

Master’s Thesis 2024 30 ECTS

Faculty of Science and Technology

A Parameter Estimation Approach

in Simulated Neural Data Using

Metamodelling Approaches

Raúl Andreas Sanjinés Morató
Data Science (M.Sc.)

Acknowledgments

I extend my wholehearted gratitude to my family, my mom Tania, my grandmother
Esthercita, my uncle Carlos who unwaveringly supported me all my life. I want
to thank my supervisors, Fadi and Eirik; without their patience and support, this
submission would not have been possible. Lastly, I want to express my gratitude
to Alexandra, who stood by me in the ups and downs for the duration of the whole
degree and more.

Raúl Andreas Sanjinés Morató
Ås, October 2023

i

Abstract

Data from dynamic stochastic systems is highly complex, making it hard to an-
alyze. Neural network simulations based on such systems have parameters with
intricate relationships with their outcomes necessitating deep parameter space ex-
ploration and sensitivity; these processes can be computationally demanding and
hard to interpret. In this case, the objective was to estimate parameter labels; ap-
proximate parameter space from simulated neural activity in the shape of pair of
spike trains. This study uses a metamodelling approach to compare two different
sampling approaches when applying the Random Forest algorithm. In the sam-
pling, normal sampling, and synthetic minority oversampling technique (SMOTE)
with imbalanced labeled data were compared. Results show that, when using nor-
mal sampling the classification gives low prediction accuracies on the test data
close to random chance. Using random forest with imbalanced labeled data and
SMOTE provided an improvement on the performance of the model across clas-
sification metrics, with an average accuracy of 80%, and precision and F1 score
with a similar 80% average value. This paves the way for future research involving
complex synthetic neural data while attempting to estimate a parameter space.

ii

Contents

1 Introduction 2

1.1 Background . 2

1.2 Problem Statement . 3

1.3 Research Questions . 3

1.4 Objectives . 4

1.5 Scope and Limitations . 4

2 Theory 6

2.1 Fundamentals of Neuronal Network Dynamics 6

2.1.1 Neuron Dynamics . 6

2.1.2 Neuron Modelling . 8

2.1.3 Neural Summary Statistics 11

2.2 Machine learning classification fundamentals 11

2.2.1 Decision Trees and Random Forests 14

2.2.2 Best practices . 15

2.2.3 Handling of Imbalanced Datasets 16

2.3 Metamodelling . 17

iii

CONTENTS iv

2.4 Evaluation metrics . 18

3 Methodological Framework 20

3.1 Design of Research . 20

3.2 Data Generation and Exploration 21

3.3 Data Preparation . 25

3.3.1 Input preparation . 26

3.3.2 Output preparation . 26

3.4 Application of Metamodelling Techniques 27

4 Results 29

4.1 Classification results without augmentation 29

4.2 Classification results with data augmentation 31

5 Discussion 33

5.1 Interpretation of results . 34

5.2 Reflection on Research Questions 35

6 Conclusion 36

A Appendix 1: AI Usage 41

List of Figures

2.1 Schematic view of the main parts of a neuron, Licenced and Created
with BioRender.com . 7

2.2 Schematic representation of an action potential 8

2.3 Simplified schematic of a Decision Tree. 14

2.4 Simplified schematic of a Random Forest with multiple decision trees 15

3.1 Flow diagram of the research steps 21

3.2 Box plot of the connectivity subparameters 25

v

Nomenclature

HC-PLSR Hierarchical Cluster-based Partial Least Squares Regression

LFP Local Field Potential

MSA Multi-Surrogate Approximation

NEST Neural Simulation Tool

OLS Ordinary Least Squares

PLSR Partial Least-Squares Regression

SMOTE Synthetic Minority Over-Sampling Technique

SVC Support Vector Classification

1

Chapter 1

Introduction

1.1 Background

The brain is one of the most complex systems known. Our understanding of it
and its functions has evolved through many research methods including imaging
technologies like Magnetic Resonance Imaging (MRI), anatomical dissections, and
computational simulations [1, 2]. New developments in the field aim to better the
understanding of complex brain functions like memory, learning, and the drivers
of behavior, and how the connectivity in the brain, synaptic strengths, and other
aspects of it influence such functions. Research in this field is aimed not only
at understanding the intricacies of the brain and its processes, but also to help
develop models for simulating neurological disorders which has the potential of
aiding in diagnostic tools and test hypothesis for therapeutic strategies.

Simulations are based on models and they come in various shapes and sizes, from
simple mechanistic models of two neurons, to massively complex networks of pop-
ulations of neurons. Tools like the Neural Simulation Tool (NEST) attempt to
bridge the gap between neural simulations and real data. While the simulations
attempt to achieve results that come the closest to a measurable reality, they may
become too computationally expensive or too intractable to interpret. In order to
be able to ascertain if a model actually approaches reality, much data is needed
both from the model and from reality. This has several limitations ranging from
lack of patient neurological data or lack of samples of when the model was applied
(each instance of a model running is a simulation). Depending on the complexity
of the model, new simulations can use up a lot of computational resources or take

2

a lot of time. Moreover the sensitivity of the models must be taken into account
[3]; as many models include or are formed by complex differential equations, small
changes in initial conditions can lead to big changes in the output. There is a need
for methodologies that can help infer the relationships between the outputs of a
model and the parameters that originated them in an accurate and data-efficient
way.

1.2 Problem Statement

As researchers continue gathering more in vivo data, generating synthetic data
from models, and developing more theories on the brain, there is a need for a
simplified framework that can allow the elucidation of the relationships between
parameters and data. Current models can become too complex to scale and to
interpret, needing approaches that can keep the depth of the analysis while sim-
plifying the process. For this purpose, a data-intensive metamodelling approach
can be applied. Metamodelling in this case refers to ”model of a model”, which
uses the outputs of a model to make another, simpler one.

The precise estimation of network parameters from synthetic neural activity data
has many challenges. The complex non-linear nature of neural models mean that
small variations in initial conditions can lead to entirely different outputs, mak-
ing the input-output relationship elusive. This highlights the need for a robust
methodology that can help in parameter estimation.

With only having a limited amount of data, one of the challenges faced is model
parameter estimation from neural activity synthetic data. To create simulations,
NEST takes as input series of parameters to define networks of populations of
neurons and their interaction. When exploring a specific parameter space, all
other parameters are kept constant while the one under the scrutiny is varied across
a defined range; a deterministic relationship between parameters and outputs is
challenging to determine due to complexity of the model and the nature of it.

1.3 Research Questions

Synaptic strengths representing the connectivity of neuron populations and their
efficacy of synaptic transmission between neurons play a crucial role in the be-

3

haviors and dynamics in neural network simulations. This parameter can vary
significantly and, additionally, small variations in it can cause significantly differ-
ent outputs. Typically these synaptic strengths are continuous variables within
models; simplifying them into categorical values could potentially aid in making
models more efficient and interpretable. Accurate parameter estimation is impor-
tant for understanding and modelling the dynamics of neural networks; the focus
of this research is to be able to accurately estimate model parameters from com-
plex data. Specifically, the aim is to extract parameters (or parameter ranges)
from spike train data generated by neuronal network simulations.

• How does the categorization of synaptic strengths into ”high” and ”low” im-
pact the predictive accuracy and interpretability of machine learning models
in identifying key dynamics within neural networks?

