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Abstract 
The expanding world of drone technology has led to many exciting possibilities in various fields, 
such as surveillance and monitoring. Equipping drones with different sensors, depending on 
the use case makes drones invaluable in many applications, especially for environment 
mapping. Many of these sensors, or the drones equipped with them are costly and high 
maintenance, which opens up for the creation and implementation of cost-effective and 
efficient mapping solutions, making it available for a much broader audience, also those that 
do not have big budgets.  

By focusing on building and implementing a low-cost mapping solution, this dissertation 
demonstrates how SLAM technology can be integrated with low-price drones while achieving 
accurate maps across various scenarios and environments. Through extensive research, a 
solution to this challenge presented itself with the DJI Tello drone and the ORB-SLAM3 package. 
Despite its modest specifications, the Tello drone’s user-friendly and affordable nature makes 
it an ideal candidate for such a system, and with its monocular camera, proved to be highly 
compatible with the ORB-SLAM3 algorithm.  

The open-source nature of ORB-SLAM enables customization, therefore making it applicable in 
a variety of scenarios. The option to change the number of features to be extracted and change 
the thresholds, allows the system to perform well even in low-contrast areas.  

During this project, the system has been tested in various scenarios and environments and as a 
result, had its limitations and challenges showcased such as limited flight time or poor 
performance in strong winds. Regardless of its limitations, the system proves its ability to 
create accurate maps and shows how much potential such a system holds.  

The result was a package solution for performing ORB-SLAM on the DJI Tello drone, and the 
insights gained from research conducted in this thesis show that it is entirely possible to 
achieve high-quality mapping even with a limited budget.  

In conclusion, this project introduces the development of a drone-based mapping system 
capable of creating highly detailed maps with just a drone equipped with a 720p pinhole 
camera. It lays the groundwork for future research, continually improving and enhancing the 
field of low-cost drone-based mapping systems.  
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“Controversial but fabolous, drones do a good job” – Martha Stewart [1] 
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1. Introduction 
Drones have become increasingly popular in a variety of industries, including military, 
agriculture, surveillance, mapping, and entertainment. A drone is a type of Unmanned Aerial 
Vehicle (UAV), that does not have an on-board pilot [2]. Being able to navigate through unknown 
or dangerous environments without the endangerment of human lives can prove to be 
invaluable in many scenarios. Among these drones, the DJI Tello drone stands out with its low 
cost and substantial community-contributed resources setting the stage for a wide array of 
possibilities when it comes to drone programming.  

Initially, the journey began with reviewing and researching literature on drone swarm 
technology and different control algorithms, driven by a vision of creating a robust, scalable, 
and affordable system aimed for aiding in scenarios and situations where human lives could be 
at risk. The project was set to revolutionize the search and rescue scene as well as contribute to 
other surveillance operations. However, as the project progressed from the theoretical aspect 
to the physical applications, it became clear that the limitations of the selected drone were 
more substantial than originally thought, some of these challenges were fundamental 
obstacles that could not be bypassed within the project time frame. This sudden realization led 
to a strategic pivot towards the domain of Simultaneous Localization And Mapping (SLAM), an 
area ripe for significant contributions. 

As this project evolved, so did the research, wanting to stay true to using the DJI Tello, the 
research shifted towards so-called visual-based SLAM using cameras. In the midst of this 
research, one particular source of inspiration emerged in the work of Aman Kumar Singh, a 
student from the Department of Aerospace Engineering at IIT Kharagpur, India. His work with 
the Tello seen through a video from his YouTube channel [3] and documented in the GitHub 
repository [4], led to the discovery of ORB-SLAMs third iteration, ORB-SLAM3, an open-source 
feature extraction-based SLAM algorithm. This algorithm was chosen after reviewing its 
documentation, it was found to be adaptable with monocular cameras, and therefore highly 
compatible with the Tello drone.  

This aided the process of setting a clear end game for this project: The development of a user-
friendly, efficient mapping system without the need for expensive high-end equipment 
making it accessible to a broad audience of practitioners and scholars alike. 
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1.1 Conceptual Framework and Research 
The mind map presented in Figure 1 is a visual aid used to present the general thought process, 
key concepts, and ideas surrounding this master thesis. In general, a mind map is a way to 
brainstorm or organize thoughts and ideas, providing some structure to the work. [5] The mind 
map is created using an online tool called whimsical AI, which is a platform designed to provide 
a fast and intuitive way to visually represent ideas, projects, or workflows. [6]  

 

 

FIGURE 1:  MINDMAP OVERVIEW OF THIS THESIS [6]. 
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2. Drone Technology and Regulations 
This chapter explores theories surrounding drones, from the most basic of principles, to the 
advantages and disadvantages of different types of drones and it briefly gives an overview of 
relevant regulations one might need to take into consideration when piloting drones in Norway. 
Additionally, it provides insight into the specific drone used in this project, the DJI Tello drone.  

2.1 Fixed-Wing Drone 

 

FIGURE 2: THIS FIGURE DEPICTS THE SKYWALKER FIXED-WING DRONE [7] 

As the name suggests, the Fixed-Wing drone has rigid wings, designed to work much like an 
airplane, This type of drone only needs the energy to move forward providing lift rather than 
achieving lift from vertical rotors, which makes for a more energy-efficient drone. The means of 
forward thrust is usually gained by propellers.  

In general, the main advantage of the Fixed-Wing is that it is capable of high-velocity flights, 
thus making it able to cover large areas more quickly as compared to other drones. Compared 
to other drones, like the multi-rotor drone, it can usually carry heavier payloads due to its 
robust frame, which is beneficial for several usage areas and enables the added weight of a gas 
tank for prolonged missions. [8]  

The main disadvantages of this type of drone are that it takes more training to be flown 
efficiently and it is not ideal for operations that require frequent take-off or landings in varied 
terrain. Compared with the multi-rotor drone, it also has no VTOL or hover abilities and is a poor 
fit for tasks that require stationary observation or for operations in environments with no clear 
runway. [8]  

The nature of this drone makes it ideal for operations when it comes to Aerial mapping over 
large areas or pipeline and power line inspections etc. Being able to carry heavier payloads also 
enables the user to add more sensors or bigger/better cameras to the drone. 
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2.2 Fixed-Wing VTOL Drone 

 

FIGURE 3: ONE TYPE OF VTOL DRONE, THE CUAV RAEFLY VTOL [9] 

A hybrid drone aims to provide the best of both “worlds” of a multi-rotor drone and a Fixed-Wing 
drone. You get long-distance performance from the Fixed-Wing drone, and at the same time, it 
also provides the tools for precise positioning, hovering, and vertical flight.  

The nature of this type of drone makes them perfect for tasks requiring both the ability of long-
distance travel, as well as need for precision, the versatility of this drone is also its main 
feature. [8] 

However, the complexity of this design and the cost associated with it makes it less affordable 
and accessible for smaller corporations and individuals alike. Additionally, by adding more 
components, the weight and/or size will also increase in contrast with the solutions. [8] 

A hybrid drone is much like any other hybrid solution, it will never provide the best performance 
of either world, it will never reach the top speeds and long range of the regular Fixed-Wing 
solutions, nor will it be able to provide the same level of precision as a multi-rotor drone.  
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2.3 Single-Rotor Drone 

 

FIGURE 4: AN EXAMPLE OF SINGLE ROTOR DRONE, THE PRODRONE PDH-03 [10] 

A Single-Rotor drone is often associated with a remote controlled helicopter, and in the context 
of UAVs, the terms are often used interchangeably. Throughout this section, it will be referred to 
as a Single-Rotor drone.  

This type of drone makes it both more energy efficient and more power is generated in vertical 
flights than the multi-rotor drones. This design allows for precise maneuverability and hovering 
making them especially useful for tasks that require a mix of being able to carry larger payloads, 
with precise positioning. [8] 

However, this type of drone is usually more complex than a multi-rotor drone and to fly 
efficiently in sensitive or populated areas, more training is needed. Having larger rotor blades 
also poses a safety hazard, particularly during take-off and landings in close proximity to 
humans [11], make sure that there is sufficient space for the drone to avoid accidents.  

