers samples from a N -dimensional hypercube. The space’s dimensions

are defined by the probable ranges of each of the N parameters. Each dimension is

divided into an equal number, i.e. the defined number of samples [26]. Each part of

the division is regarded as a level of the dimension. Samples are randomly generated

for all the parameters and at each of their levels. This ensures that each level contains

the same number of points and that each parameter is individually stratified over

more than two levels [31]. It will also prevent the occurrence of overlapping samples,

avoiding excess samples being generated. LHS is a widely used sampling technique

in sensitivity analysis that gives diverse space coverage. However, when the number

of simulations is much fewer than the number of uncertain values, the effects of

the different parameters will not be measurable. The lack of data points can make

it impossible to give independent estimates for each parameter; this may result
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in highly correlated samples between factors, biasing the results of the sensitivity

analysis [26]. It is, however, possible to avoid such a scenario by modifying the

sampling scheme, for instance, using orthogonal arrays [31].

2.4 Local one-at-a-time method

The OAT sampling method is described in section 2.3.1. This method could also be

directly related to the local one-at-a-time sensitivity analysis [31], which uses the

samples directly to compute a sensitivity measure. The set of base values

x0 = (x01 , x02 , ..., x0n),

referred to in section 2.3.1, is used to calculate the base output. The main objective

of the method is for each iteration to perturb the i-th parameter value xi with a

minor change ∆xi. After changing the i-th parameter value xi in the base, obtaining

the changed set of values, the new output could be calculated Yi, i.e.

Yi = f(x0 +∆xi). (2.10)

The change in output, ∆Yi, is calculated as

∆Yi = f(x0 +∆xi)− f(x0). (2.11)

The sensitivity Si in output Yi to the parameter xi is then calculated as

Si =
∆Yi
∆xi

. (2.12)

Each parameter-specific perturbation ∆xi is altered from iteration to iteration, while

the base values remain constant. The resulting sensitivity measures are the average

sensitivity of all iterations.
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2.5 Global Sensitivity Analysis

As previously mentioned, sensitivity analysis methods can be distinguished into two

categories: local and global. Their key difference is the range of the input space

explored in the analysis. In the local sensitivity analysis approach, the input factors

of the model are varied around specific reference values, i.e. a limited range of values.

On the other hand, a global sensitivity analysis (GSA) will gather information from

the entire space of the input factors [26].

Local methods use partial derivatives, gathering information only around the base

point of computation. A global method does not have a limited viewpoint; it gathers

information from the entire input parameter space, hence the name ”global” [26].

2.5.1 Elementary Effect Methods

The elementary effects method is simple but effective and requires a few numbers of

samples and evaluations to screen the input factors of rather complex models [26].

The method uses the OAT sampling method, which varies one parametric value at

a time. Therefore, the sampling will ensure that it does not capture the interactions

between the model’s factors, assuming each value has independent effects on the

model output. The idea behind the elementary effects method originates from Max

D. Morris (1991) [21] and is most commonly referred to as the Method of Morris.

Morris proposed constructing two sensitivity measures to determine which of the

input factors is negligible, has non-linear effects or is involved in interactions with

other factors in the model [31]. An elementary effect of the ith effect for a given

value of X can be defined as

EEi =
Y (X1, X2, ..., Xi−1, Xi +∆, ..., Xk)− Y (X1, X2, ..., Xk)

∆
, (2.13)

where Y is considered a model with k independent inputs Xi, i = 1, ..., k, which

varies in the k-dimensional cube divided into a p-level grid, and ∆ is a value in

{1/(p− 1), ..., 1− 1/(p− 1)} [31]. Then Morris introduced Fi as the distribution of
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elementary effects associated with the ith input factor, sampled from a randomly

distributed set of X (from the p-level grid). The distribution of elementary effects is

then used to construct the sensitivity measures proposed by Morris, using its mean

and standard deviation [31]. The mean is defined as

Si = µi =
1

r

r∑
j=1

EEij . (2.14)

where r represents the number of samples [26], and the standard deviation can be

defined as

σi =

√√√√ 1

r − 1

r∑
j=1

(EEij − µi)2. (2.15)

From these two measures, a number of conclusions could be drawn. The mean will

give an indication of the factor’s overall influence on the output, while the standard

deviation contributes by assessing the entire ensemble of factor effects, uncovering

non-linearity and interactions between the factors [31].

2.5.2 Variance based methods

The main idea of variance-based methods is the resulting variance of the model

output can be decomposed into a number of contributions originating from each of

the uncertain factors variances [26].

2.5.2.1 Sobol Method

One of the most popular methods within this category is the Sobol method, a method

which employs sophisticated sampling techniques. A great advantage of this method

is that it can consider complex input interactions, such as non-linear ones, when

computing the sensitivity indices. The method generally computes three types of

indices: first-order, second-order, and total-order order sensitivity. The first-order

sensitivity index of factor i is obtained by dividing the variance of the conditional

expectation V [E(Y |Xi)] by the unconditional variance V (Y ), i.e. [31]:
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Si =
V [E(Y |Xi)]

V (Y )
. (2.16)

As the first-order indices only capture the individual interactions from each factor,

such a measure alone will only give sufficient information if all the factors are linearly

independent, i.e. there are no interactions between the factors present. This case is

not always true for modelling capturing ’real-life’ scenarios. To solve this problem,

higher-order sensitivity indices can be calculated, as they will explore and quantify

the interactions of multiple factors. Not surprisingly, considering its name, second-

order indices will quantify the interactions between two factors, Xi and Xj . These

can be computed in the same way as in equation (2.18), only by replacing the

conditional variance, given by E[V (Y |Xi)], with Vij which is a measure quantifying

the joint effects for the pair, defined by [31].

Vij = V [E(Y |Xi, Xj)]− V [E(Y |Xi)]− V [E(Y |Xj)]. (2.17)

The second-order indices could, therefore, be computed in the following manner

Sij =
V [E(Y |Xi, Xj)]− V [E(Y |Xi)]− V [E(Y |Xj)]

V (Y )
=

Vij

V (Y )
. (2.18)

The last measure within the Sobol method is the total-order sensitivity index, which

represents the entire influence a factor has on the model output. This could be

defined as

ST i =
E[V (Y |X∼i)]

V (Y )
, (2.19)

where X∼i is defined as all factors but one, and E[V (Y |X∼i)] could be interpreted

as the remaining variance of the model output Y given that the actual value of all

factors but one is known [31].
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2.5.2.2 Fourier amplitude sensitivity test

Another method within the variance-based method, which is computationally cheap,

is the Fourier amplitude sensitivity test (FAST). This method is considered one of

the most elegant sensitivity analysis methods, which also works alike for monotonic

and non-monotonic models, i.e. it is independent of the assumptions about the model

structure. The main objective of the method is to explore the multidimensional space

of the input factors using a suitable search curve [29]. FAST uses a search function

to assign each parameter with a characteristic frequency, followed by capturing the

variance contribution from each parameter by localising its characteristic frequency

[40].

The method calculates the sensitivity indices using a decomposed version of the

function under study. More specifically, a mono-dimensional Fourier decomposition

done along a curve exploring the space Kn, which is a unit hypercube representing

the domain of input factors, defined by [29]

Kn = (x|0 ≤ xi ≤ 1; i = 1, ..., n). (2.20)

The curve, the decomposition is present along, could be defined as

xi(s) = Gi sin(ωis), ∀i = 1, ..., n, (2.21)

where x = (x1, .., xp) is a set of factors in the input space, s is a scalar varied in

the range (−∞,∞) and Gi are transformation functions, and ωi is a set of angu-

lar different frequencies for each factor. The importance of the factors is reflected

in the height of the amplitude to its corresponding frequency. There are various

transformations that have been proposed, such as the following equation [29]:

xi = x̄ie
v̄s sin(ωis), (2.22)
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where x̄i is the nominal value of the factor and v̄s defines the endpoints of the

uncertainty to xi, and s varies in the range (−π
2 ,

π
2 ) [27]. Lastly, wi is a set of

angular frequencies, each directly related to a specific factor [29].

When the value of s changes, so does the factors along the curve defined in equation

(2.20). The output model, given by y = f(x1, x2, ..., xn), will for each frequency ωi

oscillate, where the amplitude of the oscillation can be interpreted as the influence

of the factor related to the frequency [29]. This is the core behind the computation

of the sensitivity indices.

The output model referred to above can be redefined as y = f(s) = f(x1(s), x2(s),-

..., xp(s)), and further expressed as the Fourier series given by

y = f(s) =
∞∑

j=−∞
Aj cos(js) +Bj sin(js), (2.23)

where j is the integer corresponding to a given point in the output space, and the

Fourier coefficient Aj and Bj are defined as [27]

Aj =
1

2π

π∫
−π

f(s) cos(js)ds, (2.24)

Bj =
1

2π

π∫
−π

f(s) sin(js)ds. (2.25)

As discussed, the variance in the model’s output corresponds to the amplitude of the

oscillations, which originate from the frequencies associated with the model’s input

factors. The conditional variance could, therefore, be defined as

V ar[E(Yj |Xi)] =
∑
q∈Z0

A2
qδi

+B2
qδi

, (2.26)
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where Z0 corresponds to the set of all the integers excluding zero [27]. The total

variance could be defined as

V ar(Yj) =
∑
k∈Z0

A2
k +B2

k. (2.27)

The sensitivity indices could further be calculated using equation (2.16), replacing

the numerator by equation (2.26) and the denominator by equation (2.27) [27].

A disadvantage of FAST is that it can only compute the main effect; there is, how-

ever, an extended version of this method, referred to as extended FAST (eFAST),

which computes both the first order and the total order sensitivity indices [29].

