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Abstract

The advancement of mobile broadband networks has introduced new challenges in data privacy and
the efficiency of anomaly detection. Traditional centralized data processing methods are becoming
less effective, calling for innovative approaches like federated learning. This master’s thesis inves-
tigates the application of federated learning to enhance anomaly detection within mobile networks
by utilizing real-world data from multiple locations. The objective is to evaluate its ability to train
locally on devices, thereby preserving user privacy and leveraging the data’s geographical diversity.

The research methodology involved training machine learning models directly on network nodes
without centralizing the data. Over 20 rounds of training, the models demonstrated substantial
improvements in detecting network anomalies. Notably, the best-performing round achieved an
accuracy of 86.91%, precision of 81.18%, and a consistently high recall of over 99%, resulting in
an F1 score of 89.17%. These results confirm the effectiveness of federated learning in maintaining
high detection rates while enhancing data privacy.

The findings highlight federated learning’s potential to transform network management practices,
facilitating secure anomaly detection across different geographical regions.

The thesis concludes with a discussion on the scalability of federated learning models and their po-
tential integration with existing technologies to further improve network functionality and security.
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Chapter 1

Introduction

The advancement of mobile networks, from the rudimentary voice services of 1G to the comprehen-
sive connectivity of 5G, has revolutionized communication and significantly increased the complex-
ity and volume of data transmitted over these networks (Figure 1.1). Looking ahead, the ongoing
research into 6G and next-generation networks promises even greater enhancements, potentially
introducing capabilities that will further transform connectivity standards, facilitate even faster
data transmission, and enable more reliable network coverage. These developments will not only
extend the frontiers of digital communication but are also likely to introduce new challenges and
complexities in network management and data security (Attaran, 2023; Zontou, 2023).

Figure 1.1: The Evolution of mobile networks (Attaran and Attaran, 2020)

The surge in connected devices has increased the complexity and volume of data in contemporary
networks. While smartphones remain a major contributor to network traffic, Internet of Things
(IoT) devices are rapidly expanding their footprint, generating substantial amounts of data from
a lot of sensors and applications (Attaran, 2023; Zontou, 2023). The increase in data volume and
complexity has rendered network management a challenge, often exceeding the limits of human
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accuracy and efficiency.

To address these challenges, artificial intelligence, and machine learning have become key in network
management and security. These technologies are especially useful in mobile networks for spotting
trends and detecting unusual activity in large volumes of data.(Alghanmi et al., 2022; Rajendra
et al., 2023; Sarker et al., 2021; Taleb et al., 2020).

Advancements in network softwarization, virtualization, and automation have paved the way for
leveraging artificial intelligence in mobile networks. These technologies enable more scalable and
adaptable networks, optimizing resource utilization. artificial intelligence and machine learning are
crucial in refining these advancements and managing the complexities of modern network environ-
ments. They enhance network robustness and security against evolving cyber threats, creating a
solid infrastructure supporting high data demands and rapid service deployment typical of 5G and
future networks (Condoluci and Mahmoodi, 2018; De Turck et al., 2017).

Anomaly detection, a crucial network security component, involves identifying data patterns that
deviate from expected behavior. Given the complexity and volume of data in modern networks,
particularly with the introduction of 5G, conventional anomaly detection techniques are often in-
sufficient due to privacy concerns, bandwidth limitations, and potential security vulnerabilities
(Thudumu et al., 2020; Xu et al., 2022; Yang and Zhang, 2023).

To address these challenges, federated learning offers a solution by facilitating the training of ma-
chine learning models on decentralized data. This approach not only addresses the limitations of
traditional methods but also significantly enhances privacy and security (Kremenova and Gajdos,
2019; W. Y. B. Lim et al., 2020).

This research applies federated learning to anomaly detection in mobile network real-world data,
showcasing its ability to handle complex data and improve privacy. Demonstrating federated learn-
ing’s capacity to address network anomalies across various locations, the study reveals its adapt-
ability and effectiveness. Such insights show the value of machine learning in enhancing mobile
network security and management in real-world applications, thereby contributing to the existing
research in the domain.

1.1 Research Question

How can federated learning be effectively applied to real-world mobile network data for anomaly
detection, and what insights can be derived from its application across various geographic locations
regarding the distribution and frequency of network anomalies?
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1.2 Aims and Objectives

The aims and objectives of this research are

1. To explore how federated learning can overcome challenges related to the efficient transfer and
processing of high-dimensional data across geographically distributed mobile network nodes.

2. To Investigate the effectiveness of federated learning and other distributed learning techniques
in preserving the security of mobile network data.

3. To leverage real-world mobile network data to implement and evaluate federated learning-
based anomaly detection, investigating regional disparities in anomaly prevalence.

1.3 Structure of Thesis

Introduction: Introduces the research, highlighting the context, problem statement, and objec-
tives.

Literature Review: Reviews existing research on anomaly detection in mobile networks, high-
lighting the gap in real-world data applications of federated learning.

Background: Explores the theoretical foundations of machine learning and federated learning,
establishing their relevance to anomaly detection in mobile networks.

Methods: Describes the research methodology, including data collection from various locations
and techniques employed for federated learning based anomaly detection.

Results: Presents research findings, evaluating the effectiveness of federated learning in detecting
anomalies within real-world mobile network data.

Discussion: Discusses the results, comparing federated learning with centralized learning and
exploring the implications of regional disparities in anomaly detection.

Conclusion: Summarizes the key findings, contributions, limitations, and future research direc-
tions, emphasizing the significance of applying federated learning to real-world data for anomaly
detection in mobile networks.
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Chapter 2

Background

Machine learning leverages statistics to make decisions in a variety of fields. It is capable of handling
complex scenarios and has a quicker response time to abnormal behaviors than humans. It offers
flexibility with various algorithms and model choices (S. Wang et al., 2021).

2.1 Categories of machine learning

Machine learning is categorized into three primary types: supervised, unsupervised, and reinforce-
ment learning. Each type provides distinct methods for data analysis and prediction, suitable for
different tasks such as anomaly detection, predictive modeling, and pattern recognition. Choosing
the correct approach depends on the learning mechanism and data at hand.

Figure 2.1: Types of Machine learning (Sarker, 2021)

Supervised Learning: It involves training algorithms with labeled datasets. The model learns to
map inputs to outputs, preparing it for accurate predictions on new data. It is primarily applied
in classification, for sorting data into classes, and regression, for forecasting continuous values.
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Techniques include linear Regression for regression, logistic Regression, support vector machines,
and neural networks for classification (Cunningham et al., 2008).

Unsupervised Learning: It works with unlabeled data to uncover inherent patterns. Algorithms
autonomously discern data relationships, serving well for clustering and dimensionality reduction.
K-Means clusters similar data, while Principal Component Analysis streamlines the dataset retain-
ing crucial details (Sutskever et al., 2015).

Semi-Supervised Learning: Semi-supervised learning leverages a small amount of labeled data
and a large amount of unlabeled data to improve learning accuracy (Van Engelen and Hoos, 2020).

Reinforcement Learning Reinforcement learning involves an agent learning decision-making
through environmental interactions to reach a goal. Rewards and penalties guide the agent, as
it associates actions with outcomes to maximize rewards over time. It diverges from supervised
and unsupervised learning, prioritizing the exploration-exploitation balance rather than relying on
labeled data or pattern detection (Sutton and Barto, 2018).

Deep learning constitutes a subfield within machine learning, contributing to the progression of
artificial intelligence. It excels in identifying intricate correlations through the implementation of
layered architectures. Employing both supervised and unsupervised learning methods, deep learning
forms hierarchical representations of features. These are derived from layers that progressively
increase in abstraction (Pang et al., 2021).

Specifically, in the context of time series data, such as that found in mobile networks, deep learning
leverages recurrent neural networks. RNNs are adept at incorporating information from preceding
time steps during training, which is instrumental in the process of anomaly detection. The capability
to extract both temporal and spatial dependencies within the data is a crucial part of this approach.

This chapter outlines the theoretical framework underpinning the application of different deep
learning methods for anomaly detection in mobile data. Focused on supervised learning, the chapter
details deep learning models prevalent in current research, such as RNN, CNN, and Autoencoders,
as reviewed in the literature.

2.2 Artificial Neural Networks

An Artificial Neural Network is a computational framework consisting of interconnected neurons.
Typically, an ANN has three layers: an input layer, one or more intermediate layers, and an output
layer. Not only do ANNs learn swiftly from data, but they also adeptly handle complex, nonlinear
tasks (Sze et al., 2017).
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Figure 2.2: Multi Input, hidden and output layers neural network (Bre et al., 2017)

2.2.1 Key Components of ANN:

Here are the key components of ANN (Patel et al., 2022);

Input Layers

The input layer functions as the primary gateway for raw data entering the neural network. It
comprises neurons representing individual features of the dataset. If we consider X as the input
vector, the operation in this layer can be simply represented as:

Input Layer Output = X (2.1)

This equation signifies that the output from the input layer is exactly the input vector X. It implies
that no transformation or computation is being applied at this stage.

Hidden Layer

Hidden layers in a neural network perform essential computations, processing inputs using weighting,
biasing, and activation functions to prepare data for the output layer. The network’s ability to
capture complex representations is determined by the complexity of its architecture, defined by the
number and size of hidden layers.

In hidden layers, each neuron applies a weighted sum on the inputs, adds a bias, and then passes
the result through an activation function. If X is the input vector, W represents the weights, b is
the bias, and f is the activation function, the operation for a single neuron can be represented as:
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H = f(W ·X+ b) (2.2)

For multiple neurons from $i to $j in vector form:

a = f

(
j∑

i=1

(Wi ·Xi) + b

)
(2.3)

where $f is applied element-wise.

Output Layer

The output layer generates the neural network’s result, tailoring it to the task. For classification, it
signifies the classes, while for regression, it yields predicted values. The layer’s configuration adapts
to the application, with activation functions like softmax for multi-class problems or sigmoid for
binary classification.

The output layer combines the outputs of the last hidden layer, again applying weights and biases,
and often includes a final activation function that is appropriate for the task (e.g., softmax for
classification). If H is the output from the last hidden layer, Wo are the weights, bo is the bias for
the output layer, and fo is the output activation function, the operation for the output layer is:

Y = fo(Wo ·H + bo) (2.4)

For a classification task with C classes and softmax as the activation function, the formula for the
j-th output neuron is:

Yj =
e(Woj ·H+boj)∑C
k=1 e

(Wok·H+bok)
(2.5)

This softmax function ensures that the output values sum to 1 and can be interpreted as probabilities
for each class.

Feedforward Network

Feedforward Neural Networks represent a fundamental neural network model characterized by uni-
directional data flow from input to output layers. These networks are structured with an input layer,
multiple hidden computational layers, and an output layer specific to tasks like regression or clas-
sification. The learning in FNNs relies on weight adjustments through backpropagation, utilizing
methods like gradient descent to minimize errors. FNNs are well-regarded for pattern recognition,
although they may face challenges with non-linearities and overfitting. Continuous developments in
machine learning continue to enhance their application and efficacy in various domains (Michelucci,
2022a).

Loss Function
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In training Artificial Neural Networks, loss functions assess the difference between network predic-
tions and actual targets. They’re critical for guiding the optimization process, with the goal being
loss minimization. For regression, Mean Squared Error (MSE) and Mean Absolute Error (MAE)
are standard. MSE emphasizes larger errors

n represents the total number of observations, yi denotes the actual values from the dataset, and ŷi
indicates the predicted values generated by the regression model for each observation.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.6)

while MAE considers all errors equally.

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.7)

In classification, Cross-entropy loss is preferred for models outputting probabilities, as it penalizes
predictions differing from actual class labels (Terven et al., 2023).

Selecting and optimizing the right loss function ensures effective learning and generalization in
ANNs.

Activation Functions

Activation functions introduce non-linearity in ANNs, crucial for learning complex patterns. With-
out them, deep networks simply act linearly (Lederer, 2021).

• Sigmoid: Useful for probabilities but less popular now due to issues like vanishing gradients.

• Tanh: Zero-centered, better for hidden layers as it outputs values from -1 to 1.

