




Abstract
The early detection of paddy disease is essential for reducing the usage of chemical substances and pesticides,
and preventing local and global transmission of diseases. An automated paddy disease diagnosis system makes
this possible, and helps to improve crop production and the overall health of rice plants. For this study, we have
explored the most prevalent paddy diseases and their visible symptoms. Additionally, the four segmentation
models (UNet, VGG16 UNet, TransUNet and Deep Residual UNet) and four classification models (DenseNet,
MobileNet, Vision transformer (ViT) and a custom ensemble model of DenseNet121 and Xception), have been
reviewed with a comparative analysis highlighting their structural differences, advantages, and limitations. The
significant research gaps in this domain have been identified and to address the lack of open-access paddy disease
segmentation datasets, we have created a novel paddy disease segmentation dataset using image processing
techniques. The applicability of the above-mentioned segmentation models has been evaluated for paddy diseases
using this newly created dataset and we have identified that Deep Residual UNet is the most suitable model
to be used in resource constraint applications—considering its quantitative and qualitative performance, model
size and structural advantages and limitations. Furthermore, we have investigated the impact of training these
models with a significantly higher number of augmented images—more than double the original dataset—and
observed that while the quantitative performance increased with increased data, the qualitative performance
degraded in a few cases. Moreover, due to the huge computational requirements and the data-hungry nature
of ViTs, we assessed whether its performance could be achieved with traditional models or their ensembles
and found it to be feasible. Additionally, we have explored the effect of augmentation intensity on the above-
mentioned classification models.
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1
Introduction

1.1 Introduction
Globally, rice has been one of the most impactful and widely consumed foods as over half of the global

population consumes it [1]–[5]. Rice plants before harvesting are usually called ‘paddy’ and when the crop has
been harvested, it is called ‘rice’. Nations such as China, India, Bangladesh etc. are majorly dependent on rice
and rice production has an immense impact on their economic growth and food security [1], [2], [6]–[8]. The
importance of rice production is also increasing due to the expected global population growing over 9 billion
people by 2050—increasing the demand for the crops massively [2], [3], [5]. However, various factors such as
climate change, global warming, and diseases provide major challenges in paddy production—where disease can
cause massive production losses up to 40% [4], [8], [9].

Recent developments in the field of precision agriculture involving computer vision and machine learning
techniques can immensely help the paddy disease diagnosis by mitigating the associated challenges [7], [8].
In addition to providing correct diagnosis, these automated disease diagnosis systems can also offer disease
management advice to the farmers which helps to limit the overuse of chemical substances, optimise resource
usage, reduce environmental degradation, and improve the overall ecosystem health. Additionally, it also aids in
minimising the economic and yield losses, the need for erroneous manual disease detection, and the limitations
related to human bias and the availability of the plant experts [1], [4], [7], [9]–[12].

To conclude, the high importance of rice production in the global context demands researchers in this
field to provide solutions using a combination of precision agriculture, and advanced image processing and
machine learning techniques to alleviate challenges related to paddy disease diagnosis. Such technologies have
demonstrated promising results on paddy disease detection in various studies [6]–[8], [10], [13]–[26] and can
benefit farmers globally by aiding early disease detection, and therefore, ensuring a positive impact on the
global food security.

1.2 Thesis motivation
Even with the recent research efforts, the process of paddy disease detection faces several challenges. The

motivating factors for our research have been presented in Figure 1.1, with further details provided below.

• Limitations of manual detection: Manual disease detection is often plagued with many limitations.
Manual observations are subjective and fallible as paddy diseases can show overlapping and similar symp-
toms. The lack of insights, the slow turnaround of laboratory diagnosis, and the lack of access to plant
experts can render farmers’ observations faulty [1], [10], [13]. Also, it can be demanding with time and
effort—especially in vast fields—making such inspection an arduous and expensive task [4], [7], [9], [11],
[12]. Hence, there is a crucial need for fast, accessible, and automated solutions to aid this [1], [10], [11].

• Need for efficient disease diagnosis: Efficient automated disease detection systems can decrease the
need for human consultations, the time needed for diagnosis, total resource expenditure, and the economic
damage [4], [6], [9], [27].
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Figure 1.1: Illustration of the motivating factors behind our research.

• Limited access to specialists: Lack of availability of expert plant consultants, particularly in remote
areas, can lead to inaccurate disease diagnosis and expensive disease management. This often results in
loss of yield and quality of the crop [3], [6], [8], [9], [27].

• Global spread of diseases: Based on recent research, there is an urgent need for a correct, prompt,
and globally applicable image-based disease identification system. Because, disease diagnosis and disease
management can become complicated due to the variable growth rates and stages of inception for such
diseases, and their potential to spread globally and form new diseases [11].

• Advances in image processing: Advancements in image processing technologies can contribute to
disease detection to be more accurate, rapid, and less resource demanding—while easing large-scale pro-
duction monitoring and aiding in increased yield [4], [10].

In summary, applications of emerging technologies to craft effective automated plant disease detection can
benefit farmers, consumers, and crop-producing nations as they alleviate farming challenges with prompt and
precise interventions that can lead to improved production, sustainability, efficient management, and healthy
ecosystem [9], [10].

1.3 Problem statement
Due to the problems associated with manual paddy disease diagnosis, we need an automated disease diagnosis

system capable of handling complex samples with high accuracy for proper disease management initiatives.
Paddy disease data has several complications related to background shadows, noises, similar and overlapping
disease patterns, and lighting variations. To resolve these challenges, segmentation is needed as a preprocessing
step or incorporated within the classification process to extract the diseases. Currently, there are no open-access
paddy disease segmentation datasets available. We will address this gap by providing a segmentation dataset
and analysing the applicability of existing segmentation models to paddy disease. Furthermore, for farmers
with constrained computational resources, state-of-the-art vision transformers (ViT) demanding large datasets
and high computational resources might not always be suitable. Hence, for this thesis, we will analyse whether
the performance of ViTs can be achieved with traditional models or their ensembles. Moreover, researchers
often have to rely on data augmentation strategies to overcome the limitations of training small datasets and
collecting large and diverse datasets. Therefore, we will analyse the effect of various augmentation intensities on
the performance of both segmentation and classification models. To advance precision agriculture, this thesis
aims to provide all required analysis to create an effective automated paddy diagnosis system.
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1.4 Research objectives and research questions
The research objectives and goals that we plan to achieve in this thesis can be grouped into three categories

such as (a) literature review-based research objectives, (b) classification task-based research objectives, and (c)
segmentation task-based research objectives. The details of goals and objectives undertaken in each category
have been given below.

(a) Literature review-based research objectives

We will provide an extensive review of the prevalent paddy diseases which includes their causative agents,
visual symptoms, and potentially affected areas. In addition to this, the selected segmentation and classification
models to be used for paddy disease diagnosis will be analysed—highlighting their limitations and advantages.
Lastly, the prominent research gaps within this domain will be identified.

(b) Segmentation task-based research objectives and research questions

From the literature review presented in Chapter 2, we have identified that there are currently no open-access
paddy disease segmentation datasets available and apart from the study by Daniya et al. [28], there have been
no studies on paddy disease segmentation using masks. To address this research gap, we will introduce a paddy
disease segmentation dataset and perform a comparative analysis on four segmentation models (UNet, Vgg16
UNet, TransUNet and Deep Residual UNet) previously applied in remote sensing [29], biomedical imaging [30]–
[32], urban scene analysis [33], [34], and precision agriculture for crops other than paddy [35]–[38]. This study
will evaluate their applicability for paddy disease segmentation. We will also provide a comparative analysis of
the selected models in terms of their structure, advantages and disadvantages. Lastly, we aim to address the
following research questions for the segmentation task.

• RQ1: Which mask-based segmentation model achieves the highest and lowest performance scores in
intersection over union (IoU)?

• RQ2: Considering all parameters including model size, and qualitative and quantitative test performance,
which mask-based segmentation model is the most suitable to be used as a preprocessing step or incorpo-
rated within the classification process?

• RQ3: If the number of augmented images is higher (more than double) than the original number of samples,
does it have any negative or positive effect on the test performance using unmodified test samples (both
qualitative and quantitative)?

(c) Classification task-based research objectives and research questions

The main objective of the classification task is to assist farmers in identifying or diagnosing paddy diseases
quickly, minimising the dependency on plant specialists, and error-prone and time-intensive manual detection.
Due to the inherent characteristics of state-of-the-art ViTs, these models are typically larger and require sub-
stantial computational resources, time, and data. Thus, ViTs are often not suitable for resource-constrained
applications such as mobile phones, which are often the only available technology for many farmers—particularly
in developing countries. Given the limited computational capabilities available to the farmers, there is a need
for a memory-efficient model that offers performance comparable to ViTs. This study will assess whether tradi-
tional convolutional neural network (CNN) models and their ensembles can perform as well as the ViT models.
Furthermore, since disease patterns are smaller in size and have high similarities, this research will also explore
how varying augmentation intensities impact disease detection in a complex agricultural environment. Lastly,
we aim to address the following research questions for the classification task.

• RQ4: For paddy disease classification with complex field data, can the performance of ViT be achieved
with traditional CNN models (MobileNet, and DensNet121) or an ensemble of the traditional models?

• RQ5: How does the level of data augmentation (none, basic, and extensive) impact the performance of
models classifying paddy diseases using datasets with complex field environments?
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1.5 Thesis contribution
Through this thesis, we are making the following contributions to paddy disease diagnosis and, on a broader

scale, to precision agriculture:

• We have identified the significant research gaps in this domain, which will guide future researchers to
address these gaps.

• Research on paddy disease segmentation is limited, and currently there are no open-access datasets avail-
able for this purpose. To address this gap, we have created a paddy disease segmentation dataset using
image processing techniques and this dataset can serve as a starting point for future researchers.

• We have compared the recent segmentation models in terms of their architecture, advantages, limitations,
qualitative and quantitative results, and overall, their applicability to this domain which were previously
used in other domains.

• Analysed the effects of using a significantly higher number of augmented images—more than double
the original dataset—on both qualitative and quantitative test performance of the selected segmentation
models.

• Analysed whether traditional models or their ensembles are capable of demonstrating comparable perfor-
mance to the ViTs in classifying paddy diseases.

• Analysed the impact of various augmentation intensities on the test performance of the selected classifi-
cation models.

1.6 Thesis outline
• Chapter 1 gives a concise overview of the problem statement, motivating factors behind this thesis, research

objectives, goals and questions, and our contributions through this thesis.

• Chapter 2 provides a review of the selected segmentation and classification models for this study and a
short description of the main research gaps identified in this domain. An extensive review of the relevant
paddy diseases has also been provided in this chapter.

• Chapter 3 includes our detailed research methodology for the segmentation and classification tasks in-
tending to address identified research gaps in paddy disease diagnosis.

• Chapter 4 holds a brief comparative analysis and illustration of the quantitative and qualitative results
that we have obtained and analysis of the model learning curves.

• Chapter 5 provides a discussion focused on answering the research questions in addition to a brief discussion
of our additional observations from the results. This chapter also includes limitations faced by this research
work.

• Chapter 6 has an overview of our findings with a detailed outline for our future work.



2
Literature Review

This chapter provides a detailed overview of the common paddy diseases and their symptoms. Additionally, it
gives an overview of the segmentation and classification models selected for this study and their comparative
analysis—highlighting their structural differences, advantages and disadvantages.

2.1 Paddy diseases and their symptoms
Diseases caused by unfavourable conditions (imbalances in temperature and soil quality) and by microor-

ganisms (fungi, viroids, bacteria, nematodes, and viruses) severely threaten global paddy cultivation and lead
to various symptoms [1], [8]. The symptoms of such diseases in different plant parts (e.g., leaves, stems, and
grains) can be unique as well as overlapping due to varied environmental factors—resulting in demands of pre-
cise identification [6], [11]. For an overview of the diseases in this context, they have been classified into four
categories based on causative factors: bacteria, fungi, viruses, and pests. A concise description of prevailing
diseases has been provided in this section—along with Figure 2.1 and Figure 2.2 illustrating such diseases and
their subclasses. Table 2.1 provides a tabular representation of the most common paddy diseases highlighting
their causative factors, disease symptoms, and possible affected areas.

2.1.1 Fungi-caused diseases

Various fungi attacking leaves, sheaths, grains, and other parts of the plant result in fungal infection. These
infected plants generally have noticeable lesions, discolouration, and rotting—producing serious adverse impacts
on the health and yield of rice crops [1], [3], [5], [10], [13], [39].

• Blast disease (BD): Throughout paddy’s complete life cycle, this disease adversely affects leaves, collars,
nodes, necks, panicles, and seeds [1], [3]. Mainly impacting nodes and neck tissues, it reduces the grain
quality and quantity, and forms dark brownish-black spots on grains [39]. Also, it is visible on leaves
as green-grey diamond-shaped lesions with dark green borders. The lesions later expand and form grey
centres and dark brownish borders, and the leaf dies in the end [2], [3], [5].

• Brown spot disease (BSD): This disease initially materialises as small brown spots, which later develop
into cylindrical, oval, and circular forms. It mainly infects leaves, coleoptiles, panicle branches, leaf sheaths,
spikelets, and glumes [1], [6], [13], [40]. Contaminated seeds yield unfilled or discoloured grains and act as
the primary source of infection—impacting future yields [10].

– Thin brown spot disease: This disease mainly infects leaves at the later stages of paddy. It
is predominant in potassium-deficient soils at temperatures between 25 to 28 degrees Celsius and
appears as dark brown lesions along leaf veins [41].

• Sheath blight: Initially, this disease appears as greenish-grey spots on leaf sheaths near water levels,
then progresses with irregular purple-brown and blackish-brown borders [5].
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Figure 2.1: Illustration of common paddy diseases and their categories.

• False smut: This disease causes the individual grains to form clusters of velvety spore masses or yellow
fruiting bodies. In the early stages, these clusters exhibit yellow or orange hues. When the spores mature,
they transform into a greenish-black colour—indicating mature black fungal mycelium [3], [10]. Also, it
often results in grain chalkiness and reduces both their quality and overall crop yield [3].

• Leaf smut: This disease appears in small black lesions with brown or golden circles on paddy leaf blades
[3], [18]. When severe, the leaves turn yellow and the tips appear grey due to their demise [40].

• Rice sheath rot: This disease mainly transmits through seeds and crop residues [1], [10]. The infection
starts as elongated or inconsistent dark markings on the top leaf sheath surrounding the young panicles.
It often shows reddish-brown or brownish-tan patches with a grey or brownish-grey centre. When the
disease advances, the darker dots within the patches increase [3], [10]. It disturbs panicle emergence,
forming sterile panicles and unfilled discoloured seeds [3], [10]. Thus, it can significantly lower the yield
while spreading to uninfected crops [1].

• Rice stem rot: This disease appears as small black lesions on the outer leaf sheath extending to the
inner sheath—particularly at the water line in water-sown rice [3], [42]. The sheaths die and detach as
the disease develops. In severe cases, it penetrates the culm and leads to visible white and black sclerotia
and mycelium within. It causes lodging and affects grain with unfilled panicles and chalky grains, and is
influenced by panicle moisture and nitrogen fertiliser [43]. This disease grows on wounded plants.