The main difference between FAST and eFAST is the choice of transformation func-

tion. The classical FAST choice of transformation for the decomposition is given in

equation (2.22), while for the eFAST, the transformation is defined as [29]:

xi =
1

2
+

1

π
arcsin(ωis). (2.28)

2.5.3 Derivative-based methods

As mentioned, when applying a local approach to the sensitivity analysis, the core

of the analysis is explore how perturbation of single input factors could affect the

model output [26]. As already stated at the beginning of this section, such an analysis

could be done by calculating the sensitivity indices using the derivative of the system

Si = δY/δXi, where Y is the desired output (originating from a model g(X)) and

Xi is the input factor [37]. The model g(X) could not always be expressed in an

analytical form. In such cases, the partial derivative is approximated in the following

way:

Si(X) =
g(x̄i, ..., x̄i +∆i, ..., x̄N )− g(x̄1, ..., x̄i, ..., x̄N )

∆i
ci, (2.29)
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where ci is a scaling factor, and ∆i is referred to as the magnitude of the perturbation

of the ith input factor [26]. This method does not require many model evaluations

but will, however, not explore the entire input space or possible factor interactions.

2.5.4 Regression-based Methods

One of the oldest ways of exploring the input factors’ influence on the model output,

evaluating the importance of each factor and their sensitivities, is through regression

analysis [30]. There are multiple different sensitivity indices that could be computed

within this method category. One of the most common is the standardised regres-

sion coefficient (SRC), calculated by fitting a linear relationship between the input

factor and the model output. The fitting is done by using a method of least-square

minimising, which can be defined as

y = b0 +
N∑
i=1

bixi, (2.30)

where b0 and bi are the regression coefficients. These are used when calculating the

SRCs, which are defined as

Si = SRCi = bi
σi
σy

, (2.31)

where σi and σy is the standard deviations of the ith input factor and the output

respectively [26]. Other measures could also be calculated to explore the relationship

between the input factors and the output of the model. The Pearson correlation

coefficient is calculated using the covariance and standard deviation of the input

factor and the model output. This method requires a linear relationship.

The Spearman’s rank correlation coefficient is a better fit for cases with a non-linear

relationship between the input and output and when outliers are present in the data.

This method uses a rank-based correlation coefficient Other methods, like tree-based

regression, have also been used for the purpose of sensitivity analysis, often used in
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factor mapping. Examples of these are the Classification And Regression Trees, and

the Patient Rule Induction Method [26].

Even though regression-based methods are global by nature, the design of the ex-

periment, i.e., the sampling and the number of simulations, greatly impacts the level

of comprehensiveness. An advantage of the methods is the low computational cost,

but that won’t trump its disadvantage of not producing sufficient information about

the interaction between the input factors [26].

2.5.5 Density-based methods

The influence and sensitivity of factors on the model output in sensitivity analysis

are commonly quantified using the output variance. However, in many applications,

the variance could give restricted information about the uncertainty in the output.

Considering the entire probability distribution of the output may be interesting to

get a sufficient overview [25]. This idea is the core of density-based methods (also

known as moment-independent method), which calculate the sensitivity indices by

comparing the entire distribution of the input and output factors [26].

2.5.5.1 Delta moment-independent method

One well-known method within this category is the Delta (δ) moment-independent

method, which compares the output’s unconditional and conditional density.

The sensitivity measure associated with this method is called the delta (δ) sensitivity

index. The sensitivity index of parameter xi with respect to the model output Y

measures the normalized expected shift in the distribution of the model output Y

resulting from the parameter xi [3]. The probability density function of the model

output is represented by the fY (y) and conditional density of y by fY |xi
(y), where

xi is assumed a fixed value. Their shift s(xi) is quantified as:

s(xi) =

∫
|fY (y)− fY |xi

(y)|dy. (2.32)



The above equation is then used to find the expected shift Exi [s(xi)], which is given

by

Exi [s(xi)] =

∫
fxi(xi)

∫
|fY (y)− fY |xi

(y)|dy dxi. (2.33)

Equation (2.33) is the base for the δi sensitivity index, which expressed in the fol-

lowing equation:

δi =
1

2
Exi [s(xi)]. (2.34)

Other advantages of density-based methods are their range of exploration, cover-

ing the entire distribution of the output, even the more extreme events, and their

flexibility in choosing samples to analyse, as they do not require specific sampling

schemes. The methods will, however, not produce sensitivity indices that cover the

interactions between parameters, only the first-order sensitivity indices. This prob-

lem is solved by performing the calculation while conditioning on multiple uncertain

parameters being fixed [26].
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3.1 Problem description

Process
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Figure 3.1: Schematics of the synthesized measurement system for a hydrogen
supply chain. Two different gas flows from two energy sources, A and B, where the
first is produced from renewable sources, while the latter is produced from natural
gas. The gasses are then combined in an unknown process. The system consist of
three measurement stations, A, B and C, which continuously measures the volume
flow rate q, composition, pressure P , and temperature T of the gas flowing through

the measurement system.

This study examines a synthesized measurement system for a hydrogen supply chain.

It is divided into four cases of hydrogen gas transport, where the main contaminant

in the gas is methane gas.

26
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Each case follows the same problem setup with two different gas flows from two

energy sources, A and B, each passing a measurement system that continuously

measures the volume flow rate, composition, pressure and temperature of the gas

flowing through the measurement system. These measurement systems are referred

to as station A and B.

The gasses are then combined in a process, which is assumed to have no impact on

their energy and mass flow rates. The combined flow is measured in the supply chain

transfer point in the same manner as in measuring stations A and B. This measure

system is referred to as station C. See figure 3.1 for schematics of the system setup.

Using the values measured, the energy value is calculated using the given equation

E = q
PT0Z0

P0TZ
Hv, (3.1)

where q is the volume flow rate, Hv is the calorific value, P and P0 are the measured,

and standard pressures, T and T0 are the measured and standard temperature and

Z and Z0 are the measured and nominal compressibility factor.

The calorific value, Hv, is a property representing the energy released during the

complete composition of a given substance. The value quantifies how much energy

could be released from a given quantity of fuel [4].

The compressibility factor, Z, represents the gas’s deviation from an ideal gas be-

haviour, a theoretical gas composed of particles moving randomly without interact-

ing with each other. The factor quantifies the ratio of the molar volume of the given

gas to its ideal gas volume at the same temperature and pressure. The factor is

calculated using an equation of state, which is an expression describing a substance

relationship between pressure, temperature and volume [6].

The standard values used in equation (3.1), marked with a subscript of 0, are pre-

defined, where

T0 = 288.15K
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and

P0 = 101.325Bar.

The calorific value, Hv, is calculated using the molar gas composition and predefined

molar calorific values at 25◦C found in ”Table 3” from ISO 6976:2016 standard [13],

provided in appendix A. The compressibility factors, Z, are also computed using

the gas composition and measured temperature and pressure. As mentioned, the

compressibility factor is calculated using an equation of state. This equation is a

thermodynamic equation that describes the relationship between state variables,

which are variables describing the state of a dynamical system using mathematics

[33]. The AGA 8 equation of state [34] is used for this work.

As we assume conservation of mass flow in the system, the mass flow at station C,

ṁC , is obtained by adding together the mass flow at station A and B, i.e.

ṁC = ṁA + ṁB. (3.2)

The mass flow itself is calculated in the following manner:

ṁ = qρ, (3.3)

where ρ is the gas density of the gas mixture and q is its volume flow rate [39]. The

gas density is calculated using the AGA 8 equation of state [34].

The pressure, P , and temperature, T , at station C are defined in the input file, but

the gas composition and the flow rate must be found by using the values from A

and B and the assumption of conservation of mass flow. As shown in equation (3.2),

the mass flow is conserved across the system. This is also the case for the mass flow

of each of the components in the gas itself, i.e.

ṁCi = ṁAi + ṁBi . (3.4)
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The relationship between the mass flow for a given gas component ṁi and the total

mass flow ṁ is

ṁi = ciṁ, (3.5)

where ci is the mass fraction [33]. The mass fraction of the i-th gas component is

computed by using the following equation:

ci =
xiMi∑
j xj Mj

, (3.6)

where xi is the mole fraction for component i and Mi is the molar mass, i.e. the

mass of one mole of component i. However, the mole fractions are desired for the

computations done in this work. The ’un-normalised’ mole fraction x̃i is computed

by multiplying the mass fraction ci by the molar mass, i.e.

x̃i =
ci
Mi

, (3.7)

and later normalised by dividing by the sum of all mole fractions gathered from

every component, i.e.

xi =
x̃i∑
j x̃j

. (3.8)

By combining equations (3.4), (3.5), and (3.6), the mass fraction, ci, at station C is

computed. The mass fraction is then converted to the mole fraction using equations

(3.7) and (3.8).

The volume flow at station C is determined using equation (3.3). The density is

calculated using the AGA 8 equation of state, with the mole fractions of the gas as

input [34].
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The energy at each station is calculated using equation (3.1). The energy values

obtained are used to calculate the allocated energy value. Because we assume that

the system follows conservation of energy, where the energy at station C is the sum

of the energy at A and B, i.e.

EC = EA + EB. (3.9)

The allocated energy value at station A, EAallocated is computed in the following

manner

EAallocated =
EA

EA + EB
EC , (3.10)

where EA, EB and EC represent the energy estimates for each station.

The uncertainty in the allocated energy is calculated by comparing the resulting

allocated energy value with the ’correct’ energy value computed using equation (3.1).

As the relative uncertainty is of interest, the difference is divided by the ‘correct’

energy. The relative uncertainty in the allocated energy at station A is calculated

from

δEAallocated =
EAallocated − EA

EA
. (3.11)

3.2 Local Sensitivity Analysis

The local one-at-a-time method is applied to the problem for Local Sensitivity Anal-

ysis. This method’s main objective is to investigate the change in variance when

changing one variable at a time while keeping the others constant.

The analysis itself is implemented in a Python script. The flowchart of the Python

script performing the analysis is provided in figure 3.2.
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sensitivity_analysis_one_at_a_time()

Input values and 
uncertainty 
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Timestamps
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energy at A
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Sensitivity indices
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energy_allocated()

energy()
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Figure 3.2: Flowchart representing the flow of the Local Sensitivity Analysis
performed in Python. The pink dashed line represents inputs from external files.
The pink boxes represent the functions called directly and their outputs in oval
turquoise boxes. The yellow boxes are the functions used inside the ’main’ functions;
the blue dashed lines represent these callings. The green dashed lines represent the

output from one ’main’ function being used in another ’main’ function.