• ReLU: Outputs the input if positive, else zero, preferred for its speed and efficiency.

• Softmax: Ideal for multi-class classification in the output layer, converting outputs to proba-
bilities.

The choice of activation function influences ANN training speed, convergence, and generalization
ability.

Gradient Descent Algorithm

Gradient Descent is a pivotal algorithm for minimizing the loss function, aiming to find the function’s
local minimum (Ketkar and Ketkar, 2017). A concise overview of the algorithm is given as;
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1. Initial Parameter Selection: Initiate each weight and bias within the neural network (NN)
with random values. This random initialization is crucial for breaking symmetry, ensuring
that hidden layer units learn distinct functions of the input. Without this, identical initial
parameters would lead to each unit learning the same input function, negating the network’s
complexity.

2. Iterative Parameter Update: Continue to iteratively adjust the parameters W and b
according to the following update rules until reaching a hopefully optimal minimum:

Wli,j = Wli,j − α
∂L(W, b)

∂Wli,j

bli = bli − α
∂L(W, b)

∂bli

Here, α represents the learning rate, Wli,j and bli denote the weights and biases, respectively,
for a given layer l in the neural network, where i represents the index of the neuron in the
current layer, and j represents the index of the neuron in the previous layer from which
the connection originates. The derivative of the overall loss function with respect to each
parameter is calculated as the average of gradients from each training example.

3. Learning Rate Consideration: The learning rate α dictates the step size during the de-
scent. A well-chosen α is critical; too small a rate results in slow convergence, while too large
a rate might lead to overshooting the minimum or even divergence from the solution.

This iterative process of adjusting neural network parameters is designed to efficiently navigate the
complex loss landscape, steering towards a minimum that optimizes the network’s performance.

Backpropagation

Backpropagation is a method used for training artificial neural networks, particularly feedforward
neural networks (Aggarwal, 2023). Below are the steps and associated formulas:

1. Forward Pass: Compute the output of the neural network for a given input by propagating
the input through the network.

• For each layer l from 1 to L (where L is the last layer):

z[l] = W [l]a[l−1] + b[l], a[l] = f [l](z[l])

where z[l] is the pre-activation value, a[l] is the post-activation value (output of layer l),
W [l] and b[l] are the weights and biases for layer l, and f [l] is the activation function for
layer l.

2. Compute the Loss: Evaluate the loss function to measure the error between the network’s
output and the actual target values.
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• For cross-entropy loss in classification tasks:

J(W, b) = − 1

m

m∑
i=1

C∑
c=1

y(i)c log(a[L](i)c )

where J is the cost function, m is the number of training examples, C is the number
of classes, y

(i)
c is the actual value (target label) for the c-th class of the i-th training

example, and a
[L](i)
c is the predicted probability of the i-th training example belonging

to the c-th class, outputted by the last layer.

3. Backward Pass: Compute the gradient of the loss function concerning each parameter in the
network.

• The gradient for the last layer (L) and any layer l from L− 1 to 1:

∂J

∂z[L]
= a[L] − y,

∂J

∂W [l]
=

1

m

∂J

∂z[l]
a[l−1]T ,

∂J

∂b[l]
=

1

m

∑ ∂J

∂z[l](i)

4. Update the Parameters: Update the weights and biases using gradient descent or its variants.

W [l] = W [l] − α
∂J

∂W [l]
, b[l] = b[l] − α

∂J

∂b[l]

where α is the learning rate.

This method iteratively reduces the error in the network, optimizing its parameters for better
accuracy.

2.3 Recurrent Neural Networks

Recurrent Neural Networks are specialized neural networks for pattern recognition within sequences
like text or time series data. They have a memory feature that processes sequences, not just single
data points. This makes RNNs ideal for applications where context and time are essential. This
is the case in our research of high dimensional network data, with a lot of temporal dependencies
(Das et al., 2023).

Key Characteristics of RNNs:

• Memory: RNNs maintain information from previous inputs in a sequence through their inter-
nal state, which acts as a form of memory. This capacity enables RNNs to display temporal
dynamic behavior. Making them valuable for tasks involving sequential data, where context
over time is crucial.

• Shared Parameters: weights are utilized consistently across all time steps, reducing the total
parameters to be learned and enhancing learning efficiency.
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• Variable-Length Sequences: RNNs can handle inputs of varying lengths. This trait is essential
for processing sequences like sentences or time series data that don’t have a fixed size.

An RNN processes sequences by iterating through the sequence elements. It also maintains a state
containing information relevant to what it has seen (Schmidt, 2019).

Figure 2.3: Computational graph of RNN (Zenke and Neftci, 2020)

Given the structure of an RNN, the following formulas represent the computational steps across
time steps (Sherstinsky, 2020):

1. Hidden State Update: At each time step t, the hidden state ht is updated using the
formula:

ht = f(Wt · ht−1 + Vt · xt + bh)

Wt represents the recurrent weights applied to the previous hidden state, Vt represents the
input weights applied to the current input xt, bh is the bias term, and f is the non-linear
activation function.

2. Loss Computation: The loss Lt at each time step t can be computed as:

Lt = g(ht, yt)

g is the loss function measuring the difference between the predicted output and the target
yt, and ht is the current hidden state.
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3. Backward Pass: During the backward pass, the gradients of the loss concerning the weights
and biases are calculated for each time step:

∂Lt

∂Wt

,
∂Lt

∂Vt

,
∂Lt

∂bh

These gradients are utilized to update the parameters using gradient descent.

The cyclic dependencies in these computations enable the RNN to process sequences of data by
maintaining a state across time steps.

Challenges with RNNs:

Vanishing and Exploding Gradients: RNNs are prone to these issues due to their deep connections
across time. This can make training deep RNNs challenging and affect their ability to learn long-
term dependencies (Hochreiter, 1998).

Computational Intensity: The sequential nature of RNNs means that inputs need to be processed
one after another, making parallelization difficult and often leading to longer training times (Korsky
and Berwick, 2019).

2.3.1 Variants and Solutions

Several RNN variants have been developed to address these challenges, including Long Short-Term
Memory (LSTM) networks and Gated Recurrent Units (GRUs). These architectures solve the
vanishing gradient problem and capture long-term dependencies effectively.

Long Short-Term Memory

Long Short-Term Memory Networks, also known as LSTMs, are a specialized form of Recurrent
Neural Networks (RNNs) that have the ability to learn and remember long-term dependencies in
data. Introduced by Hochreiter and Schmidhuber, 1997, LSTMs were designed to overcome the
vanishing gradient problem present in traditional RNNs.

LSTMs are neural networks that use gates to regulate the flow of information. The gates decide
which data to keep, allowing LSTMs to pass relevant information down the sequence and make
accurate predictions (Van Houdt et al., 2020).

An LSTM unit is composed of a cell (which carries information across many time steps) and three
types of gates:

Forget Gate (f): Decides what information is discarded from the cell state.

Input Gate (i): Updates the cell state with new information.
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Output Gate (o): Determines what the next hidden state should be.

Figure 2.4: Typical LSTM network structure (ElMoaqet et al., 2020)

The LSTM’s Internal Mechanisms:

During the forward pass, at each time step, the LSTM updates its internal state through a series
of steps (Staudemeyer and Morris, 2019):

Forget Gate:
ft = σ(Wf · [ht−1, xt] + bf )

It decides what information to discard from the cell state, using a sigmoid function σ that outputs
numbers between 0 and 1.

Input Gate:
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

It determines which new information is stored in the cell state, combining a sigmoid layer and a
tanh layer to create a vector of new candidate values.

Update Cell State:
Ct = ft ∗ Ct−1 + it ∗ C̃t

It updates the old cell state Ct−1 into the new cell state Ct by element-wise multiplying the old state
by ft, discarding the information forgotten, and element-wise adding it ∗ C̃t for the new candidate
values.
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Output Gate and Producing the Hidden State:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

The output gate decides what the next hidden state should be. The hidden state contains informa-
tion about the previous inputs, considering the current input and the memory of the cell.

The output gate ot is computed by applying the sigmoid function σ to the result of element-wise
addition of the weighted sum Wo · [ht−1, xt] and the bias bo.

The hidden state ht is then produced by element-wise multiplying the output gate ot with the
hyperbolic tangent of the cell state Ct.

Gated Recurrent Units

Gated Recurrent Units (GRUs) are a variant of Recurrent Neural Networks (RNNs) introduced by
Cho et al., 2014. GRUs are designed to adaptively capture dependencies of different time scales in
sequential data, similar to Long Short-Term Memory (LSTM) networks but without using separate
memory cells. They are particularly effective in tasks where the sequence length varies and are
known for being more computationally efficient than LSTMs (Chung et al., 2014).

Key Characteristics of GRUs:

Simplified Architecture:

GRUs simplify LSTM by combining forget and input gates into a single update gate and merging
the cell state and hidden state, resulting in a streamlined model (Shiri et al., 2023).

Update and Reset Gates:

Update Gate: Decides the extent to which the new information will overwrite the existing content
in the memory cell

Reset Gate: Decides how much is discarded of the past information.

• The reset gate rt:
rt = σ(Wr · [ht−1, xt] + br)

This gate determines how much of the past information to forget.

• The update gate ut:
ut = σ(Wu · [ht−1, xt] + bu)

This gate decides the amount of the past information to be carried forward.
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Figure 2.5: Structure of Gated Recurrent Units (Choi et al., 2022)

• The candidate hidden state h̃t:

h̃t = tanh(W · [rt ∗ ht−1, xt] + b)

It represents the new information being added to the memory.

• The final hidden state ht at the current time step:

ht = (1− ut) ∗ ht−1 + ut ∗ h̃t

This is a combination of the old state and the new candidate state, adjusted by the update
gate, with both the element-wise multiplication and addition operations involved

Here, σ denotes the sigmoid activation function, and ∗ denotes element-wise multiplication. The
parameters Wr,Wu,W are weight matrices, br, bu, b are bias vectors, ht−1 is the previous hidden
state, xt is the current input, and ht is the current hidden state.

GRUs provide a balance between computational efficiency and the capability to handle sequences
with long-term dependencies.
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2.3.2 Convolutional neural networks

CNNs utilize convolutional layers, featuring filters that parse input data to identify features. These
filters excel at detecting visual patterns in images and temporal trends in time series data. As
they slide over the input, these filters understand key temporal characteristics, similar to how they
detect textures and shapes in visual data (L. Liu and Si, 2022).

In time series analysis, CNNs can handle a variety of tasks, including but not limited to forecasting,
anomaly detection, and feature extraction.

CNN Architecture for Time Series

Figure 2.6: Basic 1D Convolutional neural network (L. Liu and Si, 2022)

Convolutional Layers:

These layers apply learned filters to the time series data, capturing local dependencies and extracting
relevant features. In time series, these might correspond to short-term trends or repeating patterns
(Shiri et al., 2023).

Activation Layers:

Typically, non-linear activation functions like ReLU (Rectified Linear Unit) follow the convolutional
layers, introducing non-linearities to the model, which allow for more complex representations.

Pooling Layers:

Pooling (subsampling or downscaling) reduces the dimensionality of the data, which not only de-
creases computational load but also helps the model become more robust to the small variations in
the time series data.

Fully Connected Layers:
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Convolutional and pooling layers extract features in a neural network, while the fully connected
layers perform high-level reasoning. In time series data, these layers interpret extracted features for
the final prediction or classification.

2.3.3 Autoencoders

An autoencoder’s architecture aims to break down and reconstruct input data accurately. Data
compression is achieved through a bottleneck layer, smaller than both the input and output layers,
creating a condensed code. The network’s reconstruction is based on this code, utilizing two key
components: the encoder and the decoder (Michelucci, 2022b).

Encoder: This part compresses input into a lower dimensional latent space.

Decoder: The decoder takes the encoded data and expands it back to the original input size. It
aims to reconstruct the input data as accurately as possible from the encoded representation.