• Bakanae: This disease spreads primarily through contaminated seeds. However, it can also spread from
infected plant material or soil—moving between plants via wind or water and during agricultural activities
like harvesting and seed soaking. The pathogens attack the paddy’s roots or crowns, resulting in symptoms
as unusually tall plants with pale, slender, yellow-shaded, and dry leaves. It causes diminished tillering
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Table 2.1: Analysis of the common paddy diseases.
Disease
Name

Causative
agent

Disease symptoms Affected areas References

Rice blast Fungus Dark brownish-black spots on grains;
diamond-shaped lesions on leaves

Leaves, collars, necks,
panicles, seeds, and

grains

[1]–[3], [5], [13],
[39]

Brown spot Fungus Circular dark brown lesions Leaves, leaf sheath,
panicle branches, and

glumes

[1], [4]–[6], [10],
[12], [13], [40]

Thin brown
spots

Fungus Dark brown lesions along leaf veins Leaves [41]

Sheath blight Fungus Greenish-grey spots with irregular purple-brown
and blackish-brown borders

Leaf sheaths [2], [5], [6], [39]

False smut Fungus Clusters of yellow fruiting bodies, orange to
greenish-black spores

Rice grains [3], [5], [6], [10],
[39]

Leaf Smut Fungus Black linear lesions with dark gold or light
brown halos

Leaves [3], [18], [40]

Rice sheath
rot

Fungus Irregular spots with dark reddish-brown
margins, grey centre, and later-phase darker dots

Leaf-sheaths [1], [3], [10]

Rice stem rot Fungus Black lesions on leaf sheaths, expanding to the
culm, with white and black sclerotia and

mycelium inside infected stems, unfilled panicles
and chalky grains

leaf sheaths and culms [3], [42], [43]

Bakanae Fungus Pale, slender, yellow-shaded leaves, less tillering,
white powdery growth on the lower portion of

the plants, and lesions on roots

Seeds, seedbed, lower
portion of the plants
(roots, and crowns)

[39], [44]–[46]

Bacterial
blight

Bacterium Wilting seedlings, yellowing, drying leaves, small
grey to olive spots

Leaves, spikes, and
seedlings

[8], [10], [13]

Bacterial leaf
blight

Bacterium Grey-white lesions on leaf veins, yellow lesions
on leaves

Leaves [1], [5], [10], [18],
[40]

Tungro Viruses Yellowing, mottled or striped appearance,
rust-coloured spots, and interveinal necrosis

Leaves [13], [47]

Hispa Insect (pest) White membranous leaves leading to wilting Leaves [4], [6], [12]
Yellow stem

borer
Insect (pest) “Dead heart” and “white ear” like shapes on

leaves, dried, yellow shoots and chaffy ear heads
Shoots and leaves [48], [49]

Pink stem
borer

Insect (pest) Insect waste and eggs on leaf sheath and stems Leaf sheath and stems [48], [50]

and grains that are either empty or partially filled [39], [45], [46]. It also results in white powdery growth
on the lower portion of the plants [45].

2.1.2 Bacteria-caused diseases

Various types of bacteria cause paddy bacterial diseases, leading to wilting, yellowing, and lesions in different
parts of the plant [2], [5], [18], [40].

• Bacterial blight: This disease starts as expanding wet brown streaks on leaves, drying into yellow
droplets. Later, these leaves develop grey-white lesions indicating the infection’s end. The infected
seedlings typically die within 2 to 3 weeks after the initial infection [8], [10].

– Bacterial leaf blight (BLB): It shows elongated yellow lesions and often grey-to-white lesions on
the leaves and leaf veins respectively [5], [18]. Through plant debris and insect feeding, this disease
can be transmitted [1].

2.1.3 Virus-caused diseases

Various strains of viruses transmitted through insects can cause this disease and majorly impact crop yield
and quality [13].

• Tungro: Frequently occurring during the vegetative phase, this disease is transmitted by the infected
seedlings and stubble from previous crops and leafhoppers feeding on the infected plants. The infected
plants develop yellow leaves which start at the tip and spread downward [13]. Also, mottled or striped
patterns, rust-coloured spots, and necrosis between veins can appear on infected leaves [47].
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Figure 2.2: Common paddy disease examples.

2.1.4 Pest-induced diseases
Hispa and stem borers are the most common pest-induced diseases.

• Hispa: Dicladispa armigera scrapes the paddy leaf surface leaving distinct white lines for female insects
to lay eggs. After hatching, these larvae accelerate the leaf scraping process leading to the demise of the
leaf [4], [12]. Hispa disease can spread across a field in three weeks without pesticide intervention [12].

• Stem borers: Six types of stem borer insects attack the rice stems and grains [6]. The symptoms include
a “dead heart” in the vegetative stage, and “white heads” during the reproductive stage resulting in
unfilled panicles and stem holes. Effective treatment requires distinguishing these symptoms from similar
damage caused by other diseases and insects [48]. Depending on the insects causing it, stem borer diseases
have their sub-classes such as Black stem borer (BSB), Yellow stem borer (YSB), Pink stem borer (PSB),
White stem borer (PSB) etc.

2.2 Related works
Equipped with the recent developments in image processing and machine learning, researchers have developed

various techniques for automated paddy disease diagnosis—enhancing performance while reducing manual effort
and resource usage. A short overview of the selected segmentation and classification models, and the rationale
behind their selection for this study has been presented below. We have also outlined the structural differences,
advantages and limitations of the chosen models.

2.2.1 Selected segmentation models
Using the segmentation process, diseased regions are isolated from healthy parts of a leaf, removing the

complex backgrounds and healthy parts of the plants which simplifies the disease classification task [51]. Sev-
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eral studies have used this process employing masks [21], [28], image processing techniques [41], [51]–[54], and
neural networks [53] for accurate disease classification. However, this process is challenging due to the varia-
tions in illumination, distance, and complex backgrounds [51]. The procedure for segmentation-based disease
classification is shown in Figure 2.3.

Figure 2.3: Demonstrating the segmentation-based paddy disease classification process.

For the segmentation task, we have selected four models which include UNet [31] and three of UNet’s
variants: (1) transfer learning-based: VGG16 UNet; (2) attention mechanism-based: TransUNet [55]; (3)
residual connection-based: Deep Residual UNet [32]. A comparative analysis of the chosen segmentation models
has been provided in Table 2.2 and a concise overview of these models and the rationale behind their selection
have been provided below.

Table 2.2: Comparative analysis of the chosen segmentation models (UNet, Vgg16 UNet, TransUNet & Deep
Residual UNet).

Properties UNet Vgg16 UNet TransUNet Deep residual UNet

Model category Original UNet UNet variant: transfer
learning-based

UNet variant: attention
mechanism-based

UNet variant: residual
connection based

Model size (MB) 8.23 53.05 384.85 31.41
Activation function Sigmoid Sigmoid Sigmoid Sigmoid
Number of Conv
layers

23 23 41 22

Trainable
parameters

2158705 13905953 93427025 8223809

Non-trainable
parameters

0 1792 7459136 9216

Total parameters 2158705 13907745 100886161 8233025
Advantages Leverages skip

connection and
encoder-decoder

structure advantages;
compact size; faster

training; fewer
parameters (total &
trainable); ideal as a

benchmark.

Leverages skip
connection and
encoder-decoder

structure advantages;
benefits from transfer
learning for increased
performance; shows

nearly equal
performance as the

original UNet.

Leverages skip
connection and
encoder-decoder

structure advantages;
capable of capturing

detailed spatial
information and

long-range
dependencies using
hybrid CNN-ViT

structure.

Leverages residual
connection, skip
connection and
encoder-decoder

structure advantages.

Limitations Lower or equal
performance compared

to other models;
struggles to capture

long-range
dependencies and

global context.

Model size is almost 6.5
times larger than UNet;
larger model size makes

the training process
time-intensive.

Model size almost 46.5
times larger than UNet;

requires more
computational power

and time; high
parameter count (total
and trainable) due to

ViT integration; risk of
overfitting on smaller

datasets.

Model size almost 4
times larger than UNet.

UNet

UNet addresses the challenge of training deep neural networks for semantic segmentation with limited
training data by leveraging its distinctive U-shaped encoder-decoder structure and skip connections. Their
model structure effectively combines the low-level details captured by the encoder with high-level semantic
information extracted by the decoder which enables precise segmentation outcomes even with smaller datasets
[29], [31]. The usage of skip connections enhances the model by facilitating the integration of detailed context
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into the higher-level semantic features, supporting efficient backward propagation and feature compensation
during training [29]. However, UNet struggles to capture long-range dependencies and global context [55].
Figure 2.4 demonstrates the UNet architecture.

Figure 2.4: Visualisation of the UNet architecture.

Since UNet is the pioneering segmentation model capable of solving the problems associated with model train-
ing with small datasets, its applicability has been noticed across various domains [29]–[32], [36]–[38]. Because
of its added structural benefits with skip connectors and encoder-decoder structure, and the high adaptability
to different domains, it has inspired multiple authors to provide various enhancements to this model [29]–[32],
[36]–[38]. Hence, UNet has been chosen as a benchmark for this study. The overview of the chosen UNet
variants is given below.

1. Transfer learning-based: The UNet [31] model’s encoder has been substituted with VGG16 [56] pre-
trained on the ImageNet dataset for increased performance with three skip connections. Due to VGG16’s
large model size, training this model is time-intensive. Even though VGG16 suffers from vanishing gradient
problems due to its simplistic architecture, we have chosen this model for our study to evaluate the impact
of using a VGG16-based encoder in the modified UNet. The model architecture of VGG16-based UNet
has been shown in Figure 2.5.

2. Attention mechanism-based: The attention mechanism enhances the model performance by focusing
on significant features [30], [55]. Chen et al. [55] introduced a hybrid CNN-transformer with an encoder-
decoder framework named TransUNet, optimising the strengths and mitigating the limitations of both
CNNs and Transformers. CNNs face challenges in capturing long-range dependencies and struggle with
the variations in texture, shape, and size of regions of interest (ROI) across samples. But it effectively
captures detailed spatial information. On the other hand, transformers can effectively capture long-range
dependencies and global context through the global self-attention mechanisms, but have limitations in
obtaining localised detailed low-level features. In addition to this, the authors have also identified that,
compared to using ViT directly as a feature extractor, using a hybrid of CNN and ViT—where the high-
resolution spatial information is extracted by the CNN and global context is extracted by ViT—is proven
to be a better solution. For being used as an input for the transformer, these extracted features are
tokenized (vectorised) into 2D embeddings by linear projection. Then, the global context is encoded by
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Figure 2.5: Visualisation of the VGG16-based UNet architecture.

the ViT. The feature maps are extracted in three different levels of CNN and are concatenated with the
decoder path of the same level using skip connections. The decoder part consists of several upsampling
steps for obtaining the final mask. The transformer part utilised for this study had 12 layers and 12
attention heads, and incorporated 3 skip connections for passing information to the decoder. Figure 2.6
shows the TransUNet architecture. Due to the incorporation of ViT in the model structure, the TransUNet
requires a significant amount of computational power, time and data because of the inherited nature of
ViTs [57]. To assess the impact of the unique hybrid structure of the hybrid CNN-transformer on the
model performance, we have chosen this model.

3. Residual connection based: Residual connections solved the vanishing gradient problems associated
with the training of deep networks [58]. Zhang et al. [29] introduced the Deep Residual UNet by augment-
ing the UNet with deep residual blocks instead of standard convolutional blocks. Their model leverages
the residual connections to simplify the training of deeper networks and uses skip connections to preserve
the detailed spatial information in the decoder. The innovative integration of both skip connections and
residual connections in their model enhanced the information flow and minimised the total parameter
count. Their model comprises an encoder and a decoder with an equal number of deep residual blocks,
and a bridge with a single deep residual block without the residual connections. Figure 2.7 illustrates the
Deep Residual UNet architecture. To assess the performance impact of integrating deep residual blocks
into the UNet, this model has been chosen for this study.

2.2.2 Selected classification models
Various deep-learning architectures have been used in recent years for the paddy and various plant disease

diagnosis, which cover basic CNN-based architectures [13]–[17], ViT-based architectures [8], [18]–[24], and mem-
ory efficient models [6], [25], [26]. For the classification task, we have chosen four categories of models, including
(1) traditional: DenseNet121 [59], (2) vision transformer-based: ViT [57], (3) memory-efficient: MobileNet [60],
and (4) ensemble-based: a custom ensemble model of Densenet121 and Xception. A comparative analysis of
the chosen classification models has been provided in Table 2.3 and a concise overview of these models and the
rationale behind their selection have been provided in this section.
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Figure 2.6: Visualisation of the TransUNet architecture.

Figure 2.7: Visualisation of the Deep Residual UNet architecture.
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Table 2.3: Comparative analysis of the chosen classification models (DenseNet121, MobileNet, Ensemble2 &
ViT).

Properties DenseNet121 MobileNet Ensemble2 ViT

Model category Traditional Memory-efficient Ensemble-based ViT-based
Model size (MB) 26.9 12.37 122.52 73.73
Activation function softmax softmax softmax softmax
Trainable
parameters

6967181 3220301 4213773 19328514

Non-trainable
parameters

83648 21888 27903080 0

Total parameters 7050829 3242189 32116853 19328514
Advantages Due to the usage of

shorter connections
between layers, has

additional deep
supervision via the loss

function; due to the
reuse of feature maps,
fewer parameters and

small model size;
improved information

and gradient flow in the
network.

Suitable to be used in
memory-constraint

applications; usage of
depthwise separable

convolution reduces the
computational

requirements; high
adaptability to a wide
range of classification
and object detection

tasks.

Shows comparable
performance to ViT in

most cases and
improved performance

compared to the
traditional models.

Due to the usage of
transformers, can

capture long-range
dependencies.

Limitations Increased GPU memory
requirement due to

concatenation of
features; longer training

time due to the usage
of small convolutions
rather than compact
large convolutions.

Comparatively lower
performance than the
other models in this

study.

Comparatively large
model size than the

traditional models and
smaller model size than
the ViTs; comparatively

high parameter count
than the traditional

models and low
parameter count than

the ViTs.

Requires a high amount
of data to achieve a

good performance; due
to the incorporation of

the self-attention
mechanism needs high
computation; smaller
patch size increases

performance with the
cost of increased
computational

requirements, model
complexities and bias in

texture.

(1) Traditional models

For the traditional model category, we have selected DenseNet [59] because it has effectively addressed the
common issues associated with training deep CNN-based networks such as vanishing gradient and low feature
propagation by concatenating features from all preceding layers. Due to the feature reuse, this model is com-
paratively compact, has a smaller size and fewer parameters. The collective feature memory achieved through
the feature concatenation in DenseNet has enhanced the model training, improved gradient and information
flow, and effectively addressed the vanishing gradient problem [59], [61]. It also has a regularising effect on
the training data, which assists in mitigating the risk of overfitting [59]. Even though this model has several
advantages, it demands more GPU memory due to feature concatenation and necessitates longer training time
due to the usage of small convolutions rather than large conventions [61]. Figure 2.8 illustrates the process of
DenseNet concatenating features from all previous layers. Due to its enhanced accuracy in classification tasks
[59] and the aforementioned advantages, this model has been chosen for our study.
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Figure 2.8: Illustration of DenseNet concatenating features from all previous layers.

(2) Vision transformer-based model

Inspired by the transformers used in natural language processing (NLP), Dosovitsky et al. [62] intro-
duced ViT in computer vision which has proficiently mitigated the long-range dependency issues of CNNs. On
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benchmark datasets (such as ImageNet, CIFAR-100, Oxford-IIIT Pets, etc.), ViT has produced outstanding
classification performance with substantially lower memory consumption [19]. ViT divides the images into
several fixed-size patches and utilises multi-head self-attention (MHSA) to recognise intricate patterns. Then,
these patches are flattened into a sequence and processed by a transformer encoder to learn the inter-patch
relationships, generating a feature vector representing the image. For the final label prediction, this vector is
processed using a multi-layer perception (MLP) [8].

Several crops have been classified using ViT for various plant diseases [8], [18]–[24]. ViTs have also success-
fully minimised the long-range dependency issues of CNNs. The study by Bhojanapalli et al. [63] indicates
that decreasing patch sizes enhances both performance and robustness in models. But it also increases model
complexity and texture bias. Due to the nature of ViTs, they are prone to overfitting with small datasets and
are usually computationally expensive. On the other hand, most paddy disease datasets are relatively small.
Therefore, we selected this model to assess its behaviour with various levels of data augmentation in paddy
disease classification and to compare its performance against traditional models. Using Keras Tuner, we have
optimised the model to have 16 attention heads, 6 layers in depth, an MLP with 1024 units, and a dropout rate
of 0.1. Since the input images were resized to 128x128 pixels, we have selected a patch size of 16. Figure 2.9
illustrates the ViT model architecture.
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Embedded 
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Figure 2.9: Illustration of the custom ViT architecture.

