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Abstract
Accurate customer churn prediction is important for businesses seeking to

retain their valuable customers who might churn. A new method to accurately

predict which customer might churn is machine learning models. These models

learn from prior labeled data to make informed predictions. However, many

businesses, such as smaller- or startups businesses do not have access to an

abundance of data for the model to learn from. Few-shot learning, a subfield

of machine learning, presents a potential solution by enabling accurate pre-

dictions even with limited labeled training data.

Siamese networks is a machine learning model, typically known for Few-shot

learning scenarios within image classification. This thesis investigates its po-

tential to adapt its Few-shot learning capabilities into the realm of tabular

data, specifically within telecommunication churn prediction. The thesis will

aim to answer whether Siamese networks are a viable option in telecommu-

nication churn prediction when using tabular data, as well as, how effective

they are in improving the accuracy of Few-shot learning models when applied

to telecommunication customer churn prediction.

The methodology taken in use involves feature pre processing, consisting of

feature encoding, feature scaling and SMOTE. SMOTE addresses the common

challenge of class imbalance usually experienced when working with churn pre-

diction data. A specialized pairing function was also made to prepare the data

for the Siamese network as pairs. The evaluation of the dataset was performed

on two telecommunication churn datasets, Orange and IBM. The model was

also put up against other traditional machine learning models in a compara-

tive analysis to get a benchmark and provide context for the Siamese network

performance relative to well-known alternatives.

Results from the evaluation showcased impressive results from the Siamese

network on tabular data, it achieved 82.4% on the IBM dataset & 93.0% on

the Orange dataset for the lowest sample size (5 churn, 25 non-churn) outper-

forming all other traditional models with a sizeable margin. It also had good

results on the whole datasets reaching 83.6% & 94.4% for the IBM- and Orange

datasets respectively (only surpassed by Random Forest on both instances).

The study concludes that Siamese networks offer a new approach for tabular

churn prediction, especially within the subfield of Few-shot learning. Thereby,

the applicability of Siamese networks is extended beyond image classification.



Sammendrag
Nøyaktig kundeavgangsforutsigelse er avgjørende for bedrifter som ønsker

å beholde sine kunder. Maskinlæringsmodeller presenterer en ny metode for

å forutsi hvilke kunder som kan komme til å avslutte kundeforholdet. Disse

modellene lærer fra tidligere merket data for å gjøre informerte beslutninger.

Imidlertid har mange bedrifter, spesielt mindre bedrifter, oppstartsbedrifter

eller bedrifter uten tilgang til store mengder data, ogs̊a behov for å identifisere

kunder som kan avslutte kundeforholdet. Few-shot learning, et underfelt in-

nen maskinlæring, presenterer en potensiell løsning ved å muliggjøre nøyaktige

forutsigelser selv med begrensede mengder merket treningsdata.

Siamesiske nettverk er en maskinlæringsmodell som vanligvis er kjent for Few-

shot learning innen bildeklassifisering. Denne studien undersøker potensialet

for å tilpasse dens Few-shot learning kapasiteter til tabulære data, spesielt

innen telekommunikasjonens kundeavgangsprediksjon.

Studien tar sikte p̊a å besvare hvorvidt Siamesiske nettverk er et potensielt al-

ternativ for kundeavgangsprediksjon i telekommunikasjon n̊ar man bruker tab-

ulær data. Samt hvor effektive de er til å forbedre nøyaktigheten til Few-shot

learning modeller n̊ar de brukes p̊a kundeavgang prediksjon innen telekommu-

nikasjon.

Metodikken som er brukt inneholder forbehandling av egenskapsvariabler,

inkludert SMOTE for å adressere den vanlige utfordringen med klasseubal-

anse som ofte oppleves n̊ar man arbeider med kundeavgangsdata. En parings-

funksjon ble ogs̊a laget for å forberede dataene for det siamesiske nettverket i

par. Evalueringen ble utført p̊a to telekommunikasjonskundeavgangsdatasett,

Orange og IBM. Modellen ble ogs̊a sammenlignet med andre tradisjonelle

maskinlæringsmodeller for å f̊a et referansepunkt og gi kontekst for det Siame-

siske nettverkets ytelse i forhold til kjente alternativer.

Resultatene fra evalueringen viste imponerende resultater fra det siamesiske

nettverket p̊a tabulære data. Det oppn̊adde 82,4% nøyaktighet p̊a IBM-datasettet

og 93,0% p̊a Orange-datasettet for den minste utvalgsstørrelsen (5 avgang, 25

ikke-avgang), og overgikk alle andre tradisjonelle modeller med god margin.

Det hadde ogs̊a gode resultater p̊a hele datasettene, og n̊adde 83,6% og 94,4%

for henholdsvis IBM- og Orange-datasettene (kun overg̊att av Random Forest

i begge tilfeller). Studien konkluderer med at siamesiske nettverk tilbyr en

ny tilnærming for tabulær kundeavgangsforutsigelse, spesielt innen Few-shot

learning, og utvider dermed anvendelsen utover tradisjonell bildeklassifisering.
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1 Introduction

1.1 Background

A customer within a subscription based service provider becomes a ”churner” when the

customer decides to discontinue the service. The customer can either churn to a competi-

tor or churn by deciding they no longer require the service. i.e. churn is customer turnover.

Churn is a key element for companies where a customer can easily switch to a competitors

service [1].

Churning customers can be divided into two groups, where one group is defined as invol-

untarily churners, customers which are forced to terminate the subscription because of

issues regarding payment or contractual violation. The other group is voluntarily churners,

these churn as a result of themselves making a conscious decision to cancel the subscrip-

tion with the company. Because they found a cheaper, more advanced or better quality

subscription somewhere else. These kind of churners are more difficult to identify, but is

also the group which is of interest of the company to identify [12].

Retaining existing customers through customer retention methods for businesses has a

much lower cost, between 5 to 10 times, than the cost of selling to a new customer.

Long lasting customers are of more value than new customers, i.e a customer who has a

nine-year relationship would be more valuable than a new customer. The same goes for

four-year relationship customer up against a nine-year relationship customer ([28] as cited

in [22]).

In the telecommunication service sector loss of valuable customers through churn to com-

petitors is a common phenomenon. There has been a liberalisation of the market, opening

up for new competitors and several actors in the field, all competing for the same cus-

tomers. Businesses present deals, new services and technologies to attract customers to

their business rather than a competitor. Customer churn has become a central challenge

for businesses within telecommunication services.

As the challenge for customer retention grows, the market gets more competitive and

the use of advanced technologies to find a solution against customer churn becomes crit-

ical. The world is becoming more data based, opening the possibility of using advanced

analytical tools to address these challenges effectively.

Machine learning has revolutionized the way data is analyzed and interpreted across

different domains. In its essence, machine learning takes in use algorithms to parse data,

use data to learn, and make informed decision based on what it has learned. By combining
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computer science with statistics, machine learning enables predictive modeling without

having to perform explicit programming for each and every task.

By having the ability to predict when or which customers are at risk of churning enables

companies to implement customer retaining strategies, thereby reducing churn rates and

increasing customer lifetime values. Machine learning has emerged as an important tool

in identifying potential churners by analyzing patters in customer data and predicting

customer behaviour.

Extensive research has been conducted on the application of machine learning techniques

to identify customers at risk of churn, significantly benefiting the sector. This body of

work, complemented by numerous surveys, underscores the potential of machine learning

algorithms to predict customer behavior and inform retention strategies effectively [2]

[22] [33].

1.2 Problem statement

The thesis will address the following statements:

• While Siamese networks have demonstrated efficacy in few-shot learning for image

and text data, their application to tabular data remains underexplored.

• Predicting customer churn with high accuracy and remains a challenge for busi-

nesses, especially with limited labeled data.

1.3 Research questions

The thesis will address these problem statements and contribute to the field by exploring

these research questions.

• How does the performance of Siamese networks compare to traditional machine

learning models in churn prediction tasks using tabular data?

While Siamese networks have traditionally been applied to image and text data, their

efficiency when dealing with tabular data remains underexplored. By evaluating its per-

formance up against baseline models in customer churn prediction, it can establish a

benchmark for its applicability in the tabular domain.

• How effective are Siamese networks in improving the accuracy and efficiency of few-

shot learning models when applied to customer churn prediction?
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Siamese networks have demonstrated notable success in Few-shot learning for image clas-

sification, its applicability to Few-shot learning for tabular data is underexplored. Will it

be possible to transfer its success onto tabular data?

1.4 Objectives

Evaluate the effectiveness of Siamese networks using tabular data, by attempting to trans-

fer its success in Few-shot learning in image classification to classification of tabular data.

Assess its performance on churn prediction, evaluating its performance through several

evaluation metrics. This includes comparing the performance of the Siamese network with

different traditional machine learning approaches.

Investigate the positive impact of various feature pre processing techniques, on Siamese

networks. Applying them to the model trying to improve its performance on churn pre-

diction in a Few-shot learning environment. Specifically Synthetic Majority Oversampling

Technique (SMOTE) and pair generation functions for the Siamese network.

1.5 Aim & scope & limitations

The aim of this thesis is to broaden the field of Siamese networks on tabular data. Through

research to provide insights into the potential of Siamese networks on churn prediction,

while focusing on a Few-shot learning environment.

This encompasses

• A performance review on IBM and Orange telecom churn prediction through eval-

uation metrics such as accuracy, F1-score, ROC/AUC and confusion matrix’s.

• Exploring feature pre processing techniques to handle common challenges, such as

class imbalance, within churn prediction.

• Analysis of the Siamese network on churn prediction in a regular and Few-shot

learning environment. Compare the results up against other machine learning models

to establish a baseline.

