

Master’s Thesis 2024 30 ECTS

Faculty of Science and Technology

Knowledge Graphs for Software

Security Assessments and Cyber

Threat Intelligence.

Sougata Bhattacharya

MSc Data Science

Knowledge Graphs for Software Security
Assessments and Cyber Threat Intelligence.

Sougata Bhattacharya

Faculty of Science and Technology
Norwegian University of Life Sciences

May 14, 2024

Acknowledgement

This thesis has only been possible with the support, guidance, and encour-
agement of several individuals and institutions. It is with deep gratitude that
I acknowledge their role in this endeavour.

I would like to start by thanking my employer, Storebrand, for agreeing to my
audacious proposition of studying for a Master’s degree along with full-time
work.

My supervisor Prof. Eirik Valseth has consistently gone above and beyond
to guide me, expediting processes that would have otherwise been time-
consuming. We had very fruitful discussions, and his reassuring demeanour
always had a positive effect on me.

Special mention to my co-supervisor Anders Mølmen Høst, whose patience
and wisdom guided me through my uncertainties. His ability to simplify
complex concepts and provide clarity in trying times was invaluable to my
research.

I would also like to mention my other co-supervisor Prof. Leon Moonen,
whose continued guidance and support, even in the face of personal adversity,
has been truly inspiring.

I am grateful to SIMULA and NMBU for providing access to their resources,
including the eX3 and Orion supercomputers.

Finally, I express my profound gratitude to my wife Payel, for her unfailing
support, continuous encouragement and guidance throughout the years of
study and through researching and writing this thesis. This accomplishment
would not have been possible without her.

iii

Abstract

In the dynamic field of cybersecurity, the identification and mitigation of soft-
ware vulnerabilities are critical for safeguarding digital infrastructures. This
thesis explores the integration of Knowledge Graphs with language modeling
techniques to enhance security assessments of Cyber Threat Intelligence re-
ports. The research delves into the challenges faced by traditional machine
learning approaches in predicting attack techniques from these reports and
proposes a methodology that combines the strengths of Pretrained Language
Models and Knowledge Embeddings to improve predictive accuracy. The
study, utilizing the Threat Report ATT&CK Mapper dataset, expands on the
Knowledge Embedding and Pre-trained LanguagE Representation model to
encode textual Cyber Threat Intelligence descriptions into Knowledge Graph
triples for training the Knowledge Embedding objective, while simultaneously
using the same descriptions for training a Masked Language Model objective.
The two top-performing models from this study show better Precision, Re-
call, and F1 scores than the Threat Report ATT&CK Mapper tool when
trained and evaluated on the same dataset. These findings suggest that the
proposed approach is a viable method of predicting Attack Techniques from
CTI reports. The thesis presents a practical approach to the application of
Knowledge Graphs for cybersecurity, offering a framework for the automated
analysis of cyber threats.

v

Contents

Acknowledgement iii

Abstract v

Acronyms x

1 Introduction 1
1.1 Research questions & Hypothesis 4

2 Theory and Related work 6
2.1 Theory . 7

2.1.1 Natural Language Processing 7
2.1.2 Knowledge Embedding 10
2.1.3 Knowledge Base . 11
2.1.4 Knowledge Graph . 11
2.1.5 Prediction Scoring Metrics 15

2.2 Related Work . 17
2.3 Models & Tools . 19

2.3.1 FAIRSEQ . 19
2.3.2 RoBERTa . 20
2.3.3 TRAM . 21
2.3.4 KEPLER . 22

3 Materials & Methods 26
3.1 Data Identification . 27
3.2 Data Pre-processing . 28

3.2.1 Environment Setup . 28

vii

viii CONTENTS

3.2.2 Data Enrichment . 29
3.2.3 Data Transformation 31

3.3 Training . 32
3.3.1 Training with KEPLER 32
3.3.2 Checkpoint Conversion 32
3.3.3 Second Environment Setup 33
3.3.4 Fine-tuning with TRAM 33

3.4 Evaluation . 34
3.5 Software & Hardware Specifications 34
3.6 Usage of AI in thesis writing 35

4 Results 36
4.1 Data Dimensions . 36

4.1.1 Base data . 36
4.1.2 Enriched data . 39

4.2 Model Structures . 41
4.2.1 KEPLER model based on RoBERTa 41
4.2.2 KEPLER model based on Hugging Face transformers . 42
4.2.3 TRAM model . 42

4.3 Training Outcomes . 44
4.3.1 Single-labeled data . 44
4.3.2 Single-labeled - enriched data 46
4.3.3 Multi-labeled data . 48
4.3.4 Multi-labeled - enriched data 50

4.4 Fine-tuning with TRAM . 53
4.4.1 Single-labeled data . 53
4.4.2 Single-labeled - enriched data 54
4.4.3 Multi-labeled data . 54
4.4.4 Multi-labeled - enriched data 55

4.5 Evaluation with TRAM . 55
4.5.1 KEPLER model - single-labeled data 56
4.5.2 KEPLER model - single-labeled enriched data 58
4.5.3 KEPLER model - multi-labeled data 60
4.5.4 KEPLER model - multi-labeled enriched data 61
4.5.5 Reference Models . 62
4.5.6 Comparisons . 65

5 Discussion 70

5.1 Models trained on single-labeled data 70
5.2 Models trained on multi-labeled data 71

6 Conclusion 74

Bibliography 79

Acronyms

ABox Assertional Box. 11, 14

BERT Bidirectional Encoder Representations from Transformers. 8, 10, 20,
21, 24

BPE Byte-Pair Encoding. 10, 31

CISA Cybersecurity & Infrastructure Security Agency. 2

CKG Cybersecurity Knowledge Graphs. 17–19, 72

CTI Cyber Threat Intelligence. 2–6, 12, 13, 17–19, 21, 31, 34, 37, 38, 57,
59, 61, 62, 68, 70, 71

CVSS Common Vulnerability Scoring System. 6

CWE Common Weakness Enumeration. 6

ENISA European Union Agency for Cybersecurity. 2

F1 F1 Score. 15, 16, 60, 66, 67, 70, 71

FAIR Fundamental AI Research. 19

FAIRSEQ Facebook AI Research Sequence-to-Sequence. 19, 20, 22, 28, 32

FN False negative. 15, 16

FP False positive. 15, 16

GCN Graph Convolutional Neural Networks. 18, 72

x

Acronyms xi

GLUE General Language Understanding Evaluation. 21

GPT Generative Pre-trained Transformer. 8, 9, 31

ISACs Information sharing and analysis centers. 2

KB Knowledge Base. 4, 11, 27

KE Knowledge Embedding. 4, 5, 10, 11, 22, 23, 25, 31, 32, 37, 38, 41, 45,
47, 51, 69–71, 73, 74

KEPLER Knowledge Embedding and Pre-trained LanguagE Representa-
tion. 5, 19, 22–25, 28, 31, 32, 34, 37, 38, 41–43, 55–57, 59, 61–63, 66,
67, 70–72

KG Knowledge Graph. 3–6, 10–12, 14, 18, 19, 22, 23, 25, 32, 37, 70, 72, 73

LLMs Large Language Models. 9, 17, 19, 21, 72, 73

LSI Latent Semantic Indexing. 18

MITRE ATT&CK MITRE Adversarial Tactics, Techniques, and Com-
mon Knowledge. 1, 3, 6, 14, 18, 19, 27, 29, 39, 40, 70

MLM Masked Language Model. 9, 10, 22, 23, 31, 32, 37, 38, 41, 45, 47, 51,
69

MR Mean rank. 25

MRR Mean reciprocal rank. 25

NIST National Institute of Standards and Technology. 2

NLG Natural Language Generation. 7, 8

NLP Natural Language Processing. 7–10, 17, 20–23, 32

NLU Natural Language Understanding. 7

NSP Next Sentence Prediction. 20

NVD National Vulnerability Database. 1, 6

xii Acronyms

OWASP Open Web Application Security Project. 6

P Precision. 15, 16, 60, 66, 67, 70–72

PLMs Pretrained Language Models. 4, 8, 9, 22, 74

PyG Pytorch Geometric. 32

R Recall. 15, 16, 60, 65–67, 70–72

RACE Reading Comprehension Dataset From Examinations. 21

RoBERTa A Robustly Optimized BERT Pretraining Approach. 8, 9, 19–
22, 24, 25

SQuAD Stanford Question Answering Dataset. 21

STIX 2.1 Structured Threat Information Expression. 3

TBox Terminological Box. 11–13

TFIDF Term Frequency-Inverse Document Frequency. 18

TN True negative. 15

TP True positive. 15, 16

TRAM Threat Report ATT&CK Mapper. 4, 5, 14, 19, 21, 27, 29, 32–34,
36–38, 40, 42, 53, 55, 56, 58, 62–64, 66–68, 70–72

TTPs tactics, techniques, and procedures. 2–4, 6, 21, 27

Chapter 1

Introduction

In the ever-evolving landscape of cybersecurity, identifying and mitigating
software vulnerabilities is of paramount importance [1]. Software vulnerabil-
ities represent weaknesses within software systems that malicious actors can
exploit to trigger unintended and potentially harmful actions [2].

Addressing software vulnerabilities is an ongoing challenge. They range from
critical flaws in widely used operating systems to subtle issues in specialized
applications. Exploiting these vulnerabilities can lead to a cascade of con-
sequences, affecting not only the security and privacy of individuals and or-
ganizations but also having widespread economic and societal implications,
with scenarios ranging from data breaches and identity theft to the compro-
mise of critical infrastructure and massive financial losses. To mitigate these
risks effectively, it is essential to discover, assess, and remediate software
vulnerabilities promptly and comprehensively.

In recent years, there has been a notable trend in software security assessment
towards embracing data-driven methodologies [3]. These methodologies de-
pend on up-to-date repositories that catalog known software vulnerabilities,
utilizing this information to streamline the process of detecting vulnerabili-
ties in current software systems. A significant feature of these methodologies
is their capability to gather, categorize, and distill knowledge regarding spe-
cific vulnerabilities. They draw upon a variety of data sources, including
the National Vulnerability Database (NVD)1, MITRE Adversarial Tactics,

1https://nvd.nist.gov/

1

https://nvd.nist.gov/

2 CHAPTER 1. INTRODUCTION

Techniques, and Common Knowledge (MITRE ATT&CK)2, along with sev-
eral Cyber Threat Intelligence (CTI) sources.

As digital infrastructures become increasingly complex and integral to orga-
nizational operations, the threats to software security grow both in sophisti-
cation and frequency. CTIs has emerged as a crucial element in the cyberse-
curity arsenal. It is a process of collection and analysis of information about
current and potential attacks that threaten the safety of an organization’s
or individual’s assets [4]. It is through CTI reports that organizations gain
actionable insights into the tactics, techniques, and procedures (TTPs) of
threat actors, enabling them to anticipate and mitigate cyber threats effec-
tively. Tactics are the high-level descriptions of the behavior and strategy
of a threat actor, including the overall objectives and goals of their attacks.
Techniques stand for the general methods or types of activity that attack-
ers use to carry out their tactics, and can involve several steps. Procedures
are the specific, detailed steps that threat actors use to execute a technique,
often including exact tools or methods used in an attack.

CTI reports are typically generated by cybersecurity teams within organi-
zations, specialized CTI providers, or government agencies. Some reports
are produced in response to specific incidents or emerging threats, while
others are generated on a regular schedule. Entities that produce CTI re-
ports include private cybersecurity firms, industry-specific Information shar-
ing and analysis centers (ISACs) like European Union Agency for Cyberse-
curity (ENISA)3, government bodies like the National Institute of Standards
and Technology (NIST)4, etc. One such list of current CTI reports could be
found in Cybersecurity & Infrastructure Security Agency (CISA)5.

Understanding and analysis of CTI reports are of paramount importance;
they are the linchpin that connects the dots between disparate pieces of cy-
bersecurity data. These reports not only provide a retrospective view of
cyber incidents but also offer a prospective outlook on potential vulnerabili-
ties and emerging threats. However, the challenge lies in the complexity and
volume of data that CTI encompasses [4].

2https://attack.mitre.org/
3https://www.enisa.europa.eu/topics/national-cyber-security-strategies/

information-sharing
4https://www.nist.gov/
5https://www.cisa.gov/news-events/cybersecurity-advisories

https://attack.mitre.org/
https://www.enisa.europa.eu/topics/national-cyber-security-strategies/information-sharing
https://www.enisa.europa.eu/topics/national-cyber-security-strategies/information-sharing
https://www.nist.gov/
https://www.cisa.gov/news-events/cybersecurity-advisories

3

While these data sources are invaluable for identifying and assessing vul-
nerabilities, they often maintain their data in ways that are not inherently
machine-actionable or interoperable [5]. An example of this is the MITRE
ATT&CK dataset6, which is represented in the Structured Threat Informa-
tion Expression (STIX 2.1)7 JSON collections. While STIX 2.1 provides
a machine-readable format for accessing the MITRE ATT&CK knowledge
base, there is no straightforward method to convert this data into PyTorch
Geometric [6], a state-of-the-art graph structure. This lack of semantic in-
teroperability and structure hampers the ability to harness the full potential
of this wealth of data automatically.

This is where Knowledge Graph (KG) (Section 2.1.4) have emerged as a so-
lution to bridge the gap between disparate data sources and facilitate the au-
tomation of software security assessments and Cyber Threat Intelligence [7].
They offer a structured, dynamic way of representing and analyzing the vast
array of interconnected data points found within CTI reports [8, 9]. A KG
is represented as a collection of interlinked entities, e.g., objects, events, or
concepts. These entities are depicted as nodes, and the relationships be-
tween them are depicted as the edges, forming a network of interconnected
information. A fundamental unit of this structure is the triple, which con-
sists of a subject, a predicate, and an object. The subject represents
the entity, the predicate describes the relationship, and the object is the
entity to which the subject is related.

A Cybersecurity Knowledge Graph serves as a foundational asset for collect-
ing, organizing, and reasoning about cyber-related information [10]. Such a
Knowledge Graph combines knowledge about known software vulnerabilities
with information about common attack TTPs employed by cybercriminals.
By creating a cybersecurity Knowledge Graph, we aim to facilitate auto-
mated reasoning, decision-making, and understanding of the relationships
within the realm of software security.

6https://github.com/mitre-attack/attack-stix-data
7https://docs.oasis-open.org/cti/stix/v2.1/csprd01/stix-v2.1-csprd01.

html

https://github.com/mitre-attack/attack-stix-data
https://docs.oasis-open.org/cti/stix/v2.1/csprd01/stix-v2.1-csprd01.html
https://docs.oasis-open.org/cti/stix/v2.1/csprd01/stix-v2.1-csprd01.html

4 CHAPTER 1. INTRODUCTION

1.1 Research questions & Hypothesis

Machine learning models require large amounts of high-quality, labeled data
to train effectively. In the context of cyber threat intelligence, such data
can be scarce, reliant on extensive manual effort, and may not be labeled
consistently, leading to challenges in training accurate models.

Which leads to our research questions:

• What challenges or limitations do traditional machine learning ap-
proaches encounter when attempting to predict attack tactics, tech-
niques, and procedures from CTI reports?

• To what extent would the incorporation of Knowledge Graphs along-
side current machine learning methods improve a model’s predictive
accuracy for attack TTPs?

It is known that the consistency of Pretrained Language Models (PLMs) is
generally poor with respect to factual knowledge [11]. This has led to open
questions about PLMs on their potential to function as Knowledge Base
(KB).

On the other hand, Knowledge Embedding (KE) methods have demonstrated
high effectiveness in mapping relational facts within Knowledge Graph (KG)s
through the utilization of entity embeddings, although they do not match the
performance of PLMs in directly extracting information from text [12, 13,
14].

The basis of our input data for our work is taken from Threat Report
ATT&CK Mapper (TRAM)8(Section 2.3.3), which consists of CTI document
titles and texts, labeled with attack techniques. The most recent TRAM2
annotation effort9, focused on identification of TTPs from CTI reports based
solely on PLMs. We build on the work of Wang et al. [14] with the hypoth-
esis that training a PLM in conjunction with a KE model on the pre-labeled
CTI data could leverage the advantages of both models.

To address our research questions and evaluate our hypothesis, we adopt

8https://github.com/center-for-threat-informed-defense/tram/tree/main/

data/tram2-data
9https://medium.com/mitre-engenuity/our-tram-large-language-model-

automates-ttp-identification-in-cti-reports-5bc0a30d4567

https://github.com/center-for-threat-informed-defense/tram/tree/main/data/tram2-data
https://github.com/center-for-threat-informed-defense/tram/tree/main/data/tram2-data
https://medium.com/mitre-engenuity/our-tram-large-language-model-automates-ttp-identification-in-cti-reports-5bc0a30d4567
https://medium.com/mitre-engenuity/our-tram-large-language-model-automates-ttp-identification-in-cti-reports-5bc0a30d4567

1.1. RESEARCH QUESTIONS & HYPOTHESIS 5

the following approach, which is detailed in the next few chapters. It in-
volves encoding textual CTI descriptions from TRAM training data using a
PLM as their embedding, transforming them into KG triples, and simultane-
ously optimizing Knowledge Embedding and Language Modelling objectives
by extending on the work done in Knowledge Embedding and Pre-trained
LanguagE Representation (KEPLER)[14](Section 2.3.4), to assess the per-
formance of this method.

Chapter 2

Theory and Related work

The current cybersecurity landscape is marked by an increasing complexity
of threats and the need for more sophisticated tools to detect and mitigate
them. Knowledge Graphs can address this need by combining information
about known software vulnerabilities from CTI reports with insights into
attack TTPs. [15, 16]

In the past few years, the cybersecurity community has increasingly focused
on the development and use of security Knowledge Graphs from various data
sources such as the NVD10, MITRE ATT&CK11, CTIs, Common Weakness
Enumeration (CWE)12, Common Vulnerability Scoring System (CVSS)13,
Open Web Application Security Project (OWASP)14, etc. These graphs are
then enriched with additional knowledge extracted using machine learning,
natural language processing, and other data-driven techniques. The goal is
to automate the identification and classification of actively exploited vulner-
abilities, thereby enhancing the capability to mitigate threats.

10https://nvd.nist.gov/
11https://attack.mitre.org/
12https://cwe.mitre.org/
13https://www.first.org/cvss/
14https://owasp.org/

6

https://nvd.nist.gov/
https://attack.mitre.org/
https://cwe.mitre.org/
https://www.first.org/cvss/
https://owasp.org/

2.1. THEORY 7

2.1 Theory

In this section, we discuss some of the most relevant concepts that form the
foundational building blocks of our work.

2.1.1 Natural Language Processing

Natural Language Processing (NLP) as a field that lies at the con-
fluence of computer science, artificial intelligence, and linguistics [17]. It
aims to bridge the gap between human communication and computer un-
derstanding. Within NLP, two primary subfields emerge: Natural Language
Understanding (NLU) and Natural Language Generation (NLG). These sub-
fields represent the dual nature of language processing, encompassing both
the interpretation and the production of language.

Natural Language Processing

Natural Language Understanding
(Linguistics)

Pragmatics

Morphology
Phonology

Natural Language Text

Natural Language Generation

Syntax
Semantics

Lexical

Discourse

Figure 2.1: Broad classification of NLP [17].

Natural Language Understanding is the subfield dedicated to the com-
prehension of language. It involves a variety of linguistic components, each
playing a crucial role in how meaning is derived from text or speech. Phonology,
the study of sound patterns, is foundational to recognizing spoken words and

8 CHAPTER 2. THEORY AND RELATED WORK

their nuances. Morphology goes a step further by analyzing the structure
of words, identifying how roots combine with prefixes and suffixes to form
new meanings. Lexical analysis involves the understanding of the meaning
of each word. Syntax examines the rules that govern word order, ensuring
that sentences are not only well-formed but also meaningful. Semantics then
takes these sentences and extracts meaning, considering the various possible
interpretations of words within different contexts. Discourse analysis goes
beyond individual sentences to examine larger linguistic structures, ensur-
ing textual coherence by interpreting relationships between sentences and
resolving references within the text. Lastly, pragmatics looks beyond the
literal meanings to understand the implied intentions and social cues embed-
ded in language use. Collectively, these elements allow machines to interpret
and comprehend human language in a manner that is both significant and
pertinent to the context.

Natural Language Generation, on the other hand, focuses on the produc-
tion of language. It is the process by which structured data is transformed
into natural language. This transformation involves several steps, beginning
with the planning of content, where the system decides what information to
include and how to organize it logically. The next step is sentence realization,
where the system converts the structured data into fluent natural language
sentences. This process is not merely about stringing words together; it re-
quires a deep understanding of grammar, style, and coherence to produce
text that reads naturally.

NLP has come a long way since its inception in the 1940s. Early efforts
focused on rule-based systems, but recent advancements leverage machine
learning and deep learning techniques. Notable milestones include:

1950s The birth of computational linguistics and early rule-based transla-
tion systems.

1980s The emergence of statistical methods and the development of parsers.

2000s The rise of machine learning models [18].

2010s Deep learning revolution with neural networks, attention mechanisms,
and Pretrained Language Models (e.g., BERT [19]).

Recent breakthroughs include models like BERT [19], GPT [20] and RoBERTa [21]
(Section 2.3.2), which pre-trains on vast amounts of unlabeled text and fine-

2.1. THEORY 9

tunes for specific NLP tasks. Their contextual embeddings capture rich lan-
guage semantics and have significantly improved performance across various
applications. However, evaluating NLP systems remains challenging due to
context, ambiguity, and domain-specific nuances.

2.1.1.1 Pretrained Language Models & Large Language Models

Pretrained Language Models (PLMs) have been trained on large text corpora
to learn a wide array of language features and patterns before being fine-
tuned for specific tasks. Large Language Models (LLMs), such as GPT-3 [20]
and RoBERTa [21], are subsets of these models characterized by their vast
number of parameters, allowing them to understand and generate human-like
text.

Language models were traditionally task-specific and trained from scratch.
The shift towards pre-trained models, trained on extensive text datasets,
allows for general language representations that can be fine-tuned for specific
tasks.

The core concept of these models is the idea of distributed representations,
where words and phrases are encoded as vectors in a continuous space. This
enables the models to capture semantic and syntactic properties through
context-dependent representations. Pre-training uses self-supervised learning
tasks like Masked Language Models to understand language context while
fine-tuning adapts the model to specific NLP tasks.

LLMs scale up PLMs, featuring billions of parameters. They are trained
on diverse text datasets, enabling them to generate coherent and contextu-
ally rich text, demonstrating remarkable performance on various NLP tasks
without task-specific training data [22].

2.1.1.2 Masked Language Models

In the field of NLP, Masked Language Model (MLM)s have emerged as a
major innovation in self-supervised learning as an effective pre-training ap-
proach. At its core, an MLM is a neural-network based language model
specifically trained to predict missing or “masked” words within a given
text. The fundamental idea involves temporarily replacing certain words in
a sentence with a special token (often denoted as [MASK]). The model’s task

10 CHAPTER 2. THEORY AND RELATED WORK

is then to predict the correct words that should replace these masked tokens,
leveraging the context provided by the surrounding words [23].

Bidirectional Encoder Representations from Transformers (BERT),
a MLM developed by Google AI15, has revolutionized the understanding of
language structure by employing attention mechanisms to grasp the con-
textual relationships between words. BERT’s bidirectional text scanning
capability allows it to comprehend the context from both directions, offering
substantial improvements in tasks such as sentence completion and language
translation [19].

2.1.1.3 Byte Pair Encoding

Byte-Pair Encoding (BPE), introduced by Sennrich, Haddow, and Birch [24],
is a technique used in NLP to break down words into smaller, more manage-
able units, known as subwords.

The BPE algorithm starts by initializing a vocabulary with all unique charac-
ters or bytes in a given text. It then calculates the frequency of each character
or byte in the text. The algorithm repeatedly identifies the most common
pair of consecutive characters or bytes and merges them into a single subword
unit. This process continues until the vocabulary reaches a predefined size.

The resulting subwords can efficiently represent the original text, making
BPE a valuable tool for tasks such as machine translation, text classification,
and text generation. Despite its simplicity, BPE is powerful and reliable, with
a low computational cost.

2.1.2 Knowledge Embedding

Knowledge Embedding (KE) is a technique for semantic representation within
Knowledge Graph (KG)[25](Section 2.1.4). It involves the translation of com-
plex, high-dimensional information about entities and their relationships into
a lower-dimensional, continuous vector space known as the embedded space.
This transformation is crucial for capturing the essence of Semantic proxim-
ity, which refers to the closeness of meaning that entities share in the KG,
ensuring that related concepts remain close in the embedded space. By doing

15https://ai.google/

https://ai.google/

2.1. THEORY 11

so, KE enables efficient retrieval, reasoning, and inference over large sets of
interconnected data.

An embedded space is a mathematical construct where each entity and rela-
tionship from the knowledge graph is represented as a point or vector. The
goal of Knowledge Embedding is to arrange both the entity and relationship
vectors such that the distances between them reflect the semantic proximity
of the corresponding entities in the Knowledge Graph.

Semantic proximity implies that entities with similar meanings or roles within
the graph are located near each other in the embedded space, facilitating the
discovery of semantic relationships and patterns that are not immediately
apparent in the high-dimensional original data.

2.1.3 Knowledge Base

A Knowledge Base is a structured repository used for knowledge sharing and
management. It organizes information into two main components: Termino-
logical Box (TBox) and Assertional Box (ABox) [26].

Terminological Box (TBox): This component defines the terminologies, i.e.,
the vocabulary of the domain, and the relationships between them. It
includes the classes (or concepts), properties (or roles), and the con-
straints or rules that apply to them. In essence, the TBox represents
the schema or the ontology of the knowledge base.

Assertional Box (ABox): This component contains assertions about in-
stances of the classes and properties defined in the TBox. In other
words, it holds the actual data or facts that populate the schema de-
fined by the TBox.

2.1.4 Knowledge Graph

A Knowledge Graph (KG) [7, 25] is a powerful concept for representing com-
plex systems of entities and their interrelationships. It is essentially a form of
semantic network, structured as a graph, where nodes represent entities and
edges represent relationships or connections between these entities. It enables
more efficient data integration, interpretation, and analysis by providing a
structured and interconnected view of data.

12 CHAPTER 2. THEORY AND RELATED WORK

A semantic network is a type of knowledge base that depicts the semantic
connections amongst concepts within a network [27]. It is frequently em-
ployed as a method for knowledge representation. In a semantic network,
elements, which stand for concepts, are depicted as vertices, and edges sig-
nify the semantic links between these concepts.

One such example of a KG is WikiData16, which is the largest general-interest
knowledge base that is openly available. It is collaboratively edited by thou-
sands of volunteer editors and has evolved considerably since its inception in
2012 [28].

As noted in previous sections, a Knowledge Graph is represented as a collec-
tion of interlinked nodes, and the relationships between them are depicted as
the edges, forming a network of “triples”. An example triple would look like
("T1548.002", "used in", "Enigma Stealer Targets Cryptocurrency Industry

with Fake Jobs") where “T1548.002” is the subject, representing an attack
technique; “used in” is the predicate, indicating the relation of the subject
to the object; and “Enigma Stealer Targets Cryptocurrency Industry

with Fake Jobs”, the CTI report name, is the object.

To materialize this KG, the following elements could be defined:

Figure 2.2: TBox : A Knowledge Graph ontology.

Nodes (Entities) of the TBox(Figure 2.2) are as follows:

16https://www.wikidata.org/

https://www.wikidata.org/

2.1. THEORY 13

- Attack Tactic17: Signifies “why” or the motive behind an adver-
sary’s actions.

- Tactic Description: Contains the full description of the tactic.

- Attack Technique18: Depicts the methods used by adversaries to
accomplish their strategic objectives through the execution of spe-
cific tasks.

- Technique Description: Contains the full description of the tech-
nique.

- CTI report : The name of a Cyber Threat Intelligence report.

- Report Description: Text excerpts from a CTI report.

- Procedure examples : The particular application or real-world uti-
lization of techniques or sub-techniques employed by the adver-
sary.19

Edges (Relationships) of the TBox(Figure 2.2) are as follows:

- Part of : Links Attack Techniques to Attack Tactics.

- Used in: Shows that the techniques and tactics are made use of
in a CTI report.

- Points to: Links a text to an Attack Technique.

- Contains : Connects a text to a CTI report.

- Uses : Associates procedure-examples to Attack Techniques.

- Describes : Full names of the attack techniques and tactics.

17https://attack.mitre.org/tactics/enterprise/
18https://attack.mitre.org/techniques/enterprise/
19https://attack.mitre.org/resources/faq/

https://attack.mitre.org/tactics/enterprise/
https://attack.mitre.org/techniques/enterprise/
https://attack.mitre.org/resources/faq/

14 CHAPTER 2. THEORY AND RELATED WORK

Figure 2.3: ABox: A Knowledge Graph assertion.

The ABox(Figure 2.3) shows an implementation of the ontology(Figure 2.2).
Note: The yellow-highlighted entities in Figure 2.2 and Figure 2.3 repre-
sent additional information that was extracted from MITRE ATT&CK data
and incorporated into the TRAM data to enhance its relational information,
thereby potentially improving the model performance. Detailed description of
this in Section 3.2.2

2.1. THEORY 15

2.1.5 Prediction Scoring Metrics

A Confusion Matrix is a specific table layout that allows visualization of
the performance of a supervised learning model. It’s extremely useful for
measuring metrics like Precision (P), Recall (R), and F1 Score (F1). It is a
table with two sets of rows & columns that show the False positive (FP), False
negative (FN), True positive (TP), and True negative (TN) counts. This
allows more detailed analysis than a mere proportion of correct classifications
(accuracy).

• TP are the correctly predicted positive values.

• TN are the correctly predicted negative values.

• FP occur e.g., when an actual class is no and the predicted class is yes.

• FN are the cases when, e.g., the actual class is yes but the predicted
class in no.

A Confusion Matrix can be visualized as follows:

Predicted: Yes Predicted: No

Actual: Yes TP FN

Actual: No FP TN

Table 2.1: A Confusion Matrix

Precision refers to the ratio of correctly predicted positive instances to the
total number of predicted positive instances. It shows the model’s capability
to accurately classify positive instances. It’s calculated as:

P =
TP

TP + FP

Recall, also known as sensitivity, is the ratio of correctly identified positive
instances to all actual positive instances. It demonstrates the model’s ability
to correctly detect positive instances. It is defined as:

Recall =
TP

TP + FN

16 CHAPTER 2. THEORY AND RELATED WORK

The F1 Score is the harmonic mean of P and R where precision and recall
are equally weighted, providing a single metric that balances both aspects.
It is defined as:

F1 = 2× P ×R

P +R

Micro-Averaging: This approach gives equal importance to each instance
or data point. The metric is computed on a global scale by tallying the total
number of TPs, FNs, and FPs. This technique is beneficial when the goal is
to assign equal weight to each prediction. This metric is defined by:

MicroPrecision =

∑n
i=1 TPi∑n

i=1(TPi + FPi)

MicroRecall =

∑n
i=1 TPi∑n

i=1(TPi + FNi)

Macro-Averaging: This method calculates the metric independently for
each class and then takes the average, thereby ensuring all classes are treated
equally. This technique is advantageous when the aim is to evaluate the over-
all performance of a model, with each class being given equal consideration.
This is defined by:

MacroPrecision =
1

n

n∑
i=1

TPi

TPi + FPi

MacroRecall =
1

n

n∑
i=1

TPi

TPi + FNi

In both Micro-Averaging and Macro-Averaging equations,

• TPi is the number of True positive for the ith class.

• FPi is the number of False positive for the ith class.

• FNi is the number of False negative for the ith class.

• n is the number of classes.

2.2. RELATED WORK 17

Perplexity is a metric used in language modeling to assess the effectiveness
of a model in predicting a sample. Specifically, in NLP, it serves as a measure
of the model’s ability to predict a text sequence. A language model with
a lower perplexity score is considered to perform better in generalization,
meaning it has a higher certainty in its predictions.

2.2 Related Work

In this section, we explore a selection of studies relevant to our thesis, which
highlight the current state of research.

Building on LLMs, Jin et al. [29]’s survey systematically reviews the use of
LLMs in processing graph-structured data. The paper categorizes potential
scenarios into pure graphs, text-attributed graphs, and text-paired graphs. It
discusses techniques for utilizing LLMs as predictors, encoders, and aligners
on graphs, comparing the advantages and disadvantages of different types of
models. The survey also addresses real-world applications, providing open-
source codes and benchmark datasets, and concludes with potential future
research directions in this rapidly evolving field. It discusses the fact that
using LLMs as encoders is possibly the most direct approach to leverage
LLMs on graphs, and this is a method we employ in our work.

Motlagh et al. [30]’s paper provides a comprehensive review of the applica-
tions of LLMs in cybersecurity. It categorizes the literature into defensive20

and adversarial21 uses of LLMs, highlighting both the potential risks and op-
portunities. The study emphasizes the slow adoption of machine learning in
cybersecurity and suggests that LLMs can significantly elevate the capabil-
ities in this domain by offering advanced solutions for threat detection and
prevention. In our work, we apply LLMs as a defensive measure in identifying
Attack Techniques from CTI reports.

Sikos [10] provides a survey on Cybersecurity Knowledge Graphs (CKG),
which are graph-based data models representing cyber-knowledge. These
CKGs offer holistic approaches for processing vast volumes of complex cyber-
security data from diverse sources. The author discusses the leading graph-
based models applied in the field of cybersecurity. Additionally, the author

20https://www.nist.gov/cyberframework
21https://attack.mitre.org/matrices/enterprise/

https://www.nist.gov/cyberframework
https://attack.mitre.org/matrices/enterprise/

18 CHAPTER 2. THEORY AND RELATED WORK

delves into systems for organizing knowledge that establish the principles
and attributes employed in the structured representation of cyber-related
knowledge. This includes both background knowledge and specific expert
knowledge about actual systems or attacks. The paper also looks into how
CKGs support machine learning and help in automated decision-making on
cyber-knowledge, which is crucial for detecting anomalies, categorizing vul-
nerabilities, and matching attack patterns. The author’s work emphasizes
the importance of CKGs in achieving an advanced level of cyber-situational
awareness, uncovering fresh cyber-knowledge, visualizing data flow, attack
routes and networks, and comprehending data correlations through the con-
solidation and merging of data.

Dasgupta et al. [31]’s work introduces a method to enhance CKGs using
Graph Convolutional Neural Networks (GCN). The paper focuses on the chal-
lenge of verifying the accuracy of CKG assertions, which are represented as
semantic triples. To address this, the authors propose a supervised machine-
learning algorithm that assigns a score to each semantic triple, indicating the
reliability of the information based on the data source. This scoring system is
crucial for security researchers to ascertain the accuracy of recorded cyber-
events and draw parallels with known incidents. While this aspect is not
addressed in our present work, it remains a significant consideration, which
we have earmarked for enhancement in future iterations.

Rahman and Williams [32]’s study on extracting Attack Techniques from
Unstructured Text compares various techniques for extracting attack tech-
niques from unstructured text, such as threat reports. The paper identifies
Term Frequency-Inverse Document Frequency (TFIDF) and Latent Seman-
tic Indexing (LSI) as the most effective methods, achieving F1 scores of
84% and 83%, respectively. The research also explores the impact of class
label increase on method performance and suggests oversampling as a strat-
egy to address class imbalance issues. This paper presents various existing
approaches to attack technique extraction, we take inspiration from it and
explore an alternative method that we believe could also be a viable option.

In the area of using Knowledge Graphs for associating MITRE ATT&CK
techniques with CTI reports, Kriaa and Chaabane [13] presents a novel ap-
proach to leveraging knowledge graphs for attack detection and prediction.
The primary contributions of this paper revolve around the development of
the SecKG schema, the detection module, and the prediction module. These

2.3. MODELS & TOOLS 19

components facilitate learning from a KG, thereby enhancing the system’s
ability to foresee attacks. One of the major issues highlighted is the high rate
of false positives generated by the prediction module due to the scarcity of
instances of specific attack data in the training dataset, and the model needs
to be optimized further. However, the rate of prediction is quite promising
even with the limited amount of data.

Liu and Zhan [33] employs ChatGPT22 to identify and categorize attack-
related elements and their interconnections for efficiently constructing knowl-
edge graphs from CTI. It shows potential in low-resource scenarios, showcas-
ing better results as compared to AttackKG and REBEL, although the model
still requires further calibration and validation, since, to quote the author,
“ChatGPT, while an impressive tool, is occasionally too “creative” to create
relations that might be incorrect”.

The body of literature reviewed here provides an overview of the current state
of research in the application of LLMs on graphs, their use in cybersecurity,
the role of CKGs, and the extraction of attack techniques from unstructured
text. Each of these studies contributes valuable insights and methodologies
that have informed our approach.

Below sections expand on the models and tools that form the foundation
of our work, where we preprocess and enrich the input data from TRAM
(Section 2.3.3) with information from MITRE ATT&CK and train models
extended from KEPLER (Section 2.3.4) which is built on top of FAIRSEQ
(Section 2.3.1) and RoBERTa (Section 2.3.2). The trained model is then
converted to Hugging Face Transformer and further fine-tuned and finally
evaluated against the TRAM(Section 2.3.3) model.

2.3 Models & Tools

2.3.1 FAIRSEQ

The Facebook AI Research Sequence-to-Sequence (FAIRSEQ)23 model, de-
veloped by Fundamental AI Research (FAIR) team at Meta24, represents an

22https://chat.openai.com/
23https://fairseq.readthedocs.io/en/latest/
24https://ai.meta.com/research/

https://chat.openai.com/
https://fairseq.readthedocs.io/en/latest/
https://ai.meta.com/research/

20 CHAPTER 2. THEORY AND RELATED WORK

advancement in the field of sequence modeling. While earlier models priori-
tized either extensibility or performance, FAIRSEQ stands out for its speed,
extensibility, and versatility, making it suitable for both research and produc-
tion environments [34]. This model is part of the FAIRSEQ toolkit, which
is an open-source platform designed for a variety of text generation tasks
such as translation, summarization, and language modeling. The FAIRSEQ
toolkit, and by extension the FAIRSEQ model, is built upon the PyTorch
framework and supports distributed training across multiple GPUs and ma-
chines, facilitating rapid and efficient model development.

FAIRSEQ’s architecture is engineered to be robust, addressing the challenges
of real-world conditions that are often not represented in public datasets.
The FAIRSEQ model aims to bridge this gap by providing a benchmark
that matches real-life conditions, thereby enabling the identification of the
strengths and weaknesses of the models more effectively.

2.3.2 RoBERTa

The advent of BERT marked a paradigm shift in the field of NLP, setting
new standards for a variety of tasks [19]. However, subsequent research
by Liu et al. [21] introduced A Robustly Optimized BERT Pretraining Ap-
proach (RoBERTa), and demonstrated that the original BERT model was
significantly under-trained.

RoBERTa revisits the BERT pretraining methodology and scales it up, lead-
ing to improved performance across a range of NLP benchmarks. The study
conducted by Liu et al. [21] measured the impact of key hyperparameters
and training data size, which were previously overlooked or not optimized
in the original BERT pretraining. The findings revealed that with careful
tuning and extended training on larger datasets, RoBERTa could match or
even surpass the performance of all models published after BERT, including
those claiming significant improvements over it.

- Training on Larger Datasets : RoBERTa was trained on a dataset com-
prising 160 GB of text, which is ten times larger than the dataset used
for BERT.

- Removing BERT’s Next Sentence Prediction (NSP) : The NSP task
was found to be an ineffective pretraining objective, and its removal led
to performance gains.

2.3. MODELS & TOOLS 21

- Dynamic Masking : Unlike BERT’s static masking, where the masked
tokens are predetermined before training starts, RoBERTa applies dy-
namic masking, generating the masking pattern every time a sequence
is fed into the model.

- Longer Training with Larger Batches : RoBERTa extends the train-
ing process, using larger batch sizes and more training steps, which
contributes to its robustness and effectiveness.

The RoBERTa model has set new state-of-the-art results on major NLP
benchmarks such as General Language Understanding Evaluation (GLUE) [35],
Reading Comprehension Dataset From Examinations (RACE) [36], and Stan-
ford Question Answering Dataset (SQuAD) [37], highlighting the significance
of revisiting and refining pretraining approaches in the development of NLP
models

2.3.3 TRAM

The Threat Report ATT&CK Mapper (TRAM)25 is an open-source platform
developed by MITRE Engenuity26. It is designed to address the challenges
faced by the cybersecurity community in identifying TTPs in CTI reports.

Large Language Models The most recent version of this initiative has
enhanced the training data’s quality and leveraged fine-tuned LLMs to boost
the efficiency of model training and forecasting.

Training the LLM The pretrained SciBERT LLM is further trained on
the annotated data from the TRAM tool. This allows the model to learn
the patterns and relationships between the text in the CTI reports and the
corresponding TTPs.

Predicting TTPs Once the LLM is trained, it can be used to automatically
identify TTPs in new CTI reports. The model analyses the text in the report
and predicts the TTPs based on what it has learned during training.

25https://mitre-engenuity.org/cybersecurity/center-for-threat-informed-

defense/our-work/threat-report-attck-mapper-tram/
26https://mitre-engenuity.org/

https://mitre-engenuity.org/cybersecurity/center-for-threat-informed-defense/our-work/threat-report-attck-mapper-tram/
https://mitre-engenuity.org/cybersecurity/center-for-threat-informed-defense/our-work/threat-report-attck-mapper-tram/
https://mitre-engenuity.org/

22 CHAPTER 2. THEORY AND RELATED WORK

2.3.4 KEPLER

Knowledge Embedding and Pre-trained LanguagE Representation (KEPLER) [14]
is a model that sits at the intersection of KG and PLMs, aiming to capture
factual knowledge from both structured KGs and unstructured text.

It is built upon the FAIRSEQ(Section 2.3.1) framework, leveraging its robust
foundation. This design choice allows KEPLER to benefit from FAIRSEQ’s
efficient training and generation capabilities, as well as its extensibility. No-
tably, it also maintains compatibility with RoBERTa’s (Section 2.3.2) model
architecture. As a result, KEPLER checkpoints can be utilized in the same
manner as RoBERTa checkpoints for various downstream NLP tasks.

Model Architecture KEPLER encodes textual entity descriptions using
a PLM to generate entity embeddings, which are then optimized jointly with
the knowledge embedding and language modeling objectives. This joint op-
timization allows KEPLER to integrate factual knowledge into PLMs more
effectively and produce text-enhanced KE with strong PLMs. The model
architecture (Figure 2.4) is designed to be robust, handling the sparse and
complex nature of world facts as they appear in the text.

KE Loss

EncoderEmbeddingsEncoder

<s> T1210: Exploitation of Remote Services<s> SMBv1 Exploitation via EternalBlue...

Knowledge Graph

T1210SMBv1 , Uses , ()
h r t

texth textt

h r t

+ MLM Loss

Encoder

NotPetya Technical <mask> A Triple Threat: File Encryption...

Text

Figure 2.4: The KEPLER framework. Entity descriptions are encoded as en-
tity embeddings and the KE and MLM objectives are jointly trained on the same
PLM [14].

2.3. MODELS & TOOLS 23

Dataset and Pre-training The researchers developed Wikidata5M27 for
pre-training and evaluating KEPLER, a comprehensive KG dataset featuring
aligned entity descriptions. This dataset establishes a benchmark for KE
methods and supports research on expansive KGs, inductive KE, and KGs
enriched with textual data. KEPLER’s pre-training involves encoding the
textual descriptions of entities and then optimizing the model to predict the
relationships between these entities accurately.

Features :

- Textual Entity Descriptions : Entities are described using text, which
provides context and improves the quality of the embeddings.

- Joint Optimization : The model is trained with a joint loss function that
combines the objectives of KE and MLM, leading to a more holistic
learning process.

- Inductive Capabilities : KEPLER functions well as an inductive KE
model, effectively handling KG link prediction tasks even for unseen
data.

Experimental Results The experimental findings reveal that KEPLER
sets a new standard in performance across diverse NLP tasks, one example
of which has been detailed below.

27https://deepgraphlearning.github.io/project/wikidata5m

https://deepgraphlearning.github.io/project/wikidata5m

24 CHAPTER 2. THEORY AND RELATED WORK

Model
FewRel 1.0 FewRel 2.0

5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5

MTB (BERTLARGE)
† 93.86 97.06 89.20 94.27 − − − −

Proto (BERT) 80.68 89.60 71.48 82.89 40.12 51.50 26.45 36.93
Proto (MTB) 81.39 91.05 71.55 83.47 52.13 76.67 48.28 69.75
Proto (ERNIEBERT)

† 89.43 94.66 84.23 90.83 49.40 65.55 34.99 49.68
Proto (KnowBertBERT)

† 86.64 93.22 79.52 88.35 64.40 79.87 51.66 69.71
Proto (RoBERTa) 85.78 95.78 77.65 92.26 64.65 82.76 50.80 71.84
Proto (Our RoBERTa) 84.42 95.30 76.43 91.74 61.98 83.11 48.56 72.19
Proto (ERNIERoBERTa)

† 87.76 95.62 80.14 91.47 54.43 80.48 37.97 66.26
Proto (KnowBertRoBERTa)

† 82.39 93.62 76.21 88.57 55.68 71.82 41.90 58.55
Proto (KEPLER-Wiki) 88.30 95.94 81.10 92.67 66.41 84.02 51.85 73.60

PAIR (BERT) 88.32 93.22 80.63 87.02 67.41 78.57 54.89 66.85
PAIR (MTB) 83.01 87.64 73.42 78.47 46.18 70.50 36.92 55.17
PAIR (ERNIEBERT)

† 92.53 94.27 87.08 89.13 56.18 68.97 43.40 54.35
PAIR (KnowBertBERT)

† 88.48 92.75 82.57 86.18 66.05 77.88 50.86 67.19
PAIR (RoBERTa) 89.32 93.70 82.49 88.43 66.78 81.84 53.99 70.85
PAIR (Our RoBERTa) 89.26 93.71 83.32 89.02 63.22 77.66 49.28 65.97
PAIR (ERNIERoBERTa)

† 87.46 94.11 81.68 87.83 59.29 72.91 48.51 60.26
PAIR (KnowBertRoBERTa)

† 85.05 91.34 76.04 85.25 50.68 66.04 37.10 51.13
PAIR (KEPLER-Wiki) 90.31 94.28 85.48 90.51 67.23 82.09 54.32 71.01

Table 2.2: The table taken from KEPLER [14] paper shows Accuracies (%)
on the FewRel dataset [38]. N -K indicates the N -way K-shot setting. “Proto”
indicates Prototypical Networks [39], “PAIR” is from Gao et al. [40] and “MTB”
is from Soares et al. [41]. MTB uses the LARGE size and all the other models use
the BASE size. † indicates oracle models which may have seen facts in the FewRel
1.0 test set during pre-training.

In the evaluation shown below (Table 2.2), several models classify queries into
relations based on sampled instances. FewRel28 and FewRel 2.029 are few-
shot relation classification datasets that were used here. Two frameworks,
Proto [39] and PAIR [40] were used where the text encoders were replaced
by KEPLER and the other baseline models used in the paper. KEPLER-
Wiki outperformed other BASE-size PLM in most settings. Interestingly,
RoBERTa-based models were comparable or even inferior to BERT-based
models in the PAIR framework. KEPLER showed improvements on FewRel
2.0, while ERNIE and KnowBert declined in most settings. This suggests
that KEPLER not only learns better entity representations but also demon-

28https://paperswithcode.com/dataset/fewrel
29https://paperswithcode.com/dataset/fewrel-2-0

https://paperswithcode.com/dataset/fewrel
https://paperswithcode.com/dataset/fewrel-2-0

2.3. MODELS & TOOLS 25

strates a general ability to extract factual knowledge from the context across
different domains. Conversely, ERNIE and KnowBert may not generalize
well to new domains requiring different entity linkers and entity embeddings.
Additionally, KEPLER exhibits good inductive KE proficiency in KG link
prediction, surpassing previous methodologies.

Model MR MRR HITS@1 HITS@3 HITS@10

DKRL [42] 78 23.1 5.9 32.0 54.6

RoBERTa 723 7.4 0.7 1.0 19.6
Our RoBERTa 1070 5.8 1.9 6.3 13.0
KEPLER-KE 138 17.8 5.7 22.9 40.7
KEPLER-Rel 35 33.4 15.9 43.5 66.1
KEPLER-Wiki 32 35.1 15.4 46.9 71.9
KEPLER-Cond 28 40.2 22.2 51.4 73.0

Table 2.3: Table taken from KEPLER [14] paper shows Link prediction results
on Wikidata5M (% except MR) inductive settings. The evaluation metrics are
Mean reciprocal rank (MRR), Mean rank (MR), and HITS@K (which refers to the
number of actual positive triples that are positioned within the top-k ranks when
compared to a set of artificially created negative triples).

The inductive prediction results in Table 2.3 of the KEPLER model, as
evaluated on Wikidata5M, demonstrate a significant improvement over the
DKRL [42] and RoBERTa models. This is indicative of the effectiveness of
the joint training method employed by KEPLER. However, the paper also
states that the performance of KEPLER, while superior, is still not at the
level required for practical applications such as constructing a knowledge
graph from scratch. This shows the need for further advancements in induc-
tive KE.

Chapter 3

Materials & Methods

Figure 3.1: This figure shows the method pipeline that is followed in the thesis
work.

26

3.1. DATA IDENTIFICATION 27

3.1 Data Identification

Our work focuses on data from MITRE ATT&CK, which is a free-to-use
and comprehensive Knowledge Base of real-world data on tactics, techniques,
and procedures used by cyber adversaries. It offers valuable insights into
the various stages of an attack, from initial reconnaissance to actions on
objectives, and is used to build threat models and methodologies in various
sectors, including private companies, government, and cybersecurity services.

The data is organized into a matrix layout30 that represents the various stages
of an attack. This matrix is divided into several categories, each representing
a different phase of a cyberattack:

The April 2024 (v15) ATT&CK release31 for the Enterprise dataset contains
14 Tactics, 202 Techniques, 435 Sub-Techniques, 148 Groups, 677 Pieces-of-
Software, 28 Campaigns, 43 Mitigations, and 37 Data-Sources.

A subset of the MITRE ATT&CK data, which has been used in the most
recent TRAM2 annotation initiative32, was used as an input to our work, as
the first step of the pipeline (Figure 3.1). This is an annotated information
that covers 50 ATT&CK techniques, and is stored in two datasets:33

- single label.json has annotations at the phrase level. Due to the cur-
rent data limitations, experiments with this dataset show better out-
comes with TRAM’s prediction algorithm. An example entry of the
file looks like the Listing 3.2.2

- multi label.json provides annotations at the sentence level. This ap-
proach is more versatile, allowing the model to identify references to
various techniques in closely situated text, but prediction accuracy with
this is worse due to the small size of the dataset. An example of this
is as follows:

30https://attack.mitre.org
31https://attack.mitre.org/resources/updates/updates-april-2024/
32https://github.com/center-for-threat-informed-defense/tram/wiki/Data-

Annotation
33https://github.com/center-for-threat-informed-defense/tram/tree/main/

data/tram2-data

https://attack.mitre.org
https://attack.mitre.org/resources/updates/updates-april-2024/
https://github.com/center-for-threat-informed-defense/tram/wiki/Data-Annotation
https://github.com/center-for-threat-informed-defense/tram/wiki/Data-Annotation
https://github.com/center-for-threat-informed-defense/tram/tree/main/data/tram2-data
https://github.com/center-for-threat-informed-defense/tram/tree/main/data/tram2-data

28 CHAPTER 3. MATERIALS & METHODS

{

"sentence": "Once the victim opens the document, the embedded

macro will be executed, injecting the shellcode into rundll32.

exe.",

"labels": [

"T1055",

"T1204.002"

],

"doc_title": "Earth Zhulong Familiar Patterns Target Southeast

Asian Firms"

}

The following sections explain how the single-labeled input data was pre-
processed, trained, and tested. The same steps apply to multi-labeled input
data, with some minor changes in the algorithm that create the triples.

3.2 Data Pre-processing

3.2.1 Environment Setup

Initially, a Conda34 environment was established with the following speci-
fications. This was done to make sure that the KEPLER code works as
intended:

• PyTorch 1 35

• Python 3.9 36

• NVIDIA Apex libraries 37

• KEPLER’s installation from source, which also included a customized
FAIRSEQ 0.8.0 source code 38

• Hugging Face Transformers 2 39

34https://conda.io/
35https://pytorch.org/get-started/previous-versions/#v1131
36https://www.python.org/downloads/release/python-390/
37https://github.com/NVIDIA/apex
38https://github.com/S0UGATA/KEPLER
39https://huggingface.co/transformers/v2.3.0/index.html

https://conda.io/
https://pytorch.org/get-started/previous-versions/#v1131
https://www.python.org/downloads/release/python-390/
https://github.com/NVIDIA/apex
https://github.com/S0UGATA/KEPLER
https://huggingface.co/transformers/v2.3.0/index.html

3.2. DATA PRE-PROCESSING 29

3.2.2 Data Enrichment

The annotated TRAM single-label dataset was converted into a tabular for-
mat. Additionally, Tactic IDs, Tactic names, Technique names, and proce-
dure examples corresponding to the Techniques, were extracted and added40

from MITRE ATT&CK41 to this dataset. This is the second step in the
pipeline. (Figure 3.1)

As an example, the following data from TRAM:

{

"text": "elevate its privileges by executing the mw_UAC_bypass

function",

"label": "T1548.002",

"doc_title": "Enigma Stealer Targets Cryptocurrency Industry

with Fake Jobs"

}

has been enriched with related Tactic IDs, Tactic names, and Procedure
examples from MITRE ATT&CK dataset as shown below.

The name and Id of the Tactic node:

{

"x_mitre_domains": ["enterprise-attack"],

"id": "x-mitre-tactic--5e29b093-294e-49e9-a803-dab3d73b77dd

",

"type": "x-mitre-tactic",

"external_references": [

{

"external_id": " TA0004 ",

"url": "https://attack.mitre.org/tactics/TA0004",

"source_name": "mitre-attack"

}

],

"name": " Privilege Escalation ", ...

}

40https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/

scripts/singleLabel2kepler_aug.ipynb
41https://github.com/mitre-attack/attack-stix-data/blob/master/

enterprise-attack/enterprise-attack.json

https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/scripts/singleLabel2kepler_aug.ipynb
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/scripts/singleLabel2kepler_aug.ipynb
https://github.com/mitre-attack/attack-stix-data/blob/master/enterprise-attack/enterprise-attack.json
https://github.com/mitre-attack/attack-stix-data/blob/master/enterprise-attack/enterprise-attack.json

30 CHAPTER 3. MATERIALS & METHODS

The name corresponding to the Technique node:

{

"name": " Bypass User Account Control ",

"kill_chain_phases": [

{

"kill_chain_name": "mitre-attack",

"phase_name": "privilege-escalation"

}, ...

],

"x_mitre_is_subtechnique": true,

"type": "attack-pattern",

"id": "attack-pattern--120d5519-3098-4e1c-9191-2aa61232f073

",

"external_references": [

{

"source_name": "mitre-attack",

"url": "https://attack.mitre.org/techniques/T1548

/002",

"external_id": "T1548.002"

}, ...

], ...

}

The Procedure Example name & external Id from its corresponding node:

{

"name": " APT37 ",

"type": "intrusion-set",

"id": "intrusion-set--4a2ce82e-1a74-468a-a6fb-bbead541383c",

"external_references": [

{

"source_name": "mitre-attack",

"url": "https://attack.mitre.org/groups/G0067",

"external_id": " G0067 "

},

...

],

...

}

3.2. DATA PRE-PROCESSING 31

3.2.3 Data Transformation

The enriched dataset, containing Technique IDs, CTI Document Titles, text
snippets, Tactic IDs, Tactic names, Technique names, and Procedure Ex-
ample names, formed the basis of the entity descriptions set and was sub-
sequently used for generating inputs for both the KE and MLM objectives.
This forms the third step of the pipeline. (Figure 3.1)

3.2.3.1 Knowledge Embedding

For the KE objective, a set of triples was to be generated, as shown in Fig-
ure 2.3. Each relationship type was assigned a numeric value, and the subject
and object were assigned their corresponding index, in the form of their line
numbers in the entity-descriptions set. By iterating over the original tabular
data and determining their corresponding indexes in the entity-descriptions
set, the set of triples was created. The triples set and the entity-descriptions
set were subsequently divided into training, validation, and test subsets.42

Extending on the approach in KEPLER, the entity-descriptions set was en-
coded using GPT2 BPE(Section 2.1.1.3). 43

Negative sampling was then performed, and then the encoded-entity-descriptions
set was divided into training and validation samples. 44

The next step was to binarize the training, validation, and negative samples.
45

3.2.3.2 Masked Language Model

Similar to the KE preprocessing steps, the training, validation and test sub-
sets of the entity-descriptions set were encoded using a GPT2 encoder46. The
next step was to binarize the encoded data using the GPT2 dictionary47.

42See footnote 40
43https://github.com/S0UGATA/KEPLER/blob/main/examples/roberta/

multiprocessing_bpe_encoder.py
44https://github.com/S0UGATA/KEPLER/blob/main/examples/KEPLER/Pretrain/

KGpreprocess.py
45https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/preprocess.py
46https://github.com/S0UGATA/KEPLER/blob/main/examples/roberta/

multiprocessing_bpe_encoder.py
47https://github.com/S0UGATA/KEPLER/blob/main/preprocess.py

https://github.com/S0UGATA/KEPLER/blob/main/examples/roberta/multiprocessing_bpe_encoder.py
https://github.com/S0UGATA/KEPLER/blob/main/examples/roberta/multiprocessing_bpe_encoder.py
https://github.com/S0UGATA/KEPLER/blob/main/examples/KEPLER/Pretrain/KGpreprocess.py
https://github.com/S0UGATA/KEPLER/blob/main/examples/KEPLER/Pretrain/KGpreprocess.py
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/preprocess.py
https://github.com/S0UGATA/KEPLER/blob/main/examples/roberta/multiprocessing_bpe_encoder.py
https://github.com/S0UGATA/KEPLER/blob/main/examples/roberta/multiprocessing_bpe_encoder.py
https://github.com/S0UGATA/KEPLER/blob/main/preprocess.py

32 CHAPTER 3. MATERIALS & METHODS

3.2.3.3 Trial with PyTorch Geometric

Data transformation to a Pytorch Geometric (PyG) HeteroData48 KG was
also carried out from the TRAM dataset. Since extensive code changes were
to be done if PyG were to be used with KEPLER, this has been kept as a
future enhancement candidate.

3.3 Training

3.3.1 Training with KEPLER

A pre-trained KEPLER NLP checkpoint49 was used as the starting point for
further training50 it on both the pre-processed KE and MLM data, keeping
the hyperparameters51, other than the number of updates, unchanged as in
the KEPLER’s documentation.52. This is the fourth step in the pipeline.
(Figure 3.1)

3.3.2 Checkpoint Conversion

The best model checkpoint, which was selected by the KEPLER’s training
process, was then selected. This KEPLER checkpoint was then converted53

to a Hugging Face transformer checkpoint54 for ease of further processing.
This was done on the first Conda environment due to incompatibility be-
tween the FAIRSEQ versions used by KEPLER and the latest Hugging Face
Transformers. This is the fifth step in the pipeline. (Figure 3.1)

48https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_

geometric.data.HeteroData.html#torch-geometric-data-heterodata
49https://cloud.tsinghua.edu.cn/f/e03f7a904526498c81a4/
50https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/train.py
51https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/

scripts/singleLabel2kepler_v2.ipynb
52https://github.com/S0UGATA/KEPLER/blob/main/README.md#running
53https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/

scripts/kepler2hft.sh
54https://github.com/huggingface/transformers

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.data.HeteroData.html#torch-geometric-data-heterodata
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.data.HeteroData.html#torch-geometric-data-heterodata
https://cloud.tsinghua.edu.cn/f/e03f7a904526498c81a4/
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/train.py
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/scripts/singleLabel2kepler_v2.ipynb
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/scripts/singleLabel2kepler_v2.ipynb
https://github.com/S0UGATA/KEPLER/blob/main/README.md#running
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/scripts/kepler2hft.sh
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/scripts/kepler2hft.sh
https://github.com/huggingface/transformers

3.3. TRAINING 33

3.3.3 Second Environment Setup

A second Conda environment was set up with the following specifications.
This was done to make sure that the newer TRAM training and evaluation
works as intended:

• PyTorch 2.0 55

• Python 3.12 56

• Hugging Face Transformers 4 57

3.3.4 Fine-tuning with TRAM

The Hugging Face Transformers model was loaded and fine-tuned58 with a
modified version of the TRAM script.59

The two major modifications were that the model thus loaded was now a
GPT2ForSequenceClassification60, whereas the TRAM algorithm uses
BertForSequenceClassification61, and that the last layer of the model
was now set to be of 50 class outcomes, to match with the TRAM goal of
predicting amongst 50 Techniques.

This model was then fine-tuned on the TRAM data, to learn new weights to
be able to predict amongst 50 class labels.

This is the sixth step in the pipeline. (Figure 3.1)

55https://pytorch.org/get-started/pytorch-2.0/
56https://www.python.org/downloads/release/python-3123/
57https://huggingface.co/docs/transformers/index
58https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/

scripts/tram/fine_tune_single_label.py
59https://github.com/center-for-threat-informed-defense/tram/blob/main/

user_notebooks/fine_tune_single_label.ipynb
60https://huggingface.co/docs/transformers/v4.40.1/en/model_doc/gpt2#

transformers.GPT2ForSequenceClassification
61https://huggingface.co/docs/transformers/v4.40.1/en/model_doc/bert#

transformers.BertForSequenceClassification

https://pytorch.org/get-started/pytorch-2.0/
https://www.python.org/downloads/release/python-3123/
https://huggingface.co/docs/transformers/index
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/scripts/tram/fine_tune_single_label.py
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/scripts/tram/fine_tune_single_label.py
https://github.com/center-for-threat-informed-defense/tram/blob/main/user_notebooks/fine_tune_single_label.ipynb
https://github.com/center-for-threat-informed-defense/tram/blob/main/user_notebooks/fine_tune_single_label.ipynb
https://huggingface.co/docs/transformers/v4.40.1/en/model_doc/gpt2#transformers.GPT2ForSequenceClassification
https://huggingface.co/docs/transformers/v4.40.1/en/model_doc/gpt2#transformers.GPT2ForSequenceClassification
https://huggingface.co/docs/transformers/v4.40.1/en/model_doc/bert#transformers.BertForSequenceClassification
https://huggingface.co/docs/transformers/v4.40.1/en/model_doc/bert#transformers.BertForSequenceClassification

34 CHAPTER 3. MATERIALS & METHODS

3.4 Evaluation

Finally, the evaluation was done with a CTI report named Enigma Stealer

Targets Cryptocurrency Industry with Fake Jobs62, converted to a PDF63,
to mimic a real-life scenario. Parts of this report are also present in the orig-
inal TRAM input datasets. This is the seventh and final step in the pipeline.
(Figure 3.1)

The file was uploaded to a program that split up the text as per the con-
figured length and stride hyperparameters (Default values from the TRAM
script were used: length=13, stride=5, so that the performance could be
measured against TRAM effectively), while the outcomes were noted with a
range of prediction confidence threshold values, to observe how accurately it
predicts techniques according to the text descriptions from the CTI report.
In the Results section, prediction outcome details are given for the confi-
dence threshold of 0.9, which is also the standard value that TRAM uses in
its reports.

3.5 Software & Hardware Specifications

• Two Conda environments (Sections 3.2.1 and 3.3.3) were set up to work
with KEPLER and TRAM respectively.

• Overleaf64 was used as the collaboration platform for thesis writing,
and Github65 was used for the codebase.

• LanguageTool66 and Grammarly67 were used for checking grammatical
inaccuracies in the thesis text.

• Matplotlib library68 has been used to generate graphs.

62https://www.trendmicro.com/en_nl/research/23/b/enigma-stealer-targets-

cryptocurrency-industry-with-fake-jobs.html
63https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/data/

input/Enigma%20Stealer%20Targets%20Cryptocurrency%20Industry%20with%

20Fake%20Jobs%20_%20Trend%20Micro.pdf
64https://www.overleaf.com/
65https://github.com/S0UGATA/KEPLER/tree/feature/TRAM
66https://languagetool.org/
67https://app.grammarly.com/
68https://matplotlib.org/

https://www.trendmicro.com/en_nl/research/23/b/enigma-stealer-targets-cryptocurrency-industry-with-fake-jobs.html
https://www.trendmicro.com/en_nl/research/23/b/enigma-stealer-targets-cryptocurrency-industry-with-fake-jobs.html
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/data/input/Enigma%20Stealer%20Targets%20Cryptocurrency%20Industry%20with%20Fake%20Jobs%20_%20Trend%20Micro.pdf
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/data/input/Enigma%20Stealer%20Targets%20Cryptocurrency%20Industry%20with%20Fake%20Jobs%20_%20Trend%20Micro.pdf
https://github.com/S0UGATA/KEPLER/blob/feature/TRAM/tram2kepler/data/input/Enigma%20Stealer%20Targets%20Cryptocurrency%20Industry%20with%20Fake%20Jobs%20_%20Trend%20Micro.pdf
https://www.overleaf.com/
https://github.com/S0UGATA/KEPLER/tree/feature/TRAM
https://languagetool.org/
https://app.grammarly.com/
https://matplotlib.org/

3.6. USAGE OF AI IN THESIS WRITING 35

• draw.io69 has been used to create diagrams.

• A Macbook Pro (Chip: Apple M3 Max, macOS: 14.4.1 (23E224)) was
used to write the required code and the thesis.

• Resource intensive tasks like model training, fine-tuning, and evaluation
were run on:

– Google Colab: Tesla T4 GPU, System RAM 12.7GB; GPU Ram:
15GB, Disk 78.2 GB 70

– SIMULA: eX3 partition dgx2q: node g001: Nvidia DGX-2 Dual
Processor Xeon Scalable 8168 48cores and 1.5TB RAM and 30TB
NVMe

3.6 Usage of AI in thesis writing

Microsoft Copilot71, which uses OpenAI’s language model (GPT-4), has been
used to rephrase and refine some paragraphs of this thesis. The prompts that
were used were similar to: “Rephrase as an academic text: ...a paragraph...”.
However, the outcomes were always checked for inaccuracies or exaggerations
and edited before final use.

69https://draw.io/
70https://colab.research.google.com/
71https://copilot.microsoft.com/

https://draw.io/
https://colab.research.google.com/
https://copilot.microsoft.com/

Chapter 4

Results

In this section, the outcomes of data preparation and transformation, along
with training and evaluation results, are presented. All data shown here are
saved in a GitHub repository72 for reference.

4.1 Data Dimensions

4.1.1 Base data

The following tables (4.1, 4.4) present the item counts that were extracted
from the TRAM input data. The nodes are counts of items represented in
the input files, and the generation of triples was based on the relationships
between these nodes, adhering to our established ontology (Figure 2.2).

72https://github.com/S0UGATA/KEPLER/tree/feature/TRAM/tram2kepler/

scripts/results

36

https://github.com/S0UGATA/KEPLER/tree/feature/TRAM/tram2kepler/scripts/results
https://github.com/S0UGATA/KEPLER/tree/feature/TRAM/tram2kepler/scripts/results

4.1. DATA DIMENSIONS 37

4.1.1.1 Single-labeled

Nodes #

Technique Ids 50

Doc Titles 149

Texts 5089

Total 5288

Triples #

Texts - TechniqueId 5089

Texts - Doc Titles 5089

TechniqueIds - Doc Titles 1690

Total 11868

Table 4.1: Dimensions for single-labeled TRAM data.

The KEPLER model that was trained on the single-labeled base data (Ta-
ble 4.1), has 5288 lines of encoded text as an input to its MLM objective,
and a Knowledge Graph comprising 5288 nodes, with 11868 relationship
triples connecting those nodes, was the input to its KE objective.

The next two figures (4.1, 4.2) show the frequency of techniques and docu-
ment titles associated with the text excerpts from the CTI reports, in the
single-labeled dataset. The imbalance in the distribution of these data is
because the TRAM input data comprises the 50 most commonly found tech-
niques73 from a selected set of 149 CTI reports.

T1
02

7
T1

14
0

T1
05

9.
00

3
T1

05
5

T1
10

5
T1

10
6

T1
07

8
T1

07
1.

00
1

T1
09

0
T1

08
2

T1
00

3.
00

1
T1

05
3.

00
5

T1
11

2
T1

08
3

T1
56

2.
00

1
T1

02
1.

00
1

T1
20

4.
00

2
T1

56
6.

00
1

T1
07

0.
00

4
T1

05
7

T1
04

1
T1

57
4.

00
2

T1
04

7
T1

03
6.

00
5

T1
05

6.
00

1
T1

00
5

T1
11

0
T1

54
7.

00
1

T1
57

0
T1

01
6

T1
57

3.
00

1
T1

21
8.

01
1

T1
21

9
T1

19
0

T1
54

3.
00

3
T1

09
5

T1
03

3
T1

11
3

T1
51

8.
00

1
T1

54
8.

00
2

T1
01

2
T1

07
4.

00
1

T1
48

4.
00

1
T1

56
9.

00
2

T1
55

2.
00

1
T1

56
4.

00
1

T1
21

0
T1

06
8

T1
07

2
T1

55
7.

00
1

Techniques

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

Technique Frequency Distribution

Figure 4.1: Frequency of Techniques associated with text excerpts present in the
single-labeled dataset.

73https://github.com/center-for-threat-informed-defense/tram/wiki/Large-

Language-Models#subset-of-techniques

https://github.com/center-for-threat-informed-defense/tram/wiki/Large-Language-Models#subset-of-techniques
https://github.com/center-for-threat-informed-defense/tram/wiki/Large-Language-Models#subset-of-techniques

38 CHAPTER 4. RESULTS

Higa
i...

New
 H

...

Emote
...

Enig
m...

NotP
e..

.

Sero
X...

Ran
so

...

Iro
nN

...

Crow
d..

.

To
o L

...

AA21
0..

.

How
 t..

.

GuL
oa

...

Bab
ad

...

Ana
ly..

.

Atta
c..

.

Thre
a..

.

Gott
a..

.

Malw
a..

.

Akir
a..

.

AA21
2..

.

SOC T.
..

Stol
e..

.

Upd
at.

..

Unc
om

...

Dark
 ...

Und
er.

..

Ju
st

...

Eart
h..

.

AA20
3..

.

Document Titles

0

25

50

75

100

125

150

175
Fr

eq
ue

nc
y

Document Title Frequency Distribution

Figure 4.2: Frequency of Document titles associated with text excerpts present in
the single-labeled dataset.

4.1.1.2 Multi-labeled

Nodes #

TechniqueIds 50

Doc Titles 151

Sentences 19178

Total 19379

Triples #

Sentences - TechniqueIds 5143

Sentences - Doc Titles 19178

TechniqueIds - Doc Titles 1653

Total 25974

Table 4.2: Dimensions for multi-labeled TRAM data.

The KEPLER model trained on multi-labeled data (Table 4.2) shows that
19379 lines of encoded texts were used for the MLM objective, while 19379
nodes with 25974 relationship triples pointing amongst those nodes were
used as input for training the KE objective.

The next two figures (4.3, 4.4) show the frequency of techniques and docu-
ment titles associated with the phrases from the CTI reports, in the multi-
labeled dataset. The imbalance in distribution of these data is because the
TRAM input data comprises the 50 most commonly found techniques74 in
a selected set of 151 CTI reports.

74https://github.com/center-for-threat-informed-defense/tram/wiki/Large-

Language-Models#subset-of-techniques

https://github.com/center-for-threat-informed-defense/tram/wiki/Large-Language-Models#subset-of-techniques
https://github.com/center-for-threat-informed-defense/tram/wiki/Large-Language-Models#subset-of-techniques

4.1. DATA DIMENSIONS 39

T1
02

7
T1

14
0

T1
05

9.
00

3
T1

05
5

T1
10

5
T1

10
6

T1
07

8
T1

09
0

T1
07

1.
00

1
T1

08
2

T1
05

3.
00

5
T1

00
3.

00
1

T1
11

2
T1

02
1.

00
1

T1
20

4.
00

2
T1

56
2.

00
1

T1
08

3
T1

56
6.

00
1

T1
07

0.
00

4
T1

04
1

T1
04

7
T1

05
7

T1
57

4.
00

2
T1

03
6.

00
5

T1
54

7.
00

1
T1

05
6.

00
1

T1
00

5
T1

19
0

T1
57

3.
00

1
T1

21
8.

01
1

T1
57

0
T1

09
5

T1
21

9
T1

54
3.

00
3

T1
11

0
T1

01
6

T1
11

3
T1

03
3

T1
51

8.
00

1
T1

54
8.

00
2

T1
07

4.
00

1
T1

48
4.

00
1

T1
01

2
T1

56
9.

00
2

T1
55

2.
00

1
T1

21
0

T1
56

4.
00

1
T1

06
8

T1
07

2
T1

55
7.

00
1

Techniques

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

Technique Frequency Distribution

Figure 4.3: Frequency of Techniques present in the multi-labeled dataset.

A lo
o..

.

Pac
k .

..

Ran
so

...

Ta
ke

 ...

Bum
bl.

..

Chin
e..

.

Enig
m...

W
ho

s .
..

Blue
N...

NotP
e..

.

Byp
as

...

GuL
oa

...

Prile
...

Eart
h..

.

AA21
0..

.

Ana
ly..

.

Akir
a..

.

W
he

n .
..

Inc
re.

..

Spik
e..

.

Han
ci.

..

3C
XDe..

.

Upd
at.

..

New
 R

...

Hafn
i...

Ope
ra.

..

Sup
pl.

..

In
th.

..

Qak
bo

...

Thre
a..

.

To
mir..

.

Document Titles

0

100

200

300

400

500

Fr
eq

ue
nc

y

Document Title Frequency Distribution

Figure 4.4: Frequency of Document titles present in the multi-labeled dataset.

4.1.2 Enriched data

The next two tables show information about the datasets that were generated
based on single and multi-labeled data (section 4.1), in conjunction with
enriched information, such as technique names, tactic identifiers and names,
and procedure examples, derived from the MITRE ATT&CK dataset, as
detailed in the section that deals with Data Preprocessing (3.2). The enriched
nodes and triples are highlighted in yellow .

40 CHAPTER 4. RESULTS

4.1.2.1 Single-labeled

Nodes #

TechniqueIds 50

TacticIds 11

Technique Names 50

Tactic Names 11

Doc Titles 149

Texts 5089

Procedures 814

Total 6174

Triples #

Texts - TechniqueIds 5089

Doc Titles - Texts 5089

TechniqueIds - Doc Titles 1690

TechniqueIds - TacticIds 50

TechniqueNames - TechniqueIds 50

TacticNames - TacticIds 11

Procedures - TechniqueIds 6833

Total 18812

Table 4.3: Dimensions for single-labeled TRAM data enriched with MITRE
ATT&CK information.

4.1.2.2 Multi-labeled

Nodes #

TechniqueIds 50

TacticIds 11

Technique Names 50

Tactic Names 11

Doc Titles 151

Sentences 19178

Procedures 814

Total 20265

Triples #

Sentences - TechniqueIds 5143

Doc Titles - Sentences 19178

TechniqueIds - Doc Titles 1653

TechniqueIds - TacticIds 50

TechniqueNames - TechniqueIds 50

TacticNames - TacticIds 11

Procedures - TechniqueIds 6833

Total 32918

Table 4.4: Dimensions for multi-labeled TRAM data enriched with MITRE
ATT&CK information.

4.2. MODEL STRUCTURES 41

4.2 Model Structures

4.2.1 KEPLER model based on RoBERTa

This shows the structure of the KEPLER model that was used for initial
training on the MLM and KE objectives.

RobertaModel(

(decoder): RobertaEncoder(

(sentence_encoder): TransformerSentenceEncoder(

(embed_tokens): Embedding(50265, 768, padding_idx=1)

(embed_positions): LearnedPositionalEmbedding(514, 768,

padding_idx=1)

(layers): ModuleList(

(0-11): 12 x TransformerSentenceEncoderLayer(

(self_attn): MultiheadAttention(

(out_proj): Linear(in_features=768, out_features=768,

bias=True))

(self_attn_layer_norm): LayerNorm((768,), eps=1e-05,

elementwise_affine=True)

(fc1): Linear(in_features=768, out_features=3072, bias=

True)

(fc2): Linear(in_features=3072, out_features=768, bias=

True)

(final_layer_norm): LayerNorm((768,), eps=1e-05,

elementwise_affine=True)))

(emb_layer_norm): LayerNorm((768,), eps=1e-05,

elementwise_affine=True))

(lm_head): RobertaLMHead(

(dense): Linear(in_features=768, out_features=768, bias=True)

(layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=

True)))

(classification_heads): ModuleDict()

(ke_heads): ModuleDict(

(wikiData): RobertaKnowledgeEmbeddingHead(

(relation_emb): Embedding(822, 768)

)))

42 CHAPTER 4. RESULTS

4.2.2 KEPLER model based on Hugging Face trans-
formers

This was the structure of the KEPLER model after conversion to Hugging
Face transformer, which was finally used for the prediction of labels.

GPT2ForSequenceClassification(

(transformer): GPT2Model(

(wte): Embedding(50265, 768)

(wpe): Embedding(514, 768)

(drop): Dropout(p=0.1, inplace=False)

(h): ModuleList(

(0-11): 12 x GPT2Block(

(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True

)

(attn): GPT2Attention(

(c_attn): Conv1D()

(c_proj): Conv1D()

(attn_dropout): Dropout(p=0.1, inplace=False)

(resid_dropout): Dropout(p=0.1, inplace=False)

)

(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True

)

(mlp): GPT2MLP(

(c_fc): Conv1D()

(c_proj): Conv1D()

(act): NewGELUActivation()

(dropout): Dropout(p=0.1, inplace=False)

)

)

)

(ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)

)

(score): Linear(in_features=768, out_features=50, bias=False)

)

4.2.3 TRAM model

The TRAM model structure is given here as a reference to what the above
model was evaluated against. As can be seen, this is a deeper model with

4.2. MODEL STRUCTURES 43

more layers than the KEPLER models above, which usually relates to the
ability to learn more diverse and complex patterns.

BertForSequenceClassification(

(bert): BertModel(

(embeddings): BertEmbeddings(

(word_embeddings): Embedding(31090, 768, padding_idx=0)

(position_embeddings): Embedding(512, 768)

(token_type_embeddings): Embedding(2, 768)

(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(dropout): Dropout(p=0.1, inplace=False))

(encoder): BertEncoder(

(layer): ModuleList(

(0-11): 12 x BertLayer(

(attention): BertAttention(

(self): BertSelfAttention(

(query): Linear(in_features=768, out_features=768, bias=True)

(key): Linear(in_features=768, out_features=768, bias=True)

(value): Linear(in_features=768, out_features=768, bias=True)

(dropout): Dropout(p=0.1, inplace=False))

(output): BertSelfOutput(

(dense): Linear(in_features=768, out_features=768, bias=True)

(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=

True)

(dropout): Dropout(p=0.1, inplace=False)))

(intermediate): BertIntermediate(

(dense): Linear(in_features=768, out_features=3072, bias=True)

(intermediate_act_fn): GELUActivation())

(output): BertOutput(

(dense): Linear(in_features=3072, out_features=768, bias=True)

(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=

True)

(dropout): Dropout(p=0.1, inplace=False)))))

(pooler): BertPooler(

(dense): Linear(in_features=768, out_features=768, bias=True)

(activation): Tanh()))

(dropout): Dropout(p=0.1, inplace=False)

(classifier): Linear(in_features=768, out_features=50, bias=True))

44 CHAPTER 4. RESULTS

4.3 Training Outcomes

The graphs in the following four subsections depict the change in training
and validation losses, and perplexity throughout the epochs. Each subsection
refers to a specific dataset the model was trained on.

Each set of graphs is arranged as follows: Training-VS-Validation Loss, Train-
ing Loss, Validation Loss and Perplexity, over the epochs.

4.3.1 Single-labeled data

Figure 4.5: Training VS
Validation loss for the
single-labeled dataset.

2 4 6 8 10
Epoch

1

2

3

4

5

6

7

Lo
ss

(2,
 5.

29
8)

Training VS Validation Loss over epochs

Training Loss
Validation Loss

It can be seen that the training and validation Total losses cross quickly at
epoch 2, after which the model overfits, showing that the model is capa-
ble of learning the weights at a very early iteration of the training process
(Figure 4.5).

4.3. TRAINING OUTCOMES 45

2 4 6 8 10
Epoch

0

1

2

3

4

5

6

Lo
ss

(11, 0.749)

Training Loss over epochs
Total Loss
KE Loss
MLM Loss

Figure 4.6: Training loss
for single-labeled dataset.

In the training loss graph (Figure 4.6), the thicker Total loss line is the value
on which the model is trained. It is the sum of MLM and KE losses. It
is observed that the MLM loss decreases within the first 10 epochs before
flattening out. KE losses start at a lower value and decrease slightly over the
epochs.

2 4 6 8 10
Epoch

1

2

3

4

5

6

7

Lo
ss

(3, 5.193)

Validation Loss over epochs
Total Loss
KE Loss
MLM Loss

Figure 4.7: Vali-
dation loss for the

single-labeled dataset.

In the validation loss graph (Figure 4.7), the thicker Total loss line is the value
against which the model is validated. It is the sum of MLM and KE losses.
The MLM loss decreases until the 3rd epoch before increasing continuously,
showing classic signs of overfitting. Variations in KE loss are less profound

46 CHAPTER 4. RESULTS

and generally decrease with the epochs.

Figure 4.8: Training VS
Validation perplexity for
the single-labeled dataset.

2 4 6 8 10
Epoch

0

20

40

60

80

100

PP
L

(3,
 36

.57
)

(2,
 39

.34
)

Perplexity over epochs

Training PPL
Validation PPL

The training vs validation perplexity graph (Figure 4.8) shows that the
model’s prediction effectiveness goes down quickly after the 2nd epoch, as
can be seen by the increasing validation perplexity line. The low training
perplexity indicates that the model overfits after the first few epochs.

4.3.2 Single-labeled - enriched data

Figure 4.9: Train-
ing VS Validation
loss for the single-

labeled enriched dataset.

2 4 6 8 10
Epoch

1

2

3

4

5

6

7

Lo
ss

(1,
 5.

14
9)

Training VS Validation Loss over epochs

Training Loss
Validation Loss

In the training vs validation loss graph (Figure 4.9), the model seems to

4.3. TRAINING OUTCOMES 47

overfit from the very beginning, since the training and the validation losses
diverge, before both flattening out after around 5 epochs.

2 4 6 8 10
Epoch

0

1

2

3

4

5

Lo
ss

(11, 0.534)

Training Loss over epochs
Total Loss
KE Loss
MLM Loss

Figure 4.10: Train-
ing loss for the single-

labeled enriched dataset.

It is observed in the training loss graph (Figure 4.10), that the loss values
decrease within the first 5 epochs, before flattening out.

2 4 6 8 10
Epoch

1

2

3

4

5

6

7

Lo
ss

(1, 5.149)

Validation Loss over epochs

Total Loss
KE Loss
MLM Loss

Figure 4.11: Valida-
tion loss for single-

labeled enriched dataset.

In the validation loss graph (Figure 4.11), the total loss is seen to be increas-
ing from the beginning. The KE loss remains somewhat flat, but the MLM
loss increases for the first 5 epochs before flattening out.

48 CHAPTER 4. RESULTS

Figure 4.12: Train-
ing VS Validation per-
plexity for the single-

labeled enriched dataset.

2 4 6 8 10
Epoch

0

25

50

75

100

125

150

175

PP
L

(1,
 35

.48
)

Perplexity over epochs

Training PPL
Validation PPL

In line with the loss graphs, in the perplexity graph (Figure 4.12), the val-
idation perplexity increases, showcasing the decrease in model effectiveness
from the beginning. The low training perplexity indicates overfitting.

4.3.3 Multi-labeled data

Figure 4.13: Training
VS Validation loss for

the multi-labeled dataset.

0 5 10 15 20 25 30
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Lo
ss

(12
, 4

.37
6)

Training VS Validation Loss over epochs
Training Loss
Validation Loss

The training vs validation graph for multi-labeled data (Figure 4.13) shows
that the model starts overfitting around the 12th epoch. The loss decrease is
also more gradual than those of the models trained on single-labeled datasets
(Figure 4.5, Figure 4.9), showing that this model takes more iteration to train

4.3. TRAINING OUTCOMES 49

than the single-labeled counterparts.

0 5 10 15 20 25 30
Epoch

1

2

3

4

5

Lo
ss (30, 2.126)

Training Loss over epochs

Total Loss
KE Loss
MLM Loss

Figure 4.14: Train-
ing loss for the multi-

labeled dataset.

It is seen in the training loss graph for the model trained on the multi-labeled
dataset (Figure 4.14) that the loss decreases more steadily, in an almost
linear fashion than the models trained on single-labeled datasets (Figure 4.6,
Figure 4.10), suggesting that this model trains at a relatively slower and
steadier pace.

0 5 10 15 20 25 30
Epoch

1

2

3

4

5

Lo
ss

(21, 4.17)

Validation Loss over epochs
Total Loss
KE Loss
MLM Loss

Figure 4.15: Vali-
dation loss for the

multi-labeled dataset.

It is observed in the validation loss graph for the model trained on the multi-
labeled dataset (Figure 4.15) that the loss gradually decreases until around
the 21st epoch before starting to increase.

50 CHAPTER 4. RESULTS

Figure 4.16: Training VS
Validation perplexity for
the multi-labeled dataset.

0 5 10 15 20 25 30
Epoch

10

20

30

40

50

PP
L

(21
, 1

8.0
)

(13
, 2

0.2
1)

Perplexity over epochs
Training PPL
Validation PPL

The perplexity graph (Figure 4.16) shows similar information as the loss
graphs. The model starts to lose its prediction effectiveness around the 13th
epoch. The lowest Validation perplexity is around the 21st epoch.

4.3.4 Multi-labeled - enriched data

Figure 4.17: Train-
ing VS Validation
loss for the multi-

labeled enriched dataset.

2 4 6 8 10 12
Epoch

1

2

3

4

5

Lo
ss

(1,
 4.

71
)

Training VS Validation Loss over epochs

Training Loss
Validation Loss

As seen from the training vs validation loss graph for the model trained on
multi-labeled enriched data (Figure 4.17), the losses diverge from the start.
As such, the model checkpoint, after just one training iteration, was used for
further work.

4.3. TRAINING OUTCOMES 51

2 4 6 8 10 12
Epoch

0

1

2

3

4

Lo
ss

(11, 0.455)

Training Loss over epochs
Total Loss
KE Loss
MLM Loss

Figure 4.18: Train-
ing loss for the multi-

labeled enriched dataset.

The training loss graph for the model trained on the multi-labeled dataset
with enriched data (Figure 4.18) decreases quicker than the model that was
trained on the multi-labeled base data (Figure 4.14). This phenomenon is
similar to what was seen for models trained on single-labeled data. (Fig-
ure 4.6 vs Figure 4.10)

2 4 6 8 10
Epoch

1

2

3

4

5

Lo
ss

(1, 4.71)

Validation Loss over epochs

Total Loss
KE Loss
MLM Loss

Figure 4.19: Valida-
tion loss for the multi-

labeled enriched dataset.

The validation loss graph for the model trained on the multi-labeled enriched
dataset (Figure 4.19) shows that the validation loss only increases with the
epochs. The KE loss decreases by a little margin, but the MLM loss increase
negates that improvement, indicating there is little to be gained in further

52 CHAPTER 4. RESULTS

training of the model.

Figure 4.20: Train-
ing VS Validation per-
plexity for the multi-

labeled enriched dataset.

2 4 6 8 10 12
Epoch

0

10

20

30

40

PP
L (1,

 26
.18

)

Perplexity over epochs
Training PPL
Validation PPL

In line with the loss graph (Figure 4.17), it is seen in the perplexity graph
(Figure 4.20) that the validation perplexity increases with the number of
epochs, indicating a reduction of prediction effectiveness.

4.4. FINE-TUNING WITH TRAM 53

4.4 Fine-tuning with TRAM

Below are the loss graphs of the models being fine-tuned with labeled data
from TRAM, before they are evaluated, whose results are in the next sec-
tion 4.5.

It is seen in general that the models overfit after 2 to 3 epochs of fine-tuning.

4.4.1 Single-labeled data

2 4 6 8 10 12
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

(12
.0,

 0.
03

03
)

(3.
0,

0.0
36

8)

Single Label : Loss over epochs
Training Loss
Validation Loss

Figure 4.21: Model
fine-tuned on the

single-labeled data.

It is seen in the training vs validation loss graph for the model trained on
single-labeled data (Figure 4.21) that the losses decrease until the 3rd epoch,
before the validation loss flattens out, after which the model starts to overfit.

54 CHAPTER 4. RESULTS

4.4.2 Single-labeled - enriched data

Figure 4.22: Model
fine-tuned on single-

labeled data along with
enriched information.

2 4 6 8 10 12
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

(10
.0,

 0.
02

99
)

(3.
0,

0.0
37

6)

Single Label with Augmented Data : Loss over epochs
Training Loss
Validation Loss

The training vs validation loss graph for the model trained on single-labeled
enriched data (Figure 4.22) is similar to the graph of the single-labeled base
data (Figure 4.21), and the losses decrease until the 3rd epoch, after which
training loss still goes down as the validation loss flattens, showing signs of
overfitting.

4.4.3 Multi-labeled data

Figure 4.23: Model
fine-tuned on the

multi-labeled data.

2 4 6 8 10 12
Epoch

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Lo
ss (6.

0,
0.0

21
6)

(3.
0,

0.0
21

1)

Multi Label : Loss over epochs
Training Loss
Validation Loss

The training loss decrease is smoother as seen in the loss graph for the model

4.5. EVALUATION WITH TRAM 55

trained on multi-labeled data (Figure 4.23) than on the graph for the single-
labeled data (Figure 4.21), which is a similar phenomenon that was observed
during the KEPLER training process of multi-labeled data (Figure 4.5 vs
Figure 4.13). The validation loss decreases until the 3rd epoch before flat-
tening out.

4.4.4 Multi-labeled - enriched data

2 4 6 8 10 12
Epoch

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Lo
ss

(5.
0,

0.0
22

8)

(2.
0,

0.0
25

5)

Multi Label with Augmented Data : Loss over epochs
Training Loss
Validation Loss

Figure 4.24: The model
fine-tuned on multi-

labeled data along with
enriched information.

The loss graph for the model trained on multi-labeled enriched data (Fig-
ure 4.24) looks similar to the loss graph for the multi-labeled base data
(Figure 4.23). However, here, the validation and the training losses meet
quickly at the 2nd epoch.

4.5 Evaluation with TRAM

This section records the evaluation scores and prediction outcomes with four
of the transformed KEPLER models and compares them against the perfor-
mance of TRAM and a dummy untrained model. The fine-tuned KEPLER
model weights, from the epochs at the point of overfitting, have been chosen
for evaluation in all the below cases. The metrics used here are defined in
the Theory section (2.1)

56 CHAPTER 4. RESULTS

4.5.1 KEPLER model - single-labeled data

4.5.1.1 Model scores

Techniques P R F1 #

T1003.001 0.955 1.000 0.977 21

T1005 0.611 0.688 0.647 16

T1016 0.857 0.545 0.667 11

T1021.001 0.722 0.963 0.825 27

T1027 0.924 0.841 0.881 145

T1033 1.000 0.273 0.429 11

T1036.005 0.875 0.636 0.737 11

T1041 0.857 0.500 0.632 12

T1047 0.786 0.917 0.846 12

T1053.005 1.000 1.000 1.000 23

T1055 0.952 0.967 0.959 61

T1056.001 0.636 0.875 0.737 8

T1057 0.929 0.867 0.897 15

T1059.003 0.788 1.000 0.881 63

T1070.004 1.000 0.632 0.774 19

T1071.001 0.784 0.879 0.829 33

T1078 0.778 0.840 0.808 25

T1082 0.829 0.850 0.840 40

T1083 0.467 0.824 0.596 17

T1090 0.875 0.840 0.857 25

T1095 1.000 0.300 0.462 10

Techniques P R F1 #

T1105 0.750 0.983 0.851 58

T1106 0.700 0.946 0.805 37

T1110 0.833 0.909 0.870 11

T1112 0.552 0.941 0.696 17

T1113 1.000 0.923 0.960 13

T1140 0.925 0.966 0.945 89

T1190 0.786 0.917 0.846 12

T1204.002 0.875 0.824 0.848 17

T1218.011 1.000 1.000 1.000 9

T1219 1.000 0.231 0.375 13

T1543.003 1.000 1.000 1.000 4

T1547.001 0.667 0.714 0.690 14

T1548.002 1.000 0.571 0.727 7

T1562.001 0.818 0.818 0.818 11

T1566.001 1.000 0.900 0.947 20

T1570 0.632 0.857 0.727 14

T1573.001 1.000 0.444 0.615 9

T1574.002 1.000 1.000 1.000 18

(micro) 0.829 0.829 0.829

(macro) 0.677 0.636 0.633

Table 4.5: Prediction scores for the model trained on single-labeled data.

All the micro-average scores of the KEPLER model trained on single-labeled
data, as shown in the scores table (4.5), surpasses the TRAM model scores
as shown in its prediction score table (4.13) when evaluated on the exact
same test dataset.

4.5. EVALUATION WITH TRAM 57

4.5.1.2 Model predictions

Text excerpts Label(s)

1 highly obfuscated and under-development

custom loaders to infect those involved in the

cryptocurrency

{’T1027’}

3 eyes of the victim and draw attention away from

the malicious binary. Figure 3. A machine

translation of

{’T1105’}

5 stage of Enigma, Interview conditions.word.exe, is

a downloader written in C . Its primary

{’T1105’}

7 C . Its primary objective is to download,

deobfuscate, decompress, and launch the secondary

stage payload. The malware incorporates

{’T1140’}

9 examine how the malware decrypts strings and

resolves hashed Windows APIs. By understanding

{’T1140’}

...

64 version) Finally, the EnigmaDownloader s002

downloads and executes the next- stage payload

on the infected system. To achieve this

{’T1105’}

66 to retrieve the command. Upon receiving the

runassembly command, the malware downloads the

{’T1059.003’}

68 malware downloads the next part of the {’T1105’}
70 chaining (CBC) mode. Figure 43. String

encryption logic List of decrypted strings: \

Chromium\ User Data\ \ Google\ Chrome\ User Data\

\ Google(x86)\ Chrome\ User

{’T1140’}

72 these actors can target individuals and

organizations across the cryptocurrency and Web

3 sphere. Furthermore, this case highlights the

evolving nature of modular

{’T1105’}

Table 4.6: Example Technique predictions from text excerpts of a CTI report, with
a prediction confidence of 0.9

The KEPLER model trained on the single-labeled dataset, predicted 23
phrases linked with some techniques, with prediction confidence of 0.9, parts
of which are shown in the predictions table (Table 4.6) above.

58 CHAPTER 4. RESULTS

4.5.2 KEPLER model - single-labeled enriched data

4.5.2.1 Model scores

Techniques P R F1 #

T1003.001 1.000 0.952 0.976 21

T1005 1.000 0.312 0.476 16

T1016 1.000 0.636 0.778 11

T1021.001 1.000 0.926 0.962 27

T1027 0.872 0.890 0.881 145

T1033 0.727 0.727 0.727 11

T1036.005 1.000 0.273 0.429 11

T1041 0.571 1.000 0.727 12

T1047 0.900 0.750 0.818 12

T1053.005 0.786 0.957 0.863 23

T1055 0.851 0.934 0.891 61

T1056.001 0.889 1.000 0.941 8

T1057 0.929 0.867 0.897 15

T1059.003 0.900 1.000 0.947 63

T1070.004 0.895 0.895 0.895 19

T1071.001 0.969 0.939 0.954 33

T1074.001 0.500 0.167 0.250 6

T1078 0.880 0.880 0.880 25

T1082 0.829 0.850 0.840 40

T1083 0.562 0.529 0.545 17

T1090 0.889 0.960 0.923 25

T1095 1.000 0.800 0.889 10

Techniques P R F1 #

T1105 0.915 0.931 0.923 58

T1106 0.739 0.919 0.819 37

T1110 0.533 0.727 0.615 11

T1112 0.810 1.000 0.895 17

T1113 0.722 1.000 0.839 13

T1140 0.955 0.955 0.955 89

T1190 0.714 0.833 0.769 12

T1204.002 0.593 0.941 0.727 17

T1218.011 0.750 1.000 0.857 9

T1219 1.000 0.692 0.818 13

T1484.001 1.000 1.000 1.000 5

T1543.003 0.667 0.500 0.571 4

T1547.001 0.923 0.857 0.889 14

T1548.002 1.000 0.857 0.923 7

T1562.001 0.667 0.909 0.769 11

T1566.001 0.708 0.850 0.773 20

T1570 0.900 0.643 0.750 14

T1573.001 1.000 0.556 0.714 9

T1574.002 0.947 1.000 0.973 18

(micro) 0.851 0.851 0.851

(macro) 0.704 0.682 0.675

Table 4.7: Prediction scores for the model trained on single-labeled enriched data.

All the micro-average scores for the model trained on single-labeled enriched
data (Table 4.7) surpasses the TRAMmodel scores (Table 4.13), and are the
highest amongst the models that were evaluated with single-labeled data.

4.5. EVALUATION WITH TRAM 59

4.5.2.2 Model predictions

Text excerpts Label(s)

1 In this campaign, the suspected Russian threat

actors use several highly obfuscated and

{’T1027’}

3 highly obfuscated and under-development

custom loaders to infect those involved in the

cryptocurrency

{’T1027’}

5 distributed to victims via phishing attempts or

through social explains how to amend

{’T1566.001’}

7 in its operation. The {’T1055’}
9 Jobs Trend Micro (NO) MD5

1693D0A858B8FF3B83852C185880E459 SHA-1

5F1536F573D9BFEF21A4E15273B5A9852D3D81F1 SHA-

03B9D7296B01E8F3FB3D12C4D80FE8A1BB0AB2FD76F33C5C

E11B40729B75FB23 256 File

{’T1055’}

...

104 this case highlights the evolving nature of

modular malware that employ highly obfuscated

and evasive techniques along with the utilization

of continuous integration

{’T1027’}

106 or phishing attempts that o {’T1566.001’}
108 Trend Micro (NO) CONTACT US SUBSCRIBE Related

Articles Trend Micro Collaborated with

{’T1027’}

110 Micro Collaborated with Interpol in Cracking Down

Grandoreiro Banking Trojan NCSC Says Newer

{’T1027’}

112 personalizatRioens, soouciracl mesedia

functionality and advertising. Our Cookie Notice

provides more information and

{’T1027’}

Table 4.8: Example Technique predictions from text excerpts of a CTI report, with
a prediction confidence of 0.9

The KEPLER model trained on the multi-labeled dataset, predicted 57
phrases linked with some techniques, with a prediction confidence of 0.9,
parts of which are shown above (Table 4.8).

60 CHAPTER 4. RESULTS

4.5.3 KEPLER model - multi-labeled data

4.5.3.1 Model scores

Techniques P R F1 #

T1140 0.907 0.764 0.829 89

T1055 0.766 0.692 0.727 52

T1059.003 0.927 0.535 0.679 71

T1027 0.785 0.480 0.596 152

T1105 0.909 0.208 0.339 48

T1003.001 1.000 0.160 0.276 25

T1047 1.000 0.095 0.174 21

T1106 0.500 0.098 0.163 41

T1078 1.000 0.059 0.111 34

(micro) 0.837 0.230 0.361

(macro) 0.156 0.062 0.078

Table 4.9: Prediction scores for the model trained on multi-labeled data.

As seen in the scores table for the model trained on multi-labeled data (Ta-
ble 4.9), the micro-average Precision score is higher than the Recall and F1
Scores. It is also the highest amongst all models evaluated on multi-labeled
data.

4.5. EVALUATION WITH TRAM 61

4.5.3.2 Model predictions

Text excerpts Label(s)

1 the speci {’T1140’}
3 The techniques used to decrypt strings and resolve

API hashes in both the

{’T1140’}

5 downloading, deobfuscating, decompressing, and

renaming the downloaded payload This website uses

cookies

{’T1140’}

7 21. Payload deobfuscation and decompression

Before executing the payload, the malware attempts

to

{’T1140’}

Table 4.10: Example Technique predictions from text excerpts of a CTI report,
with a prediction confidence of 0.9.

The KEPLER model trained on the multi-labeled dataset, predicted 4 sen-
tences linked to the same technique T1440 with a prediction confidence of
0.9, as seen in the prediction table (4.10).

4.5.4 KEPLER model - multi-labeled enriched data

4.5.4.1 Model scores

Techniques P R F1 #

T1140 0.819 0.764 0.791 89

T1027 0.552 0.559 0.556 152

T1059.003 0.871 0.380 0.529 71

T1055 1.000 0.038 0.074 52

(micro) 0.674 0.177 0.280

(macro) 0.065 0.035 0.039

Table 4.11: Prediction scores for the model trained on multi-labeled enriched data.

As can be observed from the scores table for the model trained on multi-
labeled enriched data (Table 4.11), the micro and macro average scores were

62 CHAPTER 4. RESULTS

the lowest among the four KEPLER models, as well as reference models that
were evaluated.

4.5.4.2 Model predictions

Text excerpts Label(s)

1 to download, deobfuscate, decompress, and

launch the secondary stage payload. The malware

incorporates

{’T1140’}

3 The techniques used to decrypt strings and resolve

API hashes in both the

{’T1140’}

5 Figure 18. The code responsible for decrypting

the next stage payload

{’T1140’}

7 demonstrates how the malware downloads,

deobfuscates, and decompresses

{’T1140’}

9 services URLs, are encrypted with the AES

algorithm in cipher-block chaining (CBC) mode.

{’T1027’}

Table 4.12: Example Technique predictions from text excerpts of a CTI report,
with a prediction confidence of 0.9.

The KEPLER model, trained on the multi-labeled enriched dataset (Ta-
ble 4.12), predicted 5 sentences linked with two techniques, with a confidence
of 0.9.

4.5.5 Reference Models

Here, we showcase the predictive performance of the TRAM models, trained
on and evaluated with both single and multi-labeled data, and a dummy
untrained model.75

75https://huggingface.co/hf-internal-testing/tiny-random-BertModel

https://huggingface.co/hf-internal-testing/tiny-random-BertModel

4.5. EVALUATION WITH TRAM 63

4.5.5.1 TRAM - single-labeled

Techniques P R F1 #

T1003.001 0.857 0.571 0.686 21

T1005 0.750 0.375 0.500 16

T1012 0.714 1.000 0.833 5

T1016 0.474 0.818 0.600 11

T1021.001 0.880 0.815 0.846 27

T1027 0.728 0.814 0.769 145

T1033 0.833 0.909 0.870 11

T1036.005 0.280 0.636 0.389 11

T1041 1.000 0.417 0.588 12

T1047 0.917 0.917 0.917 12

T1053.005 0.958 1.000 0.979 23

T1055 0.939 0.754 0.836 61

T1056.001 0.727 1.000 0.842 8

T1057 0.824 0.933 0.875 15

T1059.003 0.959 0.746 0.839 63

T1068 0.222 0.667 0.333 3

T1070.004 0.739 0.895 0.810 19

T1071.001 0.862 0.758 0.806 33

T1074.001 0.273 0.500 0.353 6

T1078 0.818 0.720 0.766 25

T1082 0.842 0.800 0.821 40

T1083 0.667 0.941 0.780 17

T1090 0.500 0.920 0.648 25

T1095 0.636 0.700 0.667 10

T1105 0.759 0.759 0.759 58

Techniques P R F1 #

T1106 0.821 0.622 0.708 37

T1110 0.667 0.909 0.769 11

T1112 0.889 0.941 0.914 17

T1113 1.000 0.846 0.917 13

T1140 0.915 0.843 0.877 89

T1190 0.833 0.417 0.556 12

T1204.002 0.857 0.706 0.774 17

T1210 0.333 0.250 0.286 4

T1218.011 0.818 1.000 0.900 9

T1219 0.417 0.385 0.400 13

T1518.001 0.500 1.000 0.667 3

T1543.003 0.444 1.000 0.615 4

T1547.001 0.846 0.786 0.815 14

T1548.002 0.600 0.857 0.706 7

T1552.001 0.500 0.200 0.286 5

T1562.001 0.643 0.818 0.720 11

T1564.001 0.500 1.000 0.667 3

T1566.001 0.889 0.800 0.842 20

T1569.002 0.286 0.667 0.400 3

T1570 1.000 0.143 0.250 14

T1573.001 1.000 0.111 0.200 9

T1574.002 0.850 0.944 0.895 18

(micro) 0.758 0.758 0.758

(macro) 0.689 0.706 0.659

Table 4.13: Prediction scores for the TRAM model trained on single-labeled data.

The prediction scores of TRAM on single-labeled data (Table 4.13) is the
reference against which our KEPLER models are compared against.

64 CHAPTER 4. RESULTS

4.5.5.2 TRAM - multi-labeled

Techniques P R F1 #

T1574.002 1.000 0.917 0.957 12

T1021.001 0.944 0.850 0.895 20

T1140 0.820 0.820 0.820 89

T1047 1.000 0.667 0.800 21

T1059.003 0.891 0.690 0.778 71

T1105 0.755 0.771 0.763 48

T1562.001 1.000 0.609 0.757 23

T1056.001 1.000 0.600 0.750 5

T1090 0.875 0.636 0.737 22

T1027 0.803 0.645 0.715 152

T1055 0.861 0.596 0.705 52

T1053.005 0.875 0.560 0.683 25

T1003.001 0.875 0.560 0.683 25

T1070.004 0.917 0.524 0.667 21

T1071.001 0.789 0.577 0.667 26

Techniques P R F1 #

T1106 0.667 0.585 0.623 41

T1218.011 1.000 0.400 0.571 15

T1204.002 1.000 0.357 0.526 28

T1566.001 0.800 0.267 0.400 15

T1112 0.545 0.300 0.387 20

T1083 1.000 0.238 0.385 21

T1041 0.364 0.400 0.381 10

T1078 0.889 0.235 0.372 34

T1082 0.800 0.154 0.258 26

T1548.002 1.000 0.143 0.250 7

T1113 1.000 0.111 0.200 9

T1570 0.500 0.091 0.154 11

(micro) 0.825 0.474 0.602

(macro) 0.459 0.266 0.318

Table 4.14: Prediction scores for the TRAM model trained on multi-labeled data.

As noted in the TRAM documentation76, the scores for this model, which has
been trained on multi-labeled data (Table 4.14), are lower than the TRAM’s
single-labeled model scores (Table 4.13).

4.5.5.3 Dummy model - single-labeled

An evaluation was run on an untrained dummy model (tiny-random-BertModel)77

as a control.

Techniques P R F1 #

T1090 0.025 1.000 0.048 25

(micro) 0.025 0.025 0.025

(macro) 0.001 0.020 0.001

Table 4.15: Prediction scores for the dummy model trained on single-labeled data.

76https://github.com/center-for-threat-informed-defense/tram/wiki/Data-

Annotation#single-label-vs-multi-label
77See footnote 75

https://github.com/center-for-threat-informed-defense/tram/wiki/Data-Annotation#single-label-vs-multi-label
https://github.com/center-for-threat-informed-defense/tram/wiki/Data-Annotation#single-label-vs-multi-label

4.5. EVALUATION WITH TRAM 65

From the prediction score table for the dummy model trained on single-
labeled data (Table 4.15), it can be observed that it has the lowest scores
amongst all models trained on single-labeled data.

4.5.5.4 Dummy model - multi-labeled

Techniques P R F1 #

T1055 0.014 1.000 0.027 52

T1105 0.013 1.000 0.025 48

T1078 0.009 1.000 0.018 34

T1204.002 0.007 1.000 0.014 28

T1071.001 0.007 1.000 0.013 26

T1082 0.007 1.000 0.013 26

T1562.001 0.006 1.000 0.012 23

T1047 0.005 1.000 0.011 21

T1547.001 0.005 1.000 0.010 20

T1566.001 0.004 1.000 0.008 15

T1543.003 0.004 1.000 0.007 14

T1218.011 0.003 0.400 0.006 15

T1574.002 0.003 1.000 0.006 12

T1005 0.003 1.000 0.006 12

T1570 0.003 1.000 0.006 11

T1095 0.003 1.000 0.006 11

Techniques P R F1 #

T1016 0.002 1.000 0.005 9

T1113 0.002 1.000 0.005 9

T1110 0.002 1.000 0.004 8

T1518.001 0.002 1.000 0.004 7

T1033 0.002 1.000 0.004 7

T1190 0.002 1.000 0.003 6

T1484.001 0.002 1.000 0.003 6

T1552.001 0.002 1.000 0.003 6

T1056.001 0.001 1.000 0.003 5

T1210 0.001 1.000 0.003 5

T1012 0.001 1.000 0.003 5

T1569.002 0.001 1.000 0.002 4

T1068 0.001 1.000 0.002 3

(micro) 0.004 0.426 0.008

(macro) 0.002 0.568 0.005

Table 4.16: Prediction scores for the dummy model trained on multi-labeled data.

From the Prediction score table for the dummy model trained on multi-
labeled data (Table 4.16), it can be observed that other than the macro
Recall score, it has the lowest values amongst all models trained on multi-
labeled data.

4.5.6 Comparisons

4.5.6.1 Precision, Recall & F1 scores

Here we consolidate the micro and macro average scores, for easier compar-
ison. The best scores are highlighted in green , whereas the second-highest

scores are highlighted in yellow .

66 CHAPTER 4. RESULTS

Micro average P R F1

KEPLER Single Labelled Data 0.829 0.829 0.829

KEPLER Single Labelled Enriched Data 0.851 0.851 0.851

TRAM Single Labelled Data 0.758 0.758 0.758

Dummy Single Labelled Data 0.025 0.025 0.025

Table 4.17: Micro average scores for models trained on single-labeled data.

As seen in the table that compares the micro average scores for models trained
on single-labeled data (Table 4.17), KEPLER model trained on single-labeled
enriched data is seen to have the highest micro average scores, followed
by the KEPLER model trained on the single-labeled base data.

Macro average P R F1

KEPLER Single Labelled Data 0.677 0.636 0.633

KEPLER Single Labelled Enriched Data 0.704 0.682 0.675

TRAM Single Labelled Data 0.689 0.706 0.659

Dummy Single Labelled Data 0.001 0.020 0.001

Table 4.18: Macro average scores for models trained on single-labeled data.

In the table that compares macro average scores for models trained on single-
labeled data (Table 4.18), it is seen that the KEPLER model trained on
single-labeled enriched data has higher macro average Precision and F1
Scores, while the TRAM model trained on single-labeled data has the better
macro Recall score.

4.5. EVALUATION WITH TRAM 67

Micro average P R F1

KEPLER Multi Labelled Data 0.837 0.230 0.361

KEPLER Multi Labelled Enriched Data 0.674 0.177 0.280

TRAM Multi Labelled Data 0.825 0.474 0.602

Dummy Multi Labelled Data 0.004 0.426 0.008

Table 4.19: Micro average scores for models trained on multi-labeled data.

The table, comparing the micro average scores for models trained on multi-
labeled data (Table 4.19), generally shows lower performance than the models
trained on single-labeled data (Table 4.17). But, the KEPLER model trained
on multi-labeled data has the highest micro Precision scores amongst the
other competing models. TRAM model trained on multi-labeled data has
better Recall and F1 Scores.

Macro average P R F1

KEPLER Multi Labelled Data 0.156 0.062 0.078

KEPLER Multi Labelled Enriched Data 0.065 0.035 0.039

TRAM Multi Labelled Data 0.459 0.266 0.318

Dummy Multi Labelled Data 0.002 0.568 0.005

Table 4.20: Macro average scores for models trained on multi-labeled data.

The table that compares macro average scores for models trained on multi-
labeled data (Table 4.20) also shows lower performance than the models
trained on single-labeled data (Table 4.18). TRAM model trained on multi-
labeled data has better macro Precision and F1 Scores. The dummy model
here has the highest macro Recall score.

68 CHAPTER 4. RESULTS

4.5.6.2 Actual vs predicted technique counts

T1
00

5

T1
01

2

T1
02

7

T1
03

3

T1
03

6.
00

5

T1
04

1

T1
05

3.
00

5

T1
05

5

T1
05

6.
00

1

T1
05

9.
00

3

T1
06

8

T1
07

4.
00

1

T1
07

8

T1
08

2

T1
09

5

T1
10

5

T1
10

6

T1
11

2

T1
11

3

T1
14

0

T1
20

4.
00

2

T1
21

8.
01

1

T1
54

8.
00

2

T1
56

2.
00

1

T1
56

6.
00

1

T1
57

3.
00

1

Technique

0

5

10

15

20

25

30

35

Pr
ed

ict
ed

 Fr
eq

ue
nc

y

Actual VS Predicted Techniques counts
Ground Truth
Multi Label
Multi Label Enriched
Single Label
Single Label Enriched

Figure 4.25: This figure compares the actual and predicted technique counts in the
CTI report named Enigma Stealer Targets Cryptocurrency Industry with

Fake Jobs

In the stacked bar plot above (Figure 4.25), the x-axis represents a combined
list of techniques predicted by the four models under test, along with the
annotated techniques from the TRAM input data, which we treat as the
ground truth. The y-axis shows the number of times a technique is predicted
or annotated. All of this is in respect to one CTI report named Enigma

Stealer Targets Cryptocurrency Industry with Fake Jobs.

It can be seen above, that the best performing model (KEPLER single-
labeled with Enriched Data), in purple , matches closely in technique pre-

diction counts with the ground truth, in blue , followed by the second best
performing model (KEPLER single-labeled Data) in peach , especially with
the count of the overrepresented techniques like T1027 and T1140, which also
explains why the micro-average scores were better than the macro-average
scores for these models.

4.5. EVALUATION WITH TRAM 69

4.5.6.3 Validation losses while training with KEPLER

2 4 6 8 10
Epoch

1

2

3

4

5

6

7

Lo
ss

Single labelled Validation Loss over epochs

Single base KE loss
Single base MLM loss
Single enriched KE loss
Single enriched MLM loss

Figure 4.26: This fig-
ure compares the MLM
and KE losses for the

models trained on sin-
gle labeled base and
enhanced datasets.

2 4 6 8 10
Epoch

1

2

3

4

5

Lo
ss

Multi labelled Validation Loss over epochs

Multi base KE loss
Multi base MLM loss
Multi enriched KE loss
Multi enriched MLM loss

Figure 4.27: This fig-
ure compares the MLM

and KE losses for
the models trained on
multi labeled base and

enhanced datasets.

It is observed that the KE validation losses are lower for the models trained
on enriched datasets than the ones trained on the base datasets. And vice
versa for the MLM losses, where they are higher for the models trained on
the enhanced datasets. (Figure 4.26, Figure 4.27)

Chapter 5

Discussion

The objective of this study was to explore the efficacy of Knowledge Graphs
in enhancing the prediction capability of models dealing with classification
of Cyber Threat Intelligence report text excerpts to corresponding MITRE
ATT&CK techniques. This chapter discusses the findings in relation to ex-
isting literature, evaluates the strengths and weaknesses of the study, and
considers the practical implications and future research avenues.

5.1 Models trained on single-labeled data

As an outcome of this study, it was found that the KEPLER based model
trained on the single-labeled enriched dataset yielded the highest micro-
average P, R, F1 scores, and macro-average P, F1 scores(Table 4.17, Ta-
ble 4.18), where the model’s ability to learn from semantic relationships
through its KE objective was demonstrated, in contrast to the TRAM model
trained on the single-labeled dataset, which solely relies on Language Model
objectives. This was possibly the biggest distinguishing factor between the
two models. The enrichment of additional data from the MITRE ATT&CK
dataset seems to have further positively influenced the model’s performance,
specifically the Knowledge Embedding objective (Figure 4.26). The fact that
the quality of annotations in the single-labeled TRAM data is superior to that
of the multi-labeled data78, also added up to the performance improvement.

78https://github.com/center-for-threat-informed-defense/tram/wiki/Data-

Annotation#single-label-vs-multi-label

70

https://github.com/center-for-threat-informed-defense/tram/wiki/Data-Annotation#single-label-vs-multi-label
https://github.com/center-for-threat-informed-defense/tram/wiki/Data-Annotation#single-label-vs-multi-label

5.2. MODELS TRAINED ON MULTI-LABELED DATA 71

The second-highest micro-average P, R, F1 scores were seen for the KEPLER
based model trained on the single-labeled base dataset, possibly due to the
absence of the data enrichment that was done for the highest-performing
model. However, the macro prediction scores were not as high, likely due to
the imbalance in the dataset (Figure 4.1, Tables 4.17 and 4.18).

The models trained on single-labeled data were found to be equally proficient
at correctly predicting positive instances and avoiding false positives despite
data imbalance, demonstrating consistent performance across most instances
and classes. As observed by the similar micro and macro average P and R
scores of each corresponding model (Table 4.17, Table 4.18).

Both our single-label trained models, which were pre-trained on the broad
WikiData5m79, despite not being fine-tuned for predicting Attack Techniques
from CTI reports, surpassed the TRAM initiative’s performance in micro
and macro average prediction scores. TRAM, which utilizes a newer lan-
guage model pre-trained on a more specialized SciBERT[43] dataset, tends
to underperform when exposed to larger datasets, leading to their focus on
the top 50 techniques80. On the other hand, our models demonstrated better
predictive capabilities upon integrating additional relational data, suggesting
greater robustness and scalability. (Table 4.17, Table 4.18). This is reflected
in the training KE validation loss graph (Figure 4.26), which show lower KE
losses for the model trained on the enriched dataset compared to the base
dataset, indicating that the inclusion of additional relational data beneficially
influences KE predictions. However, the MLM validation losses suggest that
an increase in data volume adversely affects predictions. This reinforces our
stance that using a KE model with relational data along with an LLM is a
strategic move for effective predictions over larger datasets.

5.2 Models trained on multi-labeled data

For the KEPLER based model trained on the multi-labeled base dataset,
high micro Precision but low Recall was observed, indicating that the model
is making fewer positive predictions (Section 4.5.3), but a higher proportion
of these predictions are correct. The model is likely producing a significant

79https://deepgraphlearning.github.io/project/wikidata5m
80https://github.com/center-for-threat-informed-defense/tram/wiki/Large-

Language-Models#subset-of-techniques

https://deepgraphlearning.github.io/project/wikidata5m
https://github.com/center-for-threat-informed-defense/tram/wiki/Large-Language-Models#subset-of-techniques
https://github.com/center-for-threat-informed-defense/tram/wiki/Large-Language-Models#subset-of-techniques

72 CHAPTER 5. DISCUSSION

number of false negatives. The model’s behavior suggests a preference for
minimizing errors in predicting positive instances, even at the cost of missing
several actual positive instances.

For all models trained on multi-labeled data, the macro average scores were
found to be worse than the micro average scores. Even though the TRAM
scores were relatively better, the Precision scores were significantly higher
than the Recall scores. This discrepancy could be attributed to class im-
balance (Figure 4.3) or model bias. The models might be biased towards
predicting the majority class, resulting in a high number of false negatives
and hence a lower Recall. This is because Recall is sensitive to false neg-
atives. Additionally, there could be a significant variation in the model’s
performance across different classes.

In general, theKEPLER models trained on multi-labeled datasets performed
much worse than their single-labeled counterparts. In contrast, the TRAM
model, when trained on a multi-labeled dataset, demonstrated steadier per-
formance for both micro and macro average scores, possibly due to its weights
tuned specifically for this purpose.

The work presented in this thesis indicates that the outcomes, while some-
what positive, represent only a preliminary exploration into a significantly
larger and varied area of active research, ranging from employing LLMs to
analyze graph-structured information [29] and their utilization in cybersecu-
rity [30, 10, 13], development of CKGs and their enhancement using GCNs
[31], to employing ChatGPT to classify attack elements and their relation-
ships for efficient KG construction [33], to name a few. Further work in this
area is essential, to figure out the key factors that influence model perfor-
mance. The impact of training the model on a significantly larger set of
labeled data must be explored. Additional insights could be gained by aug-
menting the dataset with synthetic or negative samples. The selection of a
base model pre-trained on domain-specific information, such as SciBERT[43],
SecBERT81 or SecureBERT[44], warrants consideration, in which case cor-
responding KGs would also need to be defined, posing questions on how a
KG ontology could affect the outcome. Finally, thorough hyperparameter
optimizations should be carried out for better model tuning.

81https://huggingface.co/jackaduma/SecBERT

https://huggingface.co/jackaduma/SecBERT

5.2. MODELS TRAINED ON MULTI-LABELED DATA 73

To sum up, we recognize that the combination of KE and MLM objectives in
model training is a powerful tool that could be used for a variety of purposes.
If there are relational elements that can be extracted from a text corpus, our
recommendation is to form an ontology and create a KG with that informa-
tion, so that it can be used for a KE objective, jointly with LLMs. This would
most likely have a positive effect on the model’s predictive performance.

Chapter 6

Conclusion

This research aimed to demonstrate that the combination of KE and PLMs
can measurably improve the predictive capabilities of a method that uses
both techniques in conjunction, than a model that relies solely on traditional
ML techniques like PLMs. The findings indicate that our two best models
demonstrated higher Precision, Recall, and F1 scores in comparison to the
reference TRAM model when all the models were trained and evaluated with
the same data. These results support the proposed method’s effectiveness
in predicting Attack Techniques from CTI reports. The transformation of
the TRAM dataset to a KG, and the successful application of extending the
KEPLER model to work on the TRAM dataset, highlights the potential of
this approach in real-world scenarios. This thesis contributes to the cyber-
security domain by providing a framework that leverages the power of KGs
for the automated analysis of cyber threats.

While this work has advanced our understanding of the effectiveness of knowl-
edge graphs in predicting attack techniques from CTI reports, there remain
several avenues for further investigation. Future studies could explore build-
ing more robust models that work better on imbalanced and sparsely labeled
datasets. Such endeavors would not only build upon the foundation laid by
this thesis but also pave the way for more resilient digital ecosystems.

74

Bibliography

[1] Marc Ohm and Charlene Stuke. “SoK: Practical Detection of Soft-
ware Supply Chain Attacks”. In: Proceedings of the 18th International
Conference on Availability, Reliability and Security. ACM, 2023. doi:
10.1145/3600160.3600162.

[2] Dan Geer, Bentz Tozer, and John Speed Meyers. “For Good Measure:
Counting Broken Links: A Quant’s View of Software Supply Chain
Security”. In: login Usenix Mag. 45.4 (2020).

[3] Triet H. M. Le, Huaming Chen, and M. Ali Babar. “A Survey on Data-
driven Software Vulnerability Assessment and Prioritization”. In: ACM
Computing Surveys 55.5 (Dec. 2022), pp. 1–39. issn: 1557-7341. doi:
10.1145/3529757. url: http://dx.doi.org/10.1145/3529757.

[4] Saqib Saeed et al. “A Systematic Literature Review on Cyber Threat
Intelligence for Organizational Cybersecurity Resilience”. In: Sensors
23.16 (2023). issn: 1424-8220. doi: 10.3390/s23167273. url: https:
//www.mdpi.com/1424-8220/23/16/7273.

[5] Christopher S. Johnson et al. Guide to Cyber Threat Information Shar-
ing. Oct. 2016, pp. 4–5. doi: 10.6028/nist.sp.800-150. url: http:
//dx.doi.org/10.6028/NIST.SP.800-150.

[6] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learn-
ing with PyTorch Geometric. 2019. arXiv: 1903.02428 [cs.LG].

[7] Dieter Fensel et al. “Introduction: What Is a Knowledge Graph?” In:
Cham: Springer International Publishing, 2020, pp. 1–10.

[8] Yuke Ma et al. “The Advancement of Knowledge Graphs in Cyber-
security: A Comprehensive Overview”. In: Computational and Experi-
mental Simulations in Engineering. Ed. by Shaofan Li. Cham: Springer
International Publishing, 2024, pp. 65–103.

75

https://doi.org/10.1145/3600160.3600162
https://doi.org/10.1145/3529757
http://dx.doi.org/10.1145/3529757
https://doi.org/10.3390/s23167273
https://www.mdpi.com/1424-8220/23/16/7273
https://www.mdpi.com/1424-8220/23/16/7273
https://doi.org/10.6028/nist.sp.800-150
http://dx.doi.org/10.6028/NIST.SP.800-150
http://dx.doi.org/10.6028/NIST.SP.800-150
https://arxiv.org/abs/1903.02428

76 BIBLIOGRAPHY

[9] Kai Liu et al. “Recent Progress of Using Knowledge Graph for Cy-
bersecurity”. In: Electronics 11.15 (2022). issn: 2079-9292. doi: 10.
3390/electronics11152287. url: https://www.mdpi.com/2079-
9292/11/15/2287.

[10] Leslie F. Sikos. “Cybersecurity knowledge graphs”. In: Knowledge and
Information Systems 65.9 (Sept. 1, 2023), pp. 3511–3531. doi: 10.
1007/s10115- 023- 01860- 3. url: https://doi.org/10.1007/
s10115-023-01860-3.

[11] Yanai Elazar et al. “Measuring and Improving Consistency in Pre-
trained Language Models”. In: Transactions of the Association for
Computational Linguistics 9 (2021), pp. 1012–1031. issn: 2307-387X.
doi: 10.1162/tacl_a_00410. url: http://dx.doi.org/10.1162/
tacl_a_00410.

[12] Xiou Ge et al. Knowledge Graph Embedding: An Overview. 2023. arXiv:
2309.12501 [cs.AI].

[13] Siwar Kriaa and Yahia Chaabane. “SecKG: Leveraging attack detection
and prediction using knowledge graphs”. In: 2021 12th International
Conference on Information and Communication Systems (ICICS). IEEE,
May 2021. doi: 10.1109/icics52457.2021.9464587. url: http:
//dx.doi.org/10.1109/icics52457.2021.9464587.

[14] Xiaozhi Wang et al. “KEPLER: A Unified Model for Knowledge Em-
bedding and Pre-trained Language Representation”. In: Transactions
of the Association for Computational Linguistics 9 (2021), pp. 176–194.
doi: 10.1162/tacl_a_00360.

[15] Aritran Piplai et al. “Creating Cybersecurity Knowledge Graphs From
Malware After Action Reports”. In: IEEE Access 8 (2020), pp. 211691–
211703. doi: 10.1109/ACCESS.2020.3039234.

[16] Injy Sarhan and Marco Spruit. “Open-CyKG: An Open Cyber Threat
Intelligence Knowledge Graph”. In:Knowledge-Based Systems 233 (2021),
p. 107524. issn: 0950-7051. doi: https://doi.org/10.1016/j.
knosys . 2021 . 107524. url: https : / / www . sciencedirect . com /
science/article/pii/S0950705121007863.

[17] Diksha Khurana et al. “Natural language processing: state of the art,
current trends and challenges”. In: Multimedia Tools and Applications
82.3 (Jan. 1, 2023), pp. 3713–3744. doi: 10.1007/s11042-022-13428-
4. url: https://doi.org/10.1007/s11042-022-13428-4.

[18] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chap-
man. “Natural language processing: an introduction”. In: Journal of the

https://doi.org/10.3390/electronics11152287
https://doi.org/10.3390/electronics11152287
https://www.mdpi.com/2079-9292/11/15/2287
https://www.mdpi.com/2079-9292/11/15/2287
https://doi.org/10.1007/s10115-023-01860-3
https://doi.org/10.1007/s10115-023-01860-3
https://doi.org/10.1007/s10115-023-01860-3
https://doi.org/10.1007/s10115-023-01860-3
https://doi.org/10.1162/tacl_a_00410
http://dx.doi.org/10.1162/tacl_a_00410
http://dx.doi.org/10.1162/tacl_a_00410
https://arxiv.org/abs/2309.12501
https://doi.org/10.1109/icics52457.2021.9464587
http://dx.doi.org/10.1109/icics52457.2021.9464587
http://dx.doi.org/10.1109/icics52457.2021.9464587
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1109/ACCESS.2020.3039234
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107524
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107524
https://www.sciencedirect.com/science/article/pii/S0950705121007863
https://www.sciencedirect.com/science/article/pii/S0950705121007863
https://doi.org/10.1007/s11042-022-13428-4
https://doi.org/10.1007/s11042-022-13428-4
https://doi.org/10.1007/s11042-022-13428-4

BIBLIOGRAPHY 77

American Medical Informatics Association 18.5 (Sept. 2011), pp. 544–
551. issn: 1067-5027. doi: 10.1136/amiajnl-2011-000464. eprint:
https://academic.oup.com/jamia/article- pdf/18/5/544/

5962687/18-5-544.pdf. url: https://doi.org/10.1136/amiajnl-
2011-000464.

[19] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[20] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020.
arXiv: 2005.14165 [cs.CL].

[21] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. 2019. arXiv: 1907.11692 [cs.CL].

[22] Humza Naveed et al. A Comprehensive Overview of Large Language
Models. 2024. arXiv: 2307.06435 [cs.CL].

[23] Ed S. Ma. Investigating Masking-based Data Generation in Language
Models. 2023. arXiv: 2307.00008 [cs.CL].

[24] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine
Translation of Rare Words with Subword Units”. In: (Aug. 2015).

[25] Aidan Hogan et al. “Knowledge Graphs”. In: ACM Computing Surveys
54.4 (2021), pp. 1–37. doi: 10.1145/3447772.

[26] De Giacomo Giuseppe and Lenzerini Maurizio. “TBox and ABox Rea-
soning in Expressive Description Logics”. In: Proceedings of the Fifth
International Conference on the Principles of Knowledge Representa-
tion and Reasoning (KR’96). 1996, pp. 37–48.

[27] Jayeeta Majumder and Saikat Khanra. “An Overview of Semantic Net-
works and Its Components”. In: International Journal of Engineering
Research and Technology (IJERT) (2018). url: https://www.ijert.
org/an-overview-of-semantic-networks-and-its-components.

[28] Lukas Schmelzeisen, Corina Dima, and Steffen Staab. “Wikidated 1.0:
An Evolving Knowledge Graph Dataset of Wikidata’s Revision His-
tory”. In: arXiv preprint arXiv:2112.05003 (2021).

[29] Bowen Jin et al. Large Language Models on Graphs: A Comprehensive
Survey. 2024. arXiv: 2312.02783 [cs.CL].

[30] Farzad Nourmohammadzadeh Motlagh et al. Large Language Models
in Cybersecurity: State-of-the-Art. 2024. arXiv: 2402.00891 [cs.CR].

[31] Soham Dasgupta et al. “Cybersecurity Knowledge Graph Improvement
with Graph Neural Networks”. In: 2021 IEEE International Conference
on Big Data (Big Data). IEEE, 2021. doi: 10.1109/bigdata52589.
2021.9672062.

https://doi.org/10.1136/amiajnl-2011-000464
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1136/amiajnl-2011-000464
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.00008
https://doi.org/10.1145/3447772
https://www.ijert.org/an-overview-of-semantic-networks-and-its-components
https://www.ijert.org/an-overview-of-semantic-networks-and-its-components
https://arxiv.org/abs/2312.02783
https://arxiv.org/abs/2402.00891
https://doi.org/10.1109/bigdata52589.2021.9672062
https://doi.org/10.1109/bigdata52589.2021.9672062

78 BIBLIOGRAPHY

[32] Md Rayhanur Rahman and Laurie Williams. From Threat Reports to
Continuous Threat Intelligence: A Comparison of Attack Technique
Extraction Methods from Textual Artifacts. 2022. arXiv: 2210.02601
[cs.CR].

[33] Jiehui Liu and Jieyu Zhan. “Constructing Knowledge Graph from Cy-
ber Threat Intelligence Using Large Language Model”. In: 2023 IEEE
International Conference on Big Data (BigData). 2023, pp. 516–521.
doi: 10.1109/BigData59044.2023.10386611.

[34] Myle Ott et al. fairseq: A Fast, Extensible Toolkit for Sequence Model-
ing. 2019. arXiv: 1904.01038 [cs.CL].

[35] Alex Wang et al. GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. 2019. arXiv: 1804.07461
[cs.CL].

[36] Guokun Lai et al. RACE: Large-scale ReAding Comprehension Dataset
From Examinations. 2017. arXiv: 1704.04683 [cs.CL].

[37] Pranav Rajpurkar et al. SQuAD: 100,000+ Questions for Machine
Comprehension of Text. 2016. arXiv: 1606.05250 [cs.CL].

[38] Xu Han et al. “FewRel: A Large-Scale Supervised Few-Shot Relation
Classification Dataset with State-of-the-Art Evaluation”. In: Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Ed. by Ellen Riloff et al. Brussels, Belgium: Association for
Computational Linguistics, 2018, pp. 4803–4809. doi: 10.18653/v1/
D18-1514. url: https://aclanthology.org/D18-1514.

[39] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical Net-
works for Few-shot Learning. 2017. arXiv: 1703.05175 [cs.LG].

[40] Tianyu Gao et al. “FewRel 2.0: Towards More Challenging Few-Shot
Relation Classification”. In: Jan. 2019, pp. 6251–6256. doi: 10.18653/
v1/D19-1649.

[41] Livio Baldini Soares et al. Matching the Blanks: Distributional Simi-
larity for Relation Learning. 2019. arXiv: 1906.03158 [cs.CL].

[42] Ruobing Xie et al. “Representation learning of knowledge graphs with
entity descriptions”. In: Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press,
2016, pp. 2659–2665.

[43] Iz Beltagy, Kyle Lo, and Arman Cohan. “SciBERT: Pretrained Lan-
guage Model for Scientific Text”. In: EMNLP. 2019. eprint: arXiv:
1903.10676.

https://arxiv.org/abs/2210.02601
https://arxiv.org/abs/2210.02601
https://doi.org/10.1109/BigData59044.2023.10386611
https://arxiv.org/abs/1904.01038
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1704.04683
https://arxiv.org/abs/1606.05250
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://aclanthology.org/D18-1514
https://arxiv.org/abs/1703.05175
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://arxiv.org/abs/1906.03158
arXiv:1903.10676
arXiv:1903.10676

BIBLIOGRAPHY 79

[44] Ehsan Aghaei et al. “SecureBERT: A Domain-Specific Language Model
for Cybersecurity”. In: Security and Privacy in Communication Net-
works. Ed. by Fengjun Li et al. Cham: Springer Nature Switzerland,
2023, pp. 39–56. isbn: 978-3-031-25538-0.

	Acknowledgement
	Abstract
	Acronyms
	Introduction
	Research questions & Hypothesis

	Theory and Related work
	Theory
	Natural Language Processing
	Knowledge Embedding
	Knowledge Base
	Knowledge Graph
	Prediction Scoring Metrics

	Related Work
	Models & Tools
	FAIRSEQ
	RoBERTa
	TRAM
	KEPLER

	Materials & Methods
	Data Identification
	Data Pre-processing
	Environment Setup
	Data Enrichment
	Data Transformation

	Training
	Training with KEPLER
	Checkpoint Conversion
	Second Environment Setup
	Fine-tuning with TRAM

	Evaluation
	Software & Hardware Specifications
	Usage of AI in thesis writing

	Results
	Data Dimensions
	Base data
	Enriched data

	Model Structures
	KEPLER model based on RoBERTa
	KEPLER model based on Hugging Face transformers
	TRAM model

	Training Outcomes
	Single-labeled data
	Single-labeled - enriched data
	Multi-labeled data
	Multi-labeled - enriched data

	Fine-tuning with TRAM
	Single-labeled data
	Single-labeled - enriched data
	Multi-labeled data
	Multi-labeled - enriched data

	Evaluation with TRAM
	KEPLER model - single-labeled data
	KEPLER model - single-labeled enriched data
	KEPLER model - multi-labeled data
	KEPLER model - multi-labeled enriched data
	Reference Models
	Comparisons

	Discussion
	Models trained on single-labeled data
	Models trained on multi-labeled data

	Conclusion
	Bibliography