(3) Memory-efficient model

Howard et al. [60] have created MobileNet specifically to be used in memory-constraint applications such
as mobile phones. Instead of standard convolutions, depthwise separable convolution was used in this model to
make it memory efficient and reduce the computational requirements. Since this model is smaller in size, it is less
susceptible to overfitting and requires minimal usage of regularisation and data augmentation compared to the
other heavy models. This model also has high adaptability to a wide range of classification and object detection
tasks. Since the primary users of paddy disease diagnosis applications are farmers with limited computational
resources, a memory-efficient model is essential. Hence, we have selected this model for this study to evaluate
its performance for paddy disease diagnosis.

(4) Ensemble-based model

We have created an ensemble model that uses the traditional models, DenseNet121 [59] and Xception [64]
for feature extraction and additional layers to predict the final classification label. This model combines features
from two models and trades increased model size for enhanced performance. On the other hand, it leverages
DenseNet121’s dense blocks and Xception’s depthwise separable convolutions incorporating residual connections
for improved performance. The architecture of this model has been illustrated in Figure 2.10. This model was
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developed for this study to achieve performance comparable to ViTs while maintaining a lower parameter count
and smaller model size. Using the Keras Tuner, we have identified the best dropout value to be 0.1 and the
number of dense layer units to be 1024 to optimise the model performance.
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Figure 2.10: Illustration of the architecture of a custom classification model named Ensemble2.

2.3 Identified research gaps
For training robust models using deep learning (DL), we need large datasets covering diverse classes for

practical real-life implementations. Currently except for the imbalanced “Paddy Doctor” [16] dataset, we do
not have any large datasets [65]–[72]. Additionally, high-sensory (multi-spectral, hyperspectral, fluorescence
and thermal) and UAV image-based datasets are also lacking [73]. In addition to this, there are currently
no open-access paddy disease segmentation datasets which creates a significant challenge for new researchers.
Lastly, estimating and formulating an effective disease treatment strategy requires an accurate assessment of
the disease severity. Except for studies by Lamba et al. [74] and Pal et al. [75], there is no work on paddy
disease severity analysis.



3
Research Methodology

This chapter provides a detailed overview of the steps incorporated into our research methodology. Since our
research belonged to two different tasks related to paddy diseases: (1) segmentation and (2) classification, the
research methodology also has two sections covering the individual tasks. Detailed research methodologies for
identifying paddy diseases through two computer vision-based tasks (segmentation and classification) have been
given below.

3.1 Research methodology for segmentation
The methodology includes the creation of a new paddy disease segmentation dataset, the pre-processing steps

incorporating different augmentation strategies, post-processing, implementation setup with the model training
specifications, and chosen model performance evaluation metrics. Outlined below are the steps incorporated
into our research methodology. Figure 3.1 provides a comprehensive visual representation of the entire process.

3.1.1 Paddy disease segmentation dataset creation process

This section contains the description of the dataset used and the step-by-step process of creating masks
to identify paddy diseases. This novel paddy disease segmentation dataset has been further used for the
performance analysis of four segmentation models.

Dataset

Due to the time constraint and the complexity associated with the field images, the Rice Leaf Diseases
Dataset [66] from Kaggle has been chosen to develop a new paddy segmentation dataset. It contains 120 images
of diseased paddy leaves against simple white or black backgrounds. The dataset covered Leaf smut, Brown
spots, and Bacterial leaf blight with 40 samples for each disease. Out of total 120 samples, 2 outliers were taken
out belonging to Bacterial leaf blight disease. These 2 samples were completely different from the rest of the 38
samples belonging to this class/category and had comparatively low image quality. The samples of this dataset
have been illustrated in Figure 3.2.

Pre-processing

The dimensions of the samples in this dataset [66] varies with the samples. Hence, the images were resized
to 256x256 for uniformity in dimension. An 80-20 train-test split was implemented and the training set was
further expanded through augmentation techniques from 96 to 616. These techniques include colour-space
augmentations (green colour shift, random changes in brightness, contrast, saturation, and hue) and geometric
augmentations (horizontal flip, vertical flip, rotation, width shift, height shift, and elastic transformation). The
intensity of these augmentations has been chosen in such a way that they do not drastically diverge from the
original samples and overall help in enhancing the dataset which has been proven by the results in Section 4.1.
An example of image augmentation techniques used for the original image is illustrated in Figure 3.3. The 23
test data have been used for mask creation without any altercations.
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Figure 3.1: Illustration of the research methodology for the segmentation task.

Figure 3.2: Samples of Rice Leaf Diseases Dataset [66] from Kaggle.
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Figure 3.3: Visualisation of the utilised augmentation techniques for mask creation (green shift, brightness, con-
trast, saturation, hue, vertical flip, horizontal flip, rotate, width shift, height shift, and elastic transformation).
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Mask creation process

For creating masks to identify the diseased areas from the RGB images, the following steps have been
followed and the whole process has been illustrated in Figure 3.4. The mask-creation process of a sample is
shown in Figure 3.5. The dataset is available in this link. Due to the complexity associated with the mask
creation using image processing techniques and to ensure the quality of the masks, all the generated masks have
been manually rechecked with side-by-side comparisons to rectify minor inaccuracies.

Figure 3.4: Layout of paddy disease mask creation process using image processing techniques.

Brown mask Light orange mask Blackish-brown mask

Light reddish-orange mask Dark reddish-orange mask
Leaf mask 

[for ignoring background and shadows]

Original image 
with detected leaf Contours Combined non-green mask [Disease] Image with disease mask overlay

Figure 3.5: Sample of mask-creation process.

• Step 1: Load the image and convert it to HSV colour space: Using CV2, the input images are
loaded in BGR (Blue, Green, Red) format. Then, they are converted to the HSV (Hue, Saturation, Value)
format for colour segmentation.

https://1drv.ms/f/s!AnUn60e5xOVzi7En-GIkALM7Xa4Mfg?e=z7zMV1


20 CHAPTER 3. RESEARCH METHODOLOGY

• Step 2: Create colour masks to capture leaves: Different masks are created to capture various
colours present in the leaf image: green, brown, orange, blackish brown, light reddish-orange, and dark
reddish-orange. Each mask targets a specific colour range in the HSV space to capture different aspects
of the leaf and possible diseases.

• Step 3: Combine masks: All the colour masks are combined using a bitwise OR operation to form a
single mask that includes all the coloured areas of the leaves including the disease portions. This ensures
that the entire leaf is included, regardless of its colour due to diseases or image-capturing variations.

• Step 4: Apply morphological operations: Due to disease or image-capturing conditions, a few
portions of the leaf might be completely white or other colours which might not get captured in the
combined masks and might look like small holes/noises. Morphological operations such as closing and
opening are applied to the combined mask to fill in these holes within the leaf area.

• Step 5: Find, sort, and draw contours: Contours are detected in the mask created from Step 4,
which are then sorted based on their area size. This step is crucial for identifying the main leaf or leaves
in the image by focusing on the largest contiguous areas. It also helps in discarding background noises
and shadows present in the image. The largest two contours are drawn onto the original image which
helps in visualisation and further mask creation process.

• Step 6: Create non-green masks: Individual masks for colours of brown, orange, blackish brown,
light reddish-orange, and dark reddish-orange are created and combined to capture all non-green colours
which give the indication of diseases or stress on paddy leaves.

• Step 7: Apply mask to leaf area: The non-green mask is applied to the area identified as the leaf
in Step 5 with contours. This step ensures that only non-green areas on the actual leaf are highlighted,
excluding any background or noise.

3.1.2 Data pre-processing and post-processing
The original 616 train images and their corresponding masks have been augmented to make the train set have

1500 and 2500 samples which results in 884 and 1884 additional images respectively. Horizontal flip, vertical
flip, rotation, width shift, height shift, elastic transformation, gaussian blur, zoom-in, and zoom-out have been
used for this augmentation. Figure 3.6 illustrates the utilised augmentation techniques. Figure 3.7 illustrates
the distribution of disease pixel percentages in the segmentation masks across training datasets of varying sizes
for a detailed pixel-level analysis. All three histograms are skewed towards lower percentages which indicates
that most masks in each training dataset contain a small area of disease pixels/ROI. As the training dataset size
increased from 616 to 2500 samples, the histograms showed smoother distributions, a decrease in the frequency
of low disease pixel occurrences, and greater variability in disease pixel percentages. These data changes with
augmentation might improve model generalisation.

The training dataset has been further split into a ratio of 80:20 for training and validation. The original
images and masks were in size 256x256. We normalised the images by diving with 256 to have the values within
the range of 0 to 1. A threshold value of 0.5 has been used to obtain the final mask.

3.1.3 Implementation setup/model training parameters
Using image processing techniques and OpenCV, a novel paddy disease segmentation dataset has been cre-

ated as described in Section 3.1.1. This dataset has been used for the performance analysis of four segmentation
models and all of these models have been implemented on Keras with the TensorFlow framework. The Google
Colaboratory with 51 GB RAM has been used for training the models and generating the results. The pro-
cessing units were NVIDIA A100 GPU, V100 GPU, T4 GPU, and Google TPU. Additionally, an Intel Core i9
laptop with NVIDIA Geforce RTX 4060 Portable GPU, 32 GB RAM, and 2.2 GHz CPU base clock frequency
has been used for training the models. The learning rate scheduler, ReduceLROnPlateau [76] has been used to
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Original Vertical flip Img (1) Vertical flip Mask (1) Horizontal flip Img (2) Horizontal flip Mask (2)

Original Height shift Img (3) Height shift Mask (3) Width shift Img (4) Width shift Mask (4)

Original Rotation Img (5) Rotation Mask (5) Shear Img (6) Shear Mask (6)

Original Elastic transform Img (7) Elastic transform Mask (7) Gaussian blur Img (8) Gaussian blur Mask (8)

Figure 3.6: Visualisation of the augmentation techniques used for the original image and the mask image.
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(c) Disease pixel distribution for 2500 train data

Figure 3.7: Illustration of the disease pixel distributions across three training data sizes.
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Table 3.1: Model training specifications for the segmentation task.
Training parameters Parameter values
Optimizer Adam
Loss function Binary cross-entropy
Learning rate scheduler: Ini-
tial learning rate

0.001

Learning rate scheduler:
Minimum learning rate

1e-8 = 0.00000001

Learning rate scheduler:
learning rate reduction factor

0.5

Learning rate scheduler:
learning rate reduction
patience

3

Batch size 10, except TransUNet with 616 data. For a small number of samples, the model
was extremely unstable. For this reason, after trial and error, we chose a batch
size of 15, which provides the most stability for the model

Maximum number of epochs 70 ~80 (chose the model with the best validation IoU)

improve convergence, overcome plateaus, and avoid overfitting of the models. Additionally, different batch sizes
have been trialled to identify the batch size that makes most of the model stable. The training parameters used
for all the segmentation models are given in Table 3.1.

3.1.4 Performance evaluation metrics for segmentation

Accuracy (ACC), Precision (Pr), Recall (Rec), F1-Score, Intersection over union (IoU) and confusion matrix
(CM) have been used for the performance analysis of the models. Their equations have been presented in Equa-
tions 3.1, 3.2, 3.3, 3.4, and 3.5 respectively. We have also utilised confusion matrices for a better understanding
of the misclassifications and the confusion matrix used for the segmentation task has been illustrated in Figure
3.8. A concise description of the performance evaluation metrics to be used for the segmentation task has been
given below.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

F1− score = 2× Precision×Recall

Precision+Recall
(3.4)

IoU =
1

n

∑ Area of overlap
Area of union

(3.5)

Where, TP represents True Positives; pixels correctly classified in both segmented and original mask images,
TN represents True Negatives; pixels correctly identified as not part of the segmented image in both images,
FP represents False Positives; pixels incorrectly marked in the segmented image, not in the original mask,
FN represents False Negatives; pixels missed in the segmented image but present in the original mask.

• Accuracy: The accuracy measures the proportion of correct predictions made by the model out of
the total predictions [4], [19], [21]–[24], [27], [40], [74], [77], [78]. For segmentation, it gives pixel-wise
accuracy. In most cases, the background comprises the majority of pixels compared to the ROI which
often increases the accuracy value. Hence, pixel accuracy provides limited insight into the effectiveness
of disease segmentation and will not be considered for performance comparison. From Table 4.1, Table
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4.2, and Table 4.3, we can see that with different train data sizes and for all the models, the accuracy is
almost equal which further validates our reason for putting low significance in model accuracy.

• Precision/Positive predicate value (PPV): The precision measures the model’s accuracy in predicting
positive instances. It is calculated as the ratio of true positives to the total predicted positives [19], [22],
[24], [40].

• Recall/Sensitivity (Sen)/True positive rate (TPR): The recall is calculated as the ratio of true
positives to the sum of true positives and false negatives [4], [12], [21], [24], [40], [74], [78]. It measures
the model’s ability to correctly identify all positive instances.

• F1-Score (F1): The F1-score is a weighted harmonic mean of precision and recall which combines the
insights of both precision and recall to assess prediction performance. It is particularly valued for its
ability to balance precision and recall trade-offs [4], [12], [19], [21], [22], [24], [40], [74], [77], [79]. For
segmentation tasks, It is also called the Dice similarity coefficient (DSC).

• IoU index: IoU evaluates the segmentation performance by measuring the similarity between the ground-
truth labelled mask and the predicted mask on a pixel level [21]. It is also called the Jaccard Index (JAC).
In the case of segmentation tasks, ROI typically consists of a small portion of the whole image. Due
to the accurate detection of backgrounds present in the sample, performance evaluation metrics such
as accuracy, recall, and precision provide an inaccurate perception of superiority which is mostly wrong
in reality. Therefore, researchers consider IoU to be the most informative metric for understanding the
performance of segmentation models, and it is commonly used [32].

• Confusion matrix (CM) for segmentation: The confusion matrix is a tabular or graphical perfor-
mance measurement tool which is an N x N array/matrix that evaluates model performance by comparing
predicted outputs (pixel classes) against actual outputs (ground truth mask) [12], [74], [77]. In Figure
3.8, the diagonal values represent the correctly classified pixels (true positives), and off-diagonal values
represent the misclassification. The rows represent the actual pixel values (ground truth) and the columns
represent the predicted pixel category. It provides insight into the analysis of model performance, model
credibility and error types [24], [74], [77].

Figure 3.8: Illustration of the confusion matrix used for disease segmentation.
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3.2 Research methodology for classification
The classification methodology includes a description of the used datasets, including their class distributions,

the pre-processing step incorporating various augmentation strategies, and the implementation setup details,
including model training specifications and performance evaluation metrics. Figure 3.9 provides a comprehensive
visual representation of the entire process.
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Figure 3.9: Illustration of the research methodology for the classification task.

3.2.1 Datasets

For the classification tasks, we have used two datasets named Paddy Doctor [16] and Rice Leaf Disease [65].
The Paddy Doctor [16] dataset was collected from the Tirunelveli district of Tamil Nadu, India. It has 16225
samples and covered the diseases Bacterial leaf blight (BLB), Bacterial leaf streak (BLS), Bacterial panicle
blight (BPB), Black stem borer (BSB), Blast, Brown spot, Downy mildew, Hispa, Leaf roller, Tungro, White
stem borer(WSB) and Yellow stem borer (YSB) having samples 648, 505, 450, 506, 2351, 1257, 868, 2151, 1095,
1951, 1273, and 765 respectively and 2405 normal samples. The class distribution of Paddy Doctor has been
presented in Figure 3.10. On the other hand, the Rice Leaf Disease was collected from the Western tract of
Odisha, India. It has 5932 samples and covers the diseases Bacterial blight, Blast, Brown spot, and Tungro
having samples 1584, 1440, 1600, and 1308 respectively. The class distribution of this dataset has been presented
in Figure 3.11. Both datasets were collected in field environments.