Figure 2.7: Structure of Autoencoder (Sublime and Kalinicheva, 2019)

The Autoencoder Process

The process involves the following steps (Michelucci, 2022b):

1. The encoder function, typically denoted as h = f(x), compresses the input into a latent-space
representation.

2. The decoder function, typically denoted as r = g(h), aims to reconstruct the input from this
representation.

The network is trained by minimizing the reconstruction error.
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2.4 Federated Learning

Federated learning is an approach in machine learning where models are collaboratively trained
across various decentralized devices or servers with local data, without data exchange. Introduced
by (Konecnỳ et al., 2016) with Google, federated learning is particularly beneficial for maintaining
privacy, securing data, and complying with local data regulations.

In a federated learning setup, the goal is to create a shared model by leveraging data distributed
across multiple client devices while keeping the data localized. Instead of sending the data to the
model, the model comes to the data (McMahan et al., 2017).

The federated learning process typically follows these steps (McMahan et al., 2017):

1. Initialization:

• A global model is initialized on a global server.

2. Local Training:

• The global model is sent to the clients (devices or local servers).

• Each client trains the model on their local data.

3. Local Updates:

• After training, the clients send their model updates, usually gradients or model weights,
back to the global server.

4. Aggregation:

• The global server aggregates these updates to create a new, updated global model.

5. Model Distribution:

• The updated global model is sent back to the clients, and the process repeats.
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Figure 2.8: The Federated learning Process (Bhattacharya et al., 2022)

Let’s formalize the Federated Learning (FL) process with some mathematical notation:

• w: The weights of the global model.

• wi: The local model weights of the i-th client.

• L: The loss function.

The objective in FL is to minimize the global loss function L(w), which is a weighted sum of the
client’s local loss functions:

L(w) =
K∑
i=1

piLi(wi)

where:

• K is the total number of clients.

• pi is the relative size of the i-th client’s dataset.

• Li is the local loss function for the i-th client.

The global model weights are updated through aggregation:
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w =
K∑
i=1

piwi

where the local weights wi are typically computed using local gradients.

Federated Averaging

Federated Averaging, commonly known as FedAvg, is a pivotal algorithm in federated learning.
Devised by Brendan McMahan and the team at Google (McMahan et al., 2017), it aggregates models
or updates across multiple clients within a federated network. Its simplicity and effectiveness have
cemented FedAvg as a foundational algorithm in numerous federated learning implementations.

The main idea behind FedAvg is to average the updates (such as gradients or parameters) from
multiple clients to update the global model.

Given K total clients, with k being a client participating in the current round, the FedAvg algorithm
updates the global model weights w by averaging the submitted updates wk from the clients:

w =
1

K

K∑
k=1

wk

Each client’s update wk is the result of local optimization, typically using stochastic gradient descent
(SGD) or its variants on their local data:

wk = wk − η∇Lk(wk)

where:

• η is the learning rate.

• ∇Lk(wk) is the gradient of the local loss function to the local model weights.
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Chapter 3

Literature Review

In this chapter, we discuss the topic of anomaly detection in time series mobile data. We also focus
on the practical implementations and existing literature in this research area, with an emphasis on
the use of federated learning.

The objective is to conduct a comprehensive analysis of various sources, encompassing empirical
research, theoretical frameworks, and contemporary developments. This assessment aims to enhance
understanding of the current state of the field.

3.1 Fundamentals of Time Series Data

Time series data is a type of data that is characterized by its sequential order. One primary use
of this data is in predicting future events. For instance, Lim’s work (B. Lim and Zohren, 2021)
explores time series models for forecasting. Additionally, identifying anomalies is another important
use of time series data. Blazquez provides a comprehensive review (Blázquez-García et al., 2021)
of methods for anomaly detection. These tasks, among others, demonstrate the significance of time
series data in fields like mobile network data analysis.

Time series data is inherently ordered in time and can be discrete or continuous. A fundamental
method for its analysis is the Autoregressive Integrated Moving Average model. This technique is
extensively explained by Box and others in their publication "Time Series Analysis: Forecasting
and Control" (Box et al., 2015). This is often regarded as a cornerstone in the field of time series
forecasting.

The model combines autoregression, integration, and moving averages to enable sophisticated fore-
casting (Hyndman and Athanasopoulos, 2018). Since its introduction, ARIMA has been widely
used in various fields and has motivated a lot of research and applications in this field (Benvenuto
et al., 2020; Wagner and Cleland, 2023; Kaur et al., 2023). The temporal distribution of time series
data, to its occurrence in time, is the foundation of many analytical frameworks and decision-making
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processes (Wagner and Cleland, 2023).

3.1.1 Univariate and Multivariate time series

Time series data representations can be classified majorly into two, Univariate and Multivariate,
with (Audibert et al., 2020) properly describing the difference between these two classifications of
time series. A univariate time series is a collection of individual data points recorded at specific
times, representing observations of a single process. On the other hand, multivariate time series
capture observations of multiple variables at each time point, providing a more comprehensive view
by tracking several variables simultaneously.

Univariate : {x1, x2, . . . , xT}

Multivariate : {xt1,xt2, . . . ,xtm}

3.1.2 Time Series in Mobile Network Data

Time series data in mobile networks introduce amplified challenges. These challenges are intensified
by the need for consistent availability, stringent security, and careful privacy maintenance (Feamster
and Rexford, 2017). Mobile data are not only voluminous but are also produced and gathered
rapidly, necessitating timely analysis. The data vary from call logs to network traffic metrics, often
referred to as Key Performance Indicators(KPIs). Analysis complexity increases as outcomes and
precision greatly depend on the chosen KPIs (Shakir et al., 2023).

Several research efforts aim to enhance time series analysis comprehensiveness in mobile network
data and to address inherent data structure issues, thus boosting accuracy and efficacy.

One study, utilizing a dataset from a Portuguese mobile network operator, focuses on predicting
traffic volumes for downloads and uploads within hourly intervals. It highlights that the Seasonal
Autoregressive Integrated Moving Average model is more effective for forecasting download patterns,
while the Holt-Winters model excels in upload traffic predictions (Kochetkova et al., 2023).

Another study employs a hybrid model merging Double Seasonal ARIMA with Long Short-Term
Memory networks, using data from 739 base stations. This model is enhanced with K-means
clustering, handling high volumes typical of network data, and improves the detection of double-
seasonality, non-linear trends, and spatial dependencies (Shawel et al., 2020).

Researchers are also exploring frameworks to manage the complexities of big data, like mobile net-
work data, involving time series monitoring, forecasting, and anomaly detection. These frameworks
can be tailored to the specific challenges in analyzing mobile data (Almeida et al., 2023).
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3.1.3 Anomaly Detection in Mobile Network Data

Anomalies, or outliers, are observations that significantly deviate from a dataset’s normal distri-
bution or pattern. These irregularities can manifest in various forms, such as isolated data points,
clustered anomalies, or unusual patterns within specific dataset regions (Samariya and Thakkar,
2023). Anomaly detection is crucial across diverse domains, serving as a key process for identifying
deviations from expected patterns in data.

In the context of mobile networks, analyzing time series data for anomalies presents distinct chal-
lenges due to the data’s high-dimensional nature. Machine learning techniques are instrumental in
discerning temporal dependencies and spatial correlations within historical data (Tian et al., 2023).
These techniques help to learn the expected distribution of the data which serves as a baseline for
identifying anomalies.

Anomalies are deviations from this norm and can potentially lead to signal network issues, fraudulent
activities, or unforeseen events. By accurately detecting these anomalies, we can take appropriate
actions to prevent or resolve any issues that may arise.

There are three main types of anomaly detection methods: supervised, semi-supervised, and un-
supervised. This review provides an analysis of each methodology, highlighting key contributions
within the field.

Supervised Anomaly Detection

Supervised learning is an effective method for detecting anomalies in mobile networks. It works
best when labeled data is available, containing both normal and anomalous behavior. The training
process is flexible and allows for high-accuracy models that can easily detect known anomalies
within the training dataset. Moreover, the interpretability of this method helps to identify the root
causes behind the identified anomalies.

The study by Ahmed and Pathan, 2019 examines deep learning and various supervised learning
techniques in detecting collective anomalies. Collective anomalies are identified when a cluster of
data points diverges from the norm, yet each instance might not appear anomalous. The research
demonstrates deep learning’s capacity to detect such anomalies with about a 97 percent recall rate,
based on tests using the UNSW-NB15 and KDD Cup 1999 datasets (Moustafa and Slay, 2015;
Tavallaee et al., 2009).

The paper by Ahasan et al., 2022 investigates anomaly detection in mobile networks using supervised
learning, utilizing classification algorithms to parse KPI data. This research targets key performance
indicators, such as call setup success, handover success rates, and radio resource utilization, to detect
anomalies in mobile networks. Early identification is essential for maintaining network integrity and
enhancing user experience.

The study assesses various classification methods, notably Support Vector Machines, XGBoost, and
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Random Forest, to identify the most effective approach. To tackle the issue of data imbalance, the
authors incorporate the Synthetic Minority Oversampling Technique. The efficacy of these models
is then measured using a real-world mobile network dataset with pre-labeled KPIs. Evaluation
metrics used include accuracy, precision, recall, and the F1-score, where the models demonstrate
high accuracy. the paper highlights the need for sufficient labeled data and attention to potential
limitations like imbalanced datasets and interoperability.

Supervised learning encounters significant challenges in dynamic environments like mobile networks.
Firstly, its heavy reliance on large amounts of labeled data becomes even more cumbersome with
high-dimensional mobile network data. Secondly, the ever-evolving threat landscape and data
distribution shift over time hinder its ability to scale well to new and unknown threats. This becomes
critical in mobile networks demanding close-to-real-time prediction, where delays in adaptation can
leave them vulnerable.

Semi-Supervised Anomaly Detection

Semi-supervised learning is a promising approach that has emerged as an alternative to traditional
supervised learning. This method trains machine learning models by utilizing both labeled and
unlabeled data. Labeled data provides initial guidance to the model, while the abundance of
unlabeled data helps to refine the model and enhance its ability to generalize to new scenarios. By
utilizing both sources effectively, semi-supervised learning can improve the accuracy and efficiency
of machine learning models by removing the problem of labeling data and building models that are
adaptable (Zhang et al., 2023).

The research work by Zhang et al., 2023 proposes a new algorithm to address the challenges of
network anomaly detection. The algorithm uses semi-supervised learning and adaptive multiclass
balancing to overcome the issues of label inadequacy and class imbalance. The algorithm employs
rotation decision trees as component classifiers, which ensures diversity and enhances generalizabil-
ity. The multiclass split balancing strategy is used to divide labeled data into balanced subsets for
diverse classifier training. Additionally, the adaptive confidence threshold function is used to se-
lect reliable pseudo-labeled data during updates. This effectively addresses class imbalance, a huge
problem in supervised learning, by assigning class-specific confidence thresholds. By combining
these strategies, the proposed algorithm aims to improve detection performance in environments
with limited labeled data and imbalanced classes. The research shows that the proposed algorithm
outperforms state-of-the-art methods of precision, recall, and F1.

A study by Pelati et al., 2022 addresses the issue of high dimensionality of mobile data using semi-
supervised learning. Their approach aims to identify unusual traffic patterns caused by events such
as flash crowds in metropolitan areas, without requiring prior knowledge of the anomalies. The
authors use real traffic data from unencrypted LTE Physical Downlink Control Channels (PDCCH)
collected in major Spanish cities. The methodology’s use of unsupervised learning (K-means clus-
tering) for pre-processing to filter out outliers aligns with the emphasis on managing high-volume
data. LSTM networks are used in two configurations: predictive and reconstructive, for forecasting
future traffic values and reconstructing input samples, respectively. The proposed method outper-
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forms traditional anomaly detection algorithms, offering a high degree of accuracy in predicting
anomalous behavior regardless of its cause.

In a recent study published by Meng et al., 2021, introduces a new framework called SemiADC for
detecting anomalies in communication networks. The framework employs a semi-supervised learning
approach and addresses the issues of inaccurate labels in anomaly detection. To overcome these
challenges, SemiADC utilizes Generative Adversarial Networks (GANs) and self-learning processes.
The framework learns the distribution of features of normal nodes with regularization from abnormal
ones, iteratively cleans the data, and extracts nodes with inaccurate labels to improve the accuracy
of anomaly detection. The experimental results indicate that SemiADC outperforms the existing
state-of-the-art methods without requiring adequate and accurate supervision. The framework
has been evaluated on real-world datasets, demonstrating its effectiveness in accurately identifying
anomalies in dynamic communication networks.