• Can a metamodelling approach improve the selection and tuning of machine
learning algorithms for modelling synaptic strength dynamics in neural net-
work simulations, leading to more efficient generalization across different
network configurations?

1.4 Objectives

The main objective is to use a metamodelling approach to evaluate and compare
the effectiveness of various classification algorithms for predicting parameters from
spike train data derived from neuronal network simulations.

• Identify the best-performing model.

– Use metrics in addition to accuracy, as precision and F1 score to assess
the models’ performance

• Provide a methodological framework for applying these techniques in com-
putational neuroscience.

1.5 Scope and Limitations

The data scope of this thesis is centered on the data of 10.000 simulation sets.
This includes the parameters (network simulation kernel), and spike trains for

4

two populations of neurons (one excitatory and one inhibitory). All simulations
were performed exclusively in the Neural Simulation Tool (NEST), not using other
neural simulators for this study. No additional simulations were performed. The
scope of the machine learning approaches used was centered on the comparison
of Support Vector Classification (SVC) and the Random Forest algorithm; this
was compared in two scenarios of classification tasks. For this purpose target
data underwent two data labeling scenarios: balanced quartile-based labeling, and
imbalanced quartile-based binary labeling.

5

Chapter 2

Theory

This chapter will introduce the main theoretical topics involved in this study.
Firstly, fundamental concepts about the neuron, neuron networks, and the mod-
elling of them will be presented. This will be followed by a short overview of
machine learning; this section will focus on supervised learning for classification,
with an emphasis on the Random Forests algorithm. Then, the concept of meta-
modelling will be introduced; this will be done from the definition of metamodelling
to its current uses in computational neuroscience. The chapter ends with a section
dedicated to the explanation of useful model evaluation metrics, with a focus on
metrics for classification tasks.

2.1 Fundamentals of Neuronal Network Dynam-

ics

2.1.1 Neuron Dynamics

Neurons are a basic structural and functional units of the neural system; they are
designed to process and transmit information via electrical and chemical signals.
The structure of a neuron consists of the cell body (soma), dentrites and axon;
this structure enables an efficient flow of information between neurons and their
networks. Figure 2.1 shows a schematic view of the neuron and its parts [1].

Dendrites are the neurons’ receivers of signals, they gather input from other neu-

6

Figure 2.1: Schematic view of the main parts of a neuron, Licenced and Created
with BioRender.com

rons and relay it to the soma for processing. From the soma extends the axon,
responsible for transmitting the processed signal away from the cell body and to-
ward other neurons, muscle cells, or glands. The axon is encased in a myelin sheath
that enhances and preserves the signal. The main signaling between neurons hap-
pens with action potentials, these are threshold events in the shape of electrical
impulses. This event has many stages as seen in figure 2.2.

The starting point of this process is the resting potential, a state where the neuron
is not transmitting nor receiving any signals. In this phase, the neuron holds a
negative internal charge relative to the outside of the neuron, typically around -70
milivolts (mV). When this neuron receives a stimulus from another, this balance
can change increasing the internal charge; if the stimulus is strong enough to
reach a threshold (usually around -55 mV), an action potential initiates. If the
stimulus fails to reach the threshold, the neuron returns to the resting potential
and no action potential is triggered. If the threshold is reached the action potential
begins with an initial rising phase. There is a quick influx of positively charged
sodium ions into the cell, changing the relative internal charge of the neuron to
the outside until it reaches a peak at around +40 mV. After the peak comes a
falling phase where there is an outflow of positively charged potassium ions from
the neuron, followed by an undershoot phase where the membrane potential drops
slightly below the resting potential, creating a temporary hyperpolarized state.
This keeps the neuron from responding to signals for a short period of time, after

7

Figure 2.2: Schematic representation of an action potential

which the neuron returns to its resting potential. This entire sequence of events
represents a single action potential that happens just in a few milliseconds [1] [2].

The connection between neurons happens through specialized links called synapses;
when an action potential reaches the end of the axon (pre-synaptic terminal), it
triggers the release of neurotransmitters. These chemical messengers bind to spe-
cific receptors on the post-synaptic neuron, causing excitation or inhibition de-
pending on the neurotransmitter and receptor involved. Action potentials are one
of the ways neurons communicate with each other, another form of communica-
tion is the local field potential (LFP) which represents synchronized, subthreshold
neuron activity. The LFP measures net synaptic activity in a region, more related
to neuron input, while action potentials measure neuron outputs [2].

2.1.2 Neuron Modelling

Modelling neurons and their networks help researchers to better understand how
information is processed by neurons. A limitation in understanding or interpreting
brain activity is its high complexity. Neuron modelling provides a framework that
can help explore and test hypotheses, develop insights into brain processes, and
generate predictions for empirical testing. The benefits of modelling neurons are
the reduction of complexity, the integration of experimental data, and hypothesis
testing and prediction [1].

8

There are different approaches to modelling neurons and their networks. Mech-
anistic models describe the functioning of brain cells and their connections. The
Hodgkin-Huxley model developed in the 50s is an example of this; it explains how
action potentials are generated with the movement of sodium and potassium ions
across the cell membrane [4]. In contrast to mechanistic models like the Hodgkin-
Huxley model, descriptive models aim to characterize the relationship between
inputs and outputs of neurons or neural networks without modelling their un-
derlying biological mechanisms. These models are usually based on statistical
techniques or machine learning algorithms that capture the input-output mapping
from empirical data. An example of a descriptive model is the integrate-and-fire
neuron; this model describes the neuron’s membrane potential in terms of the
synaptic inputs and the injected current it receives [5].

As well as having models with different approaches, neural modelling can be per-
formed at different detail levels, each having different uses and limitations. An
ultra-detailed model could provide information about ion channels in the neuron,
setting the scale of the measurements in the order of picometers, and could be
useful to explore the mechanisms involved in this process, but will fail to pro-
vide useful information when analyzing networks of neurons. A more generalized,
firerate-based model, can provide great insight into the interaction of populations
of neurons, yet, may fail to characterize individual neuron activity. The level of
detail chosen will depend on the research’s needs, with a constant dichotomy of
choosing a realistic detailed model or a less realistic but more interpretable one.
[2]

Developments in computational neuroscience lead to the development of novel ways
of defining networks and models to tackle specific issues. One of these network
setups is the Brunel Network, which is commonly used to explore the dynamics
of sparsely connected networks of excitatory and inhibitory neurons [6]. A Brunel
network is made of 2 sparsely, randomly connected populations of neurons, one
excitatory and one inhibitory. It can help understand how different neural firing
patterns (like synchronous and asynchronous states) can emerge from simple net-
work structures. The Brunel model is useful for studying the balance of excitation
and inhibition and how this affects the global dynamics of neural circuits [6]. An-
other novel approach to modelling comes in the shape of the Potjans-Diesmann
Model. This model is a more complex and layered network, representing a multi-
layer and structured network setup. It specifically models cortical microcircuits,
incorporating multiple layers that correspond to different layers in the cortex (like
layers 2/3, 4, 5, and 6). Each layer contains both excitatory and inhibitory neurons
with connectivity parameters derived from anatomical studies [7]. This model is
highly relevant for understanding cortical processing, and the interactions between

9

different cortical layers, providing insights into more complex brain functions and
information processing dynamics.