As previously mentioned, this type of drone excels in areas where carrying heavy payloads is a 
requirement, areas this drone can be ideal for include; delivering supplies in prolonged search 
and rescue operations, spraying in agriculture, or other scenarios where one needs to lift heavy 
equipment. 
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2.4 Multi-Rotor Drone 

 

FIGURE 5: A MULTI-ROTOR DRONE, THE M6000WP MULTI-ROTOR DRONE. [12] 

The Multi-Rotor drone is widely used for its stability enabling novices to achieve successful 
flight more effortlessly. The most common configuration is the quadcopter, which is equipped 
with 4 rotors.   

The main advantage of this type of drone is its ease of use, stability, and maneuverability. The 
drone can perform VTOL and it is able to hover in place as well as flying sideways without 
changing its rotation. These drones are generally known to be easier to control due to the nature 
of their design and are also considered to be the most stable of the drone types. [8]  

However, The energy required to keep the vehicle airborne is higher than other configurations 
and this type of configuration naturally comes at the expense of battery life, the drones are 
typically considered to have shorter flight times, especially compared with Fixed-Wing drones. 
The nature of this compact design naturally comes at the expense of the speed, which in turn 
limits its range. [8]  

The design of this drone makes it ideal in areas like aerial photography, and it is widely used in 
film production and real estate capturing high-quality images and video.  
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2.5 Regulations by the Norwegian Civil Aviation Authority 
The regulations are designed and set in place to ensure safety and privacy, they vary depending 
on the general use of said drone as well as the weight.  

The weight of the drone used, and the use-case of this drone places it in the subcategory A1, 
more specifically, as it weighs significantly less than 250 grams and has a max velocity lower 
than 19 m/s, there is no need to register for the piloting license exam. There is, however, a need 
to follow general guidelines, the ones that apply to this specific use-case is are listed 
underneath: 

 

• The age limit to fly alone is 16 years of age 
• Max height of flight is 120 meters 
• Flight should be in VLOS (Visual Line Of Sight) 
• Avoid flight over outsiders and no flight over crowds of people.  
• 1:1 rule, meaning, that the horizontal distance to outsiders cannot be less than the 

drone's vertical height above ground level, as depicted in the picture below: 

 

FIGURE 6: GRAPHICAL REPRESENTATION OF THE 1:1 RULE [13] 

The lightweight and small stature of the DJI Tello does not pose a huge risk to the safety of 
humans, but it can still inflict some level of damage, therefore making sure that the drone is 
operated with enough distance for ample time of avoidance is necessary.   
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2.6 The DJI Tello: Drone of Choice 

 

FIGURE 7: THE DJI TELLO DRONE [14] 

Overview 

The DJI Tello is designed and manufactured by DJI and Ryze Tech. The drone stands out for its 
compact and lightweight design, affordability, and ease of use. These properties make it 
appealing to beginners and more advanced users alike.  

User Interface and programmability 

The Tello’s UI and programmability offers several features that enhance its usability:  [15] 

• Tello App: This app allows users to perform essential functions such as IMU calibration, 
monitoring battery life, and in-flight control directly from their mobile phone [14]. The 
user-friendly interface of the app offers an experience with many options for flight and 
media capture. 

• Scratch Programming: The drone supports programming via Scratch, which is a visual 
block-based programming language developed by MIT, this support makes it a viable 
tool for introducing users to fundamentals in coding in a fun and engaging way. 

• Software Development Kit: For more advanced users, Tello’s Software Development 
Kit (SDK) provides further programming capabilities, enabling customization of flight 
patterns, data capturing, and more. 

• Community Contributions: The Tello has a huge innovative community with engaging 
members reverse engineering API calls from the Tello for broader functionality and 
programmability, resulting in many unofficial tools and drivers being available online for 
further development and modifications.  

• TelloPy: This is a Python library that provides more functionality than the official SDK. 
Designed for controlling the Tello drone, with key features including a way of sending 
control commands to the drone, resulting in movement in different directions. TelloPy 
also provides a way to start and receive video feeds from the camera, allowing the user 
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to access live video feeds as well as the ability to process video frames for further 
enhancements. The library can also retrieve flight data from the drone, such as battery 
level, speed, and altitude, which can be used to monitor the status of the drone.  

Specifications [16] 

• Physical specifications: Dimensions are 98*92.5*41 mm and weighing in at 80 grams, 
featuring 3-inch propellers. The drone comes with a built-in range finder, barometer, 
LED, vision system, and 2.4 GHz WiFi for 720p live view capabilities. It comes with a 
micro USB port for charging. 

• Flight Performance: The maximum distance is 100 meters, with a top speed of 8 m/s 
and a maximum flight duration of 13 minutes. 

• Battery: The drone is equipped with a detachable 1.1 Ah/3.8V battery 
• Camera: 5 MP, 720p camera with an 82.6° Field of View (FOV), featuring Electronic 

Image Stabilization. Stored photos will be in. JPG format and videos will be in .MP4.   

Design challenges for outdoor flight 
While the Tello excels at indoor flight, the lightweight design makes it especially sensitive to 
windy conditions for outdoor flights. Experimentation has shown that optimal conditions are 
achieved when the wind speeds are below 5 meters per second. In worse conditions the drone 
might be subject to windthrows that can create disturbances to the video feed, leading to errors 
in feature extraction or sub-optimal readings, resulting in localization errors and map resets.  
 
In summary, the DJI Tello drone was selected for its cost-effectiveness, accessibility, and 
programmable flexibility, which aligns well with the project’s goal of developing an 
economically viable option for drone deployment. As per current market evaluations using 
“Prisjakt”, a Norwegian price-comparison service, the Tello drone has a price range from 1 
395,- NOK to 1 978,- NOK, [17] which remains within the financial scope of the project, 
supporting scalability and multi-drone operations.    
Despite its hardware limitations when compared to other higher-end drones, especially in the 
area of sensors, the specifications for the Tello are sufficient for PoC (Proof of Concept) and 
other low-cost work.  

The online community is vast, with plenty of resources for troubleshooting and development. 
This community-driven support provided by different forums like GitHub can be, and has been 
of tremendous help during this project, offering solutions and advice alike to overcome 
technical challenges.  
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3. SLAM Fundamentals and ORB-SLAM Review 
This section aims to provide an introduction to what SLAM is and its use cases, together with 
giving an overview of a specific method of approach to visual SLAM, ORB-SLAM, and ORB-
SLAM3.   

3.1 Introduction to SLAM 
Simultaneous Localization and Mapping (SLAM) is a technique for generating maps of unknown 
areas while locating and tracking the vehicle's position and movement. This technique was 
originally developed to achieve autonomous control in robotics [18]. Since then, SLAM has 
expanded into numerous fields of study, showing utility and promise on a broad level. Today, 
SLAM has areas of use in computer vision for 3D modelling, Augmented Reality (AR), 
development of self-driving cars, and especially in robotics [19].  

 

FIGURE 8: NAVIGATING THE UNKNOWN, A VISUAL REPRESENTATION OF THE SLAM PROBLEM [20] 

Figure 8 gives a brief representation of the SLAM problem, having a robot navigating through an 
unknown environment gathering relative observations and measurements of several 
unidentified landmarks [20] [21] at any given time, k, labels can be defined as:  

𝑥𝑘; denoting the state vector as the location and orientation of the robot, 𝑢𝑘; being the control 
vector that is applied to the robot. This is an action that changes the robot's position and 
orientation 𝑥𝑘, at the specific time k – 1 to reach its new state. 𝑚𝑖 being a vector describing the 
location of the 𝑖𝑡ℎ landmark. 𝑧𝑖𝑘  is an observation at any given time k, of a specific 𝑖𝑡ℎ landmark. 
[20]  

Viewing the SLAM problem in probabilistic form, its distribution, 𝑃(𝑥𝑘 ,𝑚|𝑍0:𝑘 , 𝑈0:𝑘 , 𝑥0) requires 
computation for all times k. Here, 𝑋0:𝑘 signifies the vehicle location history, m, signifying the set 
of all landmarks, 𝑍0:𝑘 is the set of landmark observations, 𝑈0:𝑘 signifies the control input history 
while 𝑥0 signifies the initial pose. [20] [21] 
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There are many systems and variations of SLAM that can be used to solve this problem, with 
different algorithms and sensory capabilities showing strengths and weaknesses alike, 
depending on its use case.  