Limitations Some limitations within the study:

The models performance is within churn prediction and might not be applicable to other

data types or industries.

The thesis explores a specific set of feature pre processing techniques (SMOTE etc), and
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therefore does not cover all other beneficial methods which will not be covered in the

study.

The performance difference on the two different datasets used in the thesis suggests the

performance results, while performed on baseline models, does not directly apply to data

collected by all telecom businesses and does not warrant the same results.
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2 Literature review

The field of churn prediction is a rapidly evolving field, driven by both businesses need to

retain their customers and advancements within machine learning. This literature review

examines different methodologies employed in recent studies, highlighting their method-

ology, results and limitations. This is to provide a comprehensive foundation for under-

standing the field of churn prediction as well as emerging trends.

2.1 Review of related literature

The following table is made up of relevant studies on churn prediction between 2018 and

2023.
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Table 1: Summary and key takeaways from various relevant churn prediction studies within the research area

TITLE DATA PRE-

PRO

MODEL METRICS LIMITS RESULT KEY

TAKE-

AWAY

YEAR

Prediciting

customer

churn

prediciton

in telecom

sector

using

various

machine

learning

tech-

niques [11]

Telco

Cus-

tomer

Churn

Basic

transfor-

mation

and pre-

processing

LR,

SVM,

RF,

GBT

ROC,

AUC

Gradient

Boosting-

84.57%

Boosting

performed

the best.

SVM

performed

the worst.

2018

Churn

Prediction

in

Telecom-

munica-

tion using

Logistic

Regression

and Logit

Boost [16]

Orange Removed

some

features

(Nan

values &

Redun-

dant)

LR, LB Kappa

Statistics,

MEA,

RMSE,

ROC, F1,

Recall,

Precision

Using

stan-

dalone

tech-

niques

rather

than

hybrid

models

ROC

LR-

85.24%

LB-

85.19%

Recommends

hybrid model

with

embedding in

future. Wants

to attempts

SVM.

2019

Continued on next page
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Churn

Prediction:

A Com-

parative

Study

Using

KNN and

Decision

Trees [13]

Orange Filters to

remove

noise

DT,

KNN

Accuracy,

Recall,

Precision,

F1, ROC,

AUC

Over

coming

Raw

data

Accuracy

KNN-

86.8%

DT-

92.6%

DT had

slight better

accuracy, but

KNN had

better TP,

performing

better for

churn

prediction.

2019

Customer

churn

prediction

in telecom

using

machine

learning in

big data

plat-

form [17]

Orange

(9

months

of

data)

Used

pearson to

remove

features.

Used

K-fold for

hyperpa-

rameter

tuning.

Used mean

for Nan

values.

XGboost

DT,

RT,

GBM

AUC Data

imbal-

ance

AUC

XG-

BOOST

Syriatel-

93.301%

XG-

BOOST

orange

dataset-

89%

XGboost

performed

the best.

Solved

imbalance by

under

sampling &

tree

algorithms.

Introduced

Social

Network

Analysis

using

connection

between

customers as

data.

2019

Continued on next page
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A Churn

Prediction

Model

Using

Random

Forest:

Analysis of

Machine

Learning

Techniques

for Churn

Prediction

and Factor

Identifica-

tion in

Telecom

Sector [30]

Orange Removed

noise

Feature

selection

(Informa-

tion gain

and Corre-

lation

attributes)

RF Accuracy,

TP rate,

FP rate,

Precision,

Recall, F1,

ROC

Nan

values

in new

data to

predict

on.

Reason

for

churn is

not

given.

Accuracy

88.63%

Clusters

churn

customers

into groups

using cosine

similarity

opening up

for group

based

retention

methods (k

means

clustering).

2019

Customer

churn

prediction

system: a

machine

learning

ap-

proach [19]

Telco

Cus-

tomer

Churn

Variance

Analysis,

correlation

matrix,

GSA for

feature

selection

LR,

DT,

Ad-

aBoost,

KNN,

RF,

NB,

SVM,

Xg-

Boost

Recall,

Precision,

TP, TN,

Accuracy,

F1, AUC

Adaboost-

81.71%

XGboost

80.8%

Were the

two most

consis-

tent

perform-

ers

In depth

review of K

fold cross

validation &

and confusion

matrix.

2021

Continued on next page
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Integrated

Churn

Prediction

and

Customer

Segmenta-

tion

Frame-

work for

Telco

Busi-

ness [33]

Telco

Cus-

tomer

Churn

SMOTE,

goes

through

several

oversam-

pling

techniques

on telecom

churn.

Relevant

and well

literature

review.

AdaBoost Precision,

Recall, F1,

ROC,

AUC

Data

imbal-

ance

Model

F1-

63.11%

AUC-

84.52%

Accuracy-

77.19%

Customer

segmentation

after

prediction

providing

likelihood of

churning as

well. SMOTE

2021

Telecom

Churn

Prediction

System

Based on

Ensemble

Learning

Using

Feature

Group-

ing [36]

Orange Equidistant

grouping

(sturges

formula).

Feature

grouping,

ensemble

system &

model

stacking w

soft

voting.

Ensemble

learning

(soft

voting)

Xg-

Boost,

LR,

DT, NB

Accuracy,

Precision,

Recall, F1

Model

Accuracy

Orange-

96.12%

Accuracy

Newdata-

98.09%

Equidistant

grouping

Stacking

models,

achieving

10% better

performance
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The studies emphazises on the importance of proper pre-precossing of data to improve

model performance. Comprising of noise removal, handling missing values and feature

processing. Several studies handle the challenge of class imbalance which is common in

churn prediction. Synthetic Minority Over-sampling Technique (SMOTE) and under sam-

pling are some of the methods used to help balance the data.

The reviewed studies showcase a wide range of different model approaches, Logistic Re-

gression, Support Vector Machines and Random Forest are some examples. More recent

studies, particularly from 2021 and onwards, demonstrate a tendency to use deep learning

techniques and combined models. These models often achieve higher accuracy.

To the best of our findings, only few works tried to tackle the problem of churn prediction

as Few-shot learning.

The findings on relevant research studies on prediction through machine learning sets

foundation for methodologies used in our thesis.

2.2 Limitations of Related Works

1. Data Preparation Challenges [13]: The process of overcoming raw data challenges

and preparing data for analysis is a critical hurdle. This includes issues such as

handling missing values, dealing with noisy data, and extracting meaningful features

that accurately represent customer behavior and probability to churn.

2. While churn prediction has been extensively studied, there is limited exploration of

Few-shot learning approaches for churn prediction.

3. Unbalanced Datasets [17] [33] [29]: A recurring challenge in churn prediction is

the inherent imbalance in datasets. Typically, the proportion of customers who

churn is significantly lower compared to those who do not. This imbalance poses a

significant challenge in training predictive models, as it can lead to biased predictions

and reduced model sensitivity to the churn class. Consequently, this highlights the

importance of handling this problem in a Few-shot learning setting.

4. Handling of NaN Values and Unknown Churn Reasons [30]: The presence of NaN

values in datasets, and the lack of explicit reasons for customer churn, add complex-

ity to modeling churn. These factors can obscure underlying patterns and hinder

the model’s ability to learn effectively from the data.
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3 Theoretical Framework

In this chapter we will explore important theory relevant to the thesis. We examine differ-

ent advanced learning techniques, specifically One-shot learning, Few-shot learning and

Zero-shot learning. These techniques allow for significant learning within machine learn-

ing models from minimal data input. Further on, we discuss different distance metrics.

Distance metrics are a core part of Siamese networks and other similarity based learning

methods. The theory within Siamese networks is explored to finish off the section, going

through its inner workings, different data embedding techniques, loss functions and eval-

uation metrics relevant to itself.

By exploring the theory, we aim to provide a robust understanding of modern machine

learning techniques and the core theory within Siamese networks.

3.1 Advanced Learning Techniques

Traditional machine learning often thrives on large, well labeled datasets. However this

is not always the case in real-world scenarios. Many real-world scenarios have to deal

with constraints such as limited data or limited labeled data. This could be attributed

to factors such as, the cost of data acquisition, time sensitivity or the rarity of a certain

event. We delve into one-shot learning where the focus is on achieving high accuracy with

a single example, few-shot learning which extends this concept to slightly more but still

limited data, and zero-shot learning that attempts to classify new classes without any

labeled examples. These techniques not only enhance the model’s ability to generalize

from minimal data but also open new avenues for machine learning applications in fields

where traditional data-hungry models would fall short.

3.1.1 One-Shot Learning

One-shot learning is a subfield within machine learning. It tackles a unique challenge of

learning and classifying data with extreme scarcity of labeled data. Unlike traditional

machine learning where models operate on large datasets, one-shot learning are for data

limited conditions. Thus making it relevant for real-world scenarios where labeled data is

scarce. Examples of such scenarios where One-shot learning is relevant are rare medical

disease, new technologies or malfunctioning equipment. One-shot learning is when the

model is trained on a single sample of each class, and then used to predict on unlabeled

data.

One-shot learning focuses on estimating similarity between new unseen data, and the
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limited labeled data it has trained on. Taking in use distance metrics to estimate how close

unseen data is to already known examples, further discussed in section 3.2. There are also

several challenges presented with One-shot learning. Limited data can cause the model to

struggle with generalizability on unseen data. The importance of data augmentation and

feature pre processing is paramount to extract maximum information from the limited

labeled data available.