The pink dashed line represents inputs from external files. The pink boxes represent

the functions called directly and their outputs in oval turquoise boxes. The yellow

boxes are the functions used inside the ’main’ functions; the blue dashed lines rep-

resent these callings. The green dashed lines represent the output from one ’main’

function being used in another ’main’ function.

The input parameters are imported from an external Excel file consisting of 7 dif-

ferent sheets, one containing the specifications for the analysis, i.e. the number of

model simulations, one containing input values and uncertainties for the pressure,

temperature and flow rate for each of the stations (A, B and C), and one containing

input values and uncertainties for the gas composition at each of the stations (A,

B and C). The importing function is named importing input values() in the Python

script, as shown in figure 3.2. However, the input file does not give the nominal flow

rate and gas composition at station C. These values are calculated using the existing

inputs from stations A and B, as described in section 3.1. The gas composition is

performed using the function named compute mole fraction(), which, as described,
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uses the AGA 8 equation of state (AGA8Detail() in the Python script) to calculate

the density values.

The Excel file makes it possible to change the input values without making changes

in the Python script itself. It also considers the time variable, so the input can vary

with time.

A function named problem define() will construct a dictionary called the problem

definition. A dictionary containing information on the uncertain variables in the

problem in the following keys: names (names of the uncertain values), bounds (the

uncertain values’ boundaries), dist (names of the uncertain values’ assumed distri-

bution function), num vars (number of uncertain variables).

The Local Sensitivity Analysis uses a function called sensitivity analysis one at a -

time(). This function has implemented the one-at-a-time method, as described in

section 2.4, returning the local sensitivity measures.

The model the sensitivity analysis is performed on is implemented in the function

named energy(). This first computes the energy at each station, A, B, and C, then

the allocated energy at station A, calling for the function named energy allocated().

Returning the relative uncertainty in the allocated energy, computed using equation

(3.11). The energy functions also call for the function named calorific val(), which

calculates the calorific values using the given gas composition, and the function

named compressibility factors(), which computes the compressibility factors for the

given gas composition under a given pressure and temperature. The latter uses the

AGA 8 equation of state as described in section 3.1.

3.3 Global Sensitivity Analysis

The GSA is performed using modules from the SALib package in Python [9, 14],

which has implemented different GSA methods. The input for the analysis is the

same as for the Local Sensitivity Analysis 3.2, i.e. tables 3.2 and 3.1 for the low

uncertainty cases, tables 3.3 and 3.4 for the high uncertainty cases.



Method 33

energy()
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energy_allocated()
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Figure 3.3: Flowchart representing the flow of the GSA performed in Python. The
pink dashed line represents inputs from external files. The pink boxes represent the
functions called directly and their outputs in oval turquoise boxes. The yellow boxes
are the functions used inside the ’main’ functions; the blue dashed lines represent
these callings. The green dashed lines represent the output from one ’main’ function

being used in another ’main’ function.

The analysis is implemented in a Python script, importing the input values using

the same function for importing the input parameter as described in the previous

subsection 3.2. The input values are also given in the same external Excel sheets as

for the Local Sensitivity Analysis.

In addition to the input values stated in the input file, the type of sampling method

and GSA method must be defined before the analysis, both specified by providing

input in the form of a string. The GSA methods used are the Sobol method and

the Extended Fourier amplitude sensitivity test (eFAST) method, which both are

described in section 2.5.2, which covers the variance-based methods. The extended

FAST method is what is meant when referring to the FAST method later in this

thesis. Another method used is categorised as a density-based method, covered in

section 2.5.5. This method is the Delta Moment-Independent Measure method. This
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method is referred to as the Delta method later in this thesis.

For the sampling methods, there are also some choices to be made. However, for the

FAST and Sobol methods, the sampling method is predefined and method-specific.

For the Delta method, the sampling method of choosing is the Latin hypercube

sampling, described in section 2.3.1.1.

The flowchart shown in figure 3.3 represents the analysis process. The boxes and

colour in this flowchart are defined in the same manner as for the Local Sensitivity

Analysis.

The input values are first loaded into the script, saving them in the desired format

before the sampling, that is, dictionaries containing the variable’s name as the key

and a list containing the nominal value and its uncertainty as the value. The sampling

is done using a sampling function from a module from the SALib.sample package

[9, 14].

The sampling function depends on the specifications of the sampling method given

as an input. The samples are then stored and returned as an array, along with the

problem definition provided as a dictionary. This dictionary is the same as the one

referred to in the section above. The samples are given as an input to the energy

function, which calculates the allocated energy calorific energy at station A. Again

using the same functions used in the Local Sensitivity Analysis, i.e. calorific val()

and compressibility factors().

The analysis itself is performed using an analyse function from a module from the

SALib.analyze package [9, 14]. The specific function is chosen based on the specifica-

tion of the GSA method, given as an input. The ”analyse” function will then return

sensitivity indices computed in the way described in section 2.5.2 and section 2.5.5.
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Table 3.1: Input values for the case with low uncertainties and low flow rate
at station A. The table contains the nominal value and the uncertainty for each
value. Used as input in an external Excel file, which is imported to the Python
script running the sensitivity analysis for the system within a hydrogen supply
chain. Evaluating how the uncertain parameters influence the relative uncertainty

in the allocated energy at station A.

A B C

Input values

Hydrogen composition [%] 100 98 to be calculated

Methane composition [%] 0 2 to be calculated

Flowrate [m3/h] 100 1000 to be calculated

Temperature [◦C] 60 70 50

Pressure [Bar] 40 50 30

Uncertainties

Flowrate, relative [%] 2 1 0.5

Temperature, absolute [◦C] 0.5 0.5 0.3

Pressure, absolute [Bar] 0.5 0.5 0.3

Hydrogen composition, absolute [%] 0 0.04 0

3.4 Low uncertainty cases

3.4.1 Low flow rate

The first case studied is a case with low uncertainty and low flow rate from station

A. The energy source is hydrogen, and it is, in this case, produced in two different

ways. The hydrogen from source B is produced by steam reforming using natural

gas. The hydrogen from source A is produced in electrolysis using renewable energy

sources. The fluid from the energy source A is a pure fluid, i.e. 100% hydrogen. The

fluid from energy source B is almost pure, with 98% hydrogen and 2% methane.

The measurement system is shown in figure 3.1 and the input values are provided

in table 3.1.
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Table 3.2: Input values for the case with low uncertainties and high flow rate
at station A. The table contains the nominal value and the uncertainty for each
value. Used as input in an external Excel file, which is imported to the Python
script running the sensitivity analysis for the system within a hydrogen supply
chain. Evaluating how the uncertain parameters influence the relative uncertainty

in the allocated energy at station A.

A B C

Input values

Hydrogen composition [%] 100 98 to be calculated

Methane composition [%] 0 2 to be calculated

Flowrate [m3/h] 1000 1000 to be calculated

Temperature [◦C] 60 70 50

Pressure [Bar] 40 50 30

Uncertainties

Flowrate, relative [%] 2 1 0.5

Temperature, absolute [◦C] 0.5 0.5 0.3

Pressure, absolute [Bar] 0.5 0.5 0.3

Hydrogen composition, absolute [%] 0 0.04 0

3.4.2 High flow rate

The second case is much like the case described in section 3.4.1, with the same energy

sources at A and B and the same schematics of the measurement system as in figure

3.1. Almost all the input values for this case are the same, except for the flow rate

measured at station A, which is increased by a factor of 10. Table 3.2 provides all

the input values.

3.5 High uncertainty cases

3.5.1 Low flow rate

The third case is another alternative to the system visualised in figure 3.1. Here, all

the input has the same nominal values as in the low uncertainty and flow rate case,

described in section 3.4.1; however, the uncertainty is not the same. The uncertainty

for all the input factors, except for the hydrogen composition, is increased by a factor



of 10. The uncertainty in the hydrogen composition is set to an even higher value,

with an absolute value of 1%.

Table 3.3: Input values for the case with high uncertainties and high flow rate
at station A. The table contains the nominal value and the uncertainty for each
value. Used as input in an external Excel file, which is imported to the Python
script running the sensitivity analysis for the system within a hydrogen supply
chain. Evaluating how the uncertain parameters influence the relative uncertainty

in the allocated energy at station A.

A B C

Input values

Hydrogen composition [%] 100 98 to be calculated

Methane composition [%] 0 2 to be calculated

Flowrate [m3/h] 1000 1000 to be calculated

Temperature [◦C] 60 70 50

Pressure [Bar] 40 50 30

Uncertainties

Flowrate, relative [%] 20 10 5

Temperature, absolute [◦C] 5 5 3

Pressure, absolute [Bar] 5 5 3

Hydrogen composition, absolute [%] 0 1 0

3.5.2 High flow rate

The fourth and last case is again a case of the system shown in figure 3.1. This case

is similar to the low uncertainty and high flow rate case, described in section 3.4.2;

in the same way that the two other cases are similar (i.e. the cases described in

sections 3.4.1 and 3.5.1). All the nominal values of the uncertain input factors are

the same. In contrast, their uncertainties are scaled by a factor of 10, except for the

uncertainty in the hydrogen composition, which is set to an absolute value of 1%.
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Table 3.4: Input values for the case with high uncertainties and low flow rate
at station A. The table contains the nominal value and the uncertainty for each
value. Used as input in an external Excel file, which is imported to the Python
script running the sensitivity analysis for the system within a hydrogen supply
chain. Evaluating how the uncertain parameters influence the relative uncertainty

in the allocated energy at station A.