One specific solution is a visual-based SLAM (vSlam) approach where cameras are used 
instead of other sensors including LiDARS, rotary encoders, inertial sensors, or GPS. This 
approach has been actively discussed and researched because of the affordability and its 
simpler configurations. [19] 

For the work in this project, a 3D vSlam algorithm called ORB-SLAM is explored, using a 
monocular configuration because of its apparent compatibility with the DJI Tello Drone.  

 

3.2 Exploring The ORB-SLAM Approach 
ORB-SLAM3 is an accurate open-source system for visual, visual-inertial, and multi-map SLAM 
[22]. This comprehensive system is built on its previous configurations and the library offers 
versatility, efficiency, and accuracy, making it particularly suited together with UAVs. It 
integrates visual and inertial measurements to achieve seemingly robust pose estimation. This 
is achieved through optimization across the different phases of the actual SLAM process, which 
enables high accuracy in both the localization and the mapping.[8] 

This method involves a unique multi-map functionality, using the Atlas framework, which 
allows for the management of multiple disconnected maps, which is crucial to maintaining 
consistent performance and handling long-term sessions or when the system encounters 
tracking losses. The tracking thread tries to re-localize the current frame in all the stored Atlas 
maps whenever the pose tracking is lost [22]. If it manages to re-localize in a stored map, the 
tracking resumes, and in need, switching the active maps. Otherwise, the map prior will be 
stored as non-active, and a new map will be initialized from scratch. [22] This happened 
frequently and will be detailed in the discussion part of this thesis.  
 
ORB-SLAM3 has support for monocular, stereo, and RGB-D cameras, which enables the use 
across a wide variety of platforms, with various equipment. ORB-SLAM flexibility allows the 
users to perform robust SLAM without the need for high-end sensors or cameras. [22]the use of 
Oriented FAST and Rotated Brief (ORB) features to efficiently and accurately match points 
across images, enabling it to create or update its map. 

the system has been tested quite extensively, proving its capability in various scenarios and 
with many different configurations. The Open-source nature allows for both a collaborative 
environment for improvements and continued testing. For academic and research purposes 
such as this project, the ability to access, modify, and tailor source code to meet specific 
objectives is invaluable and plays a huge role in the choice of algorithm.  

The limitations of the system are also acknowledged in the research, which seems to be a 
limitation across the board when it comes to feature-based SLAM systems. Since the system 
detects and tracks distinct visual points or features within the environment to reconstruct the 
environment as a map, low-texture environments provide fewer unique features to extract and 
therefore have a higher uncertainty when it comes to the accuracy of the generated map. This 
applies especially in longer mapping sequences with prolonged flight and mapping. [22] 
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4. Methodology 
Going from theory to practice, this chapter not only offers insight into relevant software tools, 
and prerequisites crucial for system setup, but it can also be viewed as a step-by-step guide 
enabling others to replicate the system, and further build and expand on the foundations 
provided by this work.  

To enable clear and practical understanding, throughout this section, there will be text boxes 
designated for terminal commands or code blocks, as shown below: 

 

These boxes are designed to differentiate between the practical executable commands from 
the theoretical and narrative work.  

4.1 Ethical Considerations 
Whenever data that can involve individual privacy is in question, there is a need to handle the 
data appropriately. In Norway, there are standards and regulations set in place when it comes 
to piloting drones. The regulations detailed in Chapter 2.5 Regulations by the Norwegian Civil 
Aviation Authority are strictly followed. As the drone and its use case are well within the 
parameters for subclass A1, the guidelines given are mainly designed to ensure public safety 
and to protect their privacy.  

Our flight data will mostly be comprised of areas where there are few-to-no bystanders, such as 
in parks, forests, or indoors for experimentation to ensure little to no disruption or 
infringements upon individuals or bystanders. In the case of bystanders, they will be told that 
the drone is equipped with a camera and that it is recording. This way the bystanders can 
remove themselves from the area if they do not want to be recorded. During this project, there 
are video feeds containing identifiable markers of individuals, these will be treated strictly 
confidential, and will not be included in the finished package that will be uploaded online.  

Any sensitive information that is subject to being included in this thesis will be reviewed and 
carefully considered before use. By doing this, it is ensured that the data is not mishandled. The 
captured data obtained during this project will be deleted after completion.  

 

 

 

 

 

 

 

 

 

Example text 
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4.2 Drone Setup and Basic Configuration 
This drone is as close to plug-and-play as it could get. Upon unboxing, it comes fully 
assembled, simply insert and charge the battery to get started. From completely depleted it 
takes about 1.5 hours to reach a full charge, easily tracked by The LED indicator next to the 
frontal camera: blinking blue means charging, while a steady blue means that the battery is fully 
charged. During charging, the user has plenty of time to download the Tello app and get familiar 
with its UI. Once charged, connect to the drone's Wi-Fi, download the latest firmware, and 
calibrate the drone.  

 

FIGURE 9: SCREENSHOT DIRECTLY FROM THE TELLO APP SHOWING THE USER-FRIENDLY INTERFACE.  

As seen in Figure 9, The UI offers many sources of information and tools to the user.  Accessing 
the “More” section, by pressing the cog-wheel icon, you will find a menu comprising the 
necessary elements for updating and calibrating the drone as seen in Figure 10.  

 

FIGURE 10: SCREENSHOT OF THE SETTINGS PAGE IN THE TELLO APP. 

To calibrate the drone's IMU, you press the “Calibrate” button, and follow the necessary steps 
given by the app and the calibration tool. The steps involve placing the aircraft on a flat surface 
and placing it in six different positions as indicated on the screen.  
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FIGURE 11: ILLUSTRATION OF THE POSITIONS USED FOR THE CAMERA CALIBRATION PROCESS. 

After these steps, the user will be notified whether the calibration is successful and complete, 
or if the calibration steps need to be repeated, depending on the readings from the calibration.  

These steps are essential to make sure that the drone is flight-ready and by concluding the IMU 
calibration, the user can test fly the drone, using the controls as seen in Figure 9. 
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4.3 System Setup, Software Tools, and Prerequisites 
This section will detail the initial setup and configuration extending from the operating system 
to the necessary prerequisites for the functionality of the Robot Operating System (ROS) 
packages. Configurations that go beyond the initial software and tools and are directly related 
to the system implementation will be detailed in Chapter 5. Implementation and 

Experimentation. 

Installation of ROS Noetic 
A foundational step in system setup is the installation of ROS. Considering the use of Ubuntu 
20.04, the choice of ROS version lands on ROS Noetic, as this version of ROS is targeted for this 
distribution. To authenticate and allow the system to install packages from the official 
repository of ROS, it is essential to append ROS’s source list to our system’s list, as well as add 
the corresponding authentication keys. The installation process can be found on ROSWiki, and 
following the guidelines in this section will give a clear understanding of the process. [23]  
If the user is familiar with the necessary steps from before, they can expedite the installation 
process by entering the following commands in the terminal:  

 
 
These commands enable the system to recognize and accept software from packages.ros.org 
and configure the keys for package verification.  
 