Simulating the complex dynamics of neurons and their networks requires powerful
computational tools. One such tool that is extensively used in computational
neuroscience is the NEST simulator: a flexible and scalable simulator for modelling
large-scale neural systems [8] [9]. An example can better illustrate the parameters
used in NEST, in this case, a simple two-population network configuration derived
from the Potjans-Diesmann model will be considered. This configuration involves 2
neuron populations: one excitatory and one inhibitory. Here is a simple description
of the most important parameters needed to define the network:

• CY X - Connection Probability: Represents the connection probability be-
tween neurons in the network. It defines the proportion of neurons in popu-
lation Y that are connected to neurons in population X

• J - Reference Synaptic Strength: Denotes the synaptic weight, which is the
strength of the connection between neurons. It influences the effectiveness of
communication between neurons, measuring how strong or weak a synaptic
connection is compared to a standard reference. By multiplying J by the
respective gY X values the actual synaptic weight can be determined.

• gY X - Synaptic strength: Describes the relative strength of synaptic connec-
tions between neurons of different types, indicated by the labels gee, gei, gie,
and gii:

• – gee: Excitatory to Excitatory

– gei: Excitatory to Inhibitory

– gie: Inhibitory to Excitatory

– gii: Inhibitory to Inhibitory

This parameter quantifies how influential a signal from one population of
neurons is on another, depending on whether the source and target are ex-
citatory or inhibitory. An analogy can make this concept easier to grasp.
Imagine there is a soccer game, a Local team and a Visitor team (represent-
ing the excitatory and inhibitory populations respectively). Passes between
teammates represent the connectivities gee and gii, the ”attacks” on the op-
posing team are the connetivities gei and gie.

10

2.1.3 Neural Summary Statistics

Neural data, either simulated or in vivo recordings, is complex as it represents
neural communication such as spike trains describing action potentials and LFPs.
To be able to make sense of this information statistical methods can be used to
summarize the data, identify patterns, and highlight trends.

Spike train data in its simplest shape is a recorded sequence of neuronal electric
activity, from which characteristics such as the firing rate can be calculated and
used to characterize the recorded activity. The main calculations to be made are:

• Mean Firing Rate

– It represents the average number of spikes per unit time, representing
the overall activity level of the neuron[10]. It is calculated as:

Nspikes

T

• Covariance of Interspike Intervals

– It measures the variability in time between consecutive spikes, reflecting
the consistency or variability of spike timing. It is calculated as:

1

n− 1

n∑
i=1

(ISIi − ISI)2

• Fano Factor

– It calculates the variance-to-mean ratio of spike counts in a given inter-
val. This metric is used to assess the dispersion of spike counts relative
to a Poisson process. It is calculated as:

Var(Nspikes)

E(N)

2.2 Machine learning classification fundamentals

Machine learning involves the development of algorithms and models that enable
computers to learn by relying on patterns and inference from data. There are three

11

main types of learning: supervised, unsupervised, and reinforcement learning. Un-
supervised learning deals with unlabeled data; in this case, the algorithms try to
find patterns or relationships in the data without preset output labels. Reinforce-
ment learning, on the other hand, involves trial and error and receiving rewards
or penalties. In this case the environment is designed to maximize a reward sig-
nal and this approach is used extensively in robotics, gaming, and other decision
making scenarios.

Supervised learning is based on the use of labeled data to predict outcomes for
new, previously unseen data. This type of machine learning needs a comprehen-
sive dataset that is accurately labeled to work correctly. In practice, supervised
learning is often used for regression (predict a continuous variable) and classifica-
tion (predict the label of a variable). Algorithms that are typically used in this
context are varied, including Decision Trees, Support Vector Machines, and Ran-
dom Forests [11]. Table 2.1 contains a general overview and comparison of the
mentioned methods.

12

Table 2.1: General Overview of Robust Classification Algorithms

Feature Decision Trees Random Forests Support Vector
Machines (SVC)

Basic Concept A tree structure
where each node
represents a
feature decision,
leading to a
classification or
regression outcome
[12]

An ensemble of
decision trees that
improves
classification
accuracy and
controls overfitting
[13].

A classifier that
finds an optimal
hyperplane which
categorizes new
examples [14].

Strengths Simple to
understand and
interpret. Can
handle both
numerical and
categorical data
[12].

Reduces overfitting
compared to
individual decision
trees. Handles high
dimensional spaces
well [13] [15].

Effective in high
dimensional spaces
[14]. Versatile with
different kernel
functions [16].

Weaknesses Prone to
overfitting
especially with
complex trees.
Sensitive to noisy
data.

Computationally
expensive, less
intuitive than
single decision
trees.

Requires careful
choice of kernel
and regularization
parameters. Can
be inefficient with
large datasets.

Use Cases Good for data
exploration,
suitable for
scenarios where
interpretability is
important.

Suited for
problems where
robustness and
accuracy are
critical. Can
handle diverse
types of data.

Particularly good
for classification of
complex but small-
or medium-sized
datasets.

Typical
Application

Medical diagnosis,
credit scoring,
customer
segmentation.

Bioinformatics,
environment
modelling,
multi-class
prediction.

Image
classification,
bioinformatics,
text categorization.

Performance Fast training but
can create overly
complex trees that
do not generalize
well [12].

Training is slower
due to building
multiple trees, but
predictions are
robust.

Training time can
be long; highly
effective with the
right kernel.

13

2.2.1 Decision Trees and Random Forests

Decision Trees are a type of supervised machine learning algorithm that represents
decisions and their possible consequences in a tree-like structure, an schematic
view of this algorithm can be seen in figure 2.3. Tree-structured classifiers are
built by recursive splits of a set into 2 subsets (nodes) iteratively [12]. In decision
trees, the node splitting follows the optimization of an objective function aimed at
maximizing Information Gain [11]. The algorithm begins at the root node (entire
dataset), then it splits the datasets based on an attribute; common attributes are
Gini Impurity, Entropy, and Classification error. After the initial split at the root
node using one of the attributes, the algorithm repeats the process on each of the
split subsets using the same attribute. This process is repeated for each new split
and continues until:

1. All elements in a subset are of the same class

2. The subset has reached a minimum size

3. The tree has reached maximum depth

Root

Node 1

Leaf 1 Leaf 2

Node 2

Leaf 3 Leaf 4

Figure 2.3: Simplified schematic of a Decision Tree.

Decision Trees are easy to interpret and are a robust model to handle non-linear
relationships, however, they are sensitive (small changes in data can lead to differ-
ent trees) and can cause overfitting. In order to tackle these issues, the ensemble
learning method Random Forest can be used. This method enhances the decision

14

tree method by creating many decision trees and aggregating their predictions
[13, 15]. Each of the decision trees is built using random samples of data, and as
the number of trees increases, the overall error rate converges. The accuracy of
this method will depend on how strong each tree is and the correlation between
trees [13]. A schematic representation of this algorithm can be seen in figure 2.4.
While this method has many advantages and solves some of the issues of decision
trees, it can be computationally expensive and sensitive to irrelevant features.

Root

Tree 1

A

B

Tree 2

A

B

Tree N

A

B

Figure 2.4: Simplified schematic of a Random Forest with multiple decision trees

2.2.2 Best practices

In order to improve the performance of models there are some best practices that
need to be applied:

• Data preparation: this step includes the handling of missing layers, outliers
and noise in the data. This can be done by omitting that data or using
imputation techniques (such as using the mean to fill missing values). When

15

dealing with noisy, numerical data with high outlier content, scaling tech-
niques such as min max scaling and normalization can be used. When having
categorical data it is also useful to use encoding techniques such as one-hot
encoding as this helps in the performance of models.