A B C

Input values

Hydrogen composition [%] 100 98 to be calculated

Methane composition [%] 0 2 to be calculated

Flowrate [m3/h] 100 1000 to be calculated

Temperature [◦C] 60 70 50

Pressure [Bar] 40 50 30

Uncertainties

Flowrate, relative [%] 20 10 5

Temperature, absolute [◦C] 5 5 3

Pressure, absolute [Bar] 5 5 3

Hydrogen composition, absolute [%] 0 1 0
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Results

Table 4.1: Computational time for each of the GSA methods for 100 samples,
analysing the case with low uncertainty and low flow rate (single CPU clock speed

3.2 GHz.)

Sensitivity analysis method Computational time [s]

Sobol 81.02

FAST 37.89

Delta 5.37

The sensitivity indices from the global analysis for the relative uncertainty in the

allocated energy at station A, for the cases with low uncertainty in the input param-

eters, are presented in figures 4.1 and 4.2. The resulting sensitivity indices from the

local analysis for the same cases are shown in figure 4.5. The corresponding figures

for the cases with high uncertainty are figures 4.4, 4.3 and 4.6.

The indices are computed using GSAmethods, namely the Sobol method, the Fourier

amplitude sensitivity test (FAST), the Delta moment-independent measure method,

and a local sensitivity analysis method, the one-at-a-time method.

Each plot shows six indices chosen from the five greatest indices for each low and

high flow rate case. The sensitivities of the other factors are such small values that

they are considered unimportant.

Each method uses different principles when computing the sensitivity. Figures 4.4

and 4.1 present the total order sensitivity index from the Sobol and FAST method,

38
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Figure 4.1: Sensitivity indices for the model quantify the relative uncertainty
in the allocated energy at station A for a case with low uncertainty in the input
parameters. The two cases visualised in the figures differ in the flow rate at station
A, which increases by a factor of 10 from the low to high flow rate. The indices
shown are the top 6 highest for each case. Computed using three GSA methods,
the Sobol method, the FAST and the Delta method. For the first two methods, the
total order sensitivity is visualized, and for the last, the Delta index is visualized.

while the delta index is presented from the delta method, which is a method-specific

index.

Figures 4.3 and 4.2 present the first-order sensitivity index from the Sobol and FAST

method, while the delta method presents an estimation of the Sobol first-order index.

The local OAT method only provides first-order indices, presented in figures 4.5 and

4.6, as this method does not consider correlations between parameters.

The subplot at the top of each figure presents the case referred to as the one with

a low flow rate. In this case, the flow rate at station A is 10 times smaller than at

station B. In the presented at the bottom of the subplot, the flow rates at station

A are increased to the same value as for station B.
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Figure 4.2: Sensitivity indices for the model quantify the relative uncertainty
in the allocated energy at station A for a case with low uncertainty in the input
parameters. The two cases visualised in the figures differ in the flow rate at station
A, which increases by a factor of 10 from the low to high flow rate. The indices
shown are the top 6 highest for each case. Computed using three GSA methods,
the Sobol method, the FAST and the Delta method. For the first two methods,
the first-order sensitivity is visualized, and for the last, an estimation of the Sobol

first-order index is visualized.

As expected, the sensitivity index for the flow rate at A in the low flow rate case

will be smaller in the high flow rate case, i.e. qA is smaller than qB. This statement

is valid for all of the GSA methods, both for cases with low uncertainty and those

with high uncertainty. As for the other parameters, the uncertainty in pressure has a

significant value for the uncertainty in the allocated energy. Especially the pressure

measured at station C seems to be of significant importance, as shown for both

total effect plots, i.e. figures 4.1 and 4.4. For the case with low uncertainty, the first-

order sensitivity of the pressure at station C, PC , increases significantly from a low

flow rate to a high flow rate, shown in figure 4.2, while the total order sensitivity

maintains stable. This stability is also the case for the high uncertainty cases, for

the total order sensitivity, shown in figure 4.4 and the first order sensitivity, shown
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Figure 4.3: Sensitivity indices for the model quantify the relative uncertainty in
the allocated energy at station A for a case with high uncertainty in the input
parameters. The two cases visualised in the figures differ in the flow rate at station
A, which increases by a factor of 10 from the low to high flow rate. The indices
shown are the top 6 highest for each case. Computed using three GSA methods,
the Sobol method, the FAST and the Delta method. For the first two methods,
the first-order sensitivity is visualized, and for the last, an estimation of the Sobol

first-order index is visualized.

in figure 4.3. The sensitivity of the pressure at station B decreases from a low flow

rate to a high flow rate.

As for the comparison of the GSA methods, the indices seem to have the same order

but at different ranges. The FAST and Sobol methods produce indices of similar

magnitude. For the low uncertainty cases, as shown in figure 4.1, the less important

parameters are greater in the FAST estimation. However, for the high uncertainty

cases, as shown in figure 4.4, the Sobol estimation produces the greatest indices for

the same parameters.

The hydrogen fraction from station B is important in the high-uncertainty cases,

as shown in figure 4.4. This is not the case for the low-uncertainty cases, where the
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Figure 4.4: Sensitivity indices for the model quantify the relative uncertainty in
the allocated energy at station A for a case with high uncertainty in the input
parameters. The two cases visualised in the figures differ in the flow rate at station
A, which increases by a factor of 10 from the low to high flow rate. The indices
shown are the top 6 highest for each case. Computed using three GSA methods,
the Sobol method, the FAST and the Delta method. For the first two methods, the
total order sensitivity is visualized, and for the last, the Delta index is visualized.

sensitivity index corresponding to the hydrogen fraction is negligible.

The local sensitivity analysis provides another picture of the parameter importance,

both in ranges and order. The largest sensitivity is attributed to the pressure at

station C for both low uncertainty cases, as shown in 4.5 cases. For all sensitivity

analysis methods, both local and global, the pressure at station A, PA, increases

from low to high flow rate.

However, the flow rate is not significant in the local analysis, with low sensitivity

values. For this reason, the local plots do not show the sensitivity of the flow rates.

The sensitivity indices produced by the local one-at-a-time method are significantly

smaller than the ones produced using the global methods. However, for the case
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with large uncertainty and high flow rate, the sensitivity index corresponding to the

pressure at station C is comparable to those produced with the global methods. This

is shown in figure 4.6.
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Figure 4.5: Local sensitivity indices for the model quantify the relative uncer-
tainty in the allocated energy at station A for a case with low uncertainty in the
input parameters. Calculated using the local one-at-a-time method. The two cases
visualised in the figures differ in the flow rate at station A, which increases by a
factor of 10 from the low to high flow rate. The indices shown are the top 6 highest
for each case. Computed using three GSA methods, the Sobol method, the FAST

and the Delta method.

For the stability of each method, the sensitivity indices have little change for an

increasing number of iterations, as shown for the low uncertainty and low flow rate

case shown in figure 4.7. The other cases show similar results, which could be seen

in appendix B.

The number of iterations does not affect the sensitivity indices for the local one-at-

a-time method and the FAST method, while for the Sobol and Delta method, one

requires 1000 iterations before the indices approach stability and converge. Also, the

Sobol method does not produce results with sample sizes smaller than the smallest
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Figure 4.6: Local sensitivity indices for the model quantify the relative uncer-
tainty in the allocated energy at station A for a case with high uncertainty in the
input parameters. Calculated using the local one-at-a-time method. The two cases
visualised in the figures differ in the flow rate at station A, which increases by a
factor of 10 from the low to high flow rate. The indices shown are the top 6 highest
for each case. Computed using three GSA methods, the Sobol method, the FAST

and the Delta method.

amount used, i.e. 100 samples, as the function used for the Sobol method only returns

error messages in those cases.

Table 4.1 shows the computational time for each of the GSA methods using 100

samples, analysing the case with low uncertainty and low flow rate. These results

could be extended for a larger number of samples by multiplying by a given factor.

This shows that the Sobol method has a significantly larger computational time than

the other methods, especially the Delta method.
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Figure 4.7: The evolution of the sensitivity indices for the model quantifies the
relative uncertainty in the allocated energy at station A with an increasing number
of iterations. The specific case visualised is the low uncertainty and low flow rate
case. The methods used for computations are one local sensitivity analysis method;
the one-at-a-time method, and three GSA methods; the Sobol method, the FAST
and the Delta method. For the global methods, the analysis is done with 100, 1000
and 10000 iterations. While for the local method, with 10, 100 and 1000 iterations.

The equivalent figures for the other cases are shown in appendix B
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Discussion

5.1 Case Selection

The cases studied should cover appropriate scenarios to get valid answers to the

research questions at the analysis’s core. Therefore, the case study included differ-

ences in the uncertainties and the flow rate of flow A to capture different scenarios

and evaluate whether there are differences in the parameter impact, measured by

their sensitivities. However, one of the objectives of this thesis was to develop a

generalized framework for such sensitivity analysis within hydrogen supply chains.

Therefore, it was important to allow the analysis to be run for different scenarios

only by changing the Excel input file.

5.2 Allocated energy

Before evaluating the performance of the different analysis methods, the model under

study must be addressed and discussed, that is, all the choices and assumptions made

to calculate the relative uncertainty in the allocated energy at station A.

As stated in the method chapter 3.1, the allocated energy is computed from equation

(3.10). That is, by using the energy at each station, EA, EB and EC , computed from

45
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equation (3.1), using the measured values for pressure, temperature, flow rate and gas

composition. The computation of the allocated energy assumes energy conservation,

as shown in equation (3.9), where the assumed energy at station C is the sum of the

energy at station A and B. We also assume that the system follows the principle of

conservation of mass flow, where the measured mass flow at station C is the sum of

the mass flow measured at station A and B. The following relationship is presented

in equation (3.2).

Such assumptions are made in order to simplify the model and not increase the

complexity of the problem. Realistically, the principle of conservation of energy and

mass flow could only hold if it is a perfect system with 100% efficiency and no energy

loss. However, the only way to verify this assumption is to study a real case, which

undermines the objective of this study, which is to study a possible future scenario.

However, implementing a model that includes deviations from the assumptions in

future analyses could be interesting.