Semi-supervised learning often relies on pseudo labels for unlabeled data, which are generated by
the model itself. If these pseudo labels are inaccurate, they can lead to the propagation of errors
during the training process, degrading the performance of the model. The design of semi-supervised
also algorithms often requires careful tuning and a deeper understanding of the underlying data
structure, which can be a complex and time-consuming process (Van Engelen and Hoos, 2020).

Unsupervised Learning: A Growing Force In Anomaly Detection

Unsupervised learning is an essential methodology for detecting anomalies within the vast and
complex datasets of mobile networks. This approach does not rely on pre-labeled data, making it
advantageous in scenarios where labeling is impractical due to the volume of data or the ambiguous
nature of what constitutes an anomaly (S. Wang et al., 2021).

Su et al., 2019 serves as a baseline method for multiple research within multivariate time se-
ries anomaly detection. In this paper, they propose a novel approach for anomaly detection in
complex multivariate time series. The paper introduces OmniAnomaly, a model that combines
stochastic variables and recurrent neural networks to capture the intricate temporal dependencies
and variability in data without requiring labeled data. It utilizes a planar normalizing flow for
better reconstruction of input data, facilitating accurate anomaly identification. The paper’s ex-
periments, conducted on real-world datasets, showcase OmniAnomaly’s superior performance in
detecting anomalies within time series data compared to existing methods at the time, which has
led to more research in this field.

Unsupervised Anomaly Detection on Multivariate Time Series (USAD) (Audibert et al., 2020). This
method uses autoencoders in an adversarial training framework to detect anomalies in multivariate
time series data. The model’s effectiveness was evaluated on five public and private datasets from
Orange. Results showed that USAD has high training speed, robustness, and superior performance
compared to state-of-the-art methods. The architecture of USAD allows it to learn normal patterns
and detect anomalies quickly and reliably, making it a promising solution for real-world applications
that require fast and dependable anomaly detection. However, it is unsure whether the model could
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handle the potential challenges of adapting to highly dynamic or non-stationary data environments
typical in mobile networks.

In their recent study, Shen et al., 2020 proposes a new approach for detecting anomalies in time
series data called the Temporal Hierarchical One-Class (THOC) network. Unlike traditional super-
vised methods, THOC works in an unsupervised manner, making it practical for situations where
labeled anomalies are scarce. The authors tested this model on real-world data and used the widely
recognized KDD Cup 99 dataset for intrusion detection, further adding to its significance. The
THOC network uses an extended recurrent neural network (RNN) with skip connections to capture
multiscale temporal features. These features are then fused through hierarchical clustering using
a Multiscale Support Vector Data Description (MVDD) approach. This approach measures differ-
ences between features and centers, enabling THOC to represent complex behaviors in time series
data. The authors conducted extensive experiments to demonstrate the superiority of THOC over
recent baselines. Therefore, THOC is a promising advancement in unsupervised anomaly detection.
The authors integrated both neural networks using RNN to capture the temporal dynamics in the
data and cluster the spatial relationships.

In a recent study, Wei et al., 2023 focuses on detecting Distributed Denial-of-service (DDoS) at-
tacks within networks. These attacks aim to disrupt regular traffic by overwhelming a targeted
server, service, or network with malicious traffic. The researchers propose an unsupervised anomaly
detection method using an LSTM-Autoencoder (LSTM-AE) model. The LSTM networks capture
long and short-term correlations in time-series data, while the AE learns compact representations
of data. The LSTM-AE reconstructs multivariate time-series (MTS) data and then calculates the
reconstruction error for each sample across all time-series sequences, A high reconstruction error
indicates an anomaly, such as a DDoS attack. The researchers utilize the CICDDoS2019 dataset
(Sharafaldin et al., 2019), widely used for DDoS attack detection and classification. This dataset
contains realistic samples of malicious network traffic. The LSTM-AE model learns subtle sub-
pattern differences between attacks and benign traffic flows. It minimizes reconstructed anomalous
traffic to achieve a lower reconstruction error. For reflection-based DDoS attacks (such as DNS,
LDAP, and SNMP), LSTM-AE outperforms other state-of-the-art methods, achieving an accuracy
of over 99 percent, however, LSTM-AE combines both LSTM networks and autoencoders, resulting
in a complex architecture which makes training such a hybrid model and multiple layers in the
LSTM challenging.

In their research paper, González et al., 2023 proposes an approach called Dilated Convolutional
- Variational Auto Encoder (DC-VAE) that combines the power of convolutional neural networks
(CNNs) and variational autoencoders (VAEs). The DC-VAE approach uses dilated convolutions to
capture both short and long-term phenomena in the data. VAE is used for probabilistic modeling to
enhance generalization. DC-VAE detects anomalies in MTS data through a single model, obtaining
the temporal information without sacrificing computational and memory resources. The researchers
evaluate the proposed method on the TELCO Telecommunication-networks dataset, which is a
large-scale, multi-dimensional network monitoring dataset. Anomalous events in this dataset were
manually labeled by experts over seven months. The results show that DC-VAE outperformed
traditional time-series anomaly detectors from signal processing and machine learning domains.
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Tian et al., 2023 proposes a novel approach called STADN (Anomaly detection using spatial and
temporal information) The authors try to address the lack of labeled data for supervised machine
learning due to the rarity of abnormal instances by employing an unsupervised approach but also
to adequately utilize the spatial and temporal dependencies among multiple variables within time
series data. STADN applies an attention mechanism by modeling the relationship graph between
variables using a graph attention network to capture the spatial dependency between variables. It
employs an LSTM network to get the temporal dependency of time series data before predicting
the future behavior of each sensor by combining historical behavior with that of its neighbors.
Anomalies are detected and located based on prediction errors and the model improves its ability
to discriminate between anomaly and regularity by reconstructing prediction errors. The proposed
STADN was evaluated on two real-world datasets and outperformed state-of-the-art anomaly de-
tection performance. While attention mechanisms enhance the model’s ability to capture relevant
features, they do not guarantee generalization to novel or unseen anomalies.

The paper Hua et al., 2023 proposes a method for detecting anomalies in wireless base stations
(WBS) in large-scale networks. It is called GenAD; General Unsupervised Anomaly Detection Using
Multivariate Time Series. The method uses attention mechanisms to identify spatial relationships
and temporal features. GenAD uses multi-correlation attention and time-series attention to learn
complex correlations and temporal patterns. The model is pre-trained on large-scale WBS data,
allowing it to be easily transferred to specific stations with minimal additional training data. Once
trained, it analyzes MTS data from each WBS. If a specific metric, such as wireless connection
rate, deviates significantly from expected behavior, GenAD flags it as an anomaly. The model’s
attention mechanisms help it identify anomalous patterns by weighing different time steps and
features. GenAD’s performance remains competitive, even when trained with only 10% of the data.
Attention mechanisms allow the model to focus on relevant parts of the input time series, and the
attention weights provide insights into which time steps or features contribute most to anomaly
detection. This transparency helps diagnose network issues and improve system reliability.

The paper by Matar et al., 2023 proposes an innovative approach to detect anomalies in wireless
sensor networks (WSNs) data streams. The authors introduce a combination of multi-head attention
and a Bi-LSTM (Bidirectional Long Short-Term Memory) architecture to address the challenge of
detecting anomalies in WSNs data streams. Multi-head attention is a deep learning mechanism that
improves the model’s ability to focus on different parts of the input sequence. In this approach, the
input sequence is transformed into multiple representations, or "heads," each of which attends to
different parts of the sequence. The attention mechanism is then applied to each head separately,
and the results are concatenated to form the final output. Unlike traditional methods that model
individual sensor time series independently. This approach concurrently models the time series
of multiple sensors. By considering potential latent interactions among sensors, the accuracy of
anomaly detection is improved. Moreover, the proposed approach does not require labeled data,
making it suitable for real-world scenarios where labeling large streams of data from heterogeneous
sensors is challenging and time-consuming. The authors validate the effectiveness and robustness
of their approach using a real-world WSN dataset. The proposed method outperforms traditional
deep learning approaches in terms of anomaly detection accuracy.

Despite their benefits, unsupervised learning models encounter two significant challenges in mobile
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networks. First, they require a considerable amount of computational power caused by the high
dimensionality of mobile network data. Second, they struggle to cope with the constantly changing
and widely dispersed nature of mobile network data. These challenges emphasize the necessity for
new approaches that can take advantage of the distributed nature of mobile data, preserve user
data privacy, and consume less computational power.

3.1.4 Distributed Learning

Federated Learning An Emerging Solution

Federated learning is a solution to the challenges posed by traditional centralized learning models.
It enables a decentralized learning process where multiple mobile devices learn a shared prediction
model collaboratively while keeping all the training data on the device. This approach ensures that
the ability to perform model training is separate from the need to store data in the cloud, addressing
privacy concerns. Additionally, this model leverages the distributed nature of mobile networks to
enhance anomaly detection capabilities (McMahan et al., 2017).

By utilizing a decentralized approach, federated learning has proven to overcome the limitations of
traditional machine learning models. Numerous research studies across different domains support
this statement (B. Liu et al., 2023; Pfitzner et al., 2021; Shaheen et al., 2022). In this discussion,
we will explore these benefits using specific research examples as evidence of Federated learning’s
efficacy.

Privacy Preservation

Federated learning is recognized as a key method for processing sensitive data in the context of
mobile networks, safeguarding user privacy, and addressing concerns about sharing proprietary
data for research.

A study by Qian et al., 2019 demonstrates the application of distributed federated learning for
optimizing service placement decisions in mobile edge clouds, ensuring privacy is not compromised,
and underscoring the limitations of centralized learning models.

Within 5G mobile networks, Isaksson and Norrman, 2020’s research proposes an innovative federa-
tion of learning with secure Multi-Party Computation protocols to protect individual data privacy
while optimizing machine learning performance, reflecting the critical balance between data confi-
dentiality and the imperatives of network data sharing. These developments highlight the essential
role of privacy preservation in the evolution of mobile network technologies.

Bandwidth Efficiency

Federated learning highlights the practicality of local data processing on devices in mobile networks,
where only model updates, rather than the data itself, are communicated, conservatively utilizing
bandwidth.
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The research by Tuli et al., 2022 highlights innovative methods for optimizing computation offload-
ing, traditionally a high bandwidth-consuming process and a challenge for bandwidth-constrained
edge devices. By engaging federated learning, computational tasks are distributed among edge de-
vices, which aggregate their updates, thereby circumventing bandwidth limitations while preserving
performance levels.

Real-time Adaptation

Real-time prediction is an ideal goal but achieving perfect accuracy can be difficult due to the
dynamic nature of mobile networks and limitations of the models. In practice, it is more important
to focus on timely detection and minimizing false positives. The article by Kang et al., 2023 discusses
the need for real-time prediction in the context of the Internet of Vehicles (IoV). The authors point
out the challenges of traditional centralized machine-learning approaches, which face issues related
to latency, privacy, and scalability. To address these challenges, they proposed a Federated Learning-
based modeling algorithm that is well-suited for real-time prediction in dynamic and distributed
edge networks. The decentralized training approach of Federated Learning aligns with the nature of
edge networks and enables the algorithm to overcome the challenges faced by traditional centralized
machine learning approaches.

Anomaly detection Using Federated Learning

In their recent study, Sater and Hamza, 2021 introduces a federated learning model that uses stacked
LSTM networks to identify anomalies in smart buildings. The model employs a multi-task learning
approach to solve multiple tasks simultaneously, improving the accuracy of both energy usage
prediction and anomaly detection using IoT sensor data while preserving privacy. The researchers
used the Sensors Event Log Dataset for their study and found that their model outperformed
centralized models regarding training speed and prediction performance. The results demonstrated
the effectiveness of their approach in real-world scenarios, specifically in General Electric Current’s
smart building dataset. This method not only reduces the overall costs of training but also maintains
prediction accuracy, showing a significant advance in privacy-preserving anomaly detection in IoT
environments.