The most extensive way to install Noetic is by doing a full installation, that way you ensure that 
all the necessary ROS packages are included. Install ROS Noetic by using the command:  

 
 
Python3 is another prerequisite, although coming pre-installed with Ubuntu 20.04, by following 
these commands you can ensure that it is successfully installed: 

 
 
This command looks up the version of Python3 installed on the system, if by chance it is not 
installed properly, it can be installed by the following command:  

 
 
 
 
 
 
 
 
 
 

Sudo apt install python3 

Python3 --version 

sudo apt install ros-noetic-desktop-full 

sudo s h -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release 

-sc) main" > /etc/apt/sources.list.d/ros-latest.list' 

sudo apt install curl # if you haven't already installed curl 

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc  

| sudo apt-key add - 
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Camera Calibration 
For Camera calibration, the camera_calibration package available through ‘rosdep’ was used. 
This package allows for fairly easy calibration using the camera and a large checkerboard with 
known dimensions. The dimensions of this checkerboard are a grid of 8x6  with 108 mm 
squares.  The command for installation is detailed in the text box underneath: 

 
 
This method facilitates precise calibration by capturing the interior vertex points where the 
checker lines of the checkerboard meet. This type of calibration is critical for extracting 
features from the images during the SLAM process. This method provides precise and easily 
detectable features that can be used when calculating the intrinsic and extrinsic parameters. 
Intrinsic values include focal length, optical center, and distortion coefficients, while the 
extrinsic values describe the camera’s spatial orientation relative to objects. [24] Moving the 
checkerboard pattern around at a variety of angles and distances, including vertical- and 
horizontal movement allows for an estimation of the values.  

 

FIGURE 12: CHECKERBOARD USED FOR CALIBRATION 

To run the calibration tool, there is a need to load the topics for the images. Running the 
following command in the terminal: 

 

 

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108 

image:=/tello/image_raw camera:=/camera 

Rosdep install camera_calibration 



Jon Eirik Augensen  Methodology 

20 | P a g e  
 

 

FIGURE 13: THE IMAGE USED IS FROM THE CAMERA CALIBRATION WIKI. [25] 

As briefly mentioned above, to get a good calibration the checkerboard needs to be moved 
around. As seen in Figure 13, on the Hotbar to the right, there is “X”, “Y” and “Size”. The X 
corresponds to movement in the X-axis, or horizontal movement. The Y corresponds to 
movement in the Y-axis, or vertical movement. Size corresponds to the movement of the 
pattern either further away from the camera or closer towards the lens. The lines following 
these parameters signify how much data the calibration tool has managed to extract from the 
movement. In addition to the obvious movement gathered from the X, Y, and Size parameters, 
there is also a need for tilting the checkerboard while moving it around. An example of 
checkerboard movement can be seen in Figure 14.  

When the calibration tool has gathered enough data the calibration button on the right hotbar 
as seen in Figure 13 will start to blink, pressing this button will yield the calibration results and 
the parameters that you need will be displayed in the terminal. Should be stored and used in a 
calibration.yaml file for use with the ORB-SLAM3 package, ensuring the camera is correctly 
calibrated for precise spatial mapping.  
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FIGURE 14: ONLY FOR ILLUSTRATION PURPOSES, NOT IMAGES FROM ACTUAL CALIBRATION [25] 

 
The D values in the output are the distortion coefficients and correspond to the radial distortion 
and tangential distortion labeled as k1, k2, and k3, p1, and p2.  

The K values are associated with the camera matrix and correspond to the focal lengths (fx, fy) 
and principal point coordinates (cx, cy). 

In addition to these values, you also need the width, height as well as FPS. The width and height 
are given directly while the fps is based on the camera specifications.  

The values provided by this camera calibration can be stored in a text file to keep for later use, 
as they will be added and used when the ORB-SLAM3 package is introduced. The values 
obtained and stored can be located and viewed in Appendix A. 

Pangolin 
Pangolin is a utility library for 3D rendering and numerical analysis, making it a powerful and 
necessary tool for data visualization [26] in this project. To install Pangolin use the commands 
below: 

 

mkdir ~/your_fav_code_directory 

cd your_fav_code_directory 

# Clone the repository 

git clone --recursive https://github.com/stevenlovegrove/Pangolin.git  

cd Pangolin 

# Install dependencies  

./scripts/install_prerequisites.sh recommended 

cmake -B build 

cmake --build build 
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To ensure that all submodules are included, the --recursive option is used. This is because the 
git clone does not initialize and update the submodules by default. 

Eigen3 
Eigen3 is the third iteration of the Eigen library, which is a template for linear algebra; matrices, 
vectors, and numerical solvers including a wide range of functionality from the most basic of 
arithmetic to the more complex algebraic operations like singular value decomposition and 
more. [27] 
 
Eigen3 is already included in many ROS distributions, including ROS Noetic, and can be 
installed by using the command:  

 
 
This way, Eigen3 is available system-wide, and catkin_make or build will be able to locate it 
without requiring manual compilation and/or installation.  
 
For projects that require a specific version or non-ROS applications, manual compilation using 
CMake might be necessary. As this system will be focusing on ROS, this approach will not be 
detailed, but the necessary steps for this approach can be found easily online. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sudo apt-get install libeigen3-dev 
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4.4 Project Structure and Modifications 
Tello driver 
The system specification necessitated the evaluation of various libraries to identify the most 
suitable one designed for controlling the Tello drone. Initial tests included keyboard 
configurations and others which was compatible with other Ubuntu distributions, many of 
which were compatible or tested using Ubuntu 16.04. These were not optimal due to 
compatibility issues and they needed various degrees of modifications and tweaking to get it to 
work with the current system setup for this project. The driver of choice landed on tello_driver, a 
GitHub repository created by Jordy Van Appeven which is forked from anqixu/tello_driver, for its 
compatibility and its use of joystick controller configurations. This driver already includes the 
configuration of Playstation3 (PS3) controllers, which makes it highly modifiable to other 
compatible controllers as well.   
The install process for this driver is rather straightforward, and done quickly by following these 
commands:  

 
 
 
Some modifications had to be done to the gamepad teleop node, to facilitate manual control of 
the drone. The code modifications add support for interpreting input from the Logitech F310 
controller within the ROS system and allow for direct mapping of input or signals from the 
gamepad. The actual modifications and additions to the node can be found in  

Appendix B.  

 

FIGURE 15: THE F310 GAMING PAD [28] 

To find out which buttons or joystick movements from the controller corresponded with the 
buttons commands, ‘jstest-gtk’ was utilized, a graphical joystick testing application for Linux 

mkdir -p ~/your_tello_slam_ws/src && cd your_tello_slam_ws/src 

git clone --recursive https://github.com/appie-17/tello_driver.git  
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distributions. This tool allows for real-time identification and mapping of the buttons and axes 
of the controller. 

Install and run the joystick tester by plugging in the controller and running the following 
commands:   

 

The first window that opens after running the program, is detailed in Figure 16. Here is a brief 
description of the connected controllers with several axes and buttons. 

 

FIGURE 16: THE HOME WINDOW OF JSTEST 

After selecting the controller of choice you will be met with the graphical interface shown in 
Figure 17. From this interface, the user can easily map and label buttons. Through this process, 
specific drone commands were assigned to the gamepad's input, ensuring intuitive controls for 
the drone.  

 

FIGURE 17: GRAPHICAL INTERFACE OF JSTEST FOR MAPPING THE BUTTONS 

 

 

sudo apt-get install jstest-gtk 

jstest-gtk 
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The keybinding configuration can be seen in Table 2: Keybind Configuration as shown 
underneath:  

Button Action 
L1 Take-off 
R1 Landing 
Left joystick UP Vertical ascension 
Left joystick DOWN Vertical descension 
Left joystick LEFT Rotation towards the left (Counter clock-wise rotation) 
Left joystick RIGHT Rotation towards the right (clockwise rotation) 
Right joystick UP Fly forward 
Right joystick DOWN Fly backwards 
Right joystick LEFT Fly to the left without rotating the drone 
Right joystick RIGHT Fly to the right without rotating the drone 
  
TABLE 2: KEYBIND CONFIGURATION 

In addition to these actions, there are other action commands available like flips, etc, but these 
were not paid attention to, as they are not relevant to this project. 