Only stations A and B are provided with all input values needed to compute the

energy. At station C, only the values for temperature and pressure are predefined.

Using the principle of mass flow conservation, shown in equation (3.2), the hydrogen

composition and flow rate at station C could be calculated. This computation is

outlined in the method section 3.1.

Some choices and assumptions had to be made to compute the energy values using

the function given in equation (3.1). Except for two, each parameter is directly fed

into the function using the predefined input values. These two parameters are the

calorific value, Hv, and the compressibility factor, Z. Both values need to be com-

puted separately before the energy function. The calorific value can not be computed

numerically but is obtained using predefined values from measures. Ideally, this value

would be obtained from measurements on the studied gas. This is, however, not pos-

sible due to limited access to gasses with our specific composition and tools used

to measure the calorific value. Our choice, therefore, led to using predefined molar

calorific values gathered from ”Table 3” from ISO 6976:2016 standard [13], as stated

in section 3.1, adding together the values for each gas in the composition scaled by
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their molar percentage. Again, we assume a linear relationship in the calorific value,

i.e. the calorific value is the sum of the contribution from each gas component.

All these computations, including the composition and flow rate at station C and the

calorific value and compressibility factor at all stations, follow from a set of assump-

tions. As this is a study of a system’s uncertainty, the uncertainties that follow from

making the assumptions and simplifications should ideally be included. However, it

is impossible to quantify these uncertainties, and making guesses will also include

more uncertainty. For this reason, the uncertainties following the assumptions and

simplifications were disregarded for this study.

Another important choice is the equation of state used to compute the compress-

ibility factor. The complexity of the equation of state increases proportionally with

its accuracy in describing the state of a given substance. To achieve a reasonable

execution time, there needs to be a compromise between computational expense

and accuracy. This introduces another source of uncertainty in this study, which we

will consider insignificant. We argue that it is simply a case of modeling-induced

uncertainty, which is inevitable.

As Python was chosen as the program to run the analysis, another aspect to consider

is whether the desired equation of state is implemented in a Python function.

The first choice was using the CoolProp package, which is a Python wrapper for

REFPROP, which is the NIST’s (National Institute of Standards and Technology)

reference Fluid Thermodynamic and Transport Properties Database. According to

the documentation of REFPROP [18], it has implemented the most accurate equa-

tions of state available.

As stated, the computational demand will increase to achieve high accuracy. There-

fore, the time elapsed would increase with the number of simulations. For the compu-

tation at station B with almost 100% hydrogen composition, a problem arose where

the function could not compute the compressibility factor, with an error message

stating convergence failure. This is a common problem according to the documen-

tation of REFPROP [18], where such an error usually arises in a calculation of a
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vapour-liquid equilibrium state close to a critical point. Limiting the REFPROP

stability around high-concentration mixtures due to the high rate of change of the

properties close to this critical point.

This problem led to a new requirement for a function calculating the compressibility

factor in Python. Pyfluids is another Python package containing such functions,

but this is again a wrapper of CoolProp, meaning the problem would remain [24].

The choice of function landed on the AGA8Detail() function, which is the AGA

8 equation of state implemented in a python function [17]. Using this method to

calculate the compressibility factor significantly reduced the computational time, a

great advantage for analysis methods requiring many simulations.

5.3 Choice of Global Sensitivity Analysis methods

The main point of the analysis conducted in this thesis was to evaluate the per-

formance of GSA methods compared to local sensitivity analysis to evaluate the

input factor’s influence on the uncertainty in the allocated energy as described in

section 3.1. This included evaluating if the result, followed by a GSA analysis, would

provide further insight and a more thorough result than what a nominal local uncer-

tainty analysis could provide. As there are different GSA methods to choose from,

another important aspect of this analysis is to evaluate the performance of each of

the methods and compare them against each other.

The choice of method is problem- and model-specific, meaning that it depends on the

desired output from the problem analysis and the characteristics of the model under

study. The desired output of the analysis is to quantify the contribution from each of

the uncertain input factors to the uncertainty in the output. The main objective of

the variance-based methods, described in section 2.5.2, is to decompose the output

variance into a contribution from each uncertain variable, making these methods

preferable for the particular analysis.
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Variance-based methods also have the advantage of being model-independent, which

means there is no need to make assumptions about the model’s functional relation-

ship to each uncertain input factor [3].

As mentioned in section 2.5.2, which covers the theory of variance-based methods,

the Sobol method is one of the most popular methods within this category. This

method provides sensitivity indices of all orders, e.g. the second-order indices, which

quantify the sensitivity resulting from the interaction of two uncertain parameters.

This trait makes the Sobol method particularly interesting if there are any higher-

order effects between the input factors of the model under study. Methods only

providing first-order interactions will not uncover these intermediate relationships,

thus making the resulting sensitivity indices biased. The method’s stability is also

advantageous, as there is no need for extensive simulations to obtain the converged

sensitivity indices. The disadvantageous feature of the method is that the samples

must be gathered using its specific sampling method, i.e. the Sobol sampling. The

Sobol sampling creates samples that are not extendable, i.e. they could only be used

for the Sobol method. The method, while stable, requires a significant number of

iterations, which makes it computationally expensive and time-consuming, especially

when dealing with models having many uncertain input factors.

Other alternatives within the variance-based methods category can succeed in solv-

ing this problem. One example is the extended Fourier amplitude sensitivity test

(FAST). Similar to the Sobol method, it requires specific and non-extendable sam-

pling. However, it is computationally inexpensive compared to the Sobol method,

which is a major advantage when dealing with limited computational capacity.

As for the particular model studied in this thesis, the Sobol methods used twice as

long to run compared to the computation time of FAST. When running an analysis

of 100 simulations using the parameters from the low uncertainty and low flow rate

case, as described in section 3.4.1, the Sobol method used 81.017 seconds, while for

FAST, the same analysis used 37.89 seconds. Unfortunately, FAST only provides

first- and total-order sensitivity indices. Therefore, it is unable to determine which

of the model’s input factors correlates and the correlations’ specific sensitivity.
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Another category of methods worth investigating is the density-based method, de-

scribed in section 2.5.5. Variance-based methods are fully based on quantifying the

sensitivity of each uncertain input factor using their variance implicitly, assuming

that this variance is sufficient to describe the variability of the model output. How-

ever, the knowledge of how each of the uncertain input factors affects the model

output comes from the entire uncertainty distribution. Therefore, a sensitivity mea-

sure quantifying a factor’s influence on the model output should assess the entire

output distribution, followed by the entire input distribution of each of the uncer-

tain parameters, not only one of its statistical moments. The density-based meth-

ods, also known as moment-independent methods, consider this in their sensitivity

measure. It is, therefore, interesting to compare the result from such a method

with a variance-based sensitivity measure. This is done using the Delta moment-

independent method, a well-known method within this category. Further details of

this method and its measures are outlined in section 2.5.5. Its sensitivity measure,

the delta index, is computed using equation (2.34).

5.4 Interpretation of sensitivity indices

The indices from the local sensitivity analysis are computed using equation (2.12).

These indices quantify the change in the output followed by a small perturbation

in the input values. It could also be used to determine each input value’s relative

importance. The nominal values from the input values are regarded as the baseline.

One value at a time is perturbed around the baseline. The values used for the

perturbation are the uncertainty scaled by a factor between zero and one. Therefore,

the section of the input space explored is limited. Since the method only changes

one value at a time, possible relationships between the values will not be uncovered.

In other words, the model studied must be linear to get valid results from a local

approach. The local indices are not directly comparable to those produced by the

GSA, as they only measure the sensitivity at a specific point, which may not reflect

the model variance followed by changes over the entire range of values. The measure
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could, therefore, be interpreted as a snapshot of the model’s behaviour at the baseline

point.

The global variance-based methods will decompose the variance into contributions

from each input value and their interactions across the entire range of input values.

The indices from the two variance-based methods explored are directly comparable;

however, they are not computed in the same manner. As outlined in section 2.5.2, the

Sobol method performs a variance decomposition on the model itself, while the FAST

performs a variance decomposition on the Fourier-transformed model. Initially, only

the Sobol included interactions, but this was solved in the extended version of the

FAST method. However, the FAST methods only provide sensitivities of the first

and total-order effects, while the Sobol also includes the second-order effects. The

second-order indices may be of particular interest if there is a large gap between the

first and total-order indices and one wishes to investigate parameter interactions

further. The sensitivity indices computed by the variance-based methods quantify

the uncertain input values contribution to the variance in the output, which in this

work is the relative uncertainty in the allocated energy at station A.

The last sensitivity analysis method explored in this work is the Delta method,

which computes a sensitivity index called the delta index. This index quantifies the

uncertain input values’ effect on the entire distribution of the model output. Unlike

the indices from the variance-based methods, it considers not only the variance

but all other distribution characteristics, such as the mean, kurtosis and skewness.

Therefore, it is not directly comparable to the indices computed using variance-based

methods order but in ranking the parameters’ importance. The method captures

the impacts of every characteristic of the parameter distribution, making it most

comparable to the total effect sensitivity index from the variance-based method.

This is because the total effect indices consider not only the first-order interactions

but also the interactions between parameters. The delta index, computed using

equation (2.34), quantifies how the entire output distribution changes in response

to changes in a given uncertain input value.
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5.5 Comparing Local and Global Sensitivity Analysis

As previously mentioned, the local method has long been considered the correct

approach for conducting a sensitivity analysis before the GSA became the standard

practice. The local approach is still in use due to its simple implementation, inter-

pretation, and low computational cost. In principle these analyses should produce

the same result, as they are applied on the same problem. Since the local method

does not include interactions in its indices, it will only make sense to compare them

to the first-order indices produced by the global methods. And as these indices are

not calculated in the same way, it would only be fair to compare the importance

rankings.