In their research, Sheikhi and Kostakos, 2023 propose an approach for detecting DDoS attacks in
5G core networks using unsupervised federated learning. The study highlights the importance of
implementing advanced security measures to combat DDoS attacks that target the GTP protocol.
By utilizing the collective intelligence of multiple devices, the model efficiently and privately identi-
fied DDoS attacks. The authors also introduced a 5G testbed architecture that simulates complex
public networks, which is ideal for evaluating AI-based security applications, while implementing an
autoencoder model with Fedavg for server-side aggregation. The results demonstrated the model’s
effectiveness in detecting DDoS attacks while maintaining data privacy. This emphasizes the po-
tential of federated learning to enhance the security of 5G networks.

In their recent paper, Marfo et al., 2022 propose a new approach called hierarchical federated learn-
ing (HFL) for detecting network anomalies, with a specific focus on DDoS attacks in 5G networks.
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The HFL approach incorporates edge servers between clients and a global server, which helps to
reduce the computational load on the global server, making the overall model more efficient and
scalable. The researchers validate their approach using the UNSW-NB15 dataset (Moustafa and
Slay, 2015) and demonstrate that it outperforms traditional centralized models in terms of accuracy
and training efficiency. This study highlights the potential of federated learning in enhancing cyber-
security measures in network environments. However, while the hierarchical structure introduces
efficiencies in model training and data aggregation, the architecture’s scalability is dependent on
the number of edge servers and their ability to manage client communications effectively.

The paper Vucovich et al., 2023 introduces a solution for convergence issues in federated learning
through the use of a Min-Max Scalar and a sampling technique called FedSam. This approach was
tested across various setups, including a three-party federated model that utilized datasets from
NCC-DC National Collegiate Cyber Defense Competition, 2024, CIC-IDS2017, and CIC-IDS2018
Sharafaldin et al., 2018. The Min-Max Scalar algorithm works by initializing a scalar with random
minimum and maximum values for each feature used in model training. This scalar is shared among
clients sequentially, allowing each to adjust the scalar based on their data’s bounds. The result is
a common Min-Max Scalar that reflects the global data range. FedSam is an advanced federated
aggregation strategy that combines aspects of Mini-Batch and Multi-Epoch FedAvg strategies to
balance updates from all client nodes equally. This approach aims to mitigate the influence of data
imbalances on the global model, promoting a more equitable and efficient learning process. These
techniques represent significant advancements in federated learning, particularly in contexts where
data distribution varies widely across participants.

In their study, Zhao et al., 2020 propose an approach to tackle the issue of data scarcity in deep
learning-based network anomaly detection methods. Their method involves the combination of
federated learning and transfer learning. In the federated learning stage, participants collaborate
and share knowledge without revealing their raw data. The global model is then aggregated from the
local models, preserving data privacy as the data remains on local devices. In the transfer learning
stage, the global model is fine-tuned using labeled data from the UNSW-NB15 dataset Moustafa
and Slay, 2015. This unique integration of federated learning and transfer learning provides a
promising solution for enhancing network security, particularly in scenarios where data availability
is limited.

Challenges in Federated Learning

Federated Learning is gaining popularity due to its privacy-preserving nature and its ability to use
data from various sources. However, there are still several challenges that hinder its widespread
adoption.

Data Heterogeneity

Federated learning increases complexity due to data heterogeneity, where devices or servers train
models with their own distinct datasets leading to variations in distribution, features, and volume.
This is unlike centralised machine learning’s uniform data processing. Adapting to these has brought
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about different strategies, as seen in recent studies. One study by Dai et al., 2023 introduces FedNH,
a method that incorporates class semantics to enhance class prototypes and address class imbalance,
achieving stability and better personalization in cross-device federated learning. Another study
by de Luca et al., 2022 adapts domain generalization techniques to federated settings, utilizing
data augmentation for heightened accuracy across diverse clients, even enhancing basic Federated
Averaging algorithms.

Exploring preprocessing and aggregation methods, in a research by Perifanis et al., 2023 they rec-
ommend techniques like global scaling and advanced aggregation algorithms to manage the nuances
of non-iid data effectively. These strategies can substantially bolster federated learning models amid
the common challenges of data distribution skew, quantity skew, and temporal skew, providing a
pathway to more robust and equitable machine learning in decentralized environments.

Privacy Preservation

Federated learning, while improving data privacy by decentralizing machine learning model training
to user devices, faces privacy threats such as inference attacks, model inversion attacks, membership
inference attacks, and property inference attacks which aim to extract sensitive details from the
model updates (P. Liu et al., 2022). There has been some research into solving this problem

One study Nguyen et al., 2022 presents a method that relies on quantization and noise addition to
the federated learning updates to protect private data in Mobile Edge Computing settings. This
approach balances the need for privacy with communication resource optimization, ensuring model
performance within privacy and network constraints.

Another research Mandal and Gong, 2019 proposes a privacy-enhancing system specific to linear
and logistic regression models in federated learning. The system utilizes additive homomorphic
encryption and secure aggregation to guard both user data and the server’s model, proving effective
even when users drop out of the learning process.

Thus, while vulnerabilities exist, advances in protecting confidentiality and preserving privacy in
federated learning are promising, striking a balance between user privacy and the demands of mobile
network applications.

Scalability

Efficiently managing federated learning as the number of devices grows while optimizing resource
distribution is a critical challenge. Research in this area has led to various innovative solutions
that aim to improve performance and learning efficiency without overloading the network or its
participants (Zhou et al., 2023).

Ren et al., 2021 propose a framework designed to minimize system and learning costs in mobile
edge computing environments and optimize bandwidth, computing frequency, power allocation, and
subcarrier assignment. This approach employs problem decomposition, convex optimization, and
algorithms like the Hungarian method to significantly enhance the outcomes of federated learning.
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The Edge-Cloud Collaborative Knowledge Transfer Framework by Li et al., 2023 innovatively com-
bines the strengths of federated learning at the edge with centralized learning in the cloud. This
framework adapts to model differences, supports asynchronous training, and minimizes data trans-
mission, improving federated learning’s scalability and efficiency across a multitude of devices.

In the context of edge computing, Z. Wang et al., 2023 propose solutions to optimizing performance
on resource-constrained edge servers include two algorithms based on the Alternating Direction
Method of Multipliers, designed for both homogeneous and heterogeneous environments. These
algorithms address the complex, multi-constraint optimization required for effective resource allo-
cation.

Collectively, these contributions showcase the progress being made in enhancing the scalability and
efficiency of federated learning, with a focus on intelligent resource allocation and leveraging both
edge and cloud computing paradigms.

3.1.5 Is Split Learning A Better Solution?

Split learning was first introduced by Gupta and Raskar, 2018, This work splits a model between
devices and a server. Devices process data and send intermediate results to the server for training
completion. This method reduces data transfer, enhancing privacy and efficiency. It can be espe-
cially useful for mobile networks with limited resources, offering a scalable, privacy-focused solution
for tasks like anomaly detection. In tests using the CIFAR 10 and CIFAR 100 datasets (Alex, 2009),
split learning proved superior to federated learning. It achieved better accuracy convergence and
required less computation on the client side (Vepakomma et al., 2018).

In Z. Lin et al., 2023, an adaptation of split learning in mobile networks in exploring the inte-
gration of split learning with 6G edge networks to address the limitations of federated learning in
resource-constrained environments is proposed. A comprehensive review of Split Learning is pre-
sented, including its advantages for privacy enhancement and reduced resource demands on IoT
devices. The paper discusses the architecture for split-edge learning, resource-efficient Split Learn-
ing frameworks, and resource management strategies, emphasizing the potential of Split learning
to become a key AI technology in the 6G era. It identifies critical design challenges and future
research directions, including efficient split learning design, resource management, and addressing
open problems such as convergence analysis and asynchronous learning.

Combining Split And Federated Learning

Split-Federated learning proposed by Thapa et al., 2022 is an innovative approach that merges the
strengths of both Federated Learning and Split Learning. By dividing the network architecture
between clients and a server, similar to Split Learning, and adopting Federated Learning’s parallel
model update strategy, Split-Federated learning enhances privacy and computational efficiency.
Empirical tests suggest it maintains communication efficiency and test accuracy on par with Split
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Learning while reducing computation time, making it a viable option for real-time anomaly detection
in mobile networks.

Another stride in this field is the introduction of a framework, FedSL by Abedi and Khan, 2023,
which is tailored for training Recurrent Neural Networks on distributed sequential data, combining
federated learning with split learning. This method is adept at sequential data analysis, ensuring
privacy since it avoids the sharing of raw data or full model parameters. FedSL shows improved
privacy, accuracy, and communication efficiency over existing methods, proving advantageous in
areas like time series and natural language processing.

These contributions reflect the continual evolution of hybrid distributed learning models that pri-
oritize privacy preservation and computational resource optimization, especially suitable for mobile
and sequential data environments.

Split Learning Integrated With Other Learning

The SALAD by Nixon et al., 2023 method combines autoencoders and active learning to enhance
anomaly detection in network data streams, aiming to minimize labeling expenses, speed up training
and adjustment, as well as improve detection performance. It utilizes split learning, where the
autoencoder’s client-side up to the split layer processes data without exposing server-side layers,
ensuring privacy. Rather than relying on a static dataset, SALAD’s active learning selects data
points for experts to label, which then refine the client-side autoencoder. This leads to more effective
adaptation to evolving data and reduces the necessity for extensive human annotation. Testing on
various datasets showed that SALAD surpasses conventional anomaly detection techniques with
fewer labeling requirements, offering a potent approach for efficient and real-time network threat
identification.
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Chapter 4

Methodology

This Chapter describes the methodological framework adopted to investigate anomaly detection
in mobile networks using machine learning techniques while implementing federated learning. The
methodology presented here has been designed to address research questions systematically and
provide a clear road map from data collection to model evaluation.

4.0.1 Research Approach Overview

The research methodology applied in this study is divided into distinct phases, each critical for
navigating the intricacies of applying machine learning to our mobile data for anomaly detection.
These phases are:

Data Collection and Pre-processing: This phase involves the acquisition of the mobile network
data and its subsequent preparation, to ensure it is suitable for further analysis.

Machine Learning Model Development: The focus here is on selecting and training appropriate
machine learning models for anomaly detection as well as the implementation of federated learning.
The rationale behind model choice and the training process will be elaborated.

4.1 Data Collection And Preprocessing

This section outlines the procedures implemented for data collection. Furthermore, we elaborate
on the data source and the initial investigations performed by the researchers, which facilitated the
data’s availability. This discussion also highlights the relevance and appropriateness of the selected
data for this study.
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4.1.1 Data Collection

The Nornet Edge (NNE) platform is a robust infrastructure with over 400 measurement nodes in
Norway. It conducts extensive experiments in mobile broadband networks and enables long-term
assessment and comparison of quality and performance across different network operators on a
national scale. The platform also includes a backend system that simplifies research by deploying
experiments, managing nodes, and collecting data (Kvalbein et al., 2014).

Figure 4.1: A measurement box with an NNE node and a power source (Ahmed and Pathan, 2019)

The data collection methodology in this study capitalizes on the distinctive features of the Nor-
net Edge (NNE) platform, which supports simultaneous experimentation across various mobile
broadband (MBB) connections. This capability is essential for capturing comprehensive context in-
formation related to the experiments. Utilizing measurement nodes equipped with Linux operating
systems and linked to multiple MBB providers, the study gathers an extensive array of data across
a spectrum of conditions, ranging from urban centers to isolated areas. Such an approach is instru-
mental in conducting an in-depth analysis of mobile data traits, ensuring the representativeness of
the collected data across the diverse network environments found throughout Norway.

The distributed nature of this platform facilitates the incorporation of a federated learning frame-
work into this study. By providing detailed insights into location-specific data, the platform enables
the identification of geographically correlated data trends and anomalies.

The NNE platform’s backend system plays a pivotal role in experiment deployment, node manage-
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ment, and data processing. This infrastructure’s proficiency in collecting and analyzing data from
varied settings and network scenarios is vital for discerning historical trends in mobile network data
as they relate to node locations. For this investigation, we select one node from Tromsø, Geilo,
Bud, and Oslo as our focal points. These locations are specifically chosen to develop a model that
generalizes across Norway’s different locales.