• Feature engineering: this is an important step aiding the models as it can
identify, create, or transform attributes that are relevant for the model and
can increase its predictive power.

• Model evaluation: using accuracy on its own to gauge the performance of
the model is not enough. Precision, recall, and the F1 score help interpret
and explain models’ predictions.

2.2.3 Handling of Imbalanced Datasets

Sampling is a process of selecting a subset of data from a larger dataset for many
purposes, in this case for training models. Sampling can be random with each
datapoint having an equal chance of being selected or, stratified where the data is
divided into subgroups and samples taken from each subgroup to ensure adequate
data representation. These sampling methods are sufficient when dealing with
balanced datasets, yet would not yield good results when applied to imbalanced
data.

When the number of observations in one class is significantly larger than obser-
vations in other classes, models tend to be biased towards the majority class.
This results in poor classification performance for the minority class. In order to
overcome this problem, some sampling strategies can be implemented:

• oversampling the minority class

• undersampling the majority class

• synthetic data generation

From the synthetic data generation approach, the method of Synthetic Minority
Over-sampling Technique (SMOTE) stands out as a robust method that helps
balance class distribution. This is done by generating synthetic samples rather
than resampling the existing data. The steps that this process follows are:

1. Random sample selection from the minority class

16

2. The k nearest neighbors identification

3. Synthesis of new samples

4. Repetition

The samples created by this method are not just repeated copies of this data but
are calculated based on the feature space dynamics of the minority class, making
these new datapoints useful in the creation of decision boundaries for classification
models [17].

2.3 Metamodelling

Metamodelling is a data-driven technique used in fields like computational biology
and engineering. In essence, it serves as an abstraction layer above traditional
modelling, providing a broader perspective that facilitates the examination, eval-
uation, comparison, and manipulation of models. This idea is represented best
by the concept of ”models of models”; a metamodel is basically a model trained
with outputs from another model. These metamodels can give insights into the
dynamics of the original models, such as approximating how changing the input
parameters can affect the outputs without needing to fully understand all the
complex details of the original system [18].

In computational biology, metamodels are useful for studying dynamic biological
models. These models can be extremely complicated, with many interconnected
parts and non-linear interactions, making them hard to analyze directly. Meta-
models offer a way to understand these complex systems in a simpler form.

Metamodelling techniques have attracted interest across disciplines like engineer-
ing, systems biology, and computational neuroscience as a means of creating surro-
gate models for complex systems [19, 19, 20, 20, 21, 22, 23, 24, 25]. As data-driven
approximations, metamodels offer more desirable computational properties and
can run significantly faster than original models [25].

One of the objectives of metamodelling is to map the relationships between in-
put parameters and output variables of an original model, providing a simplified
yet accurate representation of its behavior. One commonly used approach for
this is Ordinary Least Squares (OLS) regression, where each output variable is
regressed individually on the input factors [23]. However, for highly nonlinear

17

or non-monotonic relationships, OLS regression may not perform well. Partial
Least Squares Regression (PLSR) is a more suitable alternative, as it can handle
collinearities and nonlinearities better [21, 23]. In contrast, an advanced technique
called Hierarchical Cluster-based PLSR (HC-PLSR) has shown promising results
in systems biology [24]. In HC-PLSR, the data is first separated into groups using
fuzzy clustering. Then, each group is analyzed separately with PLSR, produc-
ing regional regression models in addition to a global model. This approach can
better capture complex, nonlinear input-output mappings, and has been applied
successfully in various biological systems’ models, such as gene regulatory net-
works, circadian clocks, and cardiac cells [24] [22] [3]. The results indicate that
HC-PLSR can outperform traditional methods, especially for highly nonlinear or
non-monotonic systems, and can provide insight into parameter interactions and
sensitivities [3].

In addition to predicting model outputs from input parameters (classical, or for-
ward metamodeling), it can also be used in the inverse direction, predicting input
parameters from model outputs or empirical data (inverse metamodeling) [23].
This approach can potentially enable fast, non-iterative prediction of model pa-
rameters. However, inverse metamodelling requires a one-to-one correspondence
between model inputs and outputs, which may not always be the case [23]. When
multiple input combinations produce similar outputs, inverse metamodelling be-
comes challenging. One potential solution is to use Principal Component Analysis
(PCA) on the model outputs alone, which can provide insights into the output
patterns [23]; however, the PCA scores cannot be uniquely related to the model
inputs without additional information.

Machine learning techniques, such as support vector machines, have been used in
computational neuroscience because of the advantages they provide in handling
high dimensional data, even with no linear boundaries between classes. For ex-
ample, a detection and classification learning approach was developed to analyze
spike wave forms and noise [26]. The classifiers worked with different scenarios of
noise data and were effective in classifying spikes. Despite this, SVMs face chal-
lenges handling overlapping spikes and future research is needed to try different
SVM based methods.

2.4 Evaluation metrics

The selection of metrics is an important step when using a metamodelling ap-
proach. In supervised learning, a confusion matrix is used as a way to show and

18

compare the cases of correct and incorrect classification across classes. Accuracy,
precision, recall, and F1 score are metrics used to evaluate how well a machine
learning model performs at classification tasks and can be calculated from the
confusion matrix.

Accuracy refers to the percentage of predictions the model got right across all
classes, measuring the overall effectiveness of the classifier. It is the ratio of true
predictions (true positives and true negatives) and the total number of predictions.

Precision refers to the true predictions, defined as ratio of true positive predictions
and all positive predictions made by the classifier. While high precision means
that the classifier is most likely correct when predicting a positive class, it alone
does not provide interpretability of missed positive predictions (false negatives)
[11].

Recall is a sensitivity measure defined as the proportion of actual positives correctly
identified (true positives). This is an important metric in context where false
negatives are not desired. This metric gives an evaluation of the model on how
effective it is to capture true positives.

Another metric used is the F1 score, which is a statistical measure that balances
precision and recall. It is calculated by taking the harmonic mean of these two met-
rics and its useful as a metric that reflects both false positives and false negatives,
being more informative in case of imbalanced class distribution [11].

19

Chapter 3

Methodological Framework

This chapter will present the methods used in this research to reach the goal
of estimating parameters (parameter ranges as labels) from outputs of a model
(simulated neural activity). Firstly, an overview of the steps taken will be described
in the Design of Reserach. Then follows the Data Generation and Exploration
section, which includes a detailed explanation as to the origin of the simulation
data with the specific parameters used within the NEST simulator; this section
will include an exploration of the data used. This section will be followed by the
Data Preparation, which will explain the steps taken to adapt the data to best
fit the models to be used. Finally, the Application of Metamodelling techniques
to compare the models will be explained, including the metric selection for the
classification performance assessment.

3.1 Design of Research

This research is structured around a methodology that begins with the generation
of data using the NEST simulator, followed by data preparation and analysis,
finishing with the evaluation of the classification performance. Figure 3.1 shows
the sequence of steps in this process.