Comparing the result from the cases with low uncertainty, figures 4.2 and 4.5, and the

result from the cases with low uncertainty, figures 4.3 and 4.6, there is no agreement

with the importance ranking of local vs global. There is an indication of the pressure

at stations C and B being important to the uncertainty in relative uncertainty in

the allocated energy at station A, which all methods capture. However, the local

methods do not capture the importance of the flow rate at station B, which is

particularly large for the low flow rate cases, and the flow rate at station A, which

is particularly important for the high flow rate cases. This could be shown for the

low uncertainty case in figure 4.2 with a value of 0.4 and 0.25 of the first-order

Sobol index, for the flow rate B and A respectively. This does not agree with the

expectation that the flow rate will significantly impact the output variance.

The importance of the hydrogen fraction varies between global and local results. It is

not considered significant in low uncertainty cases globally, but it is considered one

of the most important parameters in local results. In the case of high uncertainty, the

global and local rankings of the importance of the hydrogen fraction seem to agree.

These results also agree with the expectation. Since the parameters are only varied

a small amount for the low uncertainty case, the calorific value and compressibility

factor will not vary much. For the high uncertainty case, the hydrogen fraction

uncertainty significantly increases, from an absolute uncertainty of 0.04 to 1, and
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therefore the variation span also increases, giving a larger variation in both the

calorific value and the compressibility factor. This increase in sensitivity is visualised

by comparing figure 4.1 and 4.4, which shows the total order indices. For the low

flow rate case in figure 4.1, the sensitivity in the hydrogen fraction is not included

which indicates that the sensitivity is less than 0.1. For the same flow rate in figure

4.4, the average sensitivity of the GSA gives an sensitivity of approximately 0.2. In

other words, there is an significant increase.

For the global variance-based methods, the temperature is considered to have an

unimportant impact on the variance in the model output, which seems to be the

case for the local method. This could also follow from the fact that the baseline

point has a larger variation in the compressibility factor, which is computed using

the temperature.

The ranking of the first-order indices differs from the global methods’ total order

indices, indicating some significance in the parameter interactions. Therefore, only

using the local approach will give a wrong picture of parameter ranking.

5.6 Comparing global methods

As stated in section 2.2, there are some desirable properties to look for when choos-

ing a GSA method, which favours the global over local methods. Global methods

may require more computational resources due to the larger sample size needed to

cover the entire input space and the increased complexity of mathematics at their

core. Local methods could be preferable when the model being studied has limited

complexity, linearity between the input values, and no interactions. This is because

they are easy to interpret and implement.

For the model studied in this thesis, there are significant interactions, which are seen

by comparing the plot of the first order indices against the plots for the total order

indices, i.e. for the low uncertainty case figure 4.2 against figure 4.1 and for the high

uncertainty case figure 4.3 against figure 4.4. Here, one could see some differences,
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where the total order indices are larger than the first-order indices for the FAST

and the Sobol method. The comparison of low uncertainty cases, i.e. between figure

4.2 and figure 4.1, the Sobol sensitivity of the pressure in flow C, PC , increases

from about 0.1 to about 0.4 for the low flow rate case. For the same case the flow

rate of flow B, qB, increases from about 0.4 to 0.8. The same relationship is seen in

the other cases. This proves that there are interactions between the parameters. As

the Sobol method is the only one that provides quantifiable measures of the model

output sensitivity due to interactions, it is preferable to use it.

The first-order indices computed using the Delta function from the SALib package

in Python are estimates of Sobol’s first-order index, not another measure from the

Delta method. Therefore, the two different indices produced by the SALib Delta

function are not directly comparable. However, its first-order Sobol estimation is

included in the figures showing the first-order indices for each of the global meth-

ods, i.e. figure 4.3 and figure 4.2, as the Delta function uses a considerably lower

computational time than the Sobol method, still computing a good estimate. For the

low uncertainty cases, the Sobol first-order estimation seems to agree with the ‘real’

first-order sensitivity indices computed by the Sobol method. This favours the Delta

method as it cuts the computational time significantly while still keeping valid re-

sults. However, in our particular case, there are many interactions between the input

parameters. Therefore, the indices capturing all interactions give the most accurate

estimations of the sensitivities, as they capture all the effects on the output. These

are the total order indices computed using Sobol and FAST, and the delta index

computed using the Delta method. As shown in the figures presenting the total or-

der indices, that is, figure 4.1 for the low uncertainty cases and figure 4.4 for the

high uncertainty cases, the results from the Sobol and FAST methods are mainly

consistent with each other. The FAST indices are greater than the Sobol indices,

implying that the FAST method overestimates the importance of each parameter.

The reasoning for the word ‘overestimate’ is that the Sobol is the most accurate

variance-based method, as it directly decomposes the variance of the model. The

FAST method does not decompose the variance directly of the model, but from the

Fourier transposed model, which is an estimation of the model.
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For this reason, the precision of the Sobol method is higher than for the FAST

method. However, the FAST method has the advantage of being less computationally

demanding than the Sobol method as seen in table 4.1. Not only is the computational

time lower, but the method also requires a smaller number of samples, which can be

seen in the evolution plot shown in figure 4.7. The FAST method provided stable

results for the sensitivity indices across all sample sizes, while the Sobol method did

not converge before a significant number of samples, as shown in figure 4.7 for the

case with low uncertainty and low flow rate, but the same conclusion could be made

for all other cases as seen in appendix B, where all the other plots are included.

However, by implying that the variance-based methods are the most accurate meth-

ods, one assumes that the variance measure is sufficient to describe the entire vari-

ability of the model output. In an article by Helton and Davis in 2003 [8], they argue

that using only the variance, the entire distribution is reduced to one number, and

the ‘resolution’ is lost. The appropriate way of evaluating the influence of a given

parameter would, therefore, be to evaluate its entire distribution, not only one of its

moments. Saltelli [28] refers to three properties a sensitivity analysis should satisfy

when evaluating a model’s uncertainty: “global, quantitative and model-free”. As

stated by Borgonovo [3], a fourth property should be added to this list: moment

independence. This argues for using the Delta method, which fulfils all four require-

ments. As stated, the computational time of the Delta method is also significantly

lower than both of the variance-based methods, as seen in table 4.1. However, look-

ing at the evolution plot in figure 4.7 1, this method requires a larger sample size.

Even though the number of samples needed for the delta indices to converge is larger

than that of both variance-based methods, the reduction in computational time is

so large that it is still smaller than the Sobol method.

The parameter importance ranking is consistent across all methods in the cases with

low uncertainty. Still, in the high uncertainty cases, the Delta method shows some

interesting differences in the rankings. Such as shown in figure 4.4 for the low flow

rate case, the FAST and Sobol rank the hydrogen fraction as the fifth and fourth

1The equivalent plot for the other cases is obtained in appendix B



most important parameter, and in the high flow rate case, both methods rank the

hydrogen fraction as the third most important parameter. The Delta method ranks

the hydrogen fraction as the least important of all parameters for all cases, for both

low and high uncertainty. Interpreting this result based on the definitions of each of

the sensitivity measures implies that as the hydrogen fractions variance may impact

the output, the entire distribution of the fractions, including all of its characteristics,

does not have a considerable impact on the variability of the output.
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Conclusion

The main objective of this thesis has been to introduce sensitivity analysis as an im-

portant supplement to uncertainty analysis of hydrogen supply chains, emphasising

its importance in providing a comprehensive understanding of the impact of uncer-

tain parameters on variability in model output. The thesis evaluates the increased

insight by shifting from a local to a global sensitivity analysis and implements differ-

ent GSA methods, comparing their results from the particular case study. The case

study included four cases with the same problem setup: two gas flows from different

energy sources are combined into one gas flow, and each of the flows is measured at

separate measurement stations.

The result indicates a significant discrepancy between the local and global outcomes,

with the GSA offering a more comprehensive analysis. One could argue that the

result demonstrates higher accuracy in the global analyses, as it deviates from the

global result, which is considered to provide an accurate estimation of the sensitivity.

local sensitivity analysis underestimated the importance of each of the uncertain

input parameters, as it does not consider interactions in its sensitivity measures

because it only varies one parameter value at a time, around the baseline point.

Considering the parameter space of the model’s uncertain parameter values with

the base values located in origin, the samples will only vary perpendicularly along

each of the parameter’s dimensional directions, missing a significant part of space.

56
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Three methods of GSA were applied to the problem: two variance-based methods,

the Sobol and FAST methods, and one density-based method, the Delta method.

The result across the variance-based harmonizes across the different cases. The

FAST method has the advantage of being computationally inexpensive and requiring

smaller sample sizes; however, it does overestimate the importance of each parame-

ter. The Sobol method gives the most accurate result, as the variance is decomposed

directly from the model, not from an estimation of the model, as with the FAST

method. Therefore it also computes the sensitivity indices of the parameter inter-

action. However, it is computationally expensive and requires a large number of

samples. With the number of uncertain input parameters for the model studied in

this thesis, the increased computational demand changing from FAST to Sobol is

manageable. This may not be the case for models with more uncertain input param-

eters. However, as the variance-based methods assumes that the moment variance of

the uncertain input values is sufficient to describe the output variability, the Delta

method evaluates the entire distribution and its characteristics. This introduces an-

other important property to the sensitivity analysis, namely moment independence,

which is very important in such an analysis. The main difference between the re-

sult from this method and the variance-based method is in the importance of the

hydrogen fraction, which is insignificant according to the Delta method. The Delta

method does not provide a sensitivity measure comparable to the variance-based

first-order indices. However, for the Delta function in SALib, an estimation of the

Sobol first-order indices is computed. As this method is more computationally effi-

cient than the variance-based method, the Delta method would be an appropriate

choice for our problem.

This thesis showed that the uncertain parameters had the greatest impact on the

relative uncertainty in the allocated energy at station A, where the pressure and flow

rates were. More specifically, the pressure at stations B and C, and the flow rate at

station B for the low flow rate cases and at station A for the high flow rate cases.

Another important finding from this thesis was the large difference between the first

and total order sensitivity indices, showing that interactions between parameters

significantly impacted the output variability.
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The main focus of this thesis has been on sensitivity analysis, but such an analysis

should always complement an uncertainty analysis. For a complete analysis, the field

of uncertainty analysis should also be explored to find the appropriate method for

the problem under study.