Figure 4.2: NNE Backend structure (Kvalbein et al., 2014)

Preliminary Research

Identification of Key Performance Indicators (KPIs)

The initial phase of the research involves identifying the most pertinent measurements for detecting
anomalies within mobile network performance. Given the study’s focus on network anomalies, it
is important to select Key Performance Indicators (KPIs) that accurately reflect the network’s
performance state. These KPIs needed to account for potential fluctuations that could either stem
from the condition of the measurement node itself or signify underlying issues within the network’s
performance.

Among the various KPIs considered, Round Trip Time (RTT) is selected as a principal metric due
to its robust indication of network performance. RTT measures the time required for a signal to
travel to a destination and back, which is an indicator of network speed and efficiency. Notably,
RTT’s fluctuations highlight potential network security issues, such as Denial of Service (DoS) or
Distributed Denial of Service (DDoS) attacks, making it a critical KPI for detecting anomalies
within the network (Goudru et al., 2021; Martinez et al., 2023; Sengupta et al., 2022).

To complement the analysis, we also select metrics such as Reference Signal Received Quality
(RSRQ), Reference Signal Received Power (RSRP) (Afroz et al., 2015; El-Saleh et al., 2022), and
Received Signal Strength Indicator (RSSI) (Santana et al., 2017; Sarsodia et al., 2021). These
metrics are instrumental in describing the strength and quality of the network signal, which are
expected to correlate significantly with RTT measurements. A strong and stable signal, as indicated
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by favorable RSRQ, RSSI, and RSRP values, typically contributes to lower RTT values, signifying
efficient network performance. Conversely, weaker signal strengths may lead to increased RTT,
indicating potential performance issues or areas with poor network coverage.

Further data elements, including the node’s mode of operation, LTE frequency, band, information
service, and network ID, are collected to provide a holistic view of the network’s operational state.
These details not only aid in distinguishing the type of network measurement but also in identifying
the service provider, thus offering comprehensive insights into the network’s performance dynamics.

Data Collection Time-frame And Scope

To ensure the most accurate analysis of the network’s performance and security posture, the data
collection period for the study is strategically chosen to be from November 1st to December 31st,
2023. These two months are selected to capture the most current state of the network across the
targeted areas. This approach sets the study to reflect the prevailing conditions.

Data Structure:

Packet Loss And RTT Data

To conduct a detailed examination of network anomalies, the study relies on two main types of
data: packet loss data we obtain from UDP ping experiments and comprehensive metadata records.
The packet loss data, which plays a crucial role in comprehending the network’s strength and
effectiveness, comprises the following essential components:

• Measurement Timestamp (ts): The precise moment of data collection, formatted as an ISO
TIMESTAMP, provides temporal context to each measurement.

• Node Identification Number (node_id): A unique identifier for each measurement node, for-
matted as an integer. This ID helps track data back to its source within the network’s
infrastructure.

• Network Identification Number (network_id): An integer indicating the operator for which
the measurement is taken, thus distinguishing among various service providers.

• Service Identification Number (service_id): Specifies the technology utilized during the
measurement, differentiating between 4G, 5G.

• Sent and Received Packets Count (scnt, rcnt): Counts of packets sent and received during
the aggregation period, providing direct indicators of network packet loss and efficiency.

• Round Trip Time (rtt, rtt_avg): Measures the average time, in milliseconds, for a signal to
travel to a destination and return, captured over 1-second and 5-minute aggregation intervals,
respectively.
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Metadata Collection

In addition to packet loss data, the study continuously collects metadata on network and device
states to enrich the analysis.

• Signal Indicators: RSSI, RSRQ, and RSRP metrics provide detailed insights into the signal
strength and quality, crucial for correlating network performance with signal characteristics.

• Network and Device Information: Includes SUBMODE, CID (Cell Identity), DEVICE_STATE,
BAND, LTEFREQ, and EARFCN, offering comprehensive details on network operation and
connectivity.

• Operational and Location Details: MODE, IPADDR, USBMODEM, LAC, and OPER data
clarify the operational status of nodes and their geographical and network context.

• Advanced Metrics: IMSI, TX_POWER, and CELEVEL further deepen the dataset, capturing
subscriber identity, transmission power, and coverage enhancement levels

The metadata is recorded through two distinct methodologies: Event-based data capture and Pe-
riodic recordings. Event data captures changes in metadata values at the precise moment an event
occurs, typically marking a significant fluctuation or shift. Meanwhile, 1-minute bins consistently
record each piece of metadata every minute, ensuring a comprehensive dataset over time. This dual
approach allows for granular analysis of network conditions, facilitating the detection of anomalies.

4.1.2 Data Pre-processing:

Data Merging:

The preprocessing phase involves the approach to integrating data, which is essential for a com-
prehensive temporal analysis of network anomalies. This section explains the methodology used to
combine Round Trip Time (RTT) data with event and 1-minute bin metadata.

RTT Data Aggregation: The Round-trip time (RTT) data is captured with millisecond precision
and recorded every second. To create a unified dataset spanning the two months of study, a loop
function extracts and aggregates the data. The compiled dataset provides comprehensive insights
into network performance over time.

Metadata Integration: To integrate the RTT data with the metadata records, it is necessary to
harmonize the temporal resolutions. To achieve this, two new timestamp columns are added to the
aggregated RTT dataset. One column has a second granularity for aligning event metadata, while
the other has a minute granularity for aligning 1-minute bin metadata. To adjust the timestamp
column in the event metadata to second granularity, it is rounded down to the nearest second.

Data Merging:
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• Event Metadata Merging: The aggregated RTT dataset is merged with the event meta-
data on three keys: the floored seconds timestamp, node ID, and network ID. This left-join
operation ensures the retention of all RTT observations, aligning them with corresponding
event metadata where available.

• 1-Minute Bin Metadata Merging: Similarly, the 1-minute bin metadata is merged with
the RTT dataset using the minute granularity timestamp, node ID, and network ID.

The rationale behind utilizing left joins is to maintain the integrity of the RTT dataset, ensuring no
observation is omitted. Columns introduced from the metadata that do not find a corresponding
match in the RTT dataset are filled with NaNs, to be addressed in subsequent preprocessing steps.

Data Cleaning

The data preparation involves several steps to clean and organize the dataset for analysis. Missing
values are managed using a forward fill technique where subsequent NaNs are replaced with the
closest prior non-NaN value, except for the initial sequence of NaNs which are handled by referencing
the 1-minute bin records. Event metadata timestamps are aligned by flooring to the nearest second
and adjusting any additional events within the same second to the following second to maintain
temporal uniqueness. RTT data is validated to ensure both sent and received packet counts are non-
zero, discarding any invalid record. Data reflecting normal network device operations is isolated by
filtering for an operational mode value of 6, and any extraneous Bin metadata columns are removed
to streamline the dataset. Finally, the dataset is sorted chronologically to facilitate time-series
analysis, ensuring the data is primed for detailed network performance and anomaly investigation.
The algorithm below shows the step-by-step process for data cleaning

4.2 Model Development

Machine learning (ML) models are essential for anomaly detection in mobile networks. They use
large data volumes in networks to improve their reliability, efficiency, and security. This section
outlines the criteria for selecting suitable models and provides details about the chosen models for
development.

Theorectical foundation

The conceptual framework for the model presented is a synthesis of Convolutional Neural Networks
and Long Short-Term Memory networks. This dual-structure approach seeks to capitalize on the
respective strengths of each: CNNs are employed to identify patterns over short-term sequences,
while LSTMs are engaged to get the dependencies across extended temporal intervals. The rationale
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Algorithm 1 Comprehensive Data Processing for Network Anomaly Detection
Require: Nornet Edge (NNE) platform data, measurement period
Ensure: Cleaned and processed dataset ready for analysis
1: Initialize empty dataset D {Data Collection}
2: for each day in measurement period do
3: Dday ← Load RTT and packet loss data from CSV
4: D ← D ∪Dday {Aggregate daily data}
5: end for{Data Combination}
6: Prepare D with second and minute granularity timestamp columns
7: for each type of metadata in [event, 1min bin] do
8: for each metadata file M corresponding to the current type do
9: if type is event then

10: Adjust M timestamps for granularity and floor to seconds from milli-seconds and resolve
duplicates

11: end if
12: Merge D with M based on timestamp, node ID, and network ID
13: end for
14: end for{Data Cleaning}
15: for each record in D do
16: if sent or received packet count is 0 OR operational mode ̸= 6 then
17: Discard record from D
18: end if
19: end for
20: Drop all Bin metadata columns no longer needed from D
21: Sort D by timestamp
22: return D
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for this architecture is driven by the capabilities of CNNs and LSTMs as detailed in the background
section is further illustrated by examples of their applications in the literature review.

4.2.1 Centralised Architecture

The centralized implementation phase of the research is crucial in determining the most suitable
model architecture and hyperparameter setup for anomaly detection within mobile networks. This
stage involves rigorous experimentation with multiple machine learning models and their corre-
sponding hyperparameters to select our base model.

It also provides an opportunity to contrast the performance of the centralized model with that of
the federated learning model.

Such comparisons are crucial in evaluating the validity and potential benefits of federated learning
approaches. Findings from this phase are instrumental in guiding the selection and fine-tuning
of models, ultimately enhancing the assessment of federated learning as a viable solution for the
unique demands of mobile network anomaly detection.

Data Preparation

For data preparation, a two-week dataset from three nodes is collected and merged. The data is
sorted based on the timestamp column. Additional columns are created to assist the model further.
Rolling mean, median, and standard deviation of the Round Trip Time (RTT). Day of the week
and weekend indicators are added. As per findings from Nornet research, any Round-Trip Time
(RTT) values exceeding 45 milliseconds are flagged as anomalies, while those below this threshold
are considered normal observations. Subsequently, a new column named anomalies is created, where
anomalies are labeled as 1 and non-anomalies as 0.

The data is then split chronologically into training (60%), validation (20%), and test (20%) sets,
considering the class imbalance. To address normalization, the labels are separated from the data,
and a standard scaler is applied, fitted on the training set, and transformed on both validation and
test sets to prevent data leakage.

Next, the data is converted into sequences using the Keras time series dataset function, with a
timestep of 100 and a batch size of 128, incorporating labels to create batch datasets for training,
validation, and testing.

Platform

Given the dataset’s granularity and the training’s computational demands, the implementation is
carried out on Google Colab. This platform provides the necessary computational resources to
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handle the intensive training processes efficiently.

Experiments are primarily conducted using 50GB of CPU and Google T4 GPU for training the
model. This setup ensures the feasibility of training complex models and conducting extensive
experimentation to optimize model performance for this study.

Model Selection

Faced with the challenges of high dimensionality and class imbalance in a labeled dataset, various
approaches ware tested. Unsupervised methods are initially used but failed to distinguish between
normal and anomalous data effectively. Transitioning to supervised learning, CNN alone is tried
but does not perform adequately. The introduction of an LSTM layer to the model improved its
ability to recognize temporal dependencies and anomalies. This combination of CNNs and LSTMs
ultimately enhances the model’s anomaly detection capabilities.

Base Model

The architecture of the developed model features a sequential model configuration, carefully struc-
tured with a series of layers to extract and learn patterns from mobile network data intricately. The
configuration is as seen below.

Layer Descriptions

The model architecture begins with an input layer that defines the shape of the data for the network.
It then utilizes three convolutional layers paired with max-pooling and batch normalization to
extract spatial features. To capture temporal relationships, an LSTM layer is integrated into the
model. Dropout layers are employed throughout to reduce the risk of overfitting. The architecture
culminates in an output layer with a single neuron using a sigmoid activation function for binary
anomaly detection. The ReLU activation function is used in all except the output layer to introduce
non-linearity. All the parameters for each layer can be seen in Figure 4.3

Binary Focal Cross Entropy Loss is utilized to address class imbalances in binary classification tasks
by modifying traditional Binary Cross Entropy Loss with a focusing parameter α. This parameter
allows the model to focus more on difficult, misclassified samples rather than the majority class,
thereby minimizing bias and improving model accuracy on imbalanced datasets (T.-Y. Lin et al.,
2017).
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Figure 4.3: Model Summary
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Model Training and Evaluation

The trained model undergoes rigorous evaluation to assess its performance.