3.2.2 Data pre-processing

Since dataset [16] is comparatively larger than dataset [65], we split the training data into ratios of 70:30
and 80:20 respectively for training and validation. For augmentation, we employed two levels of intensity: one
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Figure 3.10: Class distribution of the Paddy Doctor dataset.

Figure 3.11: Class distribution of the Rice Leaf Disease dataset.
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involving only basic augmentations, and another incorporating all relevant augmentations. For basic augmenta-
tions, we applied zoom and horizontal flip. For extensive augmentations, we included rotation, width and height
shifts, zoom, horizontal and vertical flips, brightness shifts, and elastic deformations. Figure 3.12 demonstrates
the utilised augmentation techniques. The original images from datasets [16] and [65] were in sizes 256x256 and
300x300 respectively. We resized these original images to 128x128 and normalised the images by dividing with
128 to have values within the range of 0 to 1.

Original Zoom (1) Zoom (2)

Original Elastic deformation (1) Elastic deformation (2)

Original Height shift

Width shift

Horizontal flip

Rotation (1) Rotation (2)

Original

Vertical flip

Brightness shift (1) Brightness shift (2)

Figure 3.12: Visualisation of the augmentation techniques utilised for classification task (height shift, channel
shift, shear, zoom, elastic deformation, horizontal flip, vertical flip, rotation, width shift, and brightness shift).

3.2.3 Implementation setup/model training parameters
Using the previously mentioned two paddy disease datasets, the performance analysis of the four classifica-

tion models has been conducted and all of these models have been implemented on Keras with the TensorFlow
framework. An Intel Core i9 laptop with NVIDIA Geforce RTX 4060 portable GPU, 32 GB internal memory,
and 2.2 GHz clock frequency has been used for training the models. The learning rate scheduler, ReduceL-
ROnPlateau [76] has been used to improve convergence and overcome plateaus. To avoid the overfitting of the
models, early stopping [80] has been used. Additionally, different batch sizes have been trialled to identify the
batch size that makes the most of the models stable. The training parameters used for all the classification
models are given in Table 3.2.

3.2.4 Performance evaluation metrics for classification
Accuracy, F1-Score, precision, and recall have been used for the performance analysis of the selected classifi-

cation models and their equations have been presented in Equations 3.6, 3.7, 3.8, and 3.9 respectively. We have
also utilised the confusion matrix for a better understanding of the misclassifications and the confusion matrix
used for the classification task has been illustrated in Figure 3.13. A concise description of the performance
evaluation metrics to be used for the classification task has been given below.
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Table 3.2: Model training specifications for the classification task.
Training parameters Parameter values
Optimizer Adam
Loss function Categorical cross-entropy
Learning rate scheduler: initial learning rate 0.001 or 0.0001
Learning rate scheduler: minimum learning rate 1e-9 = 0.000000001
Learning rate scheduler: learning rate reduction
factor

0.5

Learning rate scheduler: cooldown epochs 2
Learning rate scheduler: learning rate reduction
patience

3

Early stopping: patience 12 for the dataset [65] and 15 for the dataset [16]
Batch size 64 for the dataset [65] and 100 for the dataset [16]
Maximum number of epochs 200 (chose the model with the best validation F1-score)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.6)

F1score = 2× Precision×Recall

Precision+Recall
(3.7)

Precision =
TP

TP + FP
(3.8)

Recall =
TP

TP + FN
(3.9)

Where, TP represents True Positives, TN represents True Negatives, FP represents False Positives, and
FN represents False Negatives.

Predicted label Predicted label
True label TP FN
True label FP TN

Figure 3.13: Illustration of the confusion matrix to be used for disease classification.

• Accuracy (Acc): Accuracy measures the proportion of correct predictions made by the model out of the
total predictions [4], [19], [21]–[24], [27], [40], [74], [77], [78].

• Precision (Pr): Precision measures the model’s accuracy in predicting positive instances. It is calculated
as the ratio of true positives to the total predicted positives [19], [22], [24], [40].

• Recall (Rec): Recall is calculated as the ratio of true positives to the sum of true positives and false
negatives [4], [12], [21], [24], [40], [74], [78]. It measures the model’s ability to correctly identify all positive
instances.

• F1-Score (F1): The F1-score is a weighted harmonic mean of precision and recall which combines the
insights of both precision and recall to assess prediction performance. It is particularly valued for its
ability to balance the trade-off between precision and recall [4], [12], [19], [21], [22], [24], [40], [74], [77],
[79].

• Confusion matrix (CM) for classification: The confusion matrix is a tabular or graphical performance
measurement tool for classification models [12], [74]. It is an N x N arrays that evaluate classification
model performance by comparing predicted outputs against actual outputs [12], [77]. It provides insight
into the analysis of model performance, model credibility and error types [24], [74], [77].



4
Results

This chapter provides a brief analysis and illustration of the quantitative and qualitative results that we have
obtained through the research methodology presented in chapter 3. Since our research belonged to two different
tasks related to paddy disease identification: (1) segmentation and (2) classification, the result chapter also has
two different sections covering the individual tasks. Results obtained for identifying paddy diseases through
two computer vision-based tasks (segmentation and classification) have been given below.

4.1 Segmentation results
For the segmentation task of this study, we have used the paddy disease segmentation dataset represented

in Section 3.1.1. Subsequently, we selected four recent segmentation models (Unet, VGG16 UNet, TransUNet
and Deep Residual UNet) from the field of machine learning to analyse their applicability in paddy disease. As
described in the research methodology, the original training set, which had 616 training samples, was enhanced
through traditional data augmentations, increasing the total number of training images to 1500 and 2500.
Finally, to assess the final performance, we used 23 unseen test images without any augmentation.

4.1.1 Test performance comparison of individual models across three train data
sizes

Figure 4.1 shows that all the selected segmentation models have demonstrated equal or improved test
performance with increased training data across metrics such as IoU, F1-score, precision, recall, and accuracy.
Exceptions were observed in UNet’s recall and TransUNet’s precision.
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Figure 4.1: Visualisation of selected segmentation models’ test performance comparison across three train data
sizes.
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4.1.2 Validation and test performance across three train data sizes

All models were trained to maximise the validation IoU with the same model training parameters specified
in Table 3.1. To improve the convergence and overcome plateaus, the LR scheduler was utilised. For testing,
instead of using models from the final epoch, model weights with the highest validation IoU were selected. This
approach prevented overfitting and is supported by the nearly comparable performance between validation and
test results. The performance of chosen four segmentation models with 616, 1500 and 2500 train data sizes
is detailed in Table 4.1, Table 4.2, and Table 4.3 respectively and a visual representation of the same data
with a bar-chart format has been presented in Figure 4.2, Figure 4.3, and Figure 4.4 respectively for better
comprehension.

Validation results: Below are the validation results for the selected segmentation models using 616, 1500,
and 2500 train data.

• Validation performance with 616 train data: From the validation losses from Figure 4.2 and Table
4.1, it has been observed that TransUNet had the highest validation loss with nearly 30%, while Deep
Residual UNet had the lowest validation loss with nearly 6%. For accuracy, all the models have shown
almost equal performance where Deep Residual UNet had the highest score of 98.24%. UNet has been
observed to have the lowest score in validation accuracy, F1-score and IoU with 98.16%, 73.37%, and
81.41% respectively, while Deep Residual UNet has the highest with 98.24%, 75.23%, and 82.17% respec-
tively. TransUNet took the longest to get the best validation IoU (50 epochs), while VGG16 UNet took
the shortest with 15 epochs.

Table 4.1: Comparison of the selected segmentation models’ performance for 616 train data.
Model
name

Test
loss

Test ac-
curacy

Test
preci-
sion

Test
recall

Test
F1-score

Test
IoU

Val.
loss

Best
val. ac-
curacy

Best
Val.

F1-score

Best
val. IoU

Best
val. IoU

at
epoch

UNet 0.03887 0.98917 0.86372 0.84246 0.85296 0.80614 0.0607 0.9816 0.7337 0.8141 17

VGG16
UNet

0.04029 0.98836 0.86315 0.81750 0.83970 0.81648 0.0622 0.9819 0.7429 0.8171 15

Trans
UNet

0.28453 0.98736 0.86023 0.78928 0.82323 0.81589 0.2969 0.9818 0.7484 0.8158 50

Deep
Resid-
ual
UNet

0.03931 0.98882 0.87158 0.82134 0.84571 0.82419 0.0582 0.9824 0.7523 0.8217 41

• Validation performance with 1500 train data: From Figure 4.3 and Table 4.2, we can see that while
Deep Residual UNet had the highest validation scores in accuracy, F1-score and IoU with 98.99, 80.69,
and 86.06% respectively, TransUNet had the lowest with 98.65%, 74.26%, and 82.26% respectively. On
the other hand, Deep Residual UNet had the lowest validation loss with under 3%, while TransUNet had
around 4.8%. VGG16 UNet trained for the least number of epochs (43), while Deep Residual UNet and
TransUNet required the most (73 epochs).

• Validation performance with 2500 train data: From Figure 4.4 and Table 4.3, it is observed that
TransUNet had the highest validation loss with approximately 3.3%, Deep Residual UNet had the lowest
with 2.25%. UNet and VGG16 UNet have equal and the lowest validation accuracy with 98.98% among the
other models. Furthermore, VGG16 UNet achieved the lowest validation F1-score and IoU with 81.12%
and 86.88% respectively, while Deep Residual UNet led with 84.58% and 88.82% respectively. To reach
the highest validation IoU, Deep Residual UNet took the longest (70 epochs), while UNet needed the least
number of epochs (60).
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Figure 4.2: For 616 train data, visual representation of the performance comparison of the chosen segmentation
models on validation dataset and test dataset.

Table 4.2: Comparison of the selected segmentation models’ performance for 1500 train data.
Model
name

Test
loss

Test ac-
curacy

Test
preci-
sion

Test
recall

Test
F1-score

Test
IoU

Val.
loss

Best
val. ac-
curacy

Best
val.

F1-score

Best
val. IoU

Best
val. IoU

at
epoch

UNet 0.03626 0.98953 0.87036 0.84521 0.85760 0.83045 0.0402 0.9877 0.7576 0.8320 57

VGG16
UNet

0.03533 0.98970 0.89537 0.81965 0.85584 0.84447 0.0333 0.9884 0.7727 0.8432 43

Trans
UNet

0.03556 0.99062 0.93636 0.80298 0.86456 0.82580 0.0477 0.9865 0.7426 0.8226 73

Deep
Resid-
ual
UNet

0.03318 0.99036 0.90152 0.83253 0.86565 0.86042 0.0291 0.9899 0.8069 0.8606 73

Table 4.3: Comparison of the selected segmentation models’ performance for 2500 train data.
Model
name

Test
loss

Test ac-
curacy

Test
preci-
sion

Test
recall

Test
F1-score

Test
IoU

Val.
loss

Best
val. ac-
curacy

Best
val.

F1-score

Best
val. IoU

Best
val. IoU

at
epoch

UNet 0.03578 0.99012 0.89922 0.82791 0.86209 0.86739 0.0305 0.9898 0.8152 0.8685 60

VGG16
UNet

0.03552 0.98950 0.89134 0.81807 0.85313 0.86852 0.0282 0.9898 0.8112 0.8688 62

Trans
UNet

0.04673 0.99031 0.91538 0.81558 0.86261 0.87531 0.0332 0.9904 0.8352 0.8757 66

Deep
Resid-
ual
UNet

0.03469 0.99043 0.90193 0.83392 0.86659 0.88768 0.0235 0.9913 0.8458 0.8882 70
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Figure 4.3: For 1500 train data, visual representation of the performance comparison of the chosen segmentation
models on validation dataset and test dataset.
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Figure 4.4: For 2500 train data, visual representation of the performance comparison of the chosen segmentation
models on validation dataset and test dataset.
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Model learning curves: Model learning curves for the selected segmentation models using the novel
segmentation dataset with 616, 1500, and 2500 train data have been provided below.

• Model learning curves with 616 train data: The chosen models’ learning curves visualising the
validation performance progressing throughout the total number of epochs have been illustrated in Figure
4.5. Figure 4.5 (a) and (b) indicate that the UNet model began to overfit after epoch 20 and its validation
IoU plateaued around the same epoch. For testing, the UNet model from Epoch 17 was selected. Figure
4.5 (e) shows the TransUNet model exhibited good generalisation. Figure 4.5 (g) reveals that the Deep
Residual UNet model initially experienced instability during the first 10 epochs which stabilised after this
period.

(a) U-Net: loss (b) U-Net: IoU (d) VGG16 UNet: IoU(c) VGG16 UNet: loss

(e) TransUNet: loss (f) TransUNet: IoU (g) Deep Residual UNet: loss (h) Deep Residual UNet: IoU

Figure 4.5: For 616 train data, learning curves for the selected segmentation models visualising the validation
performance over all epochs.

• Model learning curves with 1500 train data: The chosen segmentation models’ learning curves
visualising the validation performance progressing throughout the total number of epochs have been
illustrated in Figure 4.6. Figure 4.6 (a) and (b) indicate that the UNet model began to overfit after epoch
57, where the validation IoU also plateaued. Therefore, the UNet model from epoch 57 was selected for
testing. Figure 4.6 (c) and (g) show initial training instability in the VGG16 UNet and Deep Residual
UNet models during the first 10 epochs, followed by stabilisation within 20 epochs. Figure 4.6 (e) shows
the TransUNet model exhibited good generalisation.

• Model learning curves with 2500 train data: The chosen segmentation models’ learning curves
visualising the validation performance progressing throughout the total number of epochs have been
illustrated in Figure 4.7. Figure 4.7 (a) shows that the UNet started to overfit after epoch 60 and its
validation IoU also plateaued around the mentioned epoch. Therefore, the model from epoch 60 was
selected for testing. Figure 4.7 (c) and (g) show VGG16 UNet and Deep Residual UNet had instability in
the first 5 epochs and 10 epochs respectively, which stabilised after epochs 5 and 10 respectively. Therefore,
models from epoch 5 and epoch 10 have been used for testing respectively. Figure 4.7 (e) demonstrates
that the TransUNet model exhibited good generalisation.
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(a) U-Net: loss (b) U-Net: IoU (d) VGG16 UNet: IoU(c) VGG16 UNet: loss

(e) TransUNet: loss (f) TransUNet: IoU (g) Deep Residual UNet: loss (h) Deep Residual UNet: IoU

Figure 4.6: For 1500 train data, learning curves for the selected segmentation models visualising the validation
performance over all epochs.

(a) U-Net: loss (b) U-Net: IoU (d) VGG16 UNet: IoU(c) VGG16 UNet: loss

(e) TransUNet: loss (f) TransUNet: IoU (g) Deep Residual UNet: loss (h) Deep Residual UNet: IoU

Figure 4.7: For 2500 train data, learning curves for the selected segmentation models visualising the validation
performance over all epochs.
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Test results: Below are the test results for the selected segmentation models using 616, 1500 and 2500 train
data.

• Test performance with 616 train data: Figure 4.2 and Table 4.1 reveal that all the models had
nearly equal accuracy with approximately 98%. Except for Deep Residual UNet, all the models had
approximately equal performance in precision with around 86%. For precision, the lowest score was
observed in TransUNet with nearly 86%, while the highest score was observed in Deep Residual UNet
with approximately 87.16%. For the test loss, Unet had the lowest test loss with 3.89%, while TransUNet
had the highest score with nearly 28.5%. Additionally, TransUNet had been observed to have the lowest
scores in accuracy, recall, and F1-score with 98.74%, 78.93%, and 82.32% respectively, while UNet had
the highest with 98.92%, 84.25% and 85.3% respectively. In terms of IoU, UNet had shown the lowest
performance with slightly over 80%, while the Deep Residual UNet had the highest score with 82.42%.