6.1 Further work

Sensitivity analysis is applied to a system of hydrogen supply chains. However, such

an analysis could be extended to supply chains of other energy sources where the

allocated energy is of interest. Other energy equations with other uncertainty param-

eters may be required. If these equations are not implemented as Python functions,

the analysis could be performed in another program, such as Matlab, still following

the same framework as in this thesis.

The equation chosen for calculating the allocated energy at energy station A assumes

a linear relationship between the energy flows; that is, the energy at station C is the

sum of the energies at stations A and B. However, other models could be applied to

the particular problem.

As the variance in output in this particular setting proved to be significantly affected

by the parameter interactions, the second-order indices may be interesting to explore.

It may be worth exploring if previously considered insignificant temperatures have

hidden contributions in the second-order sensitivity indices, demonstrating their

impact through interactions.

This thesis focused on the application of two categories of GSA methods, assuming

that these methods would suit the particular problem at hand. However, it would

be beneficial to explore other methods in future work, for instance, to increase the

complexity of the analysis. Including other uncertain parameters in the model may

be of interest to increase the model’s complexity and give a more detailed result.

As the computational expense will increase with an increasing number of parameters,

other methods may be of interest for this particular problem, as the variance-based
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methods investigated in this thesis have proven to be computationally expensive.

Other analysis methods that could be applied are the method of Morris as described

in section 2.5.1, derivative-based methods as described in section 2.5.3, or regression-

based methods as described in section 2.5.4.

The Python project that implemented this analysis could be expanded to study

other systems with different setups, more energy sources or processes. For the current

framework, it may be hard to implement further changes without making the code

much longer and more complicated. For such a particular case, another approach

would be desired, for instance, changing to object-orientated programming.

Additionally, some simplifications were made in the code to reduce the workload

and achieve the desired result. Future work could refine the code to make it more

applicable to all system versions and input compositions.
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ISO6976 Table3

Component Name molwt(g/mol) Hcmol 0 Hcmol 15

Methane C1 16,04246 892,92 891,51

Ethane C2 30,06904 1564,35 1562,14

Propane C3 44,09562 2224,03 2221,1

n-Butane n-C4 58,12220 2883,35 2879,76

2-Methylpropane i-C4 58,12220 2874,21 2870,58

n-Pentane n-C5 72,14878 3542,91 3538,6

2-Methylbutane i-C5 72,14878 3536,01 3531,68

2,2-Dimethylpropane neo-C5 72,14878 3521,75 3517,44

n-Hexane n-C6 86,17536 4203,24 4198,24

2-Methylpentane 2-Methylpentane 86,17536 4195,64 4190,62

3-Methylpentane 3-Methylpentane 86,17536 4198,27 4193,22

2,2-Dimethylbutane 2,2-Dimethylbutane 86,17536 4185,86 4180,83

2,3-Dimethylbutane 2,3-Dimethylbutane 86,17536 4193,68 4188,61

n-Heptane n-C7 100,20194 4862,88 4857,18

n-Octane n-C8 114,22852 5522,41 5516,01

n-Nonane n-C9 128,25510 6182,92 6175,82

n-Decane n-C10 142,28168 6842,69 6834,9

n-Undecane n-C11 156,30826 7502,22 7493,73

n-Dodecane n-C12 170,33484 8162,43 8153,24

n-Tridecane n-C13 184,36142 8821,88 8811,99

n-Tetradecane n-C14 198,38800 9481,71 9471,12

n-Pentadecane n-C15 212,41458 10141,7 10130,23

Ethene Ethylene 28,05316 1413,55 1412,12

60
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Propene Propene 42,07974 2061,57 2059,43

1-Butene 1-Butene 56,10632 2721,57 2718,71

cis-2-Butene cis-2-Butene 56,10632 2714,88 2711,94

trans-2-Butene trans-2-Butene 56,10632 2711,09 2708,26

2-Methylpropene 2-Methylpropene 56,10632 2704,88 2702,06

1-Pentene 1-Pentene 70,13290 3381,32 3377,76

Propadiene Propadiene 40,06386 1945,26 1943,97

1,2-Butadiene 1,2-Butadiene 54,09044 2597,15 2595,12

1,3-Butadiene 1,3-Butadiene 54,09044 2544,14 2542,11

Ethyne Acetylene 26,03728 1301,86 1301,37

Cyclopentane Cyclopentane 70,13290 3326,14 3222,19

Methylcyclopentane Methylcyclopentane 84,15948 3977,05 3972,46

Ethylcyclopentane Ethylcyclopentane 98,18606 4637,2 4631,93

Cyclohexane Cyclohexane 84,15948 3960,68 3956,02

Methylcyclohexane Methylcyclohexane 98,18606 4609,33 4604,08

Ethylcyclohexane Ethylcyclohexane 112,21264 5272,76 5266,9

Benzene Benzene 78,11184 3305,12 3302,9

Toluene Toluene 92,13842 3952,77 3949,83

Ethylbenzene Ethylbenzene 106,16500 4613,16 4609,54

o-Xylene o-Xylene 106,16500 4602,18 4598,64

Methanol Methanol 32,04186 766,6 765,09

Methanetiol Methanetiol 48,10746 1241,64 1240,28

Hydrogen H2 2,01588 286,64 286,15

Water H2O 18,01528 45,064 44,431

Hydrogen sulfide H2S 34,08088 562,93 562,38

Ammonia NH3 17,03052 384,57 383,51

Hydrogen cyanide HCN 27,02534 671,92 671,67

Carbon monoxide CO 28,01010 282,8 282,91

Carbonyl sulfide COS 60,07510 548,01 548,14

Carbon disulfide CS2 76,14070 1104,05 1104,32

Component Name Hcmol 15 55 Hcmol 20 Hcmol 25 uHcmol

Methane C1 891,46 891,05 890,58 0,19

Ethane C2 1562,06 1561,42 1560,69 0,51

Propane C3 2220,99 2220,13 2219,17 0,51

n-Butane n-C4 2879,63 2878,58 2877,4 0,72

2-Methylpropane i-C4 2870,45 2869,39 2868,2 0,72

n-Pentane n-C5 3538,45 3537,19 3535,77 0,23
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2-Methylbutane i-C5 3531,52 3530,25 3528,83 0,23

2,2-Dimethylpropane neo-C5 3517,28 3516,02 3514,61 0,25

n-Hexane n-C6 4198,06 4196,6 4194,95 0,32

2-Methylpentane 2-Methylpentane 4190,44 4188,97 4187,32 0,53

3-Methylpentane 3-Methylpentane 4193,04 4191,56 4189,9 0,53

2,2-Dimethylbutane 2,2-Dimethylbutane 4180,65 4179,17 4177,52 0,48

2,3-Dimethylbutane 2,3-Dimethylbutane 4188,43 4186,94 4185,28 0,46

n-Heptane n-C7 4856,98 4855,31 4853,43 0,67

n-Octane n-C8 5515,78 5513,9 5511,8 0,76

n-Nonane n-C9 6175,56 6173,48 6171,15 0,81

n-Decane n-C10 6834,62 6832,33 6829,77 0,87

n-Undecane n-C11 7493,42 7490,93 7488,14 1,54

n-Dodecane n-C12 8152,91 8150,21 8147,19 1,13

n-Tridecane n-C13 8811,63 8808,73 8805,48 1,21

n-Tetradecane n-C14 9470,73 9467,63 9464,15 1,32

n-Pentadecane n-C15 10129,82 10126,5 10122,82 1,44

Ethene Ethylene 1412,07 1411,65 1411,18 0,21

Propene Propene 2059,35 2058,73 2058,02 0,34

1-Butene 1-Butene 2718,6 2717,76 2716,82 0,39

cis-2-Butene cis-2-Butene 2711,83 2710,97 2710 0,5

trans-2-Butene trans-2-Butene 2708,16 2707,33 2706,4 0,47

2-Methylpropene 2-Methylpropene 2701,96 2701,13 2700,2 0,42

1-Pentene 1-Pentene 3377,63 3376,59 3375,42 0,73

Propadiene Propadiene 1943,92 1943,54 1943,11 0,6

1,2-Butadiene 1,2-Butadiene 2595,05 2594,46 2593,79 0,4

1,3-Butadiene 1,3-Butadiene 2542,03 2541,44 2540,77 0,41

Ethyne Acetylene 1301,35 1301,21 1301,05 0,32

Cyclopentane Cyclopentane 3222,05 3320,89 3319,59 0,36

Methylcyclopentane Methylcyclopentane 3972,29 3970,95 3969,44 0,56

Ethylcyclopentane Ethylcyclopentane 4631,74 4630,2 4628,47 0,71

Cyclohexane Cyclohexane 3955,85 3954,49 3952,96 0,32

Methylcyclohexane Methylcyclohexane 4603,89 4602,36 4600,64 0,71

Ethylcyclohexane Ethylcyclohexane 5266,69 5264,97 5263,05 0,95

Benzene Benzene 3302,81 3302,16 3301,43 0,27

Toluene Toluene 3949,72 3948,86 3947,89 0,51

Ethylbenzene Ethylbenzene 4609,4 4608,34 4607,15 0,66

o-Xylene o-Xylene 4598,52 4597,48 4596,31 0,76

Methanol Methanol 765,03 764,59 764,09 0,13
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Methanetiol Methanetiol 1240,23 1239,84 1239,39 0,32

Hydrogen H2 286,13 285,99 285,83 0,02

Water H2O 44,408 44,222 44,013 0,004

Hydrogen sulfide H2S 562,36 562,19 562,01 0,23

Ammonia NH3 383,47 383,16 382,81 0,18

Hydrogen cyanide HCN 671,66 671,58 671,5 1,26

Carbon monoxide CO 282,91 282,95 282,98 0,06

Carbonyl sulfide COS 548,15 548,19 548,23 0,24

Carbon disulfide CS2 1104,33 1104,4 1104,49 0,43
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Evolution of sensitivity indices
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Figure B.1: The evolution of the sensitivity indices for the model quantifies the
relative uncertainty in the allocated energy at station A with an increasing number
of iterations. The specific case visualised is the low uncertainty and high flow rate
case. The methods used for computations are one local sensitivity analysis method;
the one-at-a-time method, and three global sensitivity analysis methods; the Sobol
method, the Fourier Amplitude Sensitivity Test and the delta moment-independent
method. For the global methods, the analysis is done with 100, 1000 and 10000

iterations. While for the local method with 10, 100 and 1000 iterations
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Figure B.2: The evolution of the sensitivity indices for the model quantifies the
relative uncertainty in the allocated energy at station A with an increasing number
of iterations. The specific case visualised is the high uncertainty and low flow rate
case. The methods used for computations are one local sensitivity analysis method;
the one-at-a-time method, and three global sensitivity analysis methods; the Sobol
method, the Fourier Amplitude Sensitivity Test and the delta moment-independent
method. For the global methods, the analysis is done with 100, 1000 and 10000

iterations. While for the local method with 10, 100 and 1000 iterations
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Figure B.3: The evolution of the sensitivity indices for the model quantifies the
relative uncertainty in the allocated energy at station A with an increasing number
of iterations. The specific case visualised is the high uncertainty and high flow
rate case. The methods used for computations are one local sensitivity analysis
method; the one-at-a-time method, and three global sensitivity analysis methods;
the Sobol method, the Fourier Amplitude Sensitivity Test and the delta moment-
independent method. For the global methods, the analysis is done with 100, 1000
and 10000 iterations. While for the local method with 10, 100 and 1000 iterations
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D. Grishchenko, and D. Pointer. Chapter 8 - verification and validation and

uncertainty quantification. In Thermal Hydraulics Aspects of Liquid Metal

Cooled Nuclear Reactors. Woodhead Publishing, 2019. ISBN

978-0-081-01980-1. doi:https://doi.org/10.1016/B978-0-08-101980-1.00008-9.

67

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
https://doi.org/https://doi.org/10.2165/00003088-200140010-00002
https://doi.org/https://doi.org/10.1016/j.ress.2006.04.015
https://doi.org/10.13140/RG.2.2.15018.36804
https://doi.org/https://doi.org/10.1016/B978-0-08-101980-1.00008-9


Bibliography 68

[8] J. Helton and F. Davis. Latin hypercube sampling and the propagation of

uncertainty in analyses of complex systems. Reliability Engineering & System

Safety, 1:23–69, 2003. doi:https://doi.org/10.1016/S0951-8320(03)00058-9.

[9] J. Herman and W. Usher. SALib: An open-source python library for

sensitivity analysis. The Journal of Open Source Software, 2(9), 2017.

doi:https://doi.org/10.21105/joss.00097.

[10] W. L. Hosch. Gamma distribution — Probability, Statistics, Distribution —

britannica.com. https://www.britannica.com/science/gamma-distribution,

2024. [Accessed 05-04-2024].

[11] P. Høeg. Borderliners, 1 edition. Harvill Press, 1995. ISBN 978-0-385-31508-1.

[12] IEA. Emissions from oil and gas operations in net zero transitions. Technical

report, International Energy Agency, Paris, 2023. https://www.iea.org/

reports/emissions-from-oil-and-gas-operations-in-net-zero-transitions.

[13] ISO Central Secretary. Natural gas - calculation of calorific values, density,

relative density and wobbe indices from composition. Standard ISO

6976:2016, International Organization for Standardization, Geneva, CH, Aug.

2016. https://www.iso.org/standard/55842.html.

[14] T. Iwanaga, W. Usher, and J. Herman. Toward SALib 2.0: Advancing the

accessibility and interpretability of global sensitivity analyses.

Socio-Environmental Systems Modelling, 4, 2022.

doi:https://doi.org/10.18174/sesmo.18155.

[15] C. H. Joel Hass and M. Weir. Thomas’ Calculus in SI Units. Pearson

Education Limited, 14 edition, 2019. ISBN 978-1-292-25322-0.

[16] Kystmuseet i Øygarden. Toftestallen.

http://coastlight.net/detaljer/4283/Toftestallen/, 2018. [Accessed

04-04-2024].

[17] E. Lemmon and K. Starling. Aga s 2003 operations & engineering conference.

In Speed of Sound and Other Related Thermodynamic Properties Calculated

From the AGA8 Detail Characterization Method. Proceedings of the AGA

2003 Operations & Engineering Conference, Orlando, 2003.

https://tsapps.nist.gov/publication/get pdf.cfm?pub id=831870.

[18] E. W. Lemmon, M. L. Huber, and M. O. McLinden. NIST Standard

Reference Database 23: Reference Fluid Thermodynamic and Transport

https://doi.org/https://doi.org/10.1016/S0951-8320(03)00058-9
https://doi.org/https://doi.org/10.21105/joss.00097
https://www.britannica.com/science/gamma-distribution
https://www.iea.org/reports/emissions-from-oil-and-gas-operations-in-net-zero-transitions
https://www.iea.org/reports/emissions-from-oil-and-gas-operations-in-net-zero-transitions
https://www.iso.org/standard/55842.html
https://doi.org/https://doi.org/10.18174/sesmo.18155
http://coastlight.net/detaljer/4283/Toftestallen/
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=831870 


Bibliography 69

Properties-REFPROP, Version 9.1, National Institute of Standards and

Technology, 2013. [Accessed 04-06-2024].

[19] S. Mahadevan and S. Sarkar. Uncertainty Analysis Methods. US Department

of Energy, Washington, DC, USA, 2009.

[20] J. Mena, L. Margetts, and P. Mummery. Practical application of the

stochastic finite element method. Archives of Computational Methods in

Engineering, 23(1):171–190, Dec 2014.

doi:https://doi.org/10.1007/s11831-014-9139-3.

[21] M. D. Morris. Factorial sampling plans for preliminary computational

experiments. Technometrics, 33(2):161–174, 1991.

doi:https://doi.org/10.1080/00401706.1991.10484804.

[22] NORCE Norwegian Research Centre. Norce - Fiscal metering.

https://www.norceresearch.no/en/research-theme/fiscal-metering, 2024.

[Accessed 13-03-2024].

[23] NORCE Norwegian Research Centre. Norce - Background.

https://www.norceresearch.no/en/about-us/bakgrunn, 2024. [Accessed

13-03-2024].

[24] V. Portyanikhin. pyfluids - pypi. pypi.org/project/pyfluids, 2023. [Accessed

05-04-2024].

[25] S. Rahman. A surrogate method for density-based global sensitivity analysis.

Reliability Engineering & System Safety, 155:224–235, 2016.

doi:https://doi.org/10.1016/j.ress.2016.07.002.

[26] P. M. Reed, A. Hadjimichael, K. Malek, T. Karimi, C. R. Vernon,

V. Srikrishnan, R. S. Gupta, D. F. Gold, B. Lee, K. Keller, T. B. Thurber,

and J. S. Rice. Addressing Uncertainty in Multisector Dynamics Research.

Zenodo, 2022. doi:https://doi.org/10.5281/zenodo.6110623.

[27] E. Ryan, O. Wild, A. Voulgarakis, and L. Lee. Fast sensitivity analysis

methods for computationally expensive models with multi-dimensional

output. Geoscientific Model Development, 11(8):3131–3146, 2018.

doi:https://doi.org/10.5194/gmd-11-3131-2018.

[28] A. Saltelli. Sensitivity analysis for importance assessment. Risk analysis: an

official publication of the Society for Risk Analysis, 22:579–590, 2002.

doi:https://doi.org/10.1111/0272-4332.00040.

https://doi.org/https://doi.org/10.1007/s11831-014-9139-3
https://doi.org/https://doi.org/10.1080/00401706.1991.10484804
https://www.norceresearch.no/en/research-theme/fiscal-metering
https://www.norceresearch.no/en/about-us/bakgrunn
pypi.org/project/pyfluids
https://doi.org/https://doi.org/10.1016/j.ress.2016.07.002
https://doi.org/https://doi.org/10.5281/zenodo.6110623
https://doi.org/https://doi.org/10.5194/gmd-11-3131-2018
https://doi.org/https://doi.org/10.1111/0272-4332.00040


Bibliography 70

[29] A. Saltelli, S. Tarantola, and K. P.-S. Chan. A quantitative

model-independent method for global sensitivity analysis of model output.

Technometrics, 41(1):39–56, 1999.

doi:https://doi.org/10.1080/00401706.1999.10485594.

[30] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis

in Practice: A Guide to Assessing Scientific Models. John Wiley & Sons, Ltd,

1 edition, 2004. ISBN 978-0-470-87093-8.

[31] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,

M. Saisana, and S. Tarantola. Global sensitivity analysis: the primer. John

Wiley & Sons, 1 edition, 2008. ISBN 978-0-470-72518-4.

[32] E. Smith. Chapter 4 - Uncertainty Analysis, pages pp 2283–2297. John Wiley

& Sons, Ltd, 2013. ISBN 978-0-470-05733-9.

[33] J. Smith, H. Van Ness, M. Abbott, and M. Swihart. Introduction to Chemical

Engineering Thermodynamics. McGraw-Hill Education, 8 edition, 2005. ISBN

978-1-259-69652-7.

[34] K. Starling and J. Savigde. Compressibility Factors of Natural Gas and Other

Related Hydrocarbon Gases. American Gas Association, Operating Section;

2nd edition, 1992.

[35] J. R. Taylor. An introduction to error analysis: The study of uncertainties in

physical measurements. University Science Books, 2 edition, 1997. ISBN

978-0-935-70275-0.

[36] The Norwegian Government. The Norwegian government’s hydrogen strategy.

Technical report, Norwegian Ministry of Petroleum and Energy and

Norwegian Ministry of Climate and Environment, 2020.

https://www.regjeringen.no/en/dokumenter/

the-norwegian-governments-hydrogen-strategy/id2704860/.
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