20

NEST (Data generation)

Data Preparation

SMOTE

Classification

Evaluation

Figure 3.1: Flow diagram of the research steps

3.2 Data Generation and Exploration

This section aims to show the nature of the data used in this thesis. The data was
generated using the NEST simulator (version 3.4), producing 10,000 simulation
sets that mimic a specific two-population network configuration derived from the
Potjans-Diesmann model. This model targets the fourth cortical layer, including
both inhibitory (L4I) and excitatory (L4E) neuron populations. The data from
these simulations (coupled with the parameters that originated them) were stored
in 80 h5py files, totaling 5.12 GB.

Each of the files contains 125 sets of parameters (totaling 10.000 sets) and each set
of parameters is coupled with 100 simulations. The data output for each simulation
is made of two spike trains: one excitatory and one inhibitory, both containing
timestamp arrays. The total simulation time was 2500ms.

From the files, the data contents that are relevant are:

• Static parameters: These are parameters that remain constant throughout
all the simulations and that affect how the neuron populations interact, such

21

as J, Cyx

• gY X parameter space: the connectivity parameter gY X , composed of 4 sub-
parameters, dictates how the neuron populations interact and is the target
of the metamodels prediction.

• Spike trains: Each parameter gY X corresponds to 100 pairs of excitatory and
inhibitory spike trains, representing the resulting neuronal activity of both
populations for each run of the simulations.

In addition to this information, the h5py files contain parameter information (most
of it repeated across all simulations), that define the neurons, the network, and the
simulation details. Data is extracted using the h5py library, iteratively extracting
the network parameters and the excitatory and inhibitory spike trains. To save
time and space in the loading of the data, the important process variables are put
into pickle files:

• gY X parameters

• Excitatory spike trains

• Inhibitory spike trains

These pickle files will be later used to populate the dataframes used.

The Network and Simulation parameters used to generate the data are in tablea
3.1 and 3.2.

The data used for this study was extracted from the original h5py files and used
to populate the dataframes further used. In table 3.3 there is an overview of the
contents of the raw data when loaded into a Pandas DataFrame.

The data exploration shows that the data is highly complex, parameters uniformly
distributed, and behaviors mostly have a gaussian distribution. In the following
sections we will explore more in depth the gY X parameter space and the spike train
data.

• GY X parameter space

This section will explore and describe the dataframe where the data within the
gY X parameter space will be stored. Ths data is loaded to a dataframe named
df gY X from the pickle file previously described and has 4 columns.

22

Table 3.1: Network Parameters

Parameter Value Brief Description

N E 21,915 Number of excitatory neurons
N I 5,479 Number of inhibitory neurons
k ext E 2,100 External input to excitatory population
k ext I 1,900 External input to inhibitory population

C YX
0.050, 0.135,
0.079, 0.160

Connection probabilities between neurons

d E 1.5 ms Synaptic delay for excitatory population
d I 0.75 ms Synaptic delay for inhibitory population

Table 3.2: Neuron Parameters

Parameter Value Brief Description

tau m 10.0 ms Membrane time constant
t ref 2.0 ms Refractory period
C m 250.0 pF Membrane capacitance
E L -65.0 mV Resting membrane potential
V th -50.0 mV Threshold potential
V reset -65.0 mV Reset potential
tau syn ex 0.5 ms Excitatory synaptic time constant
tau syn in 0.5 ms Inhibitory synaptic time constant
J 87.81 pA Reference synaptic strength

23

Table 3.3: Comparison of DataFrames df and df gY X

Dimensions Columns Data Stored

df 1.000.000 rows
with 2 columns

Spikes E,
Spikes I

spike trains; each entry in
the dataframe is an array
storing timestamps

df gY X 10.000 rows with
4 columns

ee, ei, ie, ii Subparameters, each entry
is a real number

Table 3.4: Statistical Summary of Connectivity Parameters

Statistic ee ei ie ii

Mean 1.248380 -7.815476 1.247278 -7.807148
Std Dev 0.432327 3.024907 0.430247 3.005878
Min 0.500645 -15.894849 0.500557 -15.920007
Max 1.999423 -2.289307 1.999436 -2.264191

To begin the exploration and to observe the distributions of this parameter, a
boxplot was created. In figure 3.2 we can see the distribution of the values within
the subparameters in df gY X . Parameters EE and IE are referring to the excitatory
population; it is clear from figure 3.2 that they share an almost identical parameter
space. The differences that these share are evident in table 3.4 as comparing
the maximum values for each parameter, where the limits of each quartile are,
and other significant statistical measures differ. A similar case occurs with the
distribution of values within the parameters IE and II. The distributions are similar
in shape and scope, yet the specific values they hold differ. Table 3.4 contains the
statistical description of all the parameters.

• Spike trains

Spike trains are the result of the simulations, in this case, they come in the shape
of arrays that store timestamps that capture the activity of the respective pop-
ulations. Each simulation consists of two spike trains, one excitatory and one
inhibitory, with a simulation time of 250 ms, meaning all values stored in the
arrays must be real numbers between 0 and 2500. From the 1000000 simulation
samples 12132 show no activity in either population.

The first step to be able to work adequately with spike trains is to extract infor-
mation from them. In this case, this step is performed at the same time as the

24

Figure 3.2: Box plot of the connectivity subparameters

population of the main spike train dataframe, for each array the following metrics
will be calculated: mean firing rate, covariance of interspike intervals, mean inter-
spike intervals, and fano factor. The resulting dataframe will contain additional
columns for detecting empty spike trains.

3.3 Data Preparation

The data preparation section follows the best practices described in section 2.2.2
for a classification approach. In that sense, empty spike trains will be removed
from the analysis along with their parameters in a global preparation step. As
”input” for the classification model used there are the summary statistics from
the spike trains, capturing the activity of the range of simulations studied. As
”output” there is the parameter gY X , containing the 4 subparameters ee, ei, ie,
ii; it is the combination of these subparameters. The data needs to be adapted
to the input format of the models in use. This preparation step will include data
transformation and feature engineering separately for the input (spike trains) and
output (parameters).

Another global preprocessing step is the data split. In this case the training dataset

25

consists of 80% of the samples and the test size 20% for all aproaches.

3.3.1 Input preparation

Input for the models used are the data from the spike trains. Having each pair of
spike trains in an individual row in the main dataframe (that has two columns)
allows for quick and efficient feature engineering using common Python libraries,
as Pandas, and NumPy. The output has 10 000 rows, and so the input must match
this dimension; this makes necessary not only to characterize each pair of spike
trains (each individual simulation) and also grouping the simulations and aggre-
gating the data from 100 simulations each. This will lead to the input matching
the dimension of the output, while a careful feature engineering is able to cap-
ture the general impact the parameters have on the spike trains at the moment of
simulation.

For each spike train, there were calculations made to obtain: spike counts, mean
firing rate, the covariance and variance of the interspike intervals, and the fano
factor. These are calculated as described in section 2.1.3.

For the data aggregation, for every 100 rows and for the features previously men-
tioned, the following statistics were calculated: the mean, variance, standard de-
viation, median, skewness, and curtosis.

The end result of this processing is a dataframe with 10 000 rows and 60 columns
storing a comprehensive aggregation of the features of each simulation set. The
next step involves scaling; in this case, the standard scaler was used across all
columns.

3.3.2 Output preparation

The target output variable in this research are the connectivity subparameters, in
this case stored in the dataframe df gY X . As seen in the Data section, the values
stored in the basic dataframe are continous numerical values. The raw data of
the subparameters was first adjusted by the synaptic strenght constant and the
connection probabilities matrix, as well as adjusting the parameters according to
the number of neurons in the respective population.