• Test performance with 1500 train data: Similar to the results from train data 616, Figure 4.3 and
Table 4.2 show that all the models had nearly equal accuracy ranging from 98% to 99%. For the test loss,
Unet had the highest test loss at 3.6%, while Deep Residual UNet had the lowest with 3.33% approximately.
For accuracy, precision and recall, Unet had the highest with 0.98.95%, 87.04% and 84.52% respectively
and TransUNet had the highest with 99.06%, 93.64% and 0.80.3% respectively. Additionally, for F1-Score
and IoU, Deep Residual UNet had the highest with approximately 86.57% and 86.04% respectively, while
VGG16 UNet is observed to have the lowest F1-Score with around 85.58% and TransUNet had the lowest
IoU with 82.58%.

• Test performance with 2500 train data: Similar to the results from train data 616 and 1500, Figure
4.4 and Table 4.3 show that all the models had nearly equal accuracy ranging from 98% to 99%. For
test loss, TransUnet had the highest with 4.5%, compared to the other models having around 3.5%. For
accuracy and F1-Score, VGG16 UNet had the lowest with nearly 98.95% and 85.31% respectively, while
Deep Residual UNet had the highest with approximately 99.04% and 86.66% respectively. TransUNet
achieved the highest score in precision with 91.54%, while VGG16 UNet secured the lowest with 89.13%.
TransUNet earned the lowest recall score at just over 81%, whereas Deep Residual UNet scored 83.39%.
UNet had the lowest score in IoU with 86.74%, while the Deep Residual UNet secured the best score with
88.77%.

Confusion matrices: The confusion matrices for individual models trained with 616, 1500, and 2500
train data are depicted in Figure 4.8, Figure 4.9 and Figure 4.10 respectively. These confusion matrices show
high accuracy in correctly classifying non-disease and disease pixels, with minimal misclassifications.

• Model trained with 616 train data: The misclassified disease pixel counts for (a) UNet, (b) VGG16
UNet, (c) TransUNet, and (d) Deep Residual UNet, stand at 7472, 7286, 7209, and 6891 respectively. UNet
exhibited the highest disease pixel misclassifications, whereas Deep Residual UNet showed the lowest.

• Model trained with 1500 train data: The misclassified disease pixel counts for (a) UNet, (b) VGG16
UNet, (c) TransUNet, and (d) Deep Residual UNet, stand at 7077, 5384, 3068, and 5112 respectively.
UNet exhibited the highest disease pixel misclassifications, whereas TransUNet showed the lowest.

• Model trained with 2500 train data: The misclassified disease pixel counts for (a) UNet, (b) VGG16
UNet, (c) TransUNet, and (d) Deep Residual UNet, stand at 5216, 5606, 4238, and 5097 respectively.
VGG16 UNet exhibited the highest disease pixel misclassifications, whereas TransUNet showed the lowest.
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Figure 4.8: For 616 train data, confusion matrices of the chosen segmentation models on the test dataset.
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Figure 4.9: For 1500 train data, confusion matrices of the chosen segmentation models on the test dataset.
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Figure 4.10: For 2500 train data, confusion matrices of the chosen segmentation models on the test dataset.

Qualitative test results: For the selected segmentation models, qualitative test results using 616, 1500,
and 2500 train data have been provided below.

• Model trained with 616 train data: The masks predicted by the selected segmentation models have
been presented in Figure 4.11 for qualitative performance analysis. For Sample 1, diseases at the leaf
edges were accurately predicted by the VGG16 UNet, and TransUNet, while other models failed to do
so. In Sample 3, the other models were unable to identify diseases at the leaf edges, while Deep Residual
UNet did it successfully. In Sample 3, while Deep Residual UNet successfully identified diseases at the
leaf edges, the other models were unable to do it. Additionally, none of the models were able to detect
all small circular disease patterns in Sample 3. Figure 4.12 displays the mask predictions with associated
probabilities for the selected models.

• Model trained with 1500 train data: The masks predicted by the selected models have been presented
in Figure 4.13 for qualitative performance analysis. For sample 1, none of the models succeeded in properly
detecting disease at the leaf edge. Compared to predictions using 616 train data for sample 3, all models
detected most of the small circular disease patterns. Among them, TransUNet and Deep Residual UNet
have shown the highest performance in detecting small patterns. However, for sample 3, only Deep
Residual UNet and TransUNet accurately predicted diseases at the leaf edges. Figure 4.14 displays the
mask predictions with associated probabilities for the selected models.

• Model trained with 2500 train data: The masks predicted by the selected models have been presented
in Figure 4.15 for qualitative performance analysis. No model predicted disease at leaf edges in sample
1. For Sample 3, UNet detected fewer small circular disease patterns compared to other models and
TransUNet detected the majority. For the same sample, except for UNet and VGG16 UNet, the rest of
the models accurately predicted diseases at the leaf edges. Figure 4.16 displays the mask predictions with
associated probabilities for the selected models.
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Figure 4.11: For 616 train data, comparison of mask predictions on the randomly selected test samples by the
chosen segmentation models. The original image was compressed to meet file size limitation.
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Figure 4.12: For 616 train data, comparison of mask prediction probabilities on the randomly selected test
samples by the chosen segmentation models. The red colour represents higher probabilities. The original image
was compressed to meet file size limitation.
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Figure 4.13: For 1500 train data, comparison of mask predictions on the randomly selected test samples by the
chosen segmentation models. The original image was compressed to meet file size limitation.
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Figure 4.14: For 1500 train data, comparison of mask prediction probabilities on the randomly selected test
samples by the chosen segmentation models. The red colour represents higher probabilities. The original image
was compressed to meet file size limitation.
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Figure 4.15: For 2500 train data, comparison of mask predictions on the randomly selected test samples by the
chosen segmentation models. The original image was compressed to meet file size limitation.
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Figure 4.16: For 2500 train data, comparison of mask prediction probabilities on the randomly selected test
samples by the chosen segmentation models. The red colour represents higher probabilities. The original image
was compressed to meet file size limitation.
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4.2 Classification results
We used four classification models on two paddy disease datasets, as described in 3.2.1, with various in-

tensities of augmentation to measure performance on validation and test data. All the selected classification
models were trained to maximise the validation F1-score with the same model training parameters specified in
Table 3.2 and to improve convergence and overcome plateaus, LR scheduler was utilised. Additionally, to avoid
overfitting, early stopping was used. For testing, instead of using models from the final epoch, model weights
with the highest validation F1 score were selected. The approach taken to prevent overfitting is supported by
the nearly comparable performance between validation and test results from Table 4.4, Table 4.5 and Table 4.6.

4.2.1 Results obtained for Paddy Doctor dataset
The obtained results for the dataset [16], have been presented in three sections: individual model test

performance comparison, training time comparison, and validation and test performance comparison across
three augmentation intensities.

Test performance comparison of individual models across three augmentation intensities

From Figure 4.17, we can observe that DenseNet121 and ViT had shown a low performance with basic
augmentation, whereas Ensemble2 demonstrated the highest. However, in the case of MobileNet, its performance
decreased as the level of augmentation increased. On the other hand, with extensive augmentation, DenseNet121
and ViT showed high performance.
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Figure 4.17: For the paddy doctor dataset, visualisation of the selected classification models’ test performance
comparison across three augmentation intensities.

Training time comparison across three augmentation intensities

Figure 4.18 shows that ViT required the longest training time across all augmentation variations. The
longest training time required by ViT was for extensive augmentation and it was nearly 7 days, about 2-6
times higher than the rest of the models in this study. The MobileNet had the shortest training time for all
augmentation intensities.

Validation and test performance comparison across three augmentation intensities

The performance of the chosen four classification models with three augmentation intensities (none, basic,
and extensive) on the training samples is detailed in Table 4.4, Table 4.5, and Table 4.6 respectively and a
visual representation of the same data with a bar-chart format has been presented in Figure 4.19, Figure 4.20
and Figure 4.21 for better comprehension.
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Figure 4.18: For the paddy doctor dataset, training time comparison of the selected classification models across
three augmentation intensities. Due to high variation in time data, it was scaled logarithmically before plotting.

Table 4.4: For the Paddy Doctor dataset, performance comparison of the selected classification models without
augmentation.
Model
name

Test loss Test
accuracy

Test
F1-score

Test
precision

Test
recall

Val. loss Best val.
accuracy

Best val.
F1-score

Best val.
F1-score
at epoch

Train
time

(seconds)

Dense
Net121

0.22076 0.943297 0.939239 0.940036 0.938562 0.2419 0.939 0.9387 37 5127.62

Mo-
bileNet

0.30558 0.932512 0.92787 0.937177 0.919594 0.3099 0.9305 0.9277 48 2159.53

Ensem-
ble2

0.305490 0.925424 0.921318 0.924991 0.918173 0.3359 0.9228 0.9209 59 3762.88

ViT 0.513310 0.894299 0.890865 0.891685 0.887280 0.5049 0.8966 0.8931 34 14864.92

Validation results: Validation results obtained using the Paddy Doctor [16] dataset over three augmentation
variations have been presented below.

• Without augmentation: From Table 4.4 and Figure 4.19, it is observed that ViT had the highest
validation losses with approximately 50%, while DenseNet121 had the lowest loss at 24.19%. Additionally,
DenseNet121 had the highest performance in accuracy and F1-score with nearly 94%, while ViT had the
lowest with nearly 90%. Additionally, Ensemble2 took the highest number of epochs (59) to achieve the
best validation F1-score, while ViT required the lowest (54).

• With basic augmentation: From Table 4.5 and Figure 4.20, we can observe that similar to the results
without augmentation, DenseNet121 had the highest performance in accuracy and F1-score with nearly
97%, while ViT had the lowest with nearly 87%. In the case of validation losses, DenseNet121 had the
lowest with 13.44% and ViT had the highest with nearly 48%. Additionally, DenseNet121 took 135 epochs
(longest) to achieve the best validation F1-score, while MobileNet required the shortest (83 epochs). We
can observe that compared to training without augmentation, the overall training time has increased.

• With extensive augmentation: From Table 4.6 and Figure 4.21, we can observe that similar to the
results without augmentation, DenseNet121 had the highest validation performance in accuracy and F1-
score with nearly 97%, while ViT had the lowest with nearly 92%. In the case of validation losses,
DenseNet121 had the lowest with just over 11% and ViT had the highest with nearly 28%. Additionally,
DenseNet121 took the shortest (63 epochs) to achieve the best validation F1 score, while ViT required
the longest (133 epochs).
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Figure 4.19: For the Paddy Doctor dataset, visual representation of the performance comparison of the selected
classification models without augmentation.

Table 4.5: For the Paddy Doctor dataset, performance comparison of the selected classification models with
basic augmentation.
Model
name

Test loss Test
accuracy

Test
F1-score

Test
precision

Test
recall

Val. loss Best val.
accuracy

Best val.
F1-score

Best val.
F1-score
at epoch

Train
time

(seconds)

Dense
Net121

0.316642 0.903852 0.904045 0.909190 0.900674 0.1344 0.9660 0.9661 135 17497.73

Mo-
bileNet

0.437932 0.887211 0.882305 0.894682 0.872376 0.1973 0.9537 0.9529 83 8658.68

Ensem-
ble2

0.203745 0.942373 0.940769 0.941301 0.940903 0.2176 0.9371 0.9402 103 10755.67

ViT 0.387732 0.892450 0.880069 0.897241 0.886579 0.4768 0.8692 0.8679 96 130020.81

Table 4.6: For the Paddy Doctor dataset, performance comparison of the selected classification models with
extensive augmentation.
Model
name

Test loss Test
accuracy

Test
F1-score

Test
precision

Test
recall

Val. loss Best val.
accuracy

Best val.
F1-score

Best val.
F1-score
at epoch

Train
time

(seconds)

Dense
Net121

0.166118 0.959631 0.955953 0.957332 0.955131 0.1139 0.9718 0.9723 63 16013.36

Mo-
bileNet

0.654521 0.824653 0.816688 0.835446 0.806223 0.1842 0.9541 0.9534 71 5249.03

Ensem-
ble2

0.271355 0.922651 0.919742 0.920576 0.919810 0.2566 0.9294 0.9292 68 7896.46

ViT 0.177048 0.955932 0.937889 0.956371 0.955309 0.2814 0.9220 0.9238 133 599582.55
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Figure 4.20: For the Paddy Doctor dataset, visual representation of the performance comparison of the selected
classification models with basic augmentation.
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Figure 4.21: For the Paddy Doctor dataset, visual representation of the performance comparison of the selected
classification models with extensive augmentation.



48 CHAPTER 4. RESULTS

Model learning curves: Model learning curves for the selected classification models using the Paddy
Doctor dataset over three augmentation variations have been provided below.

• Without augmentation: The chosen classification models’ learning curves visualising the validation
performance progressing throughout the total number of epochs have been illustrated in Figure 4.22.
From this figure, we can observe that none of the models had overfitting. Figure 4.22 (a) and (c) indicate
that DenseNet121 and MobileNet had initial instability within the first 10 and 25 epochs respectively, but
stabilised after this period. Figure 4.22 (a) and (c) show that DenseNet121 and MobileNet had a slight
gap between the training and validation results, while Figures 4.22 (e) reveal that Ensembl2 had a modest
gap.

(a) DenseNet121: loss (b) DenseNet121: f1 score

(e) Ensemble2: loss (f) Ensemble2: f1score

(c) MobileNet: loss (d) MobileNet: f1 score

(g) ViT: loss (h) ViT: f1 score

Figure 4.22: For the paddy doctor dataset without augmentation on train data, visualising the learning curves
for the selected classification models.

• With basic augmentation: The chosen classification models’ learning curves visualising the validation
performance progressing throughout the total number of epochs have been illustrated in Figure 4.23. From
Figure 4.23 (g), we can observe that ViT started to overfit around epoch 90. Figure 4.23 (c) indicates
that MobileNet had initial instability within the first 25 epochs, but stabilised after this period. Figure
4.23 (c) and (e) show that the MobileNet and Ensemble2 models exhibited smaller gaps between training
and validation results compared to those without augmentation.

• With extensive augmentation: The chosen classification models’ learning curves visualising the val-
idation performance progressing throughout the total number of epochs have been illustrated in Figure
4.24. Figure 4.24 demonstrates that none of the models had overfitting. Figure 4.24 (a) and (c) indicate
that DenseNet121 and MobileNet had initial instability within the first 20 epochs, but stabilised after this
period. Figure 4.24 (c), (e), and (g) show that the MobileNet, Ensemble2, and ViT models had smaller
gaps between training and validation results compared to those without or with basic augmentation.
Figure 4.24 (a) demonstrates that DenseNet121 exhibited good generalisation.

Test results: Test results obtained using the Paddy Doctor [16] dataset over three augmentation variations
have been presented below.
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(a) DenseNet121: loss (b) DenseNet121: f1 score

(e) Ensemble2: loss (f) Ensemble2: f1score

(c) MobileNet: loss (d) MobileNet: f1 score

(g) ViT: loss (h) ViT: f1 score

Figure 4.23: For the paddy doctor dataset with basic augmentation on train data, visualising the learning curves
for the selected classification models.

(a) DenseNet121: loss (b) DenseNet121: f1 score

(e) Ensemble2: loss (f) Ensemble2: f1score (g) ViT: loss (h) ViT: f1 score

(c) MobileNet: loss (d) MobileNet: f1 score

Figure 4.24: For the paddy doctor dataset with extensive augmentation on train data, visualising the learning
curves for the selected classification models.
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• Without augmentation: From Table 4.4 and Figure 4.19, we can observe that similar to the validation
loss without augmentation for the test loss, DenseNet121 had the lowest approximately 22% and ViT had
the highest with nearly 51%. Additionally, DenseNet121 achieved the highest performance in accuracy,
F1-score, precision and recall with 94.33%, 93.92%, 94%, and 93.86% respectively, while ViT exhibited
the lowest with 89.43%, 89.09%, 89.16%, and 88.73% respectively. The rest of the models achieved good
performance, ranging from 91% to 93% for all the performance metrics.

• With basic augmentation: From Table 4.5 and Figure 4.20, it is observed that Ensemble2 had the lowest
test loss with approximately 21% and MobileNet had the highest with 43.79%. Meanwhile, MobileNet
exhibited the lowest performance in accuracy, precision, and recall with 88.72%, 89.47%, and 87.24%
respectively, whereas Ensemble2 achieved the highest with 94.24%, 94.13%, and 94.1% respectively. The
rest of the models achieved good performance within the range of 88% to 90% for all the performance
metrics. Additionally, ViT had shown almost comparable performance to MobileNet.