Camera Info Manager 
To manage camera calibration information effectively, we use ‘camera_info_manager.py’, a 
Python version of the configuration written in C++ ‘camera_info_manager’, It is installed with 
the following command:   

 
 
Image viewer 
For accessing the camera feed in real-time the user can use rqt_image_view, which is a tool 
that enables the users to view image data published over ROS image topics. This is easily 
installed by using the following command: 

 
If the ORB-SLAM is in effect while piloting the drone, this step is not needed, as you will be 
provided with a window showing the camera feed together with the feature extraction in full 
effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sudo apt-get install ros-noetic-rqt-image-view 

 

git clone https://github.com/ros-perception/camera_info_manager_py.git 
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Testing the system 
After successful installation and configuration, the operator is now set for a test flight ensuring 
that the system is fully operational and ready to use. To test the system the operators turn on 
the drone and connect to its WiFi, and run these commands in different terminals to initiate the 
Tello drone and associated control systems: 

 

Terminal 4 and Terminal 5 are as written, optional, and are included in case the user wants to 
see if the camera broadcasts successfully for a full system check. Terminal 4 opens up the 
image viewer provided by the rqt software, while terminal 5 records the video that is being 
broadcast. Normally, the users have to specify which ROS topics are to be recorded by using 
the command rosbag record. However, using -a, every topic that is being published gets 
recorded, which is a powerful option, however, if the user has limited disk space, in the case of 
prolonged missions, this should be used with some consideration as all topics might consume 
disk space.  

 

 

 

 

 

In Terminal 1: (Initializing the ROS environment) 

roscore 

 

In Terminal 2: (Initiating the Tello driver) 

cd ~/your_tello_slam_ws  

source devel/setup.bash  

roslaunch tello_driver tello_node.launch  

 

In Terminal 3: (Enabling the configuration for joystick controls) 

cd ~/your_tello_slam_ws  

source devel/setup.bash  

roslaunch tello_driver joy_teleop.launch 

 

In Terminal 4: #Optional (Camera broadcasting tool) 

rqt_image_view 

 

In Terminal 5: #Optional (To record the video feed) 

rosbag record -a 
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ORB-SLAM3 
The primary GitHub repository for the ORB-SLAM3 system is well established, however, the 
primary repository was not used in this project, instead, a segmented repository offering a ROS 
implementation has been utilized. This decision enables us to tailor the system to the 
specifications of ROS and Tello’s operational framework. Installing this specific ORB-SLAM 
package can be done by using the following terminal commands:  

 
The parameters obtained previously when calibrating the camera are critical to ensure that the 
SLAM algorithm will work as intended, and they are detailed in Appendix A. These can be used 
alongside ORB-SLAM3-specific settings such as threshold detection and feature extraction 
numbers, and should be stored and used within the tello_calibration.yaml file. This file uses the 
same template as the other yaml files configured for monocular cameras, a template that has 
followed ORB-SLAM since ORB-SLAM2 and is included in the ‘examples’ folder [29]. The 
contents of this file can be found in Appendix D.  

Note: If there is intent to replicate this system for further work or testing, these parameters must 
be changed, and there is a need for calibration of the camera of your own Tello drone to ensure 
good results.  

The final phase of the system's configuration is the creation of the tello.launch file. This file 
includes the parameters and settings essential for initiating the nodes necessary for this 
system. The parameters and settings for this launch file are specified and detailed in Appendix 
C. 

With the system now fully set up, the stage is set for implementing the SLAM and experimenting 
with the parameters to achieve the results as needed.   

 

 

 

 

 

 

 

 

 

 

 

 

cd ~/your_tello_slam_ws/src 

git clone https://github.com/thien94/orb_slam3_ros 
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5. Implementation and Experimentation 
Following the initial setup and software configurations, this chapter will provide and present the 
practical application and the implementation of this system, experimenting with the 
parameters for the ORB-SLAM algorithm. 

5.1 Real-time SLAM Operations 
This work emphasizes the use of manual operation and control of the drone, real-time SLAM is a 
solution that enhances the situational awareness of the operator. By providing up-to-date 
mapping of the environment, operators can make decisions directly, identifying potential 
obstacles and being able to adjust paths taken or identifying areas requiring further exploration 
and adjustments. This course of action will ensure comprehensive coverage of the targeted 
area and might play a significant role in optimizing the mapping.  
 
A main concern using this methodology is the drone’s battery life. Despite running the SLAM 
algorithm on an external computer, the flight time remains a significant challenge. The 
restrictions that follow not only affect extended mapping missions but also limit the options for 
updating or adjusting operational parameters mid-mission as conducting multiple take-offs 
and landings for making these adjustments and relaunching the system will affect efficiency 
and mapping coverage capabilities.  
 
To adopt this methodology and use the system in this manner, follow the sequence of 
commands outlined below:  

 

In Terminal 1: (initializing the ROS environment) 

roscore 

 

In Terminal 2: (Launch ORB-SLAM3 with the Tello configuration) 

cd ~/your_tello_slam_ws  

source devel/setup.bash  

roslaunch orb_slam3_ros tello.launch  

 

In Terminal 3: (Initiate the Tello driver) 

cd ~/your_tello_slam_ws 

source devel/setup.bash  

roslaunch tello_driver tello_node.launch 

 

In Terminal 4: (Enable joystick controls) 

cd ~/your_tello_slam_ws 

source devel/setup.bash  

roslaunch tello_driver joy_teleop.launch 
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Note: It is crucial to ensure the connection to the drone’s WIFI. For real-time flight, the 
‘sim_time’ parameter is within the tello.launch file should be set to false, allowing the system to  
process live data timestamps accurately.  

5.2 Post-flight SLAM Analysis 
Recording the drone data and applying the algorithm on the data post-flight offers distinct 
advantages. By applying the algorithm on recorded rosbags, the parameters used can be fine-
tuned through repeated iterations. The flexibility this approach offers enables a degree of 
refinement and accuracy not easily obtained otherwise using real-time methods and it is 
especially beneficial where details in the environment are especially important.   

Much like with the real-time SLAM methodology, this approach also comes with its own set of 
drawbacks and considerations. By using this approach, there is no way of reacting to real-time 
environmental feedback, meaning, the operator must rely solely on the recorded data, and in a 
dynamic environment, this data is subject to change. Additionally, relying on pre-recorded data, 
extensive data storage might become an issue, especially for lengthier missions or high-
detailed mapping, which could be mitigated by the use of external hard drives or similar.  
 
To conduct a post-flight SLAM analysis with the collected data, execute the following 
commands:  

 
Note: When using ORB-SLAM on rosbags for post-flight analysis change the ‘use_sim_time’ 
value to true within the tello.launch file. Rosbags contain data that was recorded at a specific 
time, this data also contains the time at which each message was recorded, by enabling 
‘use_sim_time’, ROS is told to use the timestamps from the rosbags instead of the current 
system time. This allows the nodes to process the data as if it were being received in real-time, 
which is essential for accurately replaying and analyzing the recorded data.  

 

 

 

In Terminal 1: (enabling the ROS environment) 

roscore 

 

In Terminal 2: (launching the SLAM system) 

cd ~/your_tello_slam_ws  

source devel/setup.bash  

roslaunch orb_slam3_ros tello.launch  

 

In Terminal 3: (Replaying the record rosbag data with the –clock option) 

cd ~/your_tello_slam_ws/recorded_rosbags  

source devel/setup.bash  

rosbag play --clock your_recorded_bag.bag 
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5.3 ORB-SLAM Experimentation 
There was done extensive experimentation when it came to parameter adjustments for the 
ORB-SLAM algorithm, including changes to the number of features extracted per image and the 
thresholds. This was done using a trial-and-error approach by changing the values based on the 
feedback as seen on the screen. The drone flight path is depicted in green.   