In order to overcome the high complexity of approaching the raw data, the labeling

26

approach was chosen using two variations. The first variant is normal quartile
based labeling, this means that values got a label according to the quartile they
belonged. Using this approach it makes evident the uniform distribution of all
subparameters, as the labeling is balanced. The second approach for labeling
involves grouping quartiles to simplify the problem even more, from a 4 class
classification problem to a binary one. To get this imbalance, quartiles 1, 2 and 3
were labeled as class 0 and quartile 4 as classs 1.

3.4 Application of Metamodelling Techniques

To deal with this classification problem, for both sampling approaches (normal
sampling, and SMOTE), the initial steps taken were similar, like using a pipeline,
but the difference enters at the moment of the creation of the training dataset.

For the balanced labeled data approach, the procedure is as follows:

1. Pipeline Definition: A pipeline is defined with the classifiers to be compared
(SVC and Random forests).

2. Fitting the Pipeline: The pipeline is then fitted with the training data, where
the aggregated summary statistics from the spike trains are the input features
”X”, and the labeled synaptic strength parameters are the target ”y”.

3. Prediction: After fitting, the pipeline is used to make predictions based on
the test X data. The model generates output labels based on what it has
learned from the training data.

4. Accuracy Calculation: The accuracy of the model is calculated by comparing
the predicted labels with the actual labels in the test Y data.

For the imbalanced labeled data approach, the procedure is as follows:

1. Pipeline Definition: An imbalanced pipeline is defined specifically to address
the imbalance in the class distribution, using as classifiers SVC and Random
forests.

2. Applying SMOTE: Before fitting the pipeline, SMOTE is applied to the
training dataset. This generates synthetic examples of the minority class to
offset the imbalance in the minority class distribution.

27

3. Fitting the Pipeline: After enhancing the dataset with SMOTE, the pipeline
is fitted with the balanced training data, where the aggregated summary
statistics from the spike trains are the input features ”X”, and the labeled
synaptic strength parameters are the target ”y”

4. Prediction: Once the pipeline has been fitted, it is employed to make pre-
dictions based on the test X data.

5. Accuracy Calculation: Finally, the accuracy of the model is assessed by
comparing the predicted labels with the actual labels in the test Y data.

Comparative Analysis of Classification Models

The comparison of results across all classification attempts will be done with the
following metrics: precision, recall, and F1 score. These metrics are obtained via
scikit-learn’s classification report

28

Chapter 4

Results

4.1 Classification results without augmentation

Here in table 4.1 are presented the results of the classification predictions of the
Random Forest algorithm when compared with SVC. The target variable has the
suffix ” cat” as it represents the categorized variable used in this stage. Results
show that precision and F1 scores in Random Forests are higher compared to
SVC, yet the overall performance of both methods is low. Both SVC and Random
Forests exhibit close-to-random-chance prediction precisions, meaning that the
models are making incorrect label predictions more frequently than if they were
just guessing. A similar situation can be seen with the F1 scores. Random forests
F1 score is slightly more consistent across targets and labels, but it still shows low
performance. Comparing the individual performances of the classification models
respective to each target and each label can provide additional insight regardless
of the low performance. Parameter targets related to the excitatory population
(gee cat, and gie cat) show similar patterns in the individual F1 scores in the SVC
method across labels, with some exhibiting extremely poor performance. Label
”H” in gee cat and labels ”L” and ”M” in gie cat show F1 scores of 0.17, 0.12
and 0.14 respectively, meaning high false positive rate combined with high false
negative rate. In contrast, label ”L” in gee cat and label ”V” in gie cat show F1
scores of 0.33 and 0.35 respectively, showing a better performance. Comparing the
F1 score across labels for SVC and Random forest show that overall the latter is
more stable yet both have poor performance. Comparing precision scores in the
same context show little variability between overall precision scores with values
around random chance for a 4 class classification problem. Comparing precision

29

and F1 scores for the parameters related to the inhibitory population (gei cat, and
gii cat) show that those models have similar poor performance.

Table 4.1: Classification Results by Model and Category without data augmenta-
tion

Target Label SVC RF
Prec. F1 Prec. F1

gee cat

H 0.26 0.17 0.24 0.24
L 0.24 0.33 0.25 0.27
M 0.22 0.19 0.26 0.27
V 0.27 0.20 0.27 0.25

gie cat

H 0.24 0.22 0.25 0.25
L 0.26 0.27 0.26 0.27
M 0.22 0.25 0.20 0.20
V 0.25 0.21 0.26 0.25

gei cat

H 0.22 0.23 0.24 0.26
L 0.30 0.12 0.29 0.27
M 0.25 0.14 0.24 0.24
V 0.25 0.35 0.25 0.25

gii cat

H 0.25 0.22 0.22 0.23
L 0.25 0.24 0.26 0.27
M 0.25 0.27 0.22 0.23
V 0.27 0.28 0.23 0.22

Table 4.2 shows a comparison of the model accuracies across targets. Despite minor
differences in accuracy, Random forests and SVC both show low performance.

30

Table 4.2: Classification Accuracies by Model and Category without data augmen-
tation

Target Method Average Accuracy

gee cat
SVC 0.24
Random Forest 0.26

gie cat
SVC 0.24
Random Forest 0.24

gei cat
SVC 0.25
Random Forest 0.25

gii cat
SVC 0.26
Random Forest 0.24

4.2 Classification results with data augmenta-

tion

Table 4.3 shows a comparison of the precision and F1 scores of Random Forests
and SVC across targets and labels. In this case, Random Forests shows higher pre-
cision and F1 scores across all results and labels. SVC, on the other hand shows
an imbalance in the performance across labels. From the table, the comparison
between the two approaches in the excitatory parameters (gee cat, and gie cat)
reveals that Random forest has a superior performance averaging 80% in the per-
formance metrics. SVC shows a performance on par with the imbalance of the
data; classification precision in label 0 across targets tends towards 75%, which
corresponds with label 0 consisting of the ”L”, ”M”, and ”H” categories in the
encoding. This is in balance with SVC showing average of 25% in the precision. It
is important to note that the SVC algorithm shows a higher than random chance
of F1 score for the minority label 1. This can mean either low false positives or
low false negatives only for the minority class.

The average accuracies of both methods are shown in table 4.4 . SVC shows low
accuracy across targets, with values ranging from 0.44 to 0.54. However, random
forests show much better performance averaging 0.8 across targets, outperforming
SVC.

31

Table 4.3: Classification Results by Model and Category with SMOTE

Target Method Label Precision F1-Score

gee coded
Random Forest

0 0.78 0.80
1 0.81 0.79

SVC
0 0.73 0.58
1 0.25 0.33

gei coded
Random Forest

0 0.80 0.81
1 0.80 0.79

SVC
0 0.74 0.64
1 0.28 0.35

gie coded
Random Forest

0 0.80 0.82
1 0.82 0.80

SVC
0 0.74 0.50
1 0.26 0.37

gii coded
Random Forest

0 0.79 0.82
1 0.84 0.80

SVC
0 0.75 0.53
1 0.25 0.36

Table 4.4: Classification Accuracies by Model and Category with SMOTE

Target Method Average Accuracy

gee coded
SVC 0.48
Random Forest (SMOTE) 0.79

gei coded
SVC 0.54
Random Forest (SMOTE) 0.80

gie coded
SVC 0.44
Random Forest (SMOTE) 0.81

gii coded
SVC 0.46
Random Forest (SMOTE) 0.81

32

Chapter 5

Discussion

Changing the problem from a 4-class problem into a binary classification one helped
increase the learning capabilities of the random forest classification model, that is,
when SMOTE is applied.