• With extensive augmentation: From Table 4.6 and Figure 4.21, we can see that MobileNet had the
highest test losses at nearly 65%, while DenseNet121 had the lowest at approximately 16%. DenseNet121
had shown superior performance in all the metrics except for recall, while ViT achieved the highest in
recall with 95.53%. MobileNet exhibited the lowest performance in accuracy, F1-score, precision, and recall
with 82.47%, 81.67%, 83.54%, and 80.62% respectively. Additionally, ViT had shown almost comparable
performance to DenseNet121.

Confusion matrices: Confusion matrices for the selected classification models using the Paddy Doctor
dataset over three augmentation variations have been presented below to help understand the reason behind
misclassifications and give an overview of the models’ performance.

• Without augmentation: Figure 4.25 shows confusion matrices for classification models trained without
augmentation. From these confusion matrices, it is observed that all the classification models often
misclassified normal plants to be Hispa. Additionally, Ensemble2 frequently misclassified Hispa as normal
plants. Moreover, ViT often confused Blast with Tungro and White stem borer with Yellow stem borer.

• With basic augmentation: Figure 4.26 displays confusion matrices for classification models trained
with basic augmentation. These matrices reveal that except for DenseNet121, the rest of the models
frequently misclassified normal plants as Hispa. Additionally, DenseNet121 and ViT often misidentified
Hispa as normal plants. DenseNet121 and MobileNet commonly confused Blast with Tungro. Moreover,
Ensemble2 and ViT typically misidentified Hispa as Leaf roller.

• With extensive augmentation: Figure 4.27 shows confusion matrices for classification models trained
with extensive augmentation. DenseNet121 and ViT often mistook Hispa for normal plants, while En-
semble2 and ViT commonly misclassified normal plants for Hispa. Notably, MobileNet regularly confused
several diseases—Blast, Brown spot, Downy mildew, Hispa, Leaf roller, Tungro, and White stem borer—as
normal plants.



4.2. CLASSIFICATION RESULTS 51

(a) DenseNet121 (b) MobileNet

(c) Ensemble2 (d) ViT

Figure 4.25: Visualising the confusion matrices for the selected classification models on the Paddy doctor
test dataset without augmentation. For the label of the confusion matrices, 0 represents Bacterial leaf blight, 1
represents Bacterial leaf streak, 2 represents Bacterial panicle blight, 3 represents Black stem borer, 4 represents
Blast, 5 represents Brown spot, 6 represents Downy mildew, 7 represents Hispa, 8 represents Leaf roller, 9
represents normal, 10 represents Tungro, 11 represents White stem borer, and 12 represents Yellow stem borer.
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(a) DenseNet121 (b) MobileNet

(c) Ensemble2 (d) ViT

Figure 4.26: Visualising the confusion matrices for the selected classification models on the Paddy doctor test
dataset with basic augmentation. For the label of the confusion matrices, 0 represents Bacterial leaf blight, 1
represents Bacterial leaf streak, 2 represents Bacterial panicle blight, 3 represents Black stem borer, 4 represents
Blast, 5 represents Brown spot, 6 represents Downy mildew, 7 represents Hispa, 8 represents Leaf roller, 9
represents normal, 10 represents Tungro, 11 represents White stem borer, and 12 represents Yellow stem borer.



4.2. CLASSIFICATION RESULTS 53

(a) DenseNet121 (b) MobileNet

(c) Ensemble2 (d) ViT

Figure 4.27: Visualising the confusion matrices for the selected classification models on the Paddy doctor
test dataset with extensive augmentation. For the label of the confusion matrices, 0 represents Bacterial leaf
blight, 1 represents Bacterial leaf streak, 2 represents Bacterial panicle blight, 3 represents Black stem borer,
4 represents Blast, 5 represents Brown spot, 6 represents Downy mildew, 7 represents Hispa, 8 represents Leaf
roller, 9 represents normal, 10 represents Tungro, 11 represents White stem borer, and 12 represents Yellow
stem borer.
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4.2.2 Results obtained for Rice Leaf Disease dataset
The obtained results for the dataset [65], have been presented in three sections: individual model test

performance comparison, training time comparison, and validation/test performance comparison across different
augmentation intensities.

Test performance comparison of individual models across three augmentation intensities

From Figure 4.28, we can observe that DenseNet121 and Ensemble2 have nearly equal performance for all
augmentation intensities. On the other hand, MobileNet’s performance decreased as the level of augmentation
increased, while ViT’s performance increased as the level of augmentation increased.
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Figure 4.28: For the Rice Leaf Disease dataset, visualisation of the selected classification models’ test perfor-
mance comparison three augmentation intensities.

Training time comparison across three augmentation intensities

Figure 4.29 demonstrates that ViT required the longest training time across all augmentation variations.
Notably, with extensive augmentations, ViT took about 6 hours which is around 3 to 10 times longer than
the other models in the study. On the other hand, DenseNet121 exhibited the shortest training time, when
trained without augmentation, while Ensemble2 needed the least training time for both basic and extensive
augmentations.

Validation and test performance comparison across three augmentation intensities

The performance of the chosen four classification models with three augmentation intensities (none, basic,
and extensive) on the training samples is detailed in Table 4.7, Table 4.8, and Table 4.9 respectively and a
visual representation of the same data with a bar-chart format has been presented in Figure 4.30, Figure 4.31,
and Figure 4.32 for better comprehension.

Validation results: Validation results obtained using the Rice Leaf Disease dataset [65] over three augmen-
tation variations have been presented below.

• Without augmentation: From Table 4.7 and Figure 4.30, we can observe that ViT had the highest
validation loss at approximately 13%, while DenseNet121 had the lowest with nearly 1.2%. Ensemble2 had
the highest validation performance in accuracy and F1-score with perfect scores, while ViT had the lowest
with approximately 97%. MobileNet required the longest time (23 epochs) to reach the best validation
F1-score, while Ensemble2 needed the shortest (4 epochs).
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Figure 4.29: For the Rice Leaf Disease dataset, training time comparison of the selected classification models
across three augmentation intensities.

Table 4.7: For the Rice Leaf Disease dataset, performance comparison of the selected classification models
without augmentation.
Model
name

Test loss Test
accuracy

Test
F1-score

Test
precision

Test
recall

Val. loss Best val.
accuracy

Best val.
F1-score

Best val.
F1-score
at epoch

Train
time

(seconds)

Dense
Net121

0.012620 0.997473 0.997348 0.997417 0.997296 0.0131 0.9972 0.9972 18 951.78814

Mo-
bileNet

0.062872 0.983993 0.983354 0.983660 0.983150 0.0498 0.9894 0.9890 23 1788.90537

Ensem-
ble2

0.027141 1 1 1 1 0.0224 1 1 4 2187.42996

ViT 0.083006 0.972199 0.970084 0.972711 0.971163 0.1344 0.9704 0.9694 22 4695.49538
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Figure 4.30: For the Rice Leaf Disease dataset, visual representation of the performance comparison of the
selected classification models without augmentation.
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Table 4.8: For the Rice Leaf Disease dataset, performance comparison of the selected classification models with
basic augmentation.
Model
name

Test loss Test
accuracy

Test
F1-score

Test
precision

Test
recall

Val. loss Best val.
accuracy

Best val.
F1-score

Best val.
F1-score
at epoch

Train
time

(seconds)

Dense
Net121

0.011892 0.994945 0.99491 0.99503 0.99481 0.0013 1 1 21 1933.472600

Mo-
bileNet

0.092780 0.964617 0.964420 0.965840 0.963690 0.0505 0.9838 0.9841 78 2619.94800

Ensem-
ble2

0.002129 1 1 1 1 0.0032 1 1 14 1251.50090

ViT 0.039388 0.989048 0.985290 0.989050 0.988790 0.0447 0.9859 0.9861 108 36412.30030

• With basic augmentation: From Table 4.8 and Figure 4.31, we can observe that MobileNet had
the highest validation loss with approximately 5%, while DenseNet121 had the lowest with nearly 0%.
Regarding validation accuracy and F1-score, Ensemble2 and DenseNet121 achieved the highest with a
perfect score (1), whereas MobileNet had the lowest with approximately 98%. Additionally, ViT took
the highest number of epochs (108) to achieve the best validation F1-score, while Ensemble2 required the
lowest (14).
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Figure 4.31: For the Rice Leaf Disease dataset, visual representation of the performance comparison of the
selected classification models with basic augmentation.

• With extensive augmentation: From Table 4.9 and Figure 4.32, we can observe that MobileNet had
the highest validation loss with approximately 5.19%, while ViT had the lowest with around 0.53%.
Regarding validation accuracy and F1-score, DenseNet121 and Ensemble2 achieved the highest with a
perfect score (1), while MobileNet had the lowest with approximately 98%. Additionally, MobileNet took
the highest number of epochs (111) to achieve the best validation F1-score, while DenseNet121 required
the lowest (27).

Model learning curves: Model learning curves for the selected classification models using the Rice Leaf
Disease dataset over three augmentation variations have been provided below.

• Without augmentation: The chosen classification models’ learning curves visualising the validation
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Table 4.9: For the Rice Leaf Disease dataset, performance comparison of the selected classification models with
extensive augmentation.
Model
name

Test loss Test
accuracy

Test
F1-score

Test
precision

Test
recall

Val. loss Best val.
accuracy

Best val.
F1-score

Best val.
F1-score
at epoch

Train
time

(seconds)

Dense
Net121 0.008551

0.998315 0.998322 0.998313 0.998334 0.0057 1 1 27 6633.77760

Mo-
bileNet

0.127715 0.951980 0.951000 0.956646 0.948761 0.0519 0.9817 0.9821 111 3444.94039

Ensem-
ble2

0.009337 0.996630 0.996813 0.996682 0.996956 0.0066 1 1 31 1976.32826

ViT 0.010119 0.993260 0.992290 0.992565 0.994135 0.0053 0.9993 0.9993 68 21475.89383

Validation loss Best validation
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Best validation
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Figure 4.32: For the Rice Leaf Disease dataset, visual representation of the performance comparison of the
selected classification models with extensive augmentation.
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performance progressing throughout the total number of epochs has been illustrated in Figure 4.33. From
Figure 4.33, we can observe that none of the models had overfitting. Figure 4.33 (a) and (c) indicate
that DenseNet121 and MobileNet had initial instability within the first 10 and 15 epochs respectively, but
stabilised after this period. Figure 4.33 (g) reveals that ViT had a slight gap between the training and
validation results. Figure 4.33 (e) demonstrates that Emsemble2 exhibited good generalisation.

(a) DenseNet121: loss (b) DenseNet121: f1 score

(e) Ensemble2: loss (f) Ensemble2: f1score

(c) MobileNet: loss (d) MobileNet: f1 score

(g) ViT: loss (h) ViT: f1 score

Figure 4.33: For the Rice Leaf Disease dataset without augmentation on train data, visualising the learning
curves for the selected classification models visualising the validation performance over all epochs.

• With basic augmentation: The chosen classification models’ learning curves visualising the validation
performance progressing throughout the total number of epochs have been illustrated in Figure 4.34. We
can observe that none of the models had overfitting. Similar to training without augmentation, Figure
4.34 (a) and (c) indicate that DenseNet121 and MobileNet had initial instability within the first 12 and
10 epochs respectively, but stabilised after this period. Figure 4.34 (e) demonstrates that Emsemble2
exhibited good generalisation.

• With extensive augmentation: The chosen classification models’ learning curves visualising the val-
idation performance progressing throughout the total number of epochs have been illustrated in Figure
4.35. From Figure 4.35, we can observe that none of the models had overfitting. Figure 4.35 (a) and
(c) indicate that DenseNet121 and MobileNet had initial instability within the first 20 and 30 epochs
respectively, but stabilised after this period. Figures 4.35 (e) and (g) demonstrate that the Emsemble2
and ViT exhibited good generalisation.

Test results: Test results obtained using the Rice Leaf Disease dataset [65] dataset have been presented
below.

• Without augmentation: From Table 4.7 and Figure 4.30, we can observe that for the test loss,
DenseNet121 had the lowest with 1.2% and ViT had the highest with approximately 8%. Addition-
ally, Ensemble2 achieved the highest and perfect performance scores (1) in all the performance measuring
metrics, while ViT exhibited the lowest in accuracy, F1-score, precision, and recall with 97.22%, 97.01%,
97.27%, and 97.12% respectively. The rest of the models achieved good performance, ranging from 98%
to 99% for all the performance metrics.
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(a) DenseNet121: loss (b) DenseNet121: f1 score

(e) Ensemble2: loss (f) Ensemble2: f1score

(c) MobileNet: loss (d) MobileNet: f1 score

(g) ViT: loss (h) ViT: f1 score

Figure 4.34: For the Rice Leaf Disease dataset with basic augmentation on train data, visualising the learning
curves for the selected classification models visualising the validation performance over all epochs.

(a) DenseNet121: loss (b) DenseNet121: f1 score

(e) Ensemble2: loss (f) Ensemble2: f1score (g) ViT: loss (h) ViT: f1 score

(c) MobileNet: loss (d) MobileNet: f1 score

Figure 4.35: For the Rice Leaf Disease dataset without augmentation on train data, visualising the learning
curves for the selected classification models visualising the validation performance over all epochs.
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• With basic augmentation: From Table 4.8 and Figure 4.31, we can observe that for the test loss,
Ensemble2 had the lowest with approximately 0.2% and MobileNet had the highest with just over 9%.
Additionally, Ensemble2 achieved the highest and perfect performance scores (1) in all the performance
measuring metrics, while MobileNet exhibited the lowest in accuracy, F1-score, precision, and recall with
96.46%, 96.44%, 96.58%, and 96.37% respectively. The rest of the models achieved good performance,
ranging from 98% to 99% for all the performance metrics.

• With extensive augmentation: From Table 4.9 and Figure 4.32, we can observe that for the test
loss, MobileNet had the highest with nearly 13% and DenseNet121 had the lowest with approximately
0.8%. Additionally, similar to the performance with basic augmentation, MobileNet exhibited the lowest
in accuracy, F1-score, precision, and recall with 95.2%, 95.1%, 95.66%, and 94.88% respectively, while
DenseNet121 achieved the highest with nearly perfect performance scores (1) in all the performance
measuring metrics. The rest of the models achieved good performance with approximately 99% for all
the performance metrics. Moreover, ViT had a nearly comparable performance to DenseNet121 and
Ensemble2.

Confusion matrices: Confusion matrices for the selected classification models using the Rice Leaf Disease
dataset over three augmentation variations have been presented below to help understand the reason behind
misclassifications and give an overview of the models’ performance.

• Without augmentation: Figure 4.36 presents confusion matrices for classification models trained with-
out augmentation. This figure demonstrates that while most classes were accurately classified by all
models, there were notable exceptions. Specifically, MobileNet frequently confused Blast with Tungro.

• With basic augmentation: Figure 4.37 presents confusion matrices for classification models trained
with basic augmentation. Similar to results without augmentation, all the models accurately classified
most classes with a few exceptions. Specifically, MobileNet often misidentified Brown spot and Bacterial
blight as Blast.

• With extensive augmentation: Figure 4.38 presents confusion matrices for models trained with ex-
tensive augmentation. Similar to results without augmentation and basic augmentations, all the models
accurately classified most classes with a few exceptions. Notably, MobileNet frequently misidentified Blast
as Tungro and Brown spot as Blast.
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(a) DenseNet121 (d) MobileNet

(e) Ensemble2 (f) ViT

Figure 4.36: Visualising the confusion matrices for the selected classification models on the Rice Leaf Disease
test dataset without augmentation. For the label of the confusion matrices, 0 represents Bacterial blight, 1
represents Blast, 2 represents Brown spot, and 3 represents Tungro.
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(a) DenseNet121 (b) MobileNet

(c) Ensemble2 (d) ViT

Figure 4.37: Visualising the confusion matrices for the selected classification models on the Rice Leaf Disease
test dataset with basic augmentation. For the label of the confusion matrices, 0 represents Bacterial blight, 1
represents Blast, 2 represents Brown spot, and 3 represents Tungro.
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(c) Ensemble2 (d) ViT

(a) DenseNet121 (b) MobileNet

Figure 4.38: Visualising the confusion matrices for the selected classification models on the Rice Leaf Disease
test dataset with extensive augmentation. For the label of the confusion matrices, 0 represents Bacterial blight,
1 represents Blast, 2 represents Brown spot, and 3 represents Tungro.