In Figure 18, we observe ORB-SLAM3’s capacity to achieve highly detailed mapping of 
individual objects, these are screenshots of the same flight and the same object, only from 
different angles. These figures illustrate a wooden basket intended to contain firewood, and the 
resulting point cloud shows the precision and accuracy of the algorithm. Using a wooden 
basket containing a huge number of features to be extracted, the algorithm demonstrates its 
potential, even going beyond comprehensive environment mapping.  

 

 

 

FIGURE 18: USING ORB-SLAM3 FOR PRECISION MAPPING OF AN ISOLATED OBJECT. 

 

The following figures as seen in Figure 21, Figure 20, and Figure 19 show different 
configurations of the ORB-SLAM algorithm. These are experiments conducted to explore its 
performance and to get a visual representation of the differences by changing the parameters. 
Here, the ORB-SLAM was applied to a short rosbag recording of a single parking lane near the 
University of Life Sciences. The main function was to determine the parameters that gave the 
most satisfying results. Specifically, these figures illustrate the feature extraction from a video 
feed and the resulting point cloud generated. The recordings were stopped at roughly the same 
timeframe, this was done manually, so slight deviations occurred.  

In Figure 19, a configuration with a higher threshold value and a maximum features extracted 
was set to 1250 per image yielding 8222 features, and for the frame in view, 588. Despite the 
higher threshold value, the accuracy of the point cloud remained relatively high.  
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FIGURE 19: THE IMAGE IS FROM A PARKING LOT, FEATURE EXTRACTION CAPPED AT 1250 PER IMAGE. 

In comparison, Figure 20 had a lower maximum extraction limit of 1000, and a reduced 
threshold, resulting in 10468 features extracted, with the specific frame in view extracted 905 
features. This configuration showed an enhanced capacity to detect features, particularly in 
lower contrast regions. The resulting point cloud is quite similar and there are only small 
deviations between them, which is in favor of this being a threshold setting not generating too 
much noisy data.  

 

 

FIGURE 20: THE IMAGE IS FROM A PARKING LOT, FEATURE EXTRACTION CAPPED AT 1000 PER IMAGE. 

Figure 21 represents an experiment where the feature cap was set to 5000, using the same 
threshold as in Figure 20. Interestingly, the system appeared to have an extraction limit of 
around 2000 features, as the features extracted seemingly never exceeded 2000, which seems 
odd as the ceiling was set so much higher. The system extracted 11522 features and for the 
snapshot in view, 1832. This configuration also produced a point cloud with minimal deviations 
from the others, suggesting a marginal return on feature count, suggesting a potential 
operational sweet spot.   
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FIGURE 21: THE IMAGE IS FROM A PARKING LOT, FEATURE EXTRACTION CAPPED AT 5000 PER IMAGE. 

The experimentation with the parameters of this algorithm has highlighted its efficiency and 
accuracy. This holds especially true in environments rich with distinct features. However, it is 
noteworthy that the system on multiple occasions did not reach the set ceiling for feature 
extraction, as seen in Figure 21. This observation and possible factors will be considered and 
discussed properly in Chapter 7. Discussion. 
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6. Results 
This chapter will further expand on the previous chapter, which involves the mapping of 
different environments. Key terminology presented in this chapter is map points and key 
frames. Map points refers to the actual points in the cloud which is generated by matching key 
points from multiple frames and triangulating them to compute their position in a coordinate 
system. Key frames is an essential part of this system as it is frames chosen by the system as 
they provide significant information about the environment and helps in tracking the drone’s 
positioning in situations where the system loses track of it, which plays a major role in re-
localization.  

Figure 22 shows the results of a single flight through an indoor environment, specifically the 
living room of a family member of the researcher. This living room was chosen for its array of 
distinct features in the many wall paintings, photographs, and bookshelves stocked with books. 
This experiment was conducted to highlight the efficiency of this algorithm, and despite a single 
flythrough, of which the flight path shown in green, the algorithm successfully extracted a high 
level of detail from the surroundings.  

 

 

FIGURE 22: LIVING ROOM AND RESULTING POINT CLOUD 
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As seen in Figure 23, this figure shows a small parking lot with two lanes, and a single flight 
through as seen in green and blue, the green is the flight path of the drone, and the blue markers 
are keyframes used for localization. The cars do indeed have a lot of features to be extracted, 
and so do the buildings due to the number of windows, creating a lot of distinct markers. It is in 
these situations where the visual-based SLAM techniques excel, in areas where there is a lot of 
distinct features to be extracted. This map was created using 254 key frames and 17620 map 
points.  

 

 

FIGURE 23: FIGURE SHOWS A PARKING AREA OUTSIDE OF NMBU WITH RESULTING POINT CLOUDS 
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A different scenario was an open field with a few trees, as depicted in Figure 24. This field has 
just a few trees in it, otherwise it is barren. Figure 25 represents the resulting point cloud and 
this is included to show that even though trees themselves do not always present enough 
distinct features for the algorithm to pick up on, by lowering the threshold values there is a 
higher chance to recognize them. The result of tinkering with these values show that the 
algorithm is able to pick up enough features to map the trees, however, as this footage was 
acquired early spring, which means the trees did not have the amount of leaves as seen in 
Figure 24, smaller branches remain an issue and you need to fly rather close to being able to 
detect them. If this footage was acquired later in the season, a more detailed representation of 
the trees would be possible due to having more distinct features available due to the leaves and 
flowers on the trees, Creating detailed mapping of the trees itself was not the intention here, so 
in this particular instance, this was not an issue.  

 

 

FIGURE 24: THIS FIGURE SHOWS THE SMALL GREEN AREA  

 

 

FIGURE 25: THIS FIGURE SHOWS THE RESULTING FLIGHT PATH AND POINT CLOUD 
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Figure 26 shows a tunnel made to research strawberries and applications surrounding picking 
and managing the berries. As seen on the resulting point clouds, which is generated using 9229 
map points and 149 key frames, it is quite difficult to make out what the point cloud should 
represent without a reference, the reason for this is there are not enough distinct features to 
create a good enough mapping of this type of environment, at least not without using other 
methods to process the data afterwards. However, having a a reference picture provides 
enough context to understand what is going on. This figure is included in this section to show 
that there are certain limitations especially in environments with less features.   

 

 

FIGURE 26: FLIGHT THROUGH TUNNEL, WITH RESULTING POINT CLOUDS 
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In Figure 27 we see two flights from the surrounding area of AudMax, a concert/venue hall in Ås, 
the first flight was more focused on the surroundings while the other flight was more focused 
towards the face of the building itself. In the first flight, the lack of features for the surrounding 
road and pavement creates clear and distinguishable roads in the resulting point cloud. The 
first flight generated a point cloud with 12 159 map points and 411 key frames, while the second 
flight generated a cloud with 13722 points having 307 key frames. 

 

 

FIGURE 27: AUDMAX ÅS, AND RESULTING TWO POINT CLOUDS 
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Figure 28 details a specific part of the NMBU Campus, which involves several buildings 
including few of the “TF”-wings, Robotics lab, EikLab garage, and a student-study area in the 
top half. The bottom half is a satellite image of the area from google maps, traced manually to 
show the flight path of the drone for this particular mapping session. Figure 29 shows the 
resulting point cloud of the entire area from two different angles while Figure 30, and Figure 31 
is two sections where we zoom in on specific parts of the area to show the systems accuracy. 
This flight involved a landing to change the battery of the drone, in which we could test out the 
Atlas system of ORB-SLAM, where the system stored the part of the map already generated, to 
bring it back up to join with the newly created one to further expand on the map. The resulting 
map is generated by joining the two maps, and with 26754 map points and 740 key frames.   

