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Abstract

The objective of the thesis was to create a reliable model for outcome prediction in

gastrointestinal cancers using data with incomplete variables. This was a two-step pro-

cess. The first part involved analysis and review of literature on missing values, with a

separate experiment conducted to support decisions. The second step involved prepro-

cessing data with assistance from expert knowledge and conducting survival analysis.

We found that imputing missing values is always better than discarding information in

variables and samples. This is especially important with a small sample size. k-Nearest

Neighbor imputation provided accurate single imputations in the experiment and had

the most promising impact on the survival models. The two survival models, Coxnet

and Component-Wise Gradient Boosting, provided the highest test concordance, with

the latter having the lowest integrated Brier score and time-dependent Brier score We

argue that the choice of model depends on the application, as a model may excel in one

metric and be less effective in another metric. If the intention is accurately predicting

the order of events, the model that maximizes concordance should be used. Conversely,

if accurate modelling of the survival times is of interest, then the model maximizing the

integrated Brier score should be used. We also found that Number of Courses, Ki-67,

and NSE were identified as having the most average importance across the four survival

models. Additionally, features WHO Perf Stat, Ki-67, and Albumin were identified as

equally important, consistent with the results reported by Jenul et al.(2023).65
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Abbrevations

Description of abbreviations used. Many of these are trivial and universally understood, but for
consistency, every abbreviation used is provided.

Abbreviation Descriptions

CCA Complete Case Analysis
CDF Cumulative Distribution Function
CGB Component-Wise Gradient Boosting
CHF Cumulative Hazard Function
C-index Concordance Index
Cox PH Cox Proportional Hazard
GEP Gastroenteropancreatic
HR Hazard Ratio
IBS Integrated Brier Score
kNN k-Nearest Neighbors
MAR Missing at Random
MCAR Missing Completely at Random
MICE Multiple Imputation by Chained Equations
MiNEN Mixed Neuroendocrine-Non-Neuroendocrine Neoplasm
MNAR Missing Not at Random
MAE Mean Absolute Error
MSE Mean Square Error
NA Not Available
NEN Neuroendocrine Neoplasms
NET Neuroendocrine Tumors
OLS Ordinary Least Squares
OOB Out-of-bag
PCA Principal Component Analysis
PDF Probability Density Function
PMM Predictive-Mean Matching
RSF Random Survival Forest
RMSE Root Mean Squared Error
RSKF Repeated Stratified k-Fold



1 Introduction

1.1 Motivation

Cancer, also known as malignant tumours or neoplasms, is a burden spread widely and rapidly

across the world. It is the leading cause of death worldwide; statistics from 2020 show that

approximately one in six deaths are cancer-related.174 Cancer can impact any area of the body

and occurs when abnormal cells are rapidly created and grow beyond their usual boundaries. This

thesis concerns high-grade gastroenteropancreatic neuroendocrine neoplasms (GEP NEN). This

type of cancer has a high mortality rate, and expected long-term survival is poor, even for those

with localized disease.150 Literature on survival analysis of this cancer, compared to other cancers

is sparse, compared to other cancers, as it is a rare disease. Most studies are limited to a small

number of samples from single institutions.25,79,80,162

This highlights the importance of expanding knowledge of this cancer. Using and comparing

modern statistics and machine learning, we aim to investigate whether data science approaches can

further support the medical domain. For instance, a doctor may have opinions on the expected

survival of patients. However, can survival analysis be used to improve the efficiency further?

If a doctor is uncertain about a patient’s survival, perhaps survival curves produced by machine

learning can be used to confirm the alignment between them or support decisions. Data science

may give new perspectives and streamline the medical domain. The cooperation between doctors

and data scientists may assist in preventing human errors or the other way around by correcting

machine errors.

Predicting outcomes in