3.1.2 Few-Shot Learning

Few-shot learning is another subfield within machine learning, it addresses the challenge

of learning and making predictions on data with a limited number of labeled data. This

is a step up from the extreme data scarcity of one-shot learning, but still significantly

less data than traditional machine learning approaches. Few-shot learning is valuable in

situations where obtaining labeled data is possible, but still restricted due factors such as

cost, time or rarity. Rare animals or in our case churn prediction with a limited amount

of churning samples, are some scenarios where few-shot learning might come in handy.

In its core few-shot learning is similar to One-shot learning, it builds upon the similarity

based learning presented in the One-Shot learning subsection, using a distance metric.

It is also presented with the same challenges seen when using One-shot learning, it can

struggle to generalize on unseen data. In our churn case, models can exhibit behaviour

where they favor the majority class.

Few-shot learning allows an insight into models behaviour when working with fewer sam-

ples. This scenario, in our study, is presented as churn cases. As in real-world scenarios

on churn will have fewer churn customers, than nonchurn. By employing several different

data augmentation techniques, seen in section 4.2.1, we can test the benefits of similarity

learning through Siamese networks for Few-shot learning.

3.1.3 Zero-Shot Learning

Zero-shot learning is a machine learning scenario, which challenges the traditional require-

ment of training examples for every class. Zero-shot learning models are trained to be able

to recognize and categorize data which it has not yet observed through training.

This is done through auxiliary information, such as, textual description and attributes.

For example if there is need to diagnose a novel disease based on the symptoms alone.

Zero-shot learning is a research area that still is vibrant. There is efforts on addressing

these challenges, by improved embedding or improving the auxiliary information.
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3.2 Distance Metrics

Distance metrics are important in machine learning, particularly for similarity based mod-

els such as Siamese networks. They are a way for the model to measure the similarity or

dissimilarity between data, directly influencing performance in classification. In Siamese

networks the distance metric decides how similarity between data points is calculated.

Pairs which has a high distance metric value between them would be dissimilar, while

a pair with a low distance metric between them would be similar. The measurement of

distance directly affects the loss of the model, forming the backbone for training, driv-

ing the network to learn discriminative features that distinguish between churning and

nonchurning customers. Distance metrics commonly used with Siamese networks include:

• Euclidean distance, represents the geometric distance in the n dimensional space.

In lament terms it represents the straight line distance between two points in Eu-

clidean space. It is given as: d(A,B) =
√

(a1 − b1)2 + (a2 − b2)2 + ...+ (an − bn)2,

where A = a1, a2...an and B = b1, b2...bn represents two points.

• Cosine distance, measures the cosine of the angle between the two vectors in

the embedding space. Cosine similarity comes in handy when the magnitude of

the vectors are not as important, but rather their directions. For two vectors A =

(a1, a2, ..., an) and B = (b1, b2, ..., bn) the cosine similarity is given by: cos(θ) =∑n
i=1 aibi√∑n

i=1 a
2
i ·
√∑n

i=1 b
2
i

• L1 distance, measures the distance between two points. It is the sum of absolute

differences of their corresponding features across n dimensions. Its formula is given

by D(A,B) =
∑n

i=1 |ai − bi|, where A & B represents the data points.

• Pearson distance, measures the correlation between two variables, giving an indi-

cation on how much they are related. A high value, close to 1, indicates the variables

move in the same direction, a negative value, close to -1,indicate they move in oppo-

site directions. Lastly, values close 0 indicate no relationship. The pearson distance

is calculated by: Pearson Distance = 1−
∑

(xi−x̄)(yi−ȳ)√∑
(xi−x̄)2

∑
(yi−ȳ)2

Each distance metric being optimally suited for different application areas.

3.3 Siamese Network

A SNN is a neural network which is made up of two or more identical sub-networks.

The sub-networks are referred to as ”twins”, as they have identical configurations, pa-

rameters and weights. Both sub-networks in a Siamese network are mirror images of each
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other in terms of architectural design, operational parameters and updating of weights.

both sub-networks (twins) share identical architectures and parameters. During the back-

propagation process, when updating the network’s weights, these updates are applied

equally to both sub-networks. This ensures that any learning or adjustments made by the

network in response to the input data are consistently reflected across both halves of the

Siamese architecture.

Figure 1: Showcasing a traditional Siamese network structure

Siamese networks are designed to learn embeddings such that similar items are closer

together, and dissimilar items are farther apart in this space. The quality of embeddings

directly influence the models performance. By capturing the essential characteristics of

the input data, they can determine the level of similarity or dissimilarity. Once the inputs

are transformed into embeddings, Siamese networks use a distance metric to define the

similarity between the embeddings [9].

One of the key advantages of Siamese networks is its efficiency in learning from limited

data. The network focuses on learning a similarity function, which makes it possible to

generalize from a small number of examples, making them suitable for few-shot-learning

or one-shot-learning scenarios. They are also able to classify new data without having to

retrain the network [18].

Siamese networks are designed to learn a similarity metric or distance measure between
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the inputs. They are known to excel and achieve results when working on tasks like image

verification and authorship verification. It performs well in situations where it is required

to compare and measure between pairs of data points, which is why it doesn’t require

large amounts of data to perform well [10] [18].

3.3.1 Data Embedding Techniques

Embeddings transform complex data types, in our case tabular data, into a high-dimensional

vector. These vectors capture important features enabling algorithms to process similar-

ities and differences more effectively. Embeddings provide a dense vector space where

geometric distance correlate with the similarity between items.

Siamese networks use embeddings to compare input pairs. Each sub-network within the

Siamese network has shared weights, processing inputs independently. The output of these

sub-networks come out as embeddings. They are then compared using distance metrics,

Cosine-, Euclidean-, Pearson- or L1 distance to analyze its similarities. Embeddings are

optimized throughout training, using a loss function, ensuring similar items are close in

vector-space while dissimilar items are distant. Enhancing the networks predictive perfor-

mance.

3.3.2 Loss Function

Loss functions play a crucial role in guiding models towards optimal performance. Loss

funtion has a few roles, for a pair of similar items, the loss function will penalize the model

if their embeddings are far apart in the embedding space. This encourages the network

to learn to bring embeddings of similar items closer.

Conversely, for a pair of dissimilar items, the loss function will penalize the model if their

embeddings are too close together. This encourages the network to push embeddings of

dissimilar items further apart.

There are several different loss functions applicable to Siamese networks. Some common

loss functions for Siamese networks are

• Contrastive Loss, in the context of Siamese networks considers a pair. It takes the

output of the Siamese network, learning embeddings from the output, by bringing

similar samples closer together and pushing dissimilar samples further apart. In

other words the loss is low if positive pairs are encoded to similar depictions and

negative pairs are encoded to dissimilar depictions. Its is designed to handle pairs

of items.

The formula for contrastive loss with a distance d, a label y telling if they are similar
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(0) or not (1) and m deciding how far apart dissimilar pairs should be pushed, can

be formulated as L(y, d) = (1− y)1
2
d2 + y 1

2
max(0,m− d)2

• Triplet Loss, extends the idea of contrastive loss considering triplets of samples at

a time. It takes in an ”anchor”, a positive example (same label as anchor) and a

negative example (different label than the anchor). The goal of the loss functions is

to decreasing the distance from the anchor to the positive example while increasing

the distance between the anchor and the negative sample. The formula for triplet

loss where d(a, p) and d(a, n) represents the distances from the anchor (a) to the

positive and negative sample respectively, L = max(0, d(a, p) − d(a, n) + margin)

(margin is a hyperparameter defining the minimum distance difference from the

anchor to the positive and the negative sample)

• Binary Cross Entropy, is mainly used in binary classification tasks, like the one in

our study (churn/nonchurn). The cross entropy function calculates the probability

of the sample being a churn sample. If the probability of a churn sample is 1, we

would need its loss to be as close to zero as possible, conversely if the probability

is low, the loss would need to be high. The formula for binary cross entropy is as

L = − 1
N

∑N
i=1 [yi log(pi) + (1− yi) log(1− pi)] where L is the loss, N is the number

of samples in the batch, yi is the true label, pi is the calculated probability. In

simple terms binary cross entropy measures the difference between the true label of

the sample and the predicted label.

3.3.3 Evaluation Metrics

This subsection will detail the evaluation metrics used to evaluate the performance of

the Siamese network developed in the thesis. We focus on the metrics used to evaluate

the Siamese network in the results section 5. Encompassing classification accuracy, the

area under the receiver operating characteristics curve (ROC/AUC), the F1 score and the

analysis provided by the confusion matrix. Each metric provides different insights into the

models performance, granting information on its specific areas of strength and weakness.

Evaluating the performance and efficacy of the model, to understand its effectiveness and

limitations.

Accuracy is the most intuituve performance measure. It is simply a ratio of correctly pre-

dicted observations up against the total number of observations. In some cases identifying

the TP, in our case churn, more valuable than other correct predictions. Accuracy can

therefore be a misleading metric in certain instances, where the minority class is more

valuable to predict correctly. Accuracy can also be deceptive in imbalanced datasets where
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the model achieves high accuracy by classifying all instances as the majority class. Even

so, the metric is a good benchmark and the most common evaluation metric.

Accuracy = TP+TN
TP+TN+FP+FN

.

Adressing the limitation of accuracy in imbalanced datasets or in datasets where TP is

more important than TN, is F1 score. The F1 score combines the models precision and

recall scores. Precision is the proportion of predicted positive cases that are actually pos-

itive, while recall is the proportion of predicted positive cases that are actually positive.

If the model predicted all labels as 0, the negative class, while 50% of the dataset was

positive, the F1 score would be 0, while the accuracy would be 0.5. The f1 score is calcu-

lated as F1-Score = 2 · Precision·Recall
Precision+Recall

The confusion matrix provides a visual summary of the models performance on a classi-

fication task. It shows the number of true and false predictions for the classes, as True

Positive (TP), False Positive (FP), False Positive (FP) and False Negative (FN).

Table 2: Table explaining the acronyms

Actual Class Predicted Class Acronym
Positive Positive TP
Positive Negative FN
Negative Positive FP
Negative Negative TN

The confusion matrix does not only give insight into metrics such as accuracy, precision,

recall and f1 score, but also the types of errors made by the model.

The last evaluation metric is the ROC curve & AUC score. The ROC curve is a visual

representation of the models performance on all different classification thresholds. It plots

the TP rate on the y-axis and the FP rate on the x-axis. Depicting the trade-off between

these two metrics. It is desired to achieve a high TPR rate with a low FPR rate. A good

results on the ROC curve would be close to the upper left corner of the graph, indicating

good TPR and FPR across all thresholds. The AUC score summarizes the performance of

the model across all different classification thresholds. A AUC of 1 would mean a perfect

model, while an AUC of 0.5 would be equal to random guessing in a balanced binary

classification problem.
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4 Methodology

The methodology includes the iterative development of a Siamese network model for simi-

larity learning within customer churn prediction. Data preparation and metrics comprised

of preprocessing, pairing functions, loss function and embedding generation.

4.1 Churn Datasets

In this section the main dataset used for this study is presented. This data contains an

analysis of customer attrition within a fictional telecommunication company, examining

customer attrition based on a multitude of different factors. The ”churn” attribute is cen-

tral, which signifies whether a customer has discontinued their services in the preceding

month. Other attributes include demographic information (such as gender and depen-

dants) and financial metrics (such as monthly charges) alongside details of the service

portfolio the customer is subscribed to. The dataset provides a foundation, allowing re-

search on the intricate dynamics of customer churn in the telecommunication industry.

Data Validation and Visualization The dataset is provided by IBM and made avail-

able through the web page Kaggle. The original dataset is made up of 21 columns and

7043 different customers.

Table 3: Identification of the Customer.

Column Name Type Description
Customer ID VarChar A unique sequence of integers and characters, represent-

ing identification for each customer.

Demographic information & social status.

The following attributes encompass demographic information about the customer, as well

as their social and family status. These attributes can help identifying different patterns

and preferences among genders, different ages. Customers with a partner or a dependant

might have different service need, preferences and usage patterns.
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Table 4: Demographic Information of Customers.

Column Name Type Description
Gender Boolean Details whether the customer is female or

male
SeniorCitizen Int Details whether the customer is a senior cit-

izen
Partner Boolean Details whether the customer has a partner
Dependants Boolean Details whether the customer has dependents

Subscription, service and payment information.

These attributes offer insight into the customers subscription details. Array of services,

payment method and other key attributes. Understanding this data is essential to identi-

fying customer engagement levels.
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Table 5: Service and Billing Details of Customers.

Column Name Type Description
Tenure Int The number of months a customer has stayed

with the company
PhoneServices Boolean Details whether the customer has a phone

service or not (Yes, No)
MultipleLines String (Categorical) Details whether the customer has multiple

lines or not (Yes, No, No phone service)
InternetService String (Categorical) Details which internet service provider the

customer has (DSL, Fiber optic, No)
OnlineSecurity String (Categorical) Details whether the customer has online se-

curity or not (Yes, No, No phone service)
OnlineBackup String (Categorical) Details whether the customer has online

backup or not (Yes, No, No phone service)
DeviceProtection String (Categorical) Details whether the customer has device pro-

tection or not (Yes, No, No phone service)
TechSupport String (Categorical) Details whether the customer has tech sup-

port or not (Yes, No, No phone service)
StreamingTV String (Categorical) Details whether the customer has streaming

TV or not (Yes, No, No phone service)
StreamingMovies String (Categorical) Details whether the customer has streaming

movies or not (Yes, No, No phone service)
Contract String (Categorical) Details the terms of the contract with the

customer (Month-to-month, One year, Two
year)

PaperlessBilling Boolean Details whether the customer has paperless
billing or not (Yes, No)

PaymentMethod String (Categorical) Details the payment method used by the cus-
tomer (Electronic check, Mailed check, Bank
transfer, Credit card)

MonthlyCharges Float Details the monthly amount charged to the
customer

TotalCharges Float Details the total amount the customer has
been charged

Churn status is the dependant variable in the dataset which we will conduct research on.

Table 6: Customer Churn Status.

Column Name Type Description
Churn Boolean Details whether the customer has churned or

not
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The original dataset is an imbalanced dataset on the dependant variable ”churn”. 5174 out

of the 7043 samples are non-churners, where merely 1869 of the samples are categorized

as churners. This is a common phenomenon when dealing with churn data. Where it is

typically observed that the number of customers who remain with a business substantially

exceeds those who decide to depart [39].

Figure 2: The distribution of the dependant variable ”Churn”

The issue of class imbalance negatively affects the performance of conventional classifica-

tion models. Models tend to exhibit favoritism towards the majority class. There is a risk

that models assign all instances to the majority class in particularly skewed distributions,

achieving a deceptively high overall accuracy while severely compromising precision for

the minority class, which is often of greater interest. For example, in scenarios where the

minority class makes up only 1% of the dataset, a model might attain an accuracy of 99%

by indiscriminately predicting every instance as the majority class. This underscores the

complexity of working with imbalanced data [39].

In churn prediction, various methodologies has been employed to deal with the challenge

of imbalanced datasets. Xie et al. took in use an improved balanced random forest ap-

proach [35]. Chen et al. on the other hand, implemented random undersampling as a data

preprocessing strategy for churn prediction [6]. Furthermore, SMOTE represents a valu-

able alternative approach, as demonstrated in the modeling work of Ali & Ariturk [40]

and Wu et al. [33]. SMOTE is the solution taken in use for preprocessing in the thesis.

Further discussed in section 4.2.1.
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Data analysis and visualization form an important foundation of any study including

data. This section outlines the techniques used to explore, understand and communicate

key patterns and relations within the dataset.

Correlation Analysis Examining the correlation between the variables up against the

dependant variable ”Churn”, will help identifying significant linear relations and poten-

tial areas to seek further insight. Prior to calculating correlations, categorical variables

were transformed into numerical representations using one-hot encoding, a process that

converts categories into binary columns, essential for assessing linear relationships with

correlation measures. This technique is essential as standard correlation measures are

designed to assess linear relationships between continuous variables [15].

Figure 3: Correlation values of all variables up against the dependant variable ”Churn”

As shown in the correlation bar chart Figure , the variables PaymentMethod Electronic

check, Contract Month to month, and tenure are highlighted as potentially important

predictors of the dependent variable 4.1. This suggests that these variables play a larger

role in influencing the outcome of the dependant variable, warranting further insight.
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Figure 4: Customer contract distribution with regards to churn

Contract duration, by looking at the presented bar-chart Figure 4, one can see a sig-

nificant discrepancy in the churn rates among customers with different contract dura-

tion’s. The bar chart in Figure 4 shows that 89% of customers discontinuing services had

month to month contracts, compared to just 9% with one-year contracts and 2% with

two-year contracts. This disparity highlights the potential impact of contract length on

customer retention in the telecommunications sector.

Figure 5: Customer payment method with regards to churn

Payment method, by looking further into the correlation between payment method

and churn, one can see another notable trend on Figure 5. A predominant portion of
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customers who had churned had chosen ”Electronic check” as their method of payment

(57%). On the other hand, customers who had opted for alternative payment methods,

such as ”Credit-Card Automatic Transfer” (12%), ”Bank Automatic Transfer” (14%)

or ”Mailed Check” (17%) demonstrated a notable lower probability to discontinue their

services. Similarly to customers who had month-to-month contract, there is a correlation

between payment method and churn.

Figure 6: Box plot visualising tenure with regards to churn

Long-term and short-term customers, newly acquired customers have a higher proba-

bility for churn as presented by Figure 6. This trend suggests individuals who have recently

commenced their relationship with the service provider are more inclined to discontinue

their services in comparison to longer-standing customers. Such patterns underscores the

importance of understanding the expectations of new customers to reduce churn rate.

These findings confirm the insights derived from the correlation plot 4.1, underscoring the

importance of contract length, payment method and tenure as key predictors of churn.

Guiding the embedding of the network, contract length and payment method will be

represented as individual binary features using one-hot encoding. This approach is done

so that the model retains maximum information from these categorical variables, as their

importance has been emphasized in the plots 4 & 5. The encoding process is further

explained in the following section 4.2.1.
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Orange dataset To enhance the validity and generalisation of the findings, a separate

dataset was used to serve as a validation dataset. This helps against the risk of overfitting

to a specific dataset in the study, demonstrating the models performance is not dataset

specific.

The Orange Telecom dataset was selected due to its extensive use in prior telecom churn

studies, as shown in table 1. The dataset serves as a great benchmark for validating pre-

dictive models in churn analysis. This benchmark provides meaningful comparisons of the

developed models performance up against previous models.

The Orange Telecom Churn dataset, is compromised of cleaned customer data, and a

”churn” label indicating whether a customer has terminated their subscription. The

dataset contains 21 features of various attributes and behaviours of the customer. It

is made up of 3333 samples, class imbalance is evident in the dataset as in most churn

datasets, with 483 churned customers and 2850 non-churned customers.
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Table 7: Features describing customer behavior and their attributes.

Column Name Type Description
State String (Categorical) The US state where the customer resides
Account length Int The number of days the customer has been

with the company
Area code Int The area code of the customer’s phone num-

ber
Phone number String The phone number of the customer
International plan String (Categorical) Whether the customer has an international

plan or not (Yes, No)
Voice mail plan String (Categorical) Whether the customer has a voice mail plan

or not (Yes, No)
Number vmail messages Int The number of voice mail messages a cus-

tomer has
Total day minutes Float Total number of minutes spent on day calls
Total day calls Int Total number of day calls
Total day charge Float Total charges for day calls
Total eve minutes Float Total number of minutes spent on evening

calls
Total eve calls Int Total number of evening calls
Total eve charge Float Total charges for evening calls
Total night minutes Float Total number of minutes spent on night calls
Total night calls Int Total number of night calls
Total night charge Float Total charges for night calls
Total intl minutes Float Total number of minutes spent on interna-

tional calls
Total intl calls Int Total number of international calls
Total intl charge Float Total charges for international calls
Customer service calls Int The number of customer service calls made

Table 8: Dependent variable.

Column Name Type Description
Churn Boolean Whether the customer has churned or not

(True, False)
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Figure 7: The distribution of the dependant variable ”Churn” in the Orange dataset

The Orange dataset is also has a significant class imbalance, as visualized in the pie chart

7. The minority ”churn” class represents 14.5% of the dataset, while ”non-churn” repre-

sents the remaining 85.5%. This skewed distribution could cause implications, as many

traditional classification algorithms struggle on minority classes. The Orange dataset has

12% fewer churn cases compared to the IBM dataset, while SMOTE is applied on both

datasets the proportion of synthetic sampled generated for the Orange dataset could cause

additional difficulties.
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Figure 8: Correlation values of all variables up against the dependant variable ”Churn”
in the Orange dataset

The correlation plot highlights ”international plan”, ”total day minutes” and ”customer

service calls” as the features exhibiting strong correlation with our dependant variable.

The correlation with ”customer service calls” is an interesting feature correlation, as it

potentially suggests a link between customer dissatisfaction and their likelihood of churn.
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Figure 9: Distribution of customer service calls by churn status. Showcasing the association
between frequent customer service calls and customer churn.

The box plot analysis in Figure 9 reveals a potential link between increased customer

service interactions. Churning customer have a higher median number of customer service

calls. This suggests dissatisfaction with service experiences could be a churn factor in the

Orange dataset.

Having explored the characteristics, correlations and class imbalance within the Orange

and IBM datasets, its crucial to pre-process and prepare the data for the model. Trans-

forming raw data into useful information.

4.2 Research design

This research design section delves into the key components of the developed Siamese net-

work model. It will cover the strategies used to prepare and pair input data, the architec-

ture of the embedding generation sub-networks, the chosen loss function for optimization,

and the overall integration of these elements within the Siamese framework.

4.2.1 Data Pre-processing

Before the development of the prediction model, extensive data pre-processing steps were

performed to ensure data quality and making it suitable for the Siamese networks ar-

chitecture. The aim is to enhance the data quality and thus making it more suitable for
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the Siamese network. The inputs into the model are pre-processed by dealing with im-

balance in the dataset, categorical data, scaling the data and pairing. The pre processing

methodology outlined below adresses these challenges to improve the predictive power of

the Siamese network.

Many machine learning models perform better when working with categorical data that

has been transformed into numerical format which is more manageable for machine learn-

ing models. Two different encoding strategies were taken in use, label encoding and one-

hot encoding.

Label encoding was used to address boolean data types in the datasets. The boolean

columns were transformed into binary format to be more readable for the network. One-

hot encoding was used for the categorical columns with more than two levels. One-hot

encoding opposite to label encoder creates a new binary feature for each category in the

original column, increasing the dimension of the dataset. This process ensured that there

is no unintended relations between the categorical data, preventing misleading interpre-

tation by the model.

Numerical features were standardized using StandardScaler from sklearn. The method

fits to the data calculating the mean for each feature in the dataset with µ = 1
n

∑n
i=1 xi.

where n is the number of samples and xi are the feature values. further on the method

calculates the standard deviation for each feature using, σ =
√

1
n

∑n
i=1(xi − µ)2. These

values are then stored within the object. To standardize the features, each feature value

xi is subtracted by the mean. The resulting value is then divided by the standard devia-

tion, as shown zi =
(xi−µ)

σ
. This ensures the columns have a mean of zero and a standard

deviation of one, preventing biases to feature magnitude. Standardizing is important to

models which are sensitive to the scale of input features, such as Siamese networks, so

that all features contribute equally. The data transformer methods label encoder, one-hot

encoding and StandardScaler were taken from sklearn.preprocessing [27].

It is typical for churn datasets to have an imbalanced dataset, as the number of churned

customers is significantly lower than non-churned customers. Many machine learning mod-

els can struggle with imbalanced datasets, to handle this challenge Synthetic Minority

Over-sampling Technique (SMOTE) from imblearn was employed [20]. SMOTE increases

the representation of the minority class in a dataset by generating synthetic samples. It

identifies the k nearest neighbours of the minority class, selects one, and creates a new

sample along the line connecting them. The difference in feature values are multiplied by

a number between 0 and 1, creating a new sample.
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SMOTE balances the dataset, creating new synthetic samples rather than duplicating

existing ones. Thus ensuring the model does not overfit to the majority class, improving

its ability to generalize to new unseen data.

To further address the dataset imbalance, as SMOTE samples might have an effect on the

Siamese network, a stratified splitting strategy was used. This aims to maintain the dis-

tribution of target classes across training, testing and validation sets. The train test split

function from sklearn was used with the stratify = y parameter to ensure proportional

representation within all the different subsets.

The full dataset was divided into a 70/15/15 split yielding a 70% training set, a 15%

validation set and a 15% test set.

This approach provides sufficient data for model training, allows hyperparameter tuning

and model selection based on the validation set, and offers a final performance evaluation

on unseen data through the independent test set.

After the dataset had split into train, test and validation sets, the data had to be properly

processed to fit as input into the Siamese network. As described in section 3.3, Siamese

Networks operate on paired inputs to determine whether the pairs are similar or dissim-

ilar. It therefore requires the input to be passed as pairs. A pairing function was used

to generate the pairs, consisting of both similar and dissimilar instances. The specific

methodology behind this pairing function is elaborated further in the subsequent section.

4.2.2 Siamese model pairing

Pairing functions are important in Siamese network architectures. They determine the

selection of input data pairs, which are input into the networks twin branches. They play

a critical role in teaching the network to distinguish similar and dissimilar data, allowing

it to develop a meaningful similarity metric [5]. The paired input approach transforms

the imbalance in the dataset into a validation problem. Since the model input will be

negative and positive pairs, the problem of data imbalance is eliminated even if the classes

themselves are imbalanced [37].

In the development of the Siamese network used in this thesis, two different pairing func-

tions were implemented. The first pairing function, referred to as random pairing, was

designed to create pairs for the input data without increasing its the number of samples.

The function takes a dataframe and a label series as input, along with a N parameter. The

N parameter represents the number of pairs to be generated for each sample. To maintain

the original dataset size and simplify the process, N has a default value of 1.
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Algorithm 1 Random pairing.
Input: dataframe, label series, N = 1.
Output: left input, right input, targets.

Ensure: label series = panda series
1: similar indices = 1
2: dissimilar indices ̸= 1
3: for index, row in dataframe do
4: if N = 1 then
5: if label at index is 1 then
6: while Similar ̸= index do
7: Repeat
8: similar ← random(similar indices)
9: end while

10: left input ← row
11: right input ← similar row
12: targets ← 1
13: else if label at index ̸= 1 then
14: while Dissimilar ̸= index do
15: Repeat
16: dissimilar ← random(dissimilar indices)
17: end while
18: left input ← row
19: right input ← dissimilar row
20: targets ← 0
21: end if
22: end if
23: end for

The algorithm operates by iterating over the dataset, randomly pairing data points from

the same class (similar) or from different classes (dissimilar), based on the associated

labels. These pairs are then used to train the Siamese network, distinguishing similar and

dissimilar pairs. The pseudo-code provided outlines the functions steps 23.

The second pairing function, referred to as balanced pairing, creates a balanced dataset

of an equal amount of similar and dissimilar pairs for each sample. This function accepts

the same inputs, but N tells how many pairs the algorithm should make, the default being

4.
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Algorithm 2 Balanced pairing
Input: dataframe, label series, N = 4.
Output: left input, right input, targets.

Ensure: label series is a pandas series with churn status
1: if N is odd then
2: N ← N + 1 ▷ Ensure N is even for balance
3: end if
4: num similar ← N/2
5: num dissimilar ← N/2
6: for index, row in dataframe do
7: for i from 1 to num similar do
8: random index ← random(same label)
9: left input ← row
10: right input ← random index
11: targets ← 1
12: end for
13: for i from 1 to num dissimilar do
14: random index ← random(different label)
15: left input ← row
16: right input ← random index
17: targets ← 0
18: end for
19: end for

Unlike the random pairing function. The balanced pairing function generates N/2 simi-

lar and N/2 dissimilar pairs for each sample, ensuring the training process has an equal

amount of similar dissimilar cases. If N is passed as an odd number, the function auto-

matically adjusts it to the next even number to ensure a balanced training process. The

detailed steps of the algorithm is described in the pseudo-code 19.

Throughout testing random pairing outperformed balanced pairings accuracy by a mar-

gin of 10%. This result was unexpected, considering the balanced nature of input pairs

created by balanced pairing, which was expected to provide better generalization. There

are some factors which may contribute to this discrepancy, such as dataset imbalance and

pairing value.

As the dataset has a class imbalance presented in section 4.2.1. Since balanced pairing

creates multiple pairs, this could lead to infrequent representation of the minority class,

hindering the networks ability to learn from discriminative features. Even though SMOTE

was used on the dataset, since SMOTE introduces synthetic minority examples. Synthetic

samples might not perfectly replicate real world instances, making balanced pairing less

beneficial, as the model might overfit on the synthetic examples.
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Pairing value could also be a factor in this discrepancy, while an increased number of

pairs could be beneficial, it could introduce less informative pairs or even noisy pairs.

Such pairs risk compromising the model’s ability to learn meaningful representations.

4.2.3 Embedding

Embeddings are a core aspect of Siamese networks. This subsubsection delves into the

embedding process and its role in capturing the essence of the input data. At the heart

of the Siamese network, sub-networks transform tabular data into low-dimensional vec-

tor representations known as embeddings. The network comprises multiple dense layers

with ReLU and ELU activations. ReLU returns the element-wise maximum of 0 and the

input tensor, max(x, 0). ELU returns x for inputs greater than 0 and ex − 1 otherwise.

Batch-normalization layers follow some dense layers, normalizing the outputs to stabi-

lize learning. A dense layer includes L2 kernel regularization to prevent overfitting. The

final layer, using sigmoid activation, outputs a 32-dimensional vector as the embedding

for each input. This 32-dimensioned output retains enough information to distinguish

between similar and dissimilar input pairs. These embeddings are then compared using

the L1 distance, with distances near 0 indicating dissimilarity and those near 1 indicating

similarity.

4.2.4 Loss Function

Our Siamese network employs the binary-cross entropy loss function, suitable for models

that produce a single probabilistic output between 0 and 1, indicative of the similarity

between inputs. This loss function measures the discrepancy between the predicted sim-

ilarity, derived from the distance between embeddings, and the actual similarity in the

training data. It penalizes the model when embeddings of similar items are distant or

when those of dissimilar items are close. During training, this loss is back-propagated

through the network, updating weights and parameters to minimize it, thereby enhancing

the ability of the network to capture relevant similarities and differences.

4.2.5 Overall Model

In this section the model will be presented showcasing the result of tuning the embed-

ding, loss and preprocessing. The final model employed in the study is a Siamese Neural

network, designed for similarity learning, as showcased in figure 10. The models interior

is compromised of two identical sub-networks, made up of sequential stack of layers.
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• Input layer, 26-dimensioned preprocessed tabular data is passed onto the model as

input (in the context of the IBM dataset).

• Hidden layers, multiple dense layers process the data, with both ReLU and ELU

activation functions.

• Batchnormalization, normalization layers are implemented to accelerate training

and improve the model.

• The final dense layer using sigmoid activation compresseses learned information into

a 32-dimensional embedding vector.

37



Figure 10: Model Design showcasing layers in one ”leg” of the Siamese network, the input
layer, dense layers, activation function layers and Batchnormalization layers.
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The Siamese network independently processes a pair of input data through the sub-

networks. The embeddings provided by the sub-networks are compared using L1 distance,

the absolute distance between points in all dimensions. A smaller L1 distance in the em-

bedding space indicates greater similarity, which means a higher probability of the input

pair being considered similar by the model, and vice versa.

The model is trained using Adam optimizer, using a exponentially decaying learning rate.

Its robustness is beneficial for Siamese Network training. Adams efficiency in similar con-

texts has been documented [25] [3] supporting the choice of its use. Binary cross entropy

serves as the loss function, a common choice in Siamese network research [25] [23] [24]. The

loss is minimized by the network through iterations, improving the embeddings captured,

showcasing the similarity and dissimilarity within the tabular dataset.

Figure 11: Flowchart showcasing the model development process with shape description

Figure 11 presents a visual depiction of the iterative workflow used for the development

and evaluation of the Siamese network. The process starts with importing data, which is

then visualized and analyzed in the visualization step to get an insight into the dataset.

After visualization in depth pre-processing was performed to ensure it suitability for the

Siamese network. The model was then tuned iteratively on the pre-processed data to find

the best hyperparameters and metrics. After tuning the model, finding ideal hyperparam-

eters and metrics, prediction and model evaluation commenced. The designed architecture
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enables the Siamese network to effectively quantify the similarity between pairs of tabular

data, directly addressing the core objectives of this research.
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5 Results

This section presents the key findings from the evaluation of our Siamese Network. Ini-

tially, we assess the performance impact of various distance metrics. Following this, The

outline of the hyper-parameter tuning process and its contribution to the optimization of

the network. The final model’s performance is then presented through accuracy measures,

ROC curves, and confusion matrices. Further on comparative performance against other

baseline models in regular as well as few-shot learning environments is performed.

The results display how the Siamese Network outperforms the other baseline models in

the realm of few-shot learning. Not struggling with the challenges of class imbalance or

few training samples as other models in customer churn prediction. They focus on learning

relationship between data pairs, rather than needing large, labeled datasets to learn com-

plex patterns. Giving an insight on how Siamese networks can reduce the need for large

datasets, achieving good performance with smaller datasets in customer churn prediction.

The evaluation process will begin using the complete dataset described in section 4.1.

The dataset being split into training, test and validation, with 70% of the dataset being

allocated as training data, 15% for validation data and 15% for test data. The models

in the first two subsubsections 5.1 & 5.2, are trained on the test data, with the help

of validation data. Then tested on test data to get an insight on its generalizability on

unseen data. Further in section 5.3 the models are trained with different few-shot learning

subsets before being tested on the test data.

5.1 Siamese Model

Through the optimization of the model described in section 4.2.5, several different dis-

tance metrics were tested, to see which the Siamese model performed the best with. The

distance metrics used in the thesis were:

• L1 distance

• Cosine distance

• Pearson distance

• Euclidean distance

Distance metric analysis showcased that L1 distance, also known as Manhattan distance,

had the most effective performance for the Siamese model in this telecom churn prediction

task. This was evident by the validation learning curves where L1 had the best validation
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accuracy and lower final validation loss. While all of the models with different distance

metrics exhibited some degree of overfitting in their learning curves, the L1 distance

model’s overfitting was not as strong and had better accuracy and F1 score.

Table 9: Accuracy on the entire test data for the IBM dataset, for different distance
metrics on the Siamese network described in section 4.2.5.

Distance Metric Accuracy
L1 Distance 83.1%
Cosine Distance 79.9%
Pearson Distance 68.1%
Euclidean Distance 80.7%

The superiority of the L1 distance is further corroborated by its accuracy on unseen test

data, once again having the best performance. As seen in table 9.

After finding of the ideal distance metric, an iterative hyperparameter tuning process

was applied to the IBM dataset. Hyperparameter tuning is pivotal when tuning a ma-

chine learning model to achieve the best possible results within the given dataset.

Keras Tuner package from Keras was used [26]. Different amount of nodes for each layer

was attempted, in the range of 23 to 29. Inclusion and exclusion of regularisation and

dropout. Random Search was performed several times to find the ideal hyper parameters.

After the search was finished manual editing of the model was performed to attempt to

increase the accuracy even further. The final results of the hyperparameter process is

shown in figure 10.

After completing the model, a series of evaluation tests were performed on the model to

asses its efficacy. To get an insight on its inner workings and performance.
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(a) ROC for IBM dataset (b) ROC for orange dataset

Figure 12: The Siamese networks ROC curve for both IBM and Orange, on the full test
datasets

Table 10: Performance (Accuracy and F1) of the Siamese network, on test data for both
Orange and IBM datasets, having trained on respective training datasets.

Model Data Accuracy F1 Precision Recall ROC AUC

Siamese Network
IBM dataset 83.64% 83.65% 83.68% 84.64% 82.61%
Orange dataset 94.40% 94.45% 94.66% 94.40% 94.75%

The performance matrices for the Siamese network on the two different datasets exhibits

the model performed significantly better on the Orange dataset. This suggests potential

differences in difficulty or complexity between the datasets.

The Siamese network demonstrated a strong accuracy of 94.40% on the Orange dataset.

The result outperforms benchmarks from comparable studies seen in table 1, such as Jain

et al. [16], Hassonah et al. [13] and Ullah et al. [30], further discussed in the next chapter.

The metrics accuracy, f1, precision, recall and ROC AUC are all in very close proximity

for the Siamese network. Usually there is a higher discrepancy between these values in a

unbalanced dataset. In our case we use SMOTE to balance the datasets before predicting,

explaining the results.

Confusion matrices provide a visual representation of the type of error made by the classifi-

cation model. The matrix showcases instances of true positive, true negative, false positive

and false negative, providing a view of where and how often the model correctly or incor-

rectly classifies classes. It helps highlighting where the model has trouble distinguishing

43



between the classes. Label 1 represents churn, while 0 represents nonchurn.

Table 11: Confusion Matrix on the IBM test
set

Predicted Labels
0 1

Actual Labels
0 1369 180
1 160 589

Table 12: Confusion Matrix on the Orange
test set

Predicted Labels
0 1

Actual Labels
0 801 54
1 18 413

160 & 18 false negative (FN) cases in each respective dataset. 180 & 54 false positive

(FP) cases in each respective dataset. In both datasets the model seemed to have more

FP (False Positive) predictions than FN (False Negative) predictions. Indicating it had

more difficulty with identifying class 1, which is to be expected considering the imbalanced

dataset. While SMOTE was applied to deal with class imbalance, the dataset retains a

higher proportion of genuine non-churn samples. This provides the model with more

robust, real-world data to learn from. Potentially affecting its ability to generalize to new

churn instances when using synthetic samples.

5.2 Other models

In order to thoroughly asses the performance of the Siamese network, a comparative

analysis was done against established models. These models serve as baseline models to

compare its performance up against. The models selected include both linear and non-

linear algorithms. SVM [7] with both linear and RBF kernels, Random forest [14], Logistic

Regression [8] and Bernoulli Naive Bayes [4], providing a robust line up for evaluating the

Siamese network.
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Table 13: Baseline models, with their parameters, accuracy and F1 score on the test
datasets for both the Orange and IBM dataset, having trained on the training sets.

Model IBM Accuracy IBM F1 Orange Accuracy Orange F1
SVM Linear
C = 1
kernel = ”linear”
degree = 3
gamma = ”scale”
coef0 = 0.0
shrinking = True
probability = False

79.08% 79.07% 75.09% 75.09%

SVM RBF
C = 1
kernel = ”RBF”
degree = 3
gamma = ”scale”
coef0 = 0.0
shrinking = True
probability = False

80.76% 80.76% 90.76% 90.74%

Random Forest
n estimators = 100
criterion = ”gini”
max depth = None
min samples split = 2
min samples leaf = 1
min weight fraction = 0.0
max features = ”sqrt”

85.02% 85.02% 95.91% 95.91%

Logistic Regression
max iter = 1000
penalty = ”l2”
dual = False
tol = 1e−4

C = 1.0
fit intercept = True
intercept scaling = 1

78.83% 78.82% 74.27% 74.25%

Bernoulli Naive Bayes
alpha = 1.0
binarize = 0.0
fit prior = True
class prior = None

76.50% 76.48% 61.64% 61.62%

On the IBM dataset, the models performed relatively similar within 10 percentage point

range of accuracy. Only the Random Forest model outperformed the Siamese Network. In

the Orange dataset there was a bigger discrepancy between the baseline models, present-

ing a greater challenge for certain models. Specifically, SVM linear, Logistic Regression

& Bernoulli Naive Bayes had trouble identifying predictive patterns, while Random For-

est again surpassed the Siamese networks accuracy. SVM RBF did not quite reach the

performance of the Siamese network, as seen in table 10, or the Random Forest model,
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but still performed well on the Orange dataset. The parameters described in the ”Model”

column of the table 13 are used further in the sections following.

5.3 Few-shot Learning

Siamese Networks are usually employed on image data. In these scenarios Siamese Net-

works perform exceptionally well in few shot learning scenarios [32] [21] [38]. To investigate

if this also is the case for tabular data, the same formula has been applied. The datasets

were divided into varying class ratios (Churn, Non-churn), ranging from (5, 25) to (3100,

3100) for the IBM dataset & (5, 25) to (1900, 1900) for the Orange dataset. This will de-

termine whether the Siamese Networks success translates to the domain of tabular data.

The Models were put up against each other in these different Few-shot learning scenarios.

5.3.1 Few-shot Learning for IBM dataset

In figure 13 and figure 15 the performance of the different models for the different sample

sizes are shown through a line graph, the same performance are also shown in numerical

format in the tables 14 & 15 with the respective sample size on the left. The comparison

will give an insight on the effectiveness of Siamese networks in improving the accuracy

and efficiency of few shot learning models when applied to customer churn prediction.
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Figure 13: Prediction accuracy, y-axis, of all models on the IBM dataset up against dif-
ferent sample sizes on the x-axis, the divide between churn and nonchurn cases for the
sample sizes can be seen in the subsequent table.

Table 14: Model accuracies across different sample sizes on the dataset, sample sizes on
the left, with the best result for each sample size across the models in green and the worst
in red.

Sample Size SVM Linear SVM RBF RF LR Bernoulli NB Siamese model
(5, 25) 0.567 0.500 0.572 0.546 0.719 0.824
(10, 50) 0.591 0.500 0.542 0.571 0.732 0.797
(20, 100) 0.692 0.582 0.662 0.666 0.755 0.788
(30, 150) 0.602 0.562 0.602 0.633 0.755 0.802
(40, 200) 0.668 0.581 0.638 0.660 0.760 0.822
(50, 250) 0.648 0.631 0.644 0.660 0.759 0.804
(100, 500) 0.600 0.554 0.648 0.640 0.766 0.809
(200, 1000) 0.661 0.643 0.660 0.661 0.759 0.810
(1000, 1000) 0.672 0.662 0.702 0.676 0.763 0.814
(1500, 1500) 0.764 0.779 0.817 0.771 0.755 0.840
(1900, 1900) 0.765 0.783 0.828 0.772 0.754 0.840
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Figure 14: F1 score, y-axis, of all models on the IBM dataset up against different sample
sizes on the x-axis, the divide between churn and nonchurn cases for the sample sizes can
be seen in the subsequent table.

Table 15: Model f1 scores across different sample sizes on the IBM dataset, sample sizes
on the left, with the best result for each sample size across the models in green and the
worst in red.

Sample Size SVM Linear SVM RBF RF LR Bernoulli NB Siamese model
(5, 25) 0.579 0.104 0.564 0.524 0.723 0.770
(10, 50) 0.531 0.191 0.503 0.421 0.733 0.754
(20, 100) 0.534 0.421 0.503 0.548 0.739 0.749
(30, 150) 0.402 0.320 0.439 0.473 0.746 0.753
(40, 200) 0.516 0.184 0.481 0.507 0.754 0.765
(50, 250) 0.591 0.141 0.478 0.581 0.765 0.762
(100, 500) 0.535 0.451 0.483 0.531 0.764 0.762
(200, 1000) 0.431 0.216 0.461 0.500 0.762 0.765
(1000, 1000) 0.495 0.451 0.571 0.542 0.754 0.761
(1500, 1500) 0.778 0.786 0.828 0.780 0.767 0.772
(1900, 1900) 0.779 0.788 0.835 0.781 0.766 0.770

Table 14 and figure 13 presents the performance of the Siamese model alongside the

baseline models and their parameters described in table 13.

Examining the figure 13, showcases the Siamese network significantly outperforms the
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other models in few-shot learning scenarios. Notably, even at a dataset size of 2400 (400,

2000) samples, the baseline models do not reach the efficacy shown by the Siamese net-

work. However, when the dataset is balanced, with an equal amount of churn and non-

churn cases, the baseline models experience a performance improvement. The Siamese

network and Bernoulli Naive Bayes remains unaffected by this change in class balance,

exhibiting their consistency across varying sample sizes.

Further, figure 13 also shows that the performance of Bernoulli Naive Bayes model closely

mirrors the Siamese network. Suggesting similarities in their handling of data sparsity

and class distribution, only on a lower performance level.

The Siamese network maintains the best prediction accuracy across all of the different

sample sizes as presented in table 14, shown by its accuracy’s being filled in green. How-

ever in the last two sample sizes (2000, 2000) & (3100, 3100), random forest showcases

similar efficacy only slightly falling short. This could indicate its potential advantage in

scenarios with a lot of balanced data.

Table 15 and Figure 14 presents the F1 scores of the evaluated models, highlighting

their ability to accurately identify churn cases. The Siamese model outperforms the other

models across most few-shot learning scenarios, with the exception of the (50, 250) sample

size where the Naive Bayes Bernoulli model displays a slightly better performance. This

close competition between the Siamese network and Bernoulli Naive Bayes model aligns

with their similar accuracy trend in Figure 13. However, the Siamese model showcases

comparatively lower performance with the balanced sample sizes (2000, 2000) & (3100,

3100).
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5.3.2 Few-shot Learning for Orange dataset

Figure 15: Prediction accuracy, y-axis, of all models on the Orange dataset up against
different sample sizes in the x-axis, the divide between churn and nonchurn cases for the
sample sizes can be seen in the subsequent table.

Table 16: Model accuracy’s across different sample sizes on the Orange dataset, sample
sizes on the left, with the best result for each sample size across the models in green and
the worst in red.

Sample Size SVM Linear SVM RBF RF LR Bernoulli NB Siamese model
(5, 25) 0.518 0.498 0.511 0.529 0.518 0.930
(10, 50) 0.673 0.516 0.677 0.674 0.567 0.925
(20, 100) 0.496 0.518 0.609 0.561 0.531 0.932
(30, 150) 0.496 0.566 0.634 0.601 0.558 0.929
(40, 200) 0.496 0.595 0.711 0.578 0.558 0.933
(50, 250) 0.496 0.573 0.759 0.539 0.509 0.930
(100, 500) 0.580 0.732 0.787 0.630 0.549 0.931
(200, 1000) 0.496 0.729 0.825 0.570 0.550 0.932
(1000, 1000) 0.754 0.892 0.929 0.742 0.623 0.952
(1500, 1500) 0.754 0.906 0.952 0.747 0.621 0.950
(1900, 1900) 0.750 0.910 0.957 0.743 0.620 0.948
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Figure 16: Prediction F1 score, y-axis, of all models on the Orange dataset up against
different sample sizes in the x-axis, the divide between churn and nonchurn cases for the
sample sizes can be seen in the subsequent table.

Table 17: Model f1 scores across different sample sizes on the Orange dataset, sample sizes
on the left, with the best result for each sample size across the models in green and the
worst in red.