Applying advanced machine learning techniques can help in parameter extraction
by being able to differentiate different kinds of neuronal activity and the rela-
tionship to the parameters that can have originated from. Data from neuronal
network simulations is extremely complex, that is why different approaches must
be explored and also different combinations of approaches, in this case it was the
combination of SMOTE with an ensemble algorithm that provided the better accu-
racy, yet, 80 percent accuracy suggests there is much more room for improvement
in future research. It also must be taken into account that advanced machine
learning techniques must be coupled with a mindful feature engineering process.

The methodology of metamodelling can help also neurologists as it can help if they
require a specific data analysis approach for interpreting patient data. As neuro-
biologists deal with much patient data with many aflictions (like Alzheimer and
Parkinson disease); the approach presented here could be adapted to the interpre-
tation of spiking neural network data aiding in interpretability when coupled with
other techniques. Using this approach could help in characterizing edge behaviors.

Research on the area is constantly updating and growing. From using HC-PLSR
in 2012 to a robust approximate bayesian computation approach in latter years,
data intensive approaches have gained popularity and efficiency.

33

5.1 Interpretation of results

The accuracies of both SVC and Random Forest with regular sampling suggest
that neither approach effectively distinguishes between the 4 classes of the sub-
parameters, while the Random forest + imbalanced labeling + SMOTE method
is the one that has the highest accuracies across labels and across subparameters,
averaging 80 percent accuracy. By artificially generating samples from the minor-
ity class, SMOTE helps the model generalize and be able to increase its prediction
accuracy, precision, and F1 scores. Results can be summarized as:

1. SCV and Random forest with quartile based labeling: Both methods show
very low accuracy, 25% for a 4 class problem suggests a performance near
random chance. This shows that the models are not learning from the data
based on the engineered features used.

2. SVC with imbalanced labeling and SMOTE; the performance is similar as
in the previous case, the changes in sampling had no effect in improving the
75% accuracy that, for this imbalanced labeling, is an accuracy near random
chance.

3. Random forest with imbalanced labeling and SMOTE: the average accuracy
rose to 80% when using this combination of techniques.

Comparing the performance of the classifiers used in this study shows that even
using robust machine learning methods coupled with data analysis best practices
and feature engineering can fail to capture the complexities of the data without
the right sampling approach. Using SMOTE increased the performance of the
Random Forest algorithm, yet further steps may be needed to help the model
generalize better from the dataset and increase its accuracy.

The other models, having a performance of 25, 25, 75 percent respectively fail
to capture the data’s complexity, but this could be improved by different feature
engineering or sampling techniques in future research. Such low performance could
be improved by more data but the addition of data would be more useful to
improve the accuracy of the Random forest + SMOTE as it is already more suited
to interpret data.

Performance metrics in imbalanced datasets can be misleading, and a high overall
accuracy mean not reflect the algorithms ability to correctly classify the minority
class. Using SMOTE can help solving this issue but the inclusion of actual addi-
tional data representing the minority class may be able to boost the performance.

34

5.2 Reflection on Research Questions

• How does the categorization of synaptic strengths into ”high” and ”low” im-
pact the predictive accuracy and interpretability of machine learning models
in identifying key dynamics within neural networks?

This helps in recognizing parameters closer to the edges, as they show a character-
izable behavior by the models. The dynamics within neural networks are complex
and more data and studies are needed to properly characterize them; the approach
taken in this research helps in providing an initial framework to analyze this data.
Turning continuous synaptic strength values into binary categories can also help
in the interpretability of the relationships of neuron dynamics and the parameters.
An application for such capabilities may be in medical diagnosis as edge behavior
associated with pathologies may be detected, as well as the detection of the effec-
tiveness of treatments. However, categorizing synaptic strengths into 2 labels may
result in loss of information and oversimplification of the neural dynamics.

• Can a metamodelling approach improve the selection and tuning of machine
learning algorithms for modelling synaptic strength dynamics in neural net-
work simulations, leading to more efficient generalization across different
network configurations?

Yes, but more research and data are needed. The mere comparing of different
algorithms may provide insights of the data, as some may work better than others
that can be considered a result on itself. Each model approach responded differ-
ently, giving a high variability in the effectiveness of the models. This variation
is what makes metamodelling a relevant framework for working with this kind of
data. More complex configurations of networks may face more or different issues
when predicting parameters from behavior; that is field for further research.

35

Chapter 6

Conclusion

Modelling complex dynamic systems is a complicated task, time and resources
intensive. Characterizing such a model and predicting its behavior from the data
it generates, as well as reverse engineering the parameters that gave way to a
certain behavior of the model can be useful for researchers. The latter approach
was the focus of this research, aiming to bridge the gap between inputs and outputs
of a model to be able to make more precise simulations, narrowing the parameter
space that would be used to generate a particular behavior of the system.

The benefit of using this approach is that it allows for a first interpretation/pre-
diction stage based on the data that is fed to the metamodel. This approach is
designed for dealing with simulated data from the NEST simulator and focusing
on the interactions of two populations; one excitatory and one inhibitory. In this
case the output of those simulations are spike trains in the shape of timestamps.
Based on the extracted and aggregated characteristics of these spike trains be-
longing to a set of labeled parameters, the metamodel based on Random Forests
with imbalanced labelling and SMOTE is able to have an 80 percent overall accu-
racy in classifying neural activity with labeled network parameters. Being able to
have such classification can help researchers explore edge cases (when the param-
eters are in the fourth quartile of their distribution); this can also be due to these
parameters showing more extreme behavior, which is captured by the metamodel.

When analyzing data from such a complex system as NEST, which attempts to
emulate the even more complex brain, one runs into many difficulties as stochastic
complex systems’ behavior is problematic to model and to predict. The dynamics
the parameters play in the simulations to give way to the spike train behavior are
obscured by the many distinct combinations that can occur and by the nature of

36

the system itself. Just applying bare machine learning methods, however advanced
as they may be was not enough to elucidate the behavior of the system; powerful
classification models failed to capture the data’s behavior for predictions above
random chance. Even when applying advanced sampling techniques, the perfor-
mance has much more room to improve. It is important to note that since each set
of parameters were coupled with 100 simulations data had to be aggregated so that
the dimensions of the inputs and outputs of the metamodel fit. This aggregation
was done on extracted features of the spike trains, from mean firing rate to the
fano factor. Different data engineering and/or data aggregation techniques may
be applied to either the parameters or the spike trains in future research.

Research could be focused on time series analysis or non-linear dynamics that may
provide deeper insight into neural interactions. More advanced machine learning
techniques may also be explored; neural networks in the many varieties could be
better suited to deal with the nature of the data.

37

Bibliography

[1] T. Trappenberg, Fundamentals of Computational Neuroscience, OUP Oxford,
2010.

[2] David Sterratt, Bruce Graham, Andrew Gillies, and David Willshaw, Princi-
ples of computational modelling in neuroscience, Cambridge University Press,
2011.