 

FIGURE 28: TF SECTION OF NMBU CAMPUS AND FLIGHT PATH TRACED USING IMAGE FROM GOOGLE MAPS 
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FIGURE 29: SHOWS A SECTION OF THE NMBU CAMPUS FROM TWO DIFFERENT ANGLES 
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FIGURE 30: ZOOMED IN TO A SPECIFIC PART OF THE MAP 

 

FIGURE 31: ZOOMED IN TO SHOW A DIFFERENT PART OF THE SAME MAP 
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The findings presented in this chapter together with the experimentation done in  
5.Implementation and Experimentation show that the method employed is capable of 
generating accurate and detailed mapping of various environments and in a broad array of 
scenarios. This proves the adaptability and versatility of drone technology in general and 
highlights the potential of combining low-cost drones with SLAM techniques.  

This system proves to be a highly effective combination and a great budget-friendly alternative, 
capable of producing highly detailed maps.   
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7. Discussion 
7.1 Practical limitations and challenges 
When the drone was taken outside for outdoor testing, the limitations and sensitivity to wind 
became apparent. Its small frame and light weight often led to unnecessary battery 
consumption spent on corrections of flight paths, leading to redundant footage. Additionally, 
streaming issues, rapid motion blur, inadequate feature detection, or significant changes in the 
visual scene often led to localization issues and therefore map resets, which is a set feature to 
ensure the accuracy of the algorithm. The point cloud before the reset is stored locally in an 
attempt to merge with the newly generated point cloud, although more often than not, this 
feature led to the creation of a new map, starting from scratch, which resulted in a lot of 
redundant and unusable footage. Efforts to mitigate these issues involve flight patterns that 
reduce the need for sharp turns, with as few turns as possible combined with more training 
reducing the risk of localization issues significantly, resulting in more stable data gathering, and 
more precise maps. This also enabled the creation of bigger maps within the range of the 
capabilities of the drone. 
The Atlas system, while enabling the connection of disconnected or “non-active” maps as the 
literature suggests, proved to be a valuable but frustrating function to work with. When a 
previously saved map is loaded, the system needs sufficient recognizable features to 
accurately relocalize the drone in the continued map. Unfortunately, this requirement often led 
to the map being reset at the beginning of the mapping session, resulting in losing said saved 
map. To effectively lessen the chance of these occurrences, the drone was placed 
approximately in the same location as it ended the previous session which proved to be 
somewhat effective.  
The Atlas system seemed to work better for real-time applications as opposed to post-
processing with the use of rosbags, which often triggered the previously mentioned map resets. 
Whether the root cause of these issues is related to how the function stores key features, or if 
there is an issue with how ROS handles rosbag data remains unclear and needs to be further 
researched.  
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7.2 Stream or Store; Real-time reactions or rosbag reflections  
Using ORB-SLAM in real-time while flying the drone allows the users to interact and adapt to the 
changes in the environment immediately, allowing the operator to navigate complex spaces 
safely and efficiently. To effectively use this approach, one must ensure that the parameters of 
the algorithms are sufficient to provide as accurate and good maps as possible. The main 
drawback of this approach is the limited capacity when it comes to battery life. Even though the 
SLAM algorithm is run off-board, the flight time of the drone is limited. With ~10 minutes of flight 
time, the system does not allow for multiple take-offs and landing to update and tune the 
parameters mid-mission. 
 
In comparison, post-flight SLAM allows for enabling the use of more computationally heavy 
algorithms or fine-tuning the parameters to generate higher-quality maps.  However, the lack of 
real-time interaction puts a special emphasis on the operator’s flying to ensure that the data 
gathered are both sufficient and exceptional for post-processing, as any errors or missed data 
are irreversible. Recording and storing rosbags might require excessive storage, this applies 
particularly if the operator records every topic published and especially for huge maps and 
prolonged mapping sequences.  

In general, the choice between using these approaches depends highly on specific mission 
requirements. For instance, in search and rescue operations, surveillance, or any other 
applications where human lives are at risk, or time is crucial, real-time data is golden for 
immediate responses. Meanwhile, ecological surveys or mappings that might benefit from 
detailed and fine-tuned analysis would possibly benefit from post-flight processing enabling 
many options for tuning the data needed.  

This project mainly leaned towards using a post-flight processing approach, running the ORB-
SLAM on the rosbag. This method seemed logical as being able to tune the parameters without 
having to use excessive time and battery for doing the changes in real-time was considered 
superior.  
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7.3 Feature extraction limitations  
As previously mentioned, it seems that the feature extraction limit was capped at around 2000 
features per image no matter what the ceiling was set to, this seemed to hold true even with 
changing the threshold values as well. Probable factors can include: 

• Image content: If the algorithm doesn’t pick up enough distinct features due to a 
limitation to the video feed. Applying the algorithm to footage detailing a blank white 
wall will never provide enough feature points to make out a wall in the resulting point 
cloud. This is closely related to the next point of order, the threshold settings. 

• Threshold settings: If the threshold settings are set too high, the detector might be 
disregarding features that otherwise could appear to be valid.  

• Computational resources: This point might play a part and is a hypothetical one, 
however, it does make sense, especially if the hardware of the selected computer is 
insufficient, the algorithm might stop the feature extraction to maintain performance. 

The reason why compute was included, is because even though the ceiling was set relatively 
higher than 2000, utilizing a low threshold, it never reached the maximum ceiling, another point 
if concern when it comes to compute, is that the hardware of the computer utilized might not be  

Another possibility could be inherent limitations by the algorithm itself, but the literature does  
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7.4 Further work and research directions 
Looking ahead, this project offers an area rich for further work. This section goes through 
possible segments for  
 
Data preprocessing and augmentation: Being able to preprocess and augment the data is an 
area that should be further researched. By integrating deep learning, especially semantic 
segmentation the ORB-SLAM could be able to prioritize permanent features such as trees or 
buildings over dynamic ones that are not so relevant, like moving humans or animals. Semantic 
segmentation involves classifying pixels in images to categorize them, enabling the system to 
effectively understand the environment. [30] Applying techniques such as this could lead to 
more robust and accurate maps.  
 
Autonomous navigation: By implementing some level of autonomy, the drones could 
effectively navigate through- and map the environment. The possibilities for this area are vast 
and include a variety of techniques, systems, and algorithms, depending on the intended use 
case. Reinforcement learning is a potential field for exploration for this type of project, and this 
machine learning process allows the agent/robot/drone to make decisions, based on the 
feedback on these decisions, learn from them, and choose the optimal decision. [31] 
 
Charging function: Considering the battery life and the relatively short flight time of the Tello 
drone, there are also possibilities of incorporating a charging function into the autonomous 
navigation. Again, as the other areas mentioned for further work, there are many possibilities 
and many different solutions for this, at the core, the drones start by managing to read and 
react to how much battery is left before it is empty. Having a function that reacts to the battery 
level reaching a certain point, for example, 25- or 30% should allow the drone to reach back to a 
charging station. The location of the charging station could either be hardcoded into the drone’s 
control software, using its relative position, or by using GPS coordinates. The location could 
also be marked using AruCo markers, which are black and white squared markers, with distinct 
readable binary patterns, and are useful for providing real-world coordinates. [32] 
Integrating such a function with potential other drones on standby is ready to continue the 
work, potentially enabling collaboration between the drones, and sharing data for a more 
efficient and robust mapping process.  
 
Expanding sensor- or drone use: This groundwork can also be expanded into the use of other 
sensors cameras or drones, creating systems that are more operation-specific, rather than the 
all-rounded, jack-of-all-trades system provided in this project. For the intended purposes, like 
in search and rescue. The incorporation of drones that are more reliable in strong winds, with a 
bigger battery and a longer range, equippable with IR or thermal cameras could dramatically 
improve the outcome of these types of operations, potentially being able to locate missing 
persons or other persons of interest.  
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8. Conclusion 
The work in this thesis has resulted in the setup and implementation of a framework for 
performing ORB-SLAM3 on the DJI Tello drone.  This project aimed to build a low-cost mapping 
solution offering an alternative to the other drones on the market with its significantly higher 
cost.  