Sample Size SVM Linear SVM RBF RF LR Bernoulli NB Siamese model
(5, 25) 0.267 0.009 0.087 0.192 0.226 0.904
(10, 50) 0.607 0.076 0.556 0.574 0.355 0.894
(20, 100) 0.000 0.084 0.375 0.280 0.159 0.902
(30, 150) 0.000 0.244 0.432 0.370 0.303 0.901
(40, 200) 0.000 0.329 0.602 0.302 0.310 0.906
(50, 250) 0.000 0.266 0.694 0.179 0.079 0.902
(100, 500) 0.303 0.639 0.735 0.453 0.222 0.903
(200, 1000) 0.000 0.634 0.792 0.278 0.244 0.904
(1000, 1000) 0.752 0.888 0.927 0.734 0.628 0.929
(1500, 1500) 0.756 0.903 0.952 0.746 0.629 0.927
(1900, 1900) 0.751 0.907 0.957 0.738 0.627 0.923

Table 16 and figure 15 presents the performance of the Siamese model alongside the

baseline models, but on the Orange dataset. The models in the comparison not altered

and have the same parameters presented in section 13. Analysis on the Orange dataset
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reaffirms the Siamese networks strength in few-shot learning scenarios. It outperforms all

the baseline models significantly in the few-shot scenarios, echoing the observations from

the IBM dataset. Baseline models struggle once again with class imbalance, experiencing

a distinct performance boost in the balanced scenario settings. Contrary to the Siamese

network which demonstrates stability, reaching a performance plateau at approximately

93.5% with a low standard deviation (1.5%) across different sample sizes. Interestingly,

Random Forest this time surpasses the Siamese network with larger balanced datasets, in

the final two scenarios (1500, 1500) and (1900, 1900), as seen in table 14. The analysis

of the Orange dataset reinforces the insights gained from the model comparison on the

IBM dataset, demonstrating the robustness of the findings.

The results demonstrate the effectiveness of Siamese network for predicting churn in

telecommunication. The L1 distance was the ideal distance metric in this case. The

Siamese network outperformed several baseline models such as SVM, Random Forest,

Logistic Regression and Bernoulli Naive Bayes, on both the IBM and Orange dataset.

The Siamese network also performed exceptionally in a Few-shot learning environment.

The results will be discussed in the following chapter providing further insight on its

significance and implications.
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6 Discussion

The findings in the study demonstrate the efficacy of Siamese networks for churn pre-

diction, particularly within Few-shot learning scenarios. The results are analyzed in the

context of the research question, with other interesting insights discovered also included.

Prior to the discussion, the limitations of the present study and their potential impact on

the validity of our findings.

The datasets used in the study may not encompass churn behaviours seen in various

industries. The study is about customer churn prediction within telecommunication. The

same results might not translate to churn prediction problems within other industries

Another potential limitation are the baseline models, which were employed using their

default parameters without any specific tuning to optimize performance for this task.

Possibly restricting their performance.

6.1 Interpretation of Results

The Siamese networks demonstrated robust performance in few-shot learning scenarios,

consistently achieving higher accuracy compared to other models. This is significant as

it suggests that Siamese networks can effectively learn complex patterns from a limited

number of tabular examples, reducing the need for large datasets.

The Siamese networks performance with limited data in our study aligns with its positive

results in image classification with few samples, seen in Du et al. [10] and Koch et al. [18].

In this study its application has been extended to the realm of tabular churn data, proving

its functionality with tabular data, extending the utility of these networks beyond their

traditional domains. This finding represents a notable contribution to the field, as machine

learning models often struggle extracting meaningful information from limited labeled

data. Such scenarios are often experienced in practical application.

This builds on the consensus that similarity learning works well in situations where labeled

data is scarce, as it focuses on extracting discriminative features within the data itself

rather than relying solely on explicit labels, further supporting the consensus.

The Siamese network had better performance when working with an imbalanced input

than the other baseline models. The other models experienced a jump in both their

accuracy and F1 score, showcasing how models might struggle on generalizability when

working with imbalanced data. Data imbalance is very common when working with churn

data, insinuating Siamese networks would perform better when working in real-world

scenarios.
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The ability of Siamese networks to operate with smaller datasets can be useful in practical

applications, particularly beneficial for startup and small to medium enterprises, which

may not have large amounts of customer data available.

In Few-shot learning scenarios, the small amount of data one has is crucial to the model.

By using different feature pre processing techniques the Siamese network was able to

perform excellent. The feature pre processing techniques had a great impact on the other

baseline models as well, achieving better performance than previous studies done using

the Orange dataset, as presented in section 1.

The impact of different feature pre processing techniques was huge on the performance of

the Siamese network and Few-shot learning in this churn prediction task.

While the Siamese network demonstrated its effectiveness, its important to acknowledge

that its performance, similar to other machine learning models, depends on the quality of

the training data. This observation underscores the importance proper data preparation

prior to model training, as emphasized by prior research in this field. The notable per-

formance of both the Siamese network and baseline models on the entire Orange dataset,

surpassing results seen in related studies, suggests the positive impact of the feature pre

processing techniques employed in this thesis (outlined in section 4.2.1). This likely con-

tributed to the Siamese networks success in Few-shot learning scenarios, highlighting the

value of techniques such as noise removal, handling missing values (NaN), feature scaling,

feature encoding and SMOTE.

6.2 Analysis of Research Questions

1. How does the performance of Siamese networks compare to traditional machine

learning models in churn prediction tasks using tabular data?

2. How effective are Siamese networks in improving the accuracy and efficiency of

few-shot learning models when applied to customer churn prediction?

These findings suggest that Siamese Networks present an adaptable solution for customer

churn prediction when using tabular data, further expanding its field of use.

It has presented itself as an effective tool in improving the accuracy and efficiency in

Few-shot learning when applied to customer churn prediction.
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6.3 Comparison with Previous Research

Previous studies in customer churn prediction frequently highlights the challenge of class

imbalance [31] [33]. This study demonstrates the robustness of the Siamese network when

working in such environments, as evidenced by its results in the results chapter 5. This

would suggest that Siamese networks offer a possible solution to bypass this common

obstacle in the field.

Additionally, the ability of Synthetic Minority Oversampling Technique (SMOTE) in han-

dling class imbalance is well presented in this study. The models strong accuracy when

trained on the balanced dataset underscores the value of SMOTE as a tool for churn

prediction.

The Siamese network also achieved 94.40% accuracy on the Orange dataset which has

been used in previous studies on churn prediction. Outperforming many of the results in

previous studies on the same dataset seen in Table 1, such as, 85.24% achieved by Jain

et al. [16], 92.6% attained by Hassonah et al. [13] as well as 88.63% gotten by Ullah et

al. [30].

Its important to acknowledge the results was not obtained in a Few-shot learning environ-

ment. Nonetheless this performance suggests the models potential for effective similarity

learning in general, providing a basis or further exploration.

Some of the baseline models also achieved reslults exceeding those reported in previous

research 13, despite using default model parameters. Suggesting the data pre processing

applied in this study could have enhanced the quality and informativeness of the datasets,

enabling even simple models to perform well. While this is not part of the research ques-

tion, it is still an interesting insight on the importance of data pre processing in machine

learning.

The Siamese networks good results in the study aligns with more recent studies leaning

towards more deep learning techniques when working with customer churn prediction

tasks. Corroborating deep learning techniques are the right way to go.

The findings highlight the networks strong performance across the datasets and its abil-

ity to overcome class imbalance, even outperforming established baseline models. Even

though certain limitations are present, such as potential dataset bias and the use of default

parameters for the baseline models, the results showcase the networks success in extract-

ing informative patterns from limited labeled data. Thus, along with its adaptability to

real-world scenarios, positions Siamese networks as a promising tool for advancing churn

prediction methodologies.

55



7 Conclusion

7.1 Summary of Findings

The thesis evaluated the potential of Siamese networks for tabular churn prediction, also

using Few-shot learning attempting to recreate its success with Image classification. Some

of the key findings included:

The Siamese networks documented good performance on image data classification trans-

lates onto tabular data as well for both the whole dataset and Few-shot learning instances.

The Siamese network outperformed traditional machine learning models in Few-shot learn-

ing, showcasing its strength in extracting meaningful information from limited labeled

data.

Its similarity learning, assesses its similarity or dissimilarity between pairs, being able to

generalize better with less training data. The findings are evident from both the Orange

and IBM telecommunication datasets on train, test, and validation sets, suggesting gen-

eralizability has been achieved.

The Siamese performance was not affected when working with imbalanced data as the

other baseline models, highlighting its potential for real-world churn data, which is com-

monly imbalanced.

The network outperformed traditional baseline models such as SVM, Random Forest,

Bernoulli Naive Bayes and Logistic Regression across different evaluations in Few-shot

learning. Suggesting its ability to learn meaningful data from limited labeled data. The

network had the best performance using L1 distance for this churn prediction task. Indi-

cating its suitability for this specific task of churn prediction.

7.2 Implications

The demonstrated performance of Siamese networks in a new application area, tabular

churn data, contributes to extending the potential of Few-shot learning models. It expands

the application of Siamese networks beyond traditional image classification.

The networks ability to learn meaningful information from limited examples addresses

a significant challenge in machine learning. Siamese networks should be a considered

machine learning model when working with limited labeled data. Its characteristics makes

it especially useful for smaller firms or startups who does not have access to large datasets.
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7.3 Recommendations for Future Research

This thesis provides insights into the efficacy for Siamese networks within churn predic-

tion. To build upon these findings, future research could explore techniques identified in

previous research, seen in Table 1. Evaluate the potential of a hybrid model, combining

a Siamese network with another machine learning model on tabular data. Such a model

could yield a performance gain.

Additionally, investigating customer segmentation using Siamese networks could offer in-

sight into the models decision making. This would illuminate how the model differentiates

churner subgroups, providing valuable information for customer retention.

To asses the generalizability of the Siamese network across different types of tabular data,

future research should apply it to churn prediction within other industries or other data

entirely. Assessing the Siamese networks capabilities within a broader context.
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8 Appendix

AI as a helping tool.

ChatGPT an AI developed by OpenAI was taken in use when working with the master

thesis. It provided assistance in different areas, helping to simplify some challenges along

the way. It provided assistance in translating the abstract to Norwegian, debugging when

working with the code and helping with formal language fitting for a master thesis.
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