[3] Kristin Tøndel, Jon Olav Vik, Harald Martens, Ulf G Indahl, Nicolas Smith,
and Stig W Omholt, “Hierarchical multivariate regression-based sensitivity
analysis reveals complex parameter interaction patterns in dynamic models,”
Chemometrics and Intelligent Laboratory Systems, vol. 120, pp. 25–41, 2013.

[4] Alan L Hodgkin and Andrew F Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,” The
Journal of physiology, vol. 117, no. 4, pp. 500, 1952.

[5] Anthony N Burkitt, “A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input,” Biological cybernetics, vol. 95, pp. 1–19, 2006.

[6] Nicolas Brunel, “Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons,” Journal of computational neuroscience, vol. 8,
pp. 183–208, 2000.

[7] Tobias C Potjans and Markus Diesmann, “The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking network
model,” Cerebral cortex, vol. 24, no. 3, pp. 785–806, 2014.

[8] Marc-Oliver Gewaltig and Markus Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, pp. 1430, 2007.

[9] Marc-Oliver Gewaltig, Abigail Morrison, and Hans Ekkehard Plesser, “Nest
by example: an introduction to the neural simulation tool nest,” Computa-
tional systems neurobiology, pp. 533–558, 2012.

38

[10] Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski,
Variability of spike trains and neural codes, p. 168–201, Cambridge University
Press, 2014.

[11] Sebastian Raschka and Vahid Mirjalili, Python machine learning: Machine
learning and deep learning with Python, scikit-learn, and TensorFlow 2, Packt
publishing ltd, 2019.

[12] Leo Breiman, Classification and regression trees, Routledge, 2017.

[13] Leo Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

[14] Corinna Cortes and Vladimir Vapnik, “Support-vector networks,” Machine
learning, vol. 20, pp. 273–297, 1995.

[15] Khaled Fawagreh, Mohamed Medhat Gaber, and Eyad Elyan, “Random
forests: from early developments to recent advancements,” Systems Science
& Control Engineering: An Open Access Journal, vol. 2, no. 1, pp. 602–609,
2014.

[16] Dustin Boswell, “Introduction to support vector machines,” Departement of
Computer Science and Engineering University of California San Diego, vol.
11, 2002.

[17] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer, “Smote: synthetic minority over-sampling technique,” Jour-
nal of artificial intelligence research, vol. 16, pp. 321–357, 2002.

[18] Cesar Gonzalez-Perez and Brian Henderson-Sellers, Metamodelling for soft-
ware engineering, Wiley Publishing, 2008.

[19] Dong Zhao and Deyi Xue, “A multi-surrogate approximation method for
metamodeling,” Engineering with Computers, vol. 27, pp. 139–153, 2011.

[20] Anja Stene, “Metamodelling of simulation results from brunel’s neural net-
work model using local multivariate regression (hc-plsr),” M.S. thesis, Nor-
wegian University of Life Sciences, Ås, 2020.

[21] Harald Martens, Kristin Tøndel, Valeriya Tafintseva, Achim Kohler, Erik
Plahte, Jon Olav Vik, Arne B Gjuvsland, and Stig W Omholt, “Pls-based
multivariate metamodeling of dynamic systems,” in New Perspectives in Par-
tial Least Squares and Related Methods. Springer, 2013, pp. 3–30.

39

[22] Kristin Tøndel, Ulf G Indahl, Arne B Gjuvsland, Stig W Omholt, and Harald
Martens, “Multi-way metamodelling facilitates insight into the complex input-
output maps of nonlinear dynamic models,” BMC systems biology, vol. 6, no.
1, pp. 1–21, 2012.

[23] Kristin Tøndel and Harald Martens, “Analyzing complex mathematical model
behavior by partial least squares regression-based multivariate metamodel-
ing,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 6, no. 6,
pp. 440–475, 2014.

[24] Kristin Tøndel, Ulf G Indahl, Arne B Gjuvsland, Jon Olav Vik, Peter Hunter,
Stig W Omholt, and Harald Martens, “Hierarchical cluster-based partial least
squares regression (hc-plsr) is an efficient tool for metamodelling of nonlinear
dynamic models,” BMC Systems Biology, vol. 5, no. 1, pp. 1–17, 2011.

[25] Jan-Eirik W Skaar, Alexander J Stasik, Hans Ekkehard Plesser, Gaute T
Einevoll, and Kristin Tøndel, “Metamodelling of a two-population spiking
neural network,” bioRxiv, pp. 2022–09, 2022.

[26] R Jacob Vogelstein, Kartikeya Murari, Pramodsingh H Thakur, Chris Diehl,
Shantanu Chakrabartty, and Gert Cauwenberghs, “Spike sorting with support
vector machines,” in The 26th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE, 2004, vol. 1, pp. 546–549.

40

Appendix A

Appendix 1: AI Usage

I am aware of the AI Usage regulations at NMBU as found here. This appendix
will explain which AI tools were used and how.

• Perplexity: This tool was used in combination with search engines to find
relevant literature. Perplexity works as an AI powered search engine, I was
able to ask very specific questions or provide more context to my searches
when using this tool, as well as expanding the searches on the results it
already provided. Perplexity gives the sources, links to the sources, and
a short overview or outline of the contents included. The content created
by Perplexity was also important to understand if the sources it provided
were relevant at a glance, and all the sources used in the work provided by
Perplexity were accessed, reviewed, and, when possible, downloaded. Some
examples of the uses are:

– ”What was the first paper to show SVM?”

– ”What are use cases for metamodelling applied in parameter estimation
on synthetic neural data?”

∗ what sources are the most relevant in parameter estimation in the
context of neural data coming from the NEST simulator?

• ChatGPT: GPT4 was used for many tasks; to quickly outline and summarize
long or complex sources, explain hard to understand terms in them, and find
relationships (either similitudes or differences) between pieces of information.
It was also used to generate quick outlines of subsections. Content output
from ChatGPT was fact-checked and reviewed.

41

https://www.nmbu.no/en/faculties/faculty-science-and-technology/kunstig-intelligens-ved-realtek

– ”From this text insert text 1 here, provide me with a short overview of
the key points”

∗ ”The term insert term in your assessment is not clear, explain it in
simpler terms”

∗ ”From the context of your previous response, what is the link of
that information with insert text 2 here and inser text 3 here in the
context of (i.e. metamodelling, classification in machine learning,
etc)”

∗ ”From your previous response and in the same context, provide a
comprehensive yet simple outline that would encompass the infor-
mation I provided”

• Grammarly: Grammarly was used extensively for grammar correction and
sentence structure correction suggestions. This tool works on text I have
written, with autocorrect (not accurate all the time) and sentence structure
suggested changes (some I have applied, some I have not). Grammarly also
has generative AI, but this feature was not used in this work.

42

	Introduction
	Background
	Problem Statement
	Research Questions
	Objectives
	Scope and Limitations

	Theory
	Fundamentals of Neuronal Network Dynamics
	Neuron Dynamics
	Neuron Modelling
	Neural Summary Statistics

	Machine learning classification fundamentals
	Decision Trees and Random Forests
	Best practices
	Handling of Imbalanced Datasets

	Metamodelling
	Evaluation metrics

	Methodological Framework
	Design of Research
	Data Generation and Exploration
	Data Preparation
	Input preparation
	Output preparation

	Application of Metamodelling Techniques

	Results
	Classification results without augmentation
	Classification results with data augmentation

	Discussion
	Interpretation of results
	Reflection on Research Questions

	Conclusion
	Appendix 1: AI Usage