With its limited range of 100 meters and ~10-minute flight time, the Tello drone had its 
limitations, however, this was mitigated by the Atlas system in the ORB-SLAM package. This 
allows the users to save and load maps, to further expand and build on the already created 
maps. Through rigorous testing, it also became apparent that the drone had problems in windy 
conditions due to its lightweight design, however, it excels in controlled environments and 
indoors. Even though the hardware of the Tello cannot compare to other higher-end alternatives 
equipped with sophisticated sensors, the drone proves that it is very much suited for many 
research and development tasks due to its affordability and the many possibilities when it 
comes to customization and programming.   

The integration of ORB-SLAM3 which proved to be highly compatible with the camera in the 
Tello paves the way for many possibilities and options in the world of drone-based mapping 
solutions, especially in the field of low-cost drone technology. Even though the algorithm has 
its limitations, especially when it comes to low-contrast environments with fewer distinct 
features to be extracted, ORB-SLAM3 proved to be a highly accurate SLAM algorithm, and with 
its open-source nature opens up for some level of customization, which allows for optimization 
and tweaks for better performance, while keeping the cost of the whole system to a minimum.  

The research and experimentation conducted during this project resulted in a package for 
performing ORB-SLAM3 on the DJI Tello. By sharing it as a  GitHub repository, the main idea for 
this framework reflects the general goals of this thesis; creating a foundational framework, and 
through its affordable nature, enabling a wide audience with other practitioners or scholars to 
further build and expand on the system.  

Despite the issues and limitations of the system, it lays a solid foundation for future 
implementations, that could extend beyond the capabilities of the Tello, potentially 
revolutionizing the use of low-cost drones in life-saving operations.   
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Appendix: Supplementary Materials and Code 
This section is dedicated to detailing code, value modifications, or additions that might prove 
necessary for further technical understanding of specific sections. The code removed or 
subject to modification will not be included to keep it as clear and concise as possible.  

Appendix A: Stored values for camera calibration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Camera calibration and distortion parameters 

Camera1.fx: 966.87142 

Camera1.fy: 954.66564 

Camera1.cx: 534.18714 

Camera1.cy: 395.60203 

 

Camera1.k1: 0.096565 

Camera1.k2: -0.162125 

Camera1.p1: -0.003263 

Camera1.p2: 0.025240 

Camera1.p3: 0 

 

Camera.width: 960 

Camera.height: 720 

 



Jon Eirik Augensen  Appendix: Supplementary Materials and Code 

48 | P a g e  
 

 

Appendix B: Additions and modifications to the gamepad_teleop_node 

 

 

 

 

 

 

 

 

 

#!usr/bin/env python3 #Comes as python2 by default 

 

# Added method for f310 logitech controller 

    def parse_f310(self, msg): 

        if len(msg.buttons) != 12 or len(msg.axes) != 6: 

            raise ValueError('Invalid number of buttons (%d) or axes 

(%d)' % ( 

                len(msg.buttons), len(msg.axes))) 

        self.L1 = msg.buttons[4] 

        self.R1 = msg.buttons[5] 

        self.LX = msg.axes[0] 

        self.LY = msg.axes[1] 

        self.RX = msg.axes[2] 

        self.RY = msg.axes[3] 

 

# Added parse_f310 to parse method for error handling and controller 

parsing 

    def parse(self, msg): 

        err = None 

        try: 

            return self.parse_f310(msg) 

        except ValueError as e: 

            err = e 

 raise err 
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Appendix C: The tello.launch file 

 

<launch> 

    <param name="use_sim_time" value="false" /> 

 

    <!-- Main node --> 

    <node name="orb_slam3" pkg="orb_slam3_ros" type="ros_mono" 

output="screen"> 

        <!-- change the topics according to the dataset --> 

        <remap from="/camera/image_raw"    to="/tello/image_raw"/> 

 

        <!-- Parameters for original ORB-SLAM3 --> 

        <param name="voc_file"      type="string" value="$(find 

orb_slam3_ros)/orb_slam3/Vocabulary/ORBvoc.txt.bin"/> 

        <param name="settings_file" type="string" value="$(find 

orb_slam3_ros)/config/Monocular/tello_calibration.yaml"/> 

 

        <!-- Parameters for ROS --> 

        <param name="world_frame_id"    type="string"   value="world" /> 

        <param name="cam_frame_id"      type="string"   value="camera" 

/> 

        <param name="enable_pangolin"   type="bool"     value="true" /> 

    </node> 

     

    <!-- Visualization --> 

    <node name="rviz" pkg="rviz" type="rviz" args="-d $(find 

orb_slam3_ros)/config/ntuviral_no_imu.rviz" output="screen" /> 

     

    <!-- Trajectory path --> 

    <node pkg="hector_trajectory_server" type="hector_trajectory_server" 

name="trajectory_server_orb_slam3" output="screen" ns="orb_slam3_ros" > 

        <param name="/target_frame_name"        value="/world" /> 

        <param name="/source_frame_name"        value="/camera" /> 

        <param name="/trajectory_update_rate"   value="20.0" /> 

        <param name="/trajectory_publish_rate"  value="20.0" /> 

    </node> 

</launch> 
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Appendix D: The tello_calibration.yaml file [33] 

 

 

%YAML:1.0 

 

#-----------------------------------------------------------------------

-------- 

# Camera Parameters. Adjust them! 

#-----------------------------------------------------------------------

-------- 

File.version: "1.0" 

 

Camera.type: "PinHole" 

 

# Camera calibration and distortion parameters 

Camera1.fx: 966.87142 

Camera1.fy: 954.66564 

Camera1.cx: 534.18714 

Camera1.cy: 395.60203 

 

Camera1.k1: 0.096565 

Camera1.k2: -0.162125 

Camera1.p1: -0.003263 

Camera1.p2: 0.025240 

Camera1.p3: 0 

 

# Camera frames per second  

Camera.fps: 30 

 

# Color order of the images (0: BGR, 1: RGB. It is ignored if images are 

grayscale) 

Camera.RGB: 1 

 

# Camera resolution 

Camera.width: 960 

Camera.height: 720 

 

#------------------------------------------------------------------------------- 

# ORB Parameters 

#------------------------------------------------------------------------------- 
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Continuation of Appendix  D:  

 

# ORB Parameters 

#-----------------------------------------------------------------------

-------- 

 

# ORB Extractor: Number of features per image 

ORBextractor.nFeatures: 1250 

 

# ORB Extractor: Scale factor between levels in the scale pyramid 

ORBextractor.scaleFactor: 1.2 

 

# ORB Extractor: Number of levels in the scale pyramid  

ORBextractor.nLevels: 8 

 

# ORB Extractor: Fast threshold 

# Image is divided into a grid. At each cell, FAST is extracted imposing 

a minimum response. 

# In case of low contrast images, lower these images   

ORBextractor.iniThFAST: 12 

ORBextractor.minThFAST: 7 

 

#-----------------------------------------------------------------------

-------- 

# Viewer Parameters 

#-----------------------------------------------------------------------

-------- 

Viewer.KeyFrameSize: 0.05 

Viewer.KeyFrameLineWidth: 1.0 

Viewer.GraphLineWidth: 0.9 

Viewer.PointSize: 2.0 

Viewer.CameraSize: 0.08 

Viewer.CameraLineWidth: 3.0 

Viewer.ViewpointX: 0.0 

Viewer.ViewpointY: -0.7 

Viewer.ViewpointZ: -1.8 

Viewer.ViewpointF: 500.0 
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Continuation of Appendix D: 

 

 

Appendix E: minor tweak in System.cc to connect maps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

//mpAtlas->CreateNewMap(); #swapping this for GetAllMaps to connect maps 

mpAtlas->ChangeMap(mpAtlas->GetAllMaps()[0]); 

 

#------------------------------------------------------------------------------- 

# Atlas Parameters. To save and load the map. Creates a .osa extension file. 

# Is only used when connecting maps for creating a bigger map detailing the same# area.  

#------------------------------------------------------------------------------- 

#System.SaveAtlasToFile: “map” 

#System.LoadAtlasFromFile: “map” 
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