Training:

Table 4.1: Summary of Model Training Phases
Phase Number of Epochs Optimizer and Learning Rate Loss Function (Alpha, Gamma)

Initial Training 15 epochs Adam, Learning Rate = 0.00001 Binary Focal Loss (0.8, 2)
Additional Training 20 epochs Adam, Learning Rate = 0.00001 Binary Focal Loss (0.8, 2)

Evaluation Metrics:

1. Recall: Recall, also known as sensitivity or true positive rate, measures the proportion of actual
positive cases that the model correctly identifies. It is calculated using the formula:

Recall =
True Positives

True Positives + False Negatives

2. Precision: Precision is a measure that evaluates the model’s ability to correctly identify positive
instances. It is computed as the ratio of true positives to the sum of true positives and false positives,
reflecting the model’s proficiency in minimizing false positive predictions. The precision is computed
as:

Precision =
True Positives

True Positives + False Positives

3. Accuracy: Accuracy represents the overall correctness of the model’s predictions across all
classes. It measures the proportion of correctly classified instances to the total number of instances
evaluated. The accuracy is given by:

Accuracy =
True Positives + True Negatives

Total Instances

4. F1 Score: The F1 Score is the harmonic mean of precision and recall, giving a balance between
both.

F1 Score = 2×
(

Precision× Recall
Precision + Recall

)

These evaluation metrics provide insights into different aspects of the model’s performance, helping
to gauge its effectiveness in detecting anomalies (Naidu et al., 2023).
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4.2.2 Distributed Framework Implementation

For implementing federated learning, various frameworks are available, among which we chose
Flower. Flower stands out for its ease of configuration and integration into existing machine-
learning workflows. Flower provides a distributed system for federated learning, allowing seamless
coordination between server and client components. Through Flower, model training tasks are effi-
ciently distributed across edge devices, enabling collaborative learning while ensuring data privacy
and security.

Further functionalities and integration details are explained in Beutel et al., 2020 which describes
the process of using Flower for federated learning implementations.

Platform

In our federated learning setup, we utilize four virtual machines within the same network. Each
virtual machine is provisioned with 35 GB of RAM and runs Ubuntu 22.04 as the operating sys-
tem. This infrastructure provides the necessary computational resources to handle the distributed
model training tasks across multiple devices while ensuring smooth coordination and communication
between the server and client components.

However, it’s important to note that the available resources are limited, which constrains our ability
to perform training on the entire dataset in a single iteration. This necessitates careful optimization
and partitioning of the data to ensure efficient training within the resource constraints.

Figure 4.4: Flower Implementation Design
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Please visit the following link to access the source files and detailed implementation:

GitHub Repository: Thesis-ANO-FED-CNN-LSTM

Model Training and Evaluation

In the federated implementation, each client’s Python file comprises data preprocessing, model
definition, and the fitting function, all tailored to its local dataset. The parameters and loss function
mirror those described in the base model. Binary Focal cross-entropy serves as the loss function,
prioritizing the positive class for most nodes during training

Table 4.2: Training Parameters for Nodes
Parameter Bud Tromso Gelio
Epochs 30 30 30
Early Stopping Yes Yes Yes
Patience 6 6 6
Restore Best Weights Yes Yes Yes
Learning Rate 0.0001 0.0001 0.0001
Loss Function Binary Focal Cross-Entropy Binary Focal Cross-Entropy Binary Focal Cross-Entropy
Alpha 0.25 0.8 0.8
Gamma 2 2 2

During training, each client virtual machine trains its model on its local dataset. The trained
model weights are then transmitted to the central server. Utilizing federated averaging (FedAvg),
the server aggregates these weights to generate the global model. Subsequently, the global model
weights are distributed back to each client, where they are employed to evaluate the model on their
respective test datasets. This iterative process, termed rounds, continues.

For evaluation, we adhere to the same set of metrics: F1 Score, precision, recall, and accuracy.
Following each round, these metrics are computed for each client on their respective test data. A
weighted average is then calculated, aggregating these metrics across all clients and providing a
comprehensive view of model performance.
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Figure 4.5: The process of creating a federated client for each node

Figure 4.6: Federated Training process between clients and server
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Chapter 5

Results

5.1 Data Exploration

Descriptive statistics

The boxplot depicted in Figure 5.1 illustrates the distribution of Round-Trip Time (RTT) across
various network nodes for a selected week, highlighting differences in network performance among
different locations. Notably, the node in Tromsø (4135) exhibits the highest median RTT of ap-
proximately 50.8 milliseconds, suggesting slower network response times which might be indicative
of less efficient infrastructure or greater network congestion compared to other nodes. In contrast,
nodes in Oslo (4144 and 4147) show significantly lower median RTTs, around 31.6 and 32.1 mil-
liseconds respectively, indicating more robust network conditions. The node in Bud (4152) and the
node in Gelio (4137) also show median RTTs of 51.1 and 37.4 milliseconds, respectively, suggesting
moderate performance relative to the others.
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Figure 5.1: RTT Distribution by Node ID.

Network Performance Analysis by Time and Day

Key Observations:

Node 4152 Figure 5.2: RTT peaks on Sundays between 10 AM and 12 PM, reaching up to 85
milliseconds, whereas Mondays show slightly later peaks with similar maximum RTT, indicating a
routine shift at the start of the workweek.

Node 4137 Figure 5.2: Displays higher RTT on Sunday mornings (up to 80 milliseconds) compared
to Mondays (maximum of 70 milliseconds) during similar times, suggesting different usage patterns
on weekends versus weekdays.

Daily Trends: Weekdays, especially Mondays, see a consistent rise in RTT during business hours (9
AM to 5 PM), while weekends exhibit RTT spikes potentially due to leisure-related high-bandwidth
activities.

The observed temporal patterns suggest both daily and weekly RTT seasonality that might be
associated with user behavior and network load. Peaks in latency often coincide with hours that
could correspond with increased network usage.
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Figure 5.2: Seasonal Subseries Plot for Node Bud 4152 and Gelio 4137 illustrating RTT across
different hours of the day and days of the week.

RTT Distribution

The RTT distribution plot illustrates the spread of RTT values across all nodes. Approximately
20% of nodes exhibit an RTT equal to or below 15 milliseconds, indicating a significant fraction
with low RTT. Between 15 and 35 milliseconds, there’s a steep increase in RTT values, with the
majority falling within this range. Beyond 35 milliseconds, the curve levels off, suggesting fewer
nodes with higher RTT values. By the 50-millisecond mark, around 80% of nodes have an RTT
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below this level, and nearly all nodes (close to 100%) have an RTT below 70 milliseconds. Overall,
most nodes display moderate RTT, but there’s a tail distribution indicating a smaller proportion
experiencing higher RTT values.

Figure 5.3: RTT distribution plot for all the nodes considered in this study.

5.2 Results For Centralised Architecture

We combined 2 weeks of data from the nodes to use for the centralized training

Anomaly Label Distribution

The distribution of anomaly labels within our dataset shows abnormal behavior detected by our
anomaly detection model. Figure 5.4 outlines the breakdown of anomaly labels into two categories:
negative anomalies, denoting instances classified as normal behavior, and positive anomalies, indi-
cating deviations from the norm.

Our dataset comprises a total of 3,606,412 labeled instances, with a significant majority of 2,502,441
instances classified as negative anomalies.
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Figure 5.4: Distribution showing class imbalance in the dataset.

Model Training

In the initial training phase, the model is trained for a total of 15 epochs, with early stopping imple-
mented as a precaution against overfitting. Early stopping is prompted by an observed convergence
in the validation and training losses, indicating that further training does not result in significant
improvements in the validation loss (Figure 5.5).
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Figure 5.5: The model’s training and validation loss over the initial 15 epochs.

Figure 5.6: The training and validation results over the initial 15 epochs.

During the initial epochs, the validation loss is lower than the training loss, which is uncommon
but can occur due to the effects of regularization or differences in the distribution of the training
and validation datasets. After the early stopping criterion is met, further training of 20 epochs is
conducted. This extended training leads to a continued decrease in the validation loss, indicating
an improvement in the model’s generalization ability (Figure 5.7).
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Figure 5.7: Continuation of the model’s training for an additional 20 epochs after early stopping.

Figure 5.8: Metrics for additional 20 epochs after early stopping.

The decrease in validation loss over the additional epochs validates the decision to extend training
beyond the early stopping point. The final epochs indicate the validation loss approaching a plateau,
suggesting the model’s optimal performance given the current architecture and dataset.

The final evaluation of the centralized learning approach yielded the following metrics, as summa-
rized in Table 5.1:

Table 5.1: Metrics for centralized training
Label Accuracy Precision Recall F1 Score

Centralized Training 0.877 0.904 0.714 0.798

The centralized training approach achieved an accuracy of 87.7%, indicating the proportion of
correctly classified instances out of the total dataset. Precision, which measures the proportion of
true positive predictions among all positive predictions, is calculated at 90.4%. Recall, representing
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the proportion of true positive predictions among all actual positive instances, stood at 71.4%. The
F1 score, a harmonic mean of precision and recall, is determined to be 79.8%.

These metrics provide a comprehensive assessment of the model’s performance in the centralized
learning setting, serving as a baseline for comparison with other approaches.

5.3 Results For Distributed Architecture Via Federated Learn-
ing

We present the initial findings from the application of federated learning to our anomaly detection
model. The primary goal is to leverage decentralized data across different nodes to enhance the
model’s robustness and generalizability without compromising privacy and data security.

5.3.1 Training Observations

We start the training with 20 rounds, with early stopping integrated to mitigate the risk of over-
fitting. For clarity, we focus on the first round of training across three different nodes, Gelio 4137,
Tromsø 4135, and Bud 4152. The plots provided below represent the training and validation loss
over the epochs for this initial round.

Node Bud 4152: The training history for Node Bud 4152 shows a steady decrease in training loss
along with a relatively flat validation loss after an initial adjustment (Figure 5.9).
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Figure 5.9: Bud node 4152 training and validation.

Node Tromsø 4135: Node Tromsø 4135 displays a more consistent reduction in both training and
validation loss. This consistency points to a well-generalizing model on this node’s data (Figure
5.10).
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Figure 5.10: Tromso node 4135 training and validation.

Node Gelio 4137: For Node Gelio 4137, the training history illustrates an initial steep decline
in training loss, which is indicative of rapid learning. However, the corresponding validation loss
demonstrates higher variability. (Figure 5.11).

57



Figure 5.11: Gelio node 4137 training and validation.

5.3.2 Evaluation Results

The evaluation of our federated learning model’s performance over 20 rounds during training is
done through the progression of binary accuracy, precision, and recall.

Local Evaluation

Figure 5.12 illustrates the performance of the global model on each node after every round. A
consistent and stable pattern emerges across all nodes for recall, reflecting our deliberate focus on
ensuring high recall rates before prioritizing improvements in other parameters in each successive
round.
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Figure 5.12: The local evaluation of the global model at every round and the global averaged result.

Global Averaged result

Figure 5.12 presents the averaged global test metrics plot, showcasing the fluctuations and trends
observed in binary accuracy, precision, and recall across the training rounds.

Table 5.2 provides a detailed breakdown of the metrics for each round, including binary accuracy,
precision, recall, and F1 score.
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Table 5.2: Federated Learning Results
Round Accuracy Precision Recall F1 Score

1 0.6062 0.6035 0.9994 0.7523
2 0.6072 0.6041 0.9999 0.7530
3 0.7049 0.6964 0.9998 0.8211
4 0.7194 0.7174 0.9992 0.8350
5 0.7153 0.7112 0.9997 0.8307
6 0.7193 0.7176 0.9991 0.8352
7 0.7317 0.7242 0.9982 0.8403
8 0.7254 0.7240 0.9960 0.8385
9 0.8037 0.7603 0.9926 0.8605
10 0.7473 0.7331 0.9929 0.8433
11 0.8647 0.8105 0.9890 0.8917
12 0.7459 0.7320 0.9941 0.8436
13 0.8220 0.7723 0.9918 0.8662
14 0.7816 0.7458 0.9972 0.8539
15 0.8691 0.8118 0.9939 0.8928
16 0.8303 0.7774 0.9933 0.8714
17 0.7962 0.7559 0.9931 0.8567
18 0.7779 0.7459 0.9944 0.8517
19 0.8455 0.7905 0.9916 0.8790
20 0.8085 0.7629 0.9932 0.8608
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Chapter 6

Discussion

In this thesis, federated learning is applied to the task of anomaly detection in mobile networks to
assess its effectiveness in anomaly detection in high-dimensional data across distributed nodes. The
research reveals significant variations in latency and signal quality metrics (RTT, RSSI, RSRQ, and
RSRP) across diverse geographic locations, such as Bud, Gelio, Tromsø, and Oslo. These findings
are important for understanding how geographical and infrastructural factors influence network
performance.

This analysis evaluates the performance of centralized and federated learning models based on the
metrics, namely, precision, recall, and F1 score. While federated learning demonstrates the ability to
enhance data privacy and support localized data processing, its performance varies across different
nodes.

These observations suggest that federated learning could be viable for real-world applications; how-
ever, they also show the complexity of deploying such technologies effectively across geographically
dispersed data. Moving forward, this discussion places these results within the broader context
of mobile network management and anomaly detection, examining the implications of these find-
ings for deploying machine learning techniques to enhance network reliability and performance. It
addresses the challenges and limitations encountered during the study.

6.1 Interpretation of Key Findings

6.1.1 RTT Variations

Geographical Impact

The Round-Trip Time (RTT) metrics observed for different nodes across Norway provide insights
into the relationship between geography, infrastructure, and network performance. RTT variations
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across nodes in cities like Bud, Gelio, Tromsø, and Oslo likely reflect a combination of geographical
and infrastructural differences. The mountainous and fjord-rich landscapes of Northern Norway,
where Tromsø and Bud are located, may present natural barriers to signal propagation, contributing
to higher RTT values.

Adding to the geographical influence is the possible impact of server proximity. With the central
data servers likely situated closer to Oslo, the data packets have a shorter distance to travel, resulting
in lower RTT values for the Oslo node. This is less so for nodes in the north, such as Bud and
Tromsø, where the greater physical distance from the servers naturally extends transmission times.
Gelio’s more evenly distributed RTT values, bridging the lower threshold and the defined anomaly
range, indicate an intermediate position in terms of server proximity and the consequent network
latency.

Infrastructure quality further compounds these variations. The presence of more modern or well-
maintained network equipment in Oslo, as opposed to potentially older infrastructure in the north,
can also contribute to the differing RTT profiles.

These factors show the importance of considering both natural geography and the strategic place-
ment of network infrastructure in ensuring optimal network performance across diverse regions.

Refer to Figure 6.1for a visual representation of the RTT distributions:
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Figure 6.1: RTT distribution for each node.

Network Load and User behavioral pattern

The results as seen in Figure 5.2 show clear temporal variations in RTT across different nodes,
which not only reflect network performance fluctuations but also align closely with user behavioral
patterns across different days of the week.

Temporal Variations in RTT

Patterns Observed: The peak RTT times on Sundays compared to Mondays suggest a shift in the
type of network usage. On Sundays, high RTT peaks likely correspond to leisure activities that
require high bandwidth, such as streaming videos or online gaming. This contrasts with Monday’s
peak times, which may be influenced by professional or educational activities as the workweek
begins.

Implications: These observations imply that network infrastructure is subjected to varying types of
stress depending on the day. Service providers might need to consider adaptive bandwidth allocation
strategies that cater differently to weekdays versus weekends.

Correlation with User Behavior:
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Behavioral Insights: The direct correlation between RTT peaks and specific times of day supports
the notion that network performance issues are not merely technical but are significantly influenced
by user behavior.

Strategic Adjustments: Network operators could benefit from these insights by scheduling mainte-
nance during low-usage periods and potentially offering differentiated service plans that optimize
network performance based on expected usage patterns.

6.2 Data Dimensionality

The dimensionality of the data used in this study is described in Table 6.1. The size of the datasets
underlines the challenge of high-dimensional data management and the implications for computa-
tional resources.

Table 6.1: Dataset Dimensions and File Sizes
Filename Rows Columns Size (bytes) Size (MB)

bud_feature_eng.csv 4,969,098 16 525,791,286 501.43
oslo4144_feature_eng.csv 5,226,690 16 402,593,547 383.94
Tromso_feature_eng.csv 5,216,801 16 403,708,883 385.01
gelio_feature_eng.csv 5,221,451 16 402,142,735 383.51

The table shows that the datasets consist of millions of observations across numerous variables for
each node. Centralizing such extensive data for model training would entail significant computa-
tional resources and potentially create bottlenecks due to data transfer loads. Moreover, centralizing
data raises concerns about user privacy and data security.

Federated learning offers a viable solution to these challenges. By distributing the training process
across multiple nodes, computational resources are utilized to learn locally from the data. This
approach significantly reduces the requirement to transfer large volumes of data, as only model up-
dates are communicated back to a central server. Consequently, this not only conserved bandwidth
but also mitigated the risks associated with data privacy breaches.

The implementation of federated learning, thus, allows for computational and resource efficiency,
with the added benefit of maintaining the privacy of the underlying data. This distributed approach
to machine learning proves to be particularly advantageous when dealing with high-dimensional
datasets as demonstrated in this study.

6.2.1 Centralised Architecture

The centralized learning model demonstrates robust performance, with key metrics outlined in Table
5.1. The model achieves an accuracy of 87.7%, indicating a high level of correct anomaly detections,
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essential for network operation reliability. Precision is particularly high at 90.4%, ensuring that the
model effectively identifies actual anomalies, minimizing false positives.

However, the recall of 71.4% suggests that the model could miss some true anomalies, indicating
a potential area for improvement. The F1 score of 79.8% reflects a balance between precision and
recall, highlighting the model’s effectiveness in handling anomaly detection tasks.

We use these results as a benchmark for evaluating our federated learning model.

6.2.2 Distributed Architecture

The results from the federated learning approach are detailed in Table 5.2. Over 20 rounds of train-
ing, we observe a notable improvement in all metrics. Initially, the accuracy starts at 60.62% but
sees an increase, peaking at 86.91% in the 15th round with a precision of 81.18% before stabilizing
around 80.85% by the 20th round.

The recall consistently being high indicates the model’s effectiveness in identifying anomalies. The
highest recorded F1 score is 89.17%, reflecting a balanced model that is both precise and sensitive
to detecting true positives.

For each training round, the model parameters were saved, allowing for the examination of specific
iterations and the potential reuse of the most effective configurations. This systematic parameter
saving helps assess the model’s evolution and convergence over time.

6.2.3 Comparative Analysis with Centralized Learning

This study compares federated and centralized learning models to establish a baseline for perfor-
mance evaluation. The centralized model metrics are presented in Table 5.1, which serve as a
benchmark against the federated model results detailed in Table 5.2.

While the federated learning model exhibits a slightly lower accuracy than the centralized approach,
it achieved comparably high precision and recall values. Most notably, the federated model con-
sistently records higher recall rates throughout the training rounds. This high recall indicates the
model’s robustness in anomaly detection across distributed datasets without compromising data
privacy.

6.2.4 Scalability and Adaptability

Furthermore, our study highlights the scalability of federated learning models across diverse geo-
graphic settings. Despite regional disparities, federated learning models demonstrate adaptability
and maintain robust anomaly detection performance across nodes. also proving the scalability
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of this research, for more data from different locations to be added with the model expected to
maintain competitive results.

6.3 Challenges in Model Generalization Across Diverse Re-
gions

In our exploration of federated learning for anomaly detection across geographically diverse nodes,
we encounter significant challenges in model generalization. Notably, integrating data from Oslo
into our federated training setup with nodes in Tromsø and Gelio leads to marked performance
discrepancies. This outcome shows the complexities involved in developing a single federated model
that effectively handles data from distinct regional contexts.

Regional Data Variability

The integration of Oslo data introduces a skew in the performance of the global model. As a
major urban center, Oslo likely exhibits different network traffic patterns and anomalies compared
to the distributions found in northern locations like Tromsø and more remote regions like Gelio.
This disparity results in a global model that, while performing adequately on data from Tromsø,
struggled to adapt to the distinct characteristics of data from Oslo and Gelio.

Figure 6.2: Best result achieved with Oslo, Gelio, Tromso combination with an Accuracy of 71%
Precision of 73% and Recall of 68%

Generalization Difficulties

The node in Bud is used to replace the Oslo node. The model performs well with data from Tromsø,
likely due to similar geographical and infrastructural characteristics shared with Bud. However, it
struggled to adapt to data from Gelio, demonstrating a potential regional bias in learning.

The evaluation metrics reveal significant initial challenges, particularly in adapting to Gelio’s data.
This is represented by fluctuating loss that can also be seen in other nodes and low accuracy and
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precision in early rounds. However, from Round 8 onwards, the model shows improvement, eventu-
ally reaching a peak accuracy of 75% and precision of 50% by Round 12 refer to (Figure 5.12). This
improvement suggests that the federated learning model is able to adjust its parameters effectively
over time, enhancing its ability to generalize across the different data distributions provided by each
node.

6.3.1 Implications for Federated Learning

While federated learning excels at preserving data privacy and enabling localized processing, its
success heavily depends on developing models that generalize effectively across diverse data sources,
avoiding biases towards particular node characteristics.

The observed difficulty in balancing these aspects suggests that federated learning might benefit
from node selection strategies. To enhance model generalization and performance:

Geographical Cohesion: Selecting nodes within similar geographic settings, such as all urban or
all rural areas, could reduce variability in data characteristics that stem from regional differences.
This approach might lead to models that are better tuned to specific environmental or infrastructural
factors prevalent within these settings.

Regional Centralization: While federated learning is decentralized by design, introducing a level
of centralization in terms of node selection could be beneficial. By grouping nodes from the same city
or region, the model could leverage localized similarities in data patterns and anomalies, enhancing
the overall model’s effectiveness and efficiency.

6.4 Limitations and Further Work

During this study, several limitations were encountered.

One big limitation is the availability of computational resources. Given the high dimensionality
of the data, only a subset is utilized for both centralized and federated learning approaches. As a
result, the study may not fully capture the potential performance of these methods. With access to
greater computational resources, it is possible that more comprehensive analyses can be conducted,
potentially yielding improved results for both federated and centralized learning strategies.

Future research could also focus on implementing alternative weight aggregation methods, as dis-
cussed in the literature review chapter. Exploring these methods could enhance the performance
and efficiency of federated learning models, particularly in scenarios with highly imbalanced and
high-dimensional datasets.

Additionally, enhancing the privacy assurances within the federated learning architecture. Incorpo-
rating additional privacy-preserving techniques discussed also in the literature review of this study,
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could improve data security and confidentiality.

Lastly, the integration of federated learning with split learning presents another avenue for fu-
ture research. As highlighted in the literature review, split learning offers unique opportunities
for collaborative model training while preserving data privacy. Investigating the combination of
federated learning and split learning could lead to more novel approaches for secure and efficient
model training in distributed environments.
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Chapter 7

Conclusion

This thesis has demonstrated the effectiveness of federated learning for anomaly detection in mobile
broadband networks, highlighting its potential to enhance security and efficiency without compro-
mising data privacy. Through decentralized data processing and model training directly on devices,
FL has shown superior performance in detecting network anomalies compared to traditional cen-
tralized methods. Despite these advancements, the research identified challenges such as data
heterogeneity, scalability, and the need for robust privacy-preserving protocols, suggesting areas for
further exploration and improvement.

Future research could focus on refining FL approaches by integrating advanced machine learning
algorithms, enhancing data privacy measures, and improving system scalability. This thesis con-
tributes to the ongoing development of machine learning in network management and opens new
pathways for leveraging decentralized learning frameworks in complex, data-driven environments.

In light of these findings and their potential implications, it is my intention to submit this thesis
as a research paper for publication. I believe that sharing these insights with the broader academic
community in the form of a research paper will stimulate further research and discussion in this
important field.
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