5
Discussions

This chapter provides discussions focused on answering the research questions and briefly covers our observations
from the results. Since our research belonged to two different tasks related to paddy disease diagnosis: (1)
segmentation and (2) classification, this discussion chapter also has two sections covering the individual tasks.
A detailed discussion to answer the research questions related to the paddy disease diagnosis is given below.
This chapter also includes a detailed description of the limitations faced by this research work.

5.1 Discussion of segmentation task
Classifying paddy diseases presents significant challenges due to the complex field environment and simi-

larities in disease patterns. The usage of segmentation resolves this issue by isolating the diseased areas/ROI
from healthy leaf parts [51]. To increase the efficiency of paddy disease diagnosis, the segmentation can be used
as a pre-processing step or incorporated into the classification model which can be observed in various crop
studies [21], [28], [41], [51]–[54]. To address the lack of an open-access paddy disease segmentation dataset,
we developed one to evaluate the effectiveness of existing segmentation models in paddy disease. The research
questions for the segmentation task have been restated below.

• RQ1: Which mask-based segmentation model achieves the highest and lowest performance scores in
intersection over union (IoU)?

• RQ2: Considering all parameters including model size, and qualitative and quantitative test performance,
which mask-based segmentation model is the most suitable to be used as a preprocessing step or incorpo-
rated within the classification process?

• RQ3: If the number of augmented images is higher (more than double) than the original number of samples,
does it have any negative or positive effect on the test performance using unmodified test samples (both
qualitative and quantitative)?

5.1.1 Analysing research question 1 (RQ1)
IoU compares pixel-level similarity between the ground truth and predicted masks [21], [32]. Therefore, it

is significantly important when assessing a model’s performance. Below is a performance comparison of the
selected models across three train data sizes, which will help to identify the models with the highest and lowest
IoU scores.

• Highest IoU test performance: When trained with 616 samples, Deep Residual UNet and VGG16
UNet achieved the highest and the second-highest IoU scores at 82.42% and 81.65% respectively. With 1500
training samples, the highest IoU was achieved by Deep Residual UNet at 86.04% and the second highest
IoU score was recorded by VGG16 UNet at 84.45%. With 2500 training samples, Deep Residual UNet and
TransUNet showed the highest and second-highest IoU scores at 88.77% and 87.53% respectively. Overall,
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Deep Residual UNet consistently demonstrated superior IoU performance across varying train data sizes.
The combined usage of residual connections, skip connections, and encoder-decoder architecture helped
the Deep Residual UNet to effectively identify complex paddy disease patterns [29]. Hence, Deep Residual
UNet has shown the highest suitability to be used in the disease diagnosis system based on IoU.

• Lowest IoU test performance: When trained with 616 samples, UNet and TransUNet recorded the
lowest and second-lowest IoU scores, at 80.61 and 81.59% respectively. With 1500 train samples, Tran-
sUNet and UNet again showed the lowest and second-lowest scores, at 82.58% and 83.05% respectively.
With 2500 train samples, UNet and VGG16 UNet scored the lowest and second-lowest IoU scores, at
86.74% and 86.85% respectively. Hence, based on the results, it can be concluded that in most cases,
the UNet and the TransUnet exhibited the lowest IoU performance. Due to the incorporation of ViT,
TransUNet is a large model and needs significantly more training data to perform effectively [57]. How-
ever, our maximum train dataset size was 2500, which is insufficient compared to larger datasets such as
ImageNet or JFT-300M. Thus, TransUNet suffers from overfitting and has high test loss. On the other
hand, UNet struggles with capturing long-range dependencies and global context [55] and is deprived of
advanced features such as attention heads [30], residual connections [29], [32], Respaths [32], Resblocks
[32], and deep residual blocks [29] or pre-trained knowledge. Therefore, UNet has shown low performance
in IoU. Lastly, we can say that UNet and TransUNet showed the lowest suitability to be used in the
disease diagnosis system based on IoU.

5.1.2 Analysing research question 2 (RQ2)
Selecting a segmentation model for preprocessing or integration within a classification system involves con-

sideration of several factors, assessing only the quantitative performance (test and validation) is not enough.
It is crucial to assess the quality of segmentation results and consider the model size, and its demand for com-
putational resources, especially for applications intended for resource-constraint environments such as mobile
applications used by farmers. Despite the high quantitative performance, some models might fail to capture
essential fine details such as the small brown spots which are crucial for identifying paddy Brown spot dis-
ease [1], [4]. Thus, selecting a segmentation model should be a comprehensive process that considers all the
relevant factors, including quantitative and qualitative performance, model size, and computational resource
requirements. Structural analysis and the qualitative and quantitative performance analyses of the selected
segmentation models are given below.

• Structural analysis: From the analysis presented in Table 2.2, it is evident that UNet has the smallest
model size at only 8.23 MB, which is 3 to 47 times smaller than other models used in this study. It also has
the least amount of trainable and total parameters among the models reviewed. In comparison, the other
models possess approximately 4 to 44 times more trainable parameters than UNet. Therefore, in scenarios
with strict resource constraints, performance might need to be compromised to ensure compatibility.
Additionally, Deep Residual UNet, an UNet variant is enhanced with deep residual connections and
exhibited lower total parameters and smaller model sizes after UNet in this study. Therefore, when
resource constraints are minimal, Deep Residual UNet could be a suitable choice.

• Qualitative performance analysis:

– 616 train data: From the qualitative assessment using 616 training samples in the results chapter
4.1.2, it is clear that Deep Residual UNet showed superior performance, as it was the only model
successful in detecting small circular disease patterns, which are very important for paddy disease
diagnosis. The usage of multiple residual connections in Deep Residual UNet overcame the vanishing
gradient issue common in deep networks and the usage of skip connections facilitated the transfer of
fine details from earlier layers to the later layers which enhanced the model performance in disease
detection [29].
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– 1500 train data: From the qualitative assessment using 1500 training samples in results chapter
4.1.2, we can see that both TransUNet and Deep Residual UNet demonstrated excellent performance
in detecting small scattered circular disease patterns and diseases at the leaf edges. TransUNet’s
integration of CNN and ViT extracts high-resolution spatial information and global context respec-
tively and their combination effectively captures the paddy disease patterns [55]. On the other hand,
Deep Residual UNet succeeded due to the aforementioned reasons.

– 2500 train data: From the qualitative analysis with 2500 training data in results chapter 4.1.2, we
can observe that similar to the qualitative assessment using 1500 training samples, TransUNet and
Deep Residual UNet demonstrated superior performance in detecting small circular disease patterns
and diseases on leaf edges. Their enhanced performance has been possible due to the above-mentioned
reasons.

From the above analysis, we can conclude that across various train data sizes, Deep Residual UNet
performs the best considering only the qualitative results and is a suitable candidate for selection.

• Quantitative performance analysis: In the segmentation tasks, the ROI usually covers a small number
of pixels compared to the total number of pixels in the entire image. Hence precision, recall, F1-score,
and accuracy might not always provide the correct perception of the performance and show superior
performance due to correctly classifying background pixels [32]. Therefore, for this study, only the IoU
should be considered when selecting models based on quantitative performance. From the analysis of
research question 01 (RQ1) presented in section 5.1.1, we have concluded that in terms of IoU performance
across varying train data sizes, Deep Residual UNet consistently demonstrated superiority and can be
considered as a candidate for selection.

With a more holistic view, considering quantitative and qualitative performance and architectural benefits
and limitations of the models in this study, we can conclude that Deep Residual UNet is the most ideal
choice to be used as a preprocessing step or included within the disease classification model. Especially for
scenarios where slightly better computational resources are available and higher performance metrics are needed
without significant compromises on efficiency. It has a moderate model size of 31.41 MB and enhanced disease-
detection capabilities through the usage of both residual and skip connectors, potentially leading to more refined
segmentation outputs when trained with sufficient data. The residual connectors utilised in their custom deep
residual blocks enable deep network training without gradient vanishing and the passing of detailed spatial
information in the decoder from the encoder through skip connections.

5.1.3 Analysing research question 3 (RQ3)

According to Wang et al. [81], data augmentation significantly enhances the performance of classification
models. In this study, we want to observe the impact of excessive data augmentation for the pixel-level classifi-
cation/segmentation task. For this, we have expanded the training data size through data augmentation from
616 to 1500 and 2500, which correspond to approximately 2.5 and 4 times the original dataset respectively.

• Quantitative performance analysis: From Figure 4.1, we can observe that these increased train
data have significantly improved the quantitative test performance in all performance evaluation metrics
across most models. Among them, drastic improvements were mostly noticeable in IoU and precision.
However, when trained with 2500 samples, which is about four times the original dataset size, performance
declination was observed in UNet’s recall, and VGG16 UNet and TransUNet’s precision. These exceptions
might be due to the models’ sensitivity to augmentation noise. For the test loss, as the number of
training data increased and the model’s performance improved, the test loss for all the models decreased.
Exceptions were seen in TransUNet’s test loss when trained with 2500 train data, which might be again
due to the model’s sensitivity to augmentation noise.
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• Qualitative performance analysis: Figures 4.11, 4.13, and 4.15 demonstrate that the quality of circular
disease pattern detection improves as the training data size increases, as seen in sample 3. However, the
detection of diseases at the edges showed degradation with increased train data in a few samples. For
increased train data (1500 and 2500), the diseases at the edges are visible in sample 3, but missing in
sample 1.

Overall, a higher number of augmented train images has a positive impact on both the qualitative and
quantitative results.

5.1.4 Additional observations from segmentation results
From the segmentation results, additional observations have been made in terms of test loss, disease mis-

classification count, and the influence of the LR scheduler on the overall model performances and the details
are given below.

• Test loss: From Table 4.1 and Figure 4.1, it is evident that TransUNet exhibited a significantly larger
test loss when trained with 616 data samples compared to other models in this study. When trained
with 616 train data, the test loss for this model is approximately 28%, which is approximately 7% higher
than the other models. The excessive data demand of the ViT model within TransUNet architecture is
responsible for its high test loss [55], [57]. As the training data increased (1500 and 2500), the test loss
significantly reduced from 28% to between 3-5%. Moreover, a test loss of approximately 5% with larger
train data sizes is considered reasonable.

• Disease pixel misclassification: Deep Residual UNet achieved the lowest disease pixel misclassification
when trained with 616 data and TransUNet achieved the lowest disease pixel misclassification when trained
with 1500 and 2500 data. TransUNet’s hybrid CNN and transformer structure helped it to capture fine
disease details efficiently, which led to the lowest misclassification [55]. On the other hand, the presence of
deep residual blocks present in the Deep Residual UNet might be the reason for its enhanced performance
and low disease misclassification.

UNet achieved the highest disease pixel misclassification when trained with 616 and 1500 data and VGG16
UNet achieved the highest disease pixel misclassification when trained with 2500 data. The limitations
of Unet in capturing long-range dependencies and global context [55] and absence of advanced features
such as residual connections [29] and deep residual blocks [29], or pre-trained knowledge compared to the
other models in this study, might be the reason for its high disease misclassification. Additionally, the
high disease misclassifications of VGG16 UNet also might be due to the augmentation noise sensitivity of
the VGG16-based encoder.

• Learning rate scheduler impact: To get insight into the robustness and scalability of each model,
identical training parameters were maintained across three train dataset sizes. VGG16 UNet and Deep
Residual UNet showed initial instability during the first few epochs, which was quickly stabilised due
to the LR scheduler. LR scheduler also aided in reaching convergence and overcoming plateaus without
leading to overfitting which can be validated by observing the nearly equal validation and test performance
presented in Table 4.1, Table 4.2, and Table 4.3. Among all the selected models, UNet displayed early
overfitting signs, particularly with smaller train datasets. Its lack of advanced features compared to other
models in the research and its simpler architecture are probably the causes of this.

This comprehensive analysis evaluates the performance of four segmentation models across three train data sizes
and assesses their effectiveness in classifying paddy diseases at the pixel level. This study emphasises the need
for a comprehensive evaluation process when selecting segmentation models for preprocessing or integration into
classification systems. It highlights the importance of considering both quantitative and qualitative metrics as
well as computational demands to ensure optimal performance in practical applications.
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5.2 Discussion of classification task
Paddy disease diagnosis is a complex task, whether conducted manually or with software. Manual iden-

tification of paddy diseases is limited by time constraints, inaccuracies, and biases from the assessor, while
software-based methods face challenges such as identifying small symptoms in noisy images, handling disease
pattern similarities, creating masks through image processing, generalising across datasets (both same-dataset
and cross-dataset), and managing high computational requirements and costs, and occlusion and visibility issues
[3]–[9], [11], [12], [27], [41], [73], [82], [83]. The research questions for the classification task are restated below.

• RQ4: For paddy disease classification with complex field data, can the performance of ViT be achieved
with traditional CNN models (MobileNet, and DensNet121) or an ensemble of the traditional models?

• RQ5: How does the level of data augmentation (none, basic, and extensive) impact the performance of
models classifying paddy diseases using datasets with complex field environments?

5.2.1 Analysing research question 4 (RQ4)
The results obtained from two paddy disease datasets, as described in Chapter 4.2, will be used for this

discussion. Between these two datasets, Paddy Doctor [16] is comparatively larger and has 16225 samples
belonging to 13 classes and the Rice Leaf Disease Dataset [65] has 5932 samples belonging to 4 classes. An
analysis of each dataset is given below.

• Analysis of Paddy Doctor dataset results: For model training without augmentation, ViT performed
poorly compared to the other models in all performance measuring metrics (accuracy, precision, recall and
F1-score). This has happened due to the inherent data-hungry nature of ViTs and the used datasets with-
out augmentation are insufficient for training [57]. Therefore, ViT exhibited the largest test loss with
nearly 50%. For the basic augmentation, ViT had almost comparable performance to DenseNet121 and
MobileNet in all performance measuring metrics, while DenseNet121 had the best performance in all met-
rics. The basic augmentation mitigated the issues related to a small dataset to some extent, which resulted
in a decrease in the test loss from approximately 50% to almost 38%. For extensive augmentation, the test
loss of ViT further decreased to approximately 17% and gave a comparable performance to DenseNet121
in accuracy, precision and recall, which is the best-performing model for this augmentation. The increase
in augmentation intensity expanded the training dataset size, which improved the ViT performance. On
the other hand, with extensive augmentation, the performance of MobileNet and Ensemble2 declined,
which might be due to the high augmentation noise present in the data and the sensitivity of these models
to augmentation noise.

• Analysis of Rice Leaf Disease dataset results: Similar to the results of the Paddy Doctor dataset,
for model training without augmentation, ViT had the largest test loss with nearly 8% and the lowest
performance compared to the other models in all performance measuring metrics (accuracy, precision,
recall, and F1-score) for the previously mentioned reasons. Furthermore, for the basic augmentation,
ViT had almost comparable performance to DenseNet121 in all performance measuring metrics, while
Emsemble2 had the best performance in all metrics. The basic augmentation mitigated the issues related
to a small dataset to some extent, which resulted in a decrease in the test loss from approximately 8%
to almost 4%. Additionally, in the case of extensive augmentation, the test loss of ViT further decreased
to approximately 1% and gave a comparable performance to DenseNet121 and Ensemble2. For extensive
augmentation, DenseNet121 was the best-performing model. ViT’s improved performance is due to the
same reasons previously mentioned for the Paddy Doctor dataset.

From the above analysis of the results for the two datasets, we can conclude that the performance of ViT
is usually poor when it is trained without any augmentation. With basic augmentation, ViT demonstrated
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increased and comparable performance with traditional models, DenseNet121 (Paddy Doctor and Rice Leaf
Disease Dataset) and MobileNet (Paddy Doctor). With extensive augmentation, the performance of ViT im-
proved further and showed comparable performance with traditional models, DenseNet121 (Paddy Doctor and
Rice Leaf Disease Dataset) and Ensemble2 (Rice Leaf Disease Dataset). Considering the high training time
needed for ViT models as seen in Table 4.4, Table 4.5, Table 4.6, Table 4.7, Table 4.8, and Table 4.9, it is better
to use traditional models and focus on improving the model performance with additional features rather than
relying on computation heavy ViTs.

5.2.2 Analysing research question 5 (RQ5)
From Figure 4.17 and Figure 4.28, we can observe that as the augmentation intensity increased, the per-

formance of ViT improved and the test loss decreased. ViT’s dependency on large datasets for achieving good
performance explains this behaviour [57]. On the other hand, MobileNet performed well without any augmen-
tation and as the augmentation intensity increased, its performance decreased. Since MobileNet is a small
model with a less complex structure, it is highly susceptible to overfitting and this low performance might be
due to this reason. But Figures 4.22, 4.23, 4.24, 4.33, 4.34, and 4.35 confirm that there was no overfitting.
Therefore, the low performance could be due to MobileNet’s simplistic network architecture and its sensitivity
to the augmentation noise.

For the Rice Leaf Disease Dataset, Densenet121 and Ensemble2 demonstrated nearly equal performance for
all augmentation intensities. But for the Paddy doctor dataset with basic augmentation, DenseNet121 had the
lowest performance, while Ensemble2 had the highest compared to the other models in this study. Since we
were unable to determine the cause of this behaviour, we decided to include it as part of our future work.

5.2.3 Additional observations from classification results
From the results, additional observations have been made in terms of disease misclassifications and the

influence of the LR scheduler on the overall model performances and the details are given below.

• Disease misclassifications: From the confusion matrices presented in section 4.2.1, it has been observed
that several diseases have been misclassified as normal plants. It might be because, as observed in Figure
3.10, the Paddy Doctor dataset is heavily imbalanced, with normal plants having the largest portion of
samples (14%). Therefore, the models frequently misclassified diseases as normal plants. Additionally,
White stem borer and Yellow stem borer are both from the same disease family and have overlapping
and similar symptoms as described in section 2.1.4. Hence, ViT often misclassified White stem borer as
Yellow stem borer.

Even though the Rice Leaf Disease Dataset having four classes is nearly balanced as seen in Figure
3.11, Tungro (22%) and Blast (24%) are the minority classes compared to the other two classes (27%).
Furthermore, the confusion matrices presented in section 4.2.2 show that MobileNet had the highest
amount of misclassifications among the other classification models and it frequently misclassified Brown
spot and Bacterial blight as Blast, and Blast as Tungro. According to the analysis presented in Table 2.1,
Brown spots, Bacterial blight, and Blast show similar disease patterns such as dark brown lesions, olive
spots, and dark brownish-black spots on leaves respectively, while Blast and Tungro show diamond-shaped
lesions and stripes in on leaves respectively. Due to the aforementioned similarities, these diseases were
often misclassified.

• Learning rate scheduler impact: Identical model training parameters were maintained across all
augmentation intensities to get insight into the robustness and scalability of each model. For both the
datasets, DenseNet121 and MobileNet had shown initial instability during the first few epochs, which
was quickly stabilised due to the LR scheduler. LR scheduler also aided in reaching convergence and
overcoming plateaus without leading to overfitting which can be validated by observing the nearly equal
validation and test performance presented in Table 4.19, Table 4.5, Table 4.6, Table 4.7, Table 4.8, and
Table 4.9.
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5.3 Thesis limitations
For this study, we were allocated approximately four months, during which we encountered several issues

and the current results also have limitations. The most noteworthy of these are mentioned below.

• Time limitation: This thesis faced several limitations and among these, the time limitation constraint
is the most significant one. It prevented the implementation and analysis of various image processing and
augmentation techniques. Most notably, our work on generative modelling-based data augmentation with
VAE remained incomplete. Additionally, we used larger computer vision-based models such as ViT and
TransUNet which required significant training time. For larger datasets, even with the support of TPUs
and GPUs, training times for the ViT model exceeded six days as seen in Table 4.6.

• Memory efficiency shortcomings: Developing a memory-efficient and lightweight model with high
accuracy for disease diagnosis is a complex and challenging task. The models used in this study, including
our proposed ones, remain large and require further optimisation to improve memory efficiency and reduce
size. Our models are not yet optimised for minimal resource use. However, they can serve as a baseline
for future efforts aimed at developing models suitable for deployment on both mobile devices and web
applications. These objectives have been included in our future work.

• Imbalanced data challenges: The Paddy Doctor dataset used for classification was heavily imbalanced.
When we attempted to balance this dataset using data augmentation strategies, the models started learn-
ing the augmentation noises instead of the actual disease patterns which resulted in poor model generali-
sation. We also tried creating a balanced dataset by selecting an equal number of samples from each class.
Although this approach showed improved generalisation on the validation data, it performed poorly on
test data. Due to time constraints, we had to give up this approach and include it in future work.

• Challenges in paddy segmentation data: To discard environmental biases and background noises
present in the samples, integrating a segmentation model within the paddy diagnosis system or as a
preprocessing step is essential. However, due to the absence of an open-access paddy disease segmentation
dataset and lack of analysis on the existing segmentation models’ applicability for paddy disease diagnosis,
this was not possible. In this thesis, we have addressed this research gap by creating a segmentation
dataset. But, due to the time constraint, we could not choose a dataset with a complex background
and a large number of samples. Despite choosing a dataset with a simple background, this dataset still
presented challenges associated with background shadows, minor noises and very similar disease patterns.
Even though the selected dataset was small in size, it accurately represented small disease patterns and
textures because the samples were taken at close camera angles. This new segmentation dataset and
our analysis of the existing segmentation model’s applicability in paddy disease detection will work as an
initial step towards developing a segmentation-based paddy diagnosis system. Moreover, disease patterns
often appear similar and lack proper visual symptoms which necessitate multispectral or hyperspectral
imaging as previously mentioned in the research gaps. Additionally, for ground truth mask creation, disease
identification can vary significantly based on individual perspectives and disease understanding. Therefore,
misclassified disease pixels in the ground truth images might lead to lower prediction performance.

• Potential bias in assessing model performance: Despite maintaining consistent training parameters,
the usage of a learning rate scheduler might have selectively boosted or hindered the performance of
certain models. The learning rate scheduler decreases the learning rate to enhance convergence and
escape performance plateaus. Even though the LR scheduler introduces a potential bias, the performance
disparity among the models remains minimal within just 2% and suggests that the effect of any bias is
minimal. Overall, the learning rate scheduler had a beneficial impact on training efficiency and model
performance.
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Despite existing limitations, this research significantly contributes to the research community and the field of
precision agriculture. It provides a foundation for the researchers to address the identified gaps and effectively
tackle associated challenges and issues within this domain.



6
Conclusion and Future Work

This chapter concludes our thesis work, highlighting our contributions to precision agriculture through our
exploratory analysis of paddy disease classification and segmentation tasks for automated paddy disease man-
agement. We have also detailed the potential scope of extension of this thesis work to address the identified
research gaps, and tackle the open issues and challenges associated with this domain.

6.1 Conclusion
Early diagnosis through a computer vision-based system is crucial for having an effective paddy disease

management system. This system will help to ensure food security on a global scale and address the challenges
resulting from the ever-rising population, changes in the climate, and issues associated with the traditional
manual assessment of paddy diseases [1], [3], [8], [27]. For this study, we have investigated the prevalent paddy
diseases, and identified their causing agents and visible manifestations. Additionally, an overview of four seg-
mentation models (UNet, VGG16 UNet, TransUNet and Deep residual UNet) and four classification models
(DenseNet, MobileNet, Vision transformer and a custom ensemble model of DenseNet121, and Xception) used
for this study have been provided with a tabular analysis of their structural differences, advantages and limi-
tations. Moreover, we have identified the key research gaps in this field and addressed the lack of open-access
paddy disease segmentation datasets by creating a novel dataset using image processing. The segmentation
dataset is available in this link and using this dataset, we have assessed the four existing segmentation models’
applicability in paddy disease. From our analysis, we have concluded that Deep Residual UNet is the most
suitable model to be used as a preprocessing step or included within the classification model for mitigating the
problems associated with backgrounds and overlapping disease symptoms. This decision was made considering
its quantitative and qualitative performance, model size, and structural advantages and limitations. Further-
more, we have analysed the impact of training these models with a significantly higher number of augmented
images—more than double the original dataset and found that, although the quantitative performance improved
with additional data, the qualitative performance occasionally declined. On the other hand, since ViT necessi-
tates significant computational resources and large datasets to provide adequate results, we evaluated whether
its comparable performance could achieved by the traditional models or their ensembles and observed it to be
feasible. Additionally, the impact of augmentation intensity on the classification models has been explored.

6.2 Future work
Paddy diseases have a serious detrimental effect on plant health and yield production. Our current study

finds the optimal machine learning models for the classification and segmentation of paddy diseases. An overview
of our future work plans for enhancing precision agriculture has been provided below.

• Creating a paddy disease segmentation dataset with a complex field environment: Our research
has been conducted using a controlled environment dataset for analysing the utility of segmentation models
in the paddy disease segmentation, in broader-scale precision agriculture which had previously shown their
utility in remote sensing [29], and biomedical imaging [30]–[32]. Datasets covering samples in complex field

https://1drv.ms/f/s!AnUn60e5xOVzi7En-GIkALM7Xa4Mfg?e=z7zMV1
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environments need to be created which might require a substantial amount of funding, time and manual
labour for conducting the pixel-level annotations. It will help in creating applications for disease severity
analysis which will significantly improve the automatic crop monitoring system and disease management
process and mitigate the need for manual labour, especially in very large fields which require a lot of time
for manual inspection and analysis.

• Creating a segmentation-based classification model: Due to the absence of a paddy segmentation
dataset and uncertainty about the existing segmentation models’ applicability to paddy disease, we were
unable to develop a paddy diagnosis model that includes segmentation as either a preprocessing step or
within the classification process. We plan to develop a segmentation-based paddy disease classification
model.

• Optimise performance through additional hyperparameter tuning: In this study, to analyse
the performance of the segmentation and classification models, we maintained uniform hyperparameters
for finding the most effective model suitable for the paddy disease segmentation and classification tasks.
Since we have identified the most effective model, the next step will be to tune the hyper-parameters
including the number of attention heads, dropout rates, learning rate, batch size, patch size, number of
skip connections, number of hidden layers etc. to get the most optimal results. It is important to note
that, for the construction of the model architecture of the ensemble model for the classification task,
optimal parameters such as dropout rate, the number of hidden layers, and the type of pooling layers
(global or average) were determined utilising Keras Tuner’s Random Search method [84].

• Analyse the impact of image resolution on model performance: From the study by Chen et al.
[55], we know that images with higher resolution give better results. Hence, our future work will also
incorporate conducting experimental analysis with different image resolutions and observing its effect on
the results for the paddy disease segmentation and classification.

• Creating weed segmentation dataset in a complex field environment: Weeds have one of the
most prominent adversarial effects on plant health after various plant diseases. They take away the
essential water, nutrients and sunlight which would have been otherwise utilised by the crop. Thus, weeds
in the crop fields have a detrimental effect on crop health and the overall crop yield [38]. An autonomous
system which is capable of identifying weeds from fields is a necessity for improving the overall crop yield.
Weed segmentation tasks have been conducted in the utilising dataset collected from different crops such
as maize [85], brinjal/eggplant [86], sunflower [38] and sorghum [87]. But so far, no work has been done
for paddy fields and no dataset is available for the paddy field weed segmentation. We can address this
research gap by providing a dataset for paddy weed segmentation using open-access paddy datasets with
field environment samples [16], [65], [67]–[71].

• Develop a memory-efficient classification model: Our future goals encompass implementing a small-
scale model for the effective classification of paddy diseases utilising publicly available datasets [6], [16],
[65]–[71]. Synthetic data will be created using traditional and generative model-based image augmentation
techniques to enhance the dataset diversity, mitigate overfitting, and minimise the need for additional
data acquisition. We will evaluate the model’s capacity to manage disease symptoms and pattern changes
caused by the variations in geolocation. We also aim to ensure the model’s versatility, allowing it to
accurately detect and classify diseases across crops, not limited to paddy.

• Develop a model integrating optimal segmentation and classification models: Since early disease
identification is essential for efficient disease management and improving the overall crop yield, we plan to
develop an autonomous disease identification and classification system. For this, we will use our identified
optimal segmentation model as a pre-processing step to tackle complex backgrounds and use the developed
memory-efficient classification model for classifying the disease.
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• Develop a web or mobile-based application: A mobile or web application will be developed using a
memory-efficient model. In addition to guaranteeing the timely and accurate classification of contaminated
diseases, this model and application will help to maximise resource usage, reduce environmental damage
and ensure enhanced agricultural yield.

• Use generative models for data augmentation: The data collection process is costly and time-
consuming and obtaining samples for rare diseases is even more difficult. Hence, to solve this problem,
we have to rely on data augmentation techniques. In this study, for data augmentation, we have utilised
only the traditional methods. We are planning to analyse the generative model-based augmentations and
their effect on the performance of the models.

By addressing the tasks outlined in this section, improvements in the paddy disease diagnosis system can
be achieved which aligns with our goal of contributing to precision agriculture.



A
Usage of AI

Due to the nature of language models/AI tools to provide inaccurate and misleading information related to
literature and references, these were not used to find literature and references. Reliable sources such as Clarivate
(Web of Science), Google Scholar, Elsevier, Springer, and IEEE Xplore were used to find relevant literature and
references. Considering the ethical use of AI and the guidelines provided by the NMBU, ChatGPT was utilised
only in the following ways for this thesis:

• Locate synonyms and connecting words: While writing the report, we addressed the word repetition
issue by using ChatGPT to identify synonyms and linking words which enhanced the report’s quality. For
instance, to avoid using “demonstrates” repeatedly in the sentence “Figure W demonstrates that ViT-
based models required the most training time across all augmentation variations”, we employed AI tools
to find suitable replacements.

– Prompt for ChatGPT: “Figure W demonstrates that ViT-based models required the most training
time across all augmentation variations”–give suitable words to replace “demonstrates”

• Latex assistance: ChatGPT was utilised for addressing queries regarding report formatting, such as
creating new pages, printing all contents before a new section starts and adjusting spaces between sec-
tions and figures. Additionally, it significantly accelerated the creation of numerous tables related to the
literature review, methodology, and results by providing LaTeX structures. For instance, the prompt used
to generate the latex table structure for the model analysis was as follows:

– Prompt for ChatGPT: Create a latex table that has 4 columns (Properties, DenseNet121, In-
ceptionv3, Xception) and rows (Properties, Model category, Model size (MB), Activation function,
Trainable parameters, Non-trainable parameters, Total parameters, Advantages, Limitations) and
fill the table with W to be replaced with real values.

• Coding assistance: In addition to Stack Overflow, ChatGPT was used for diagnosing code errors and
exploring possible debugging techniques. It was also utilised to customise various features of Matplotlib
and Seaborn for making the figures/plots. For instance, in Matplotlib, titles are usually placed at the top
of figures using “title”. But for the report, titles were required to be put below each subplot. ChatGPT
was prompted in the following way for assistance.

– Prompt for ChatGPT: When using Matplotlib, how to put the model names below the plot as a
text instead of putting them on the title?

The usage of AI for repetitive and time-consuming tasks unrelated to core research such as LaTeX formatting
and synonym finding has accelerated the thesis process, allowing greater focus on reviewing current literature,
identifying research gaps, and addressing these gaps through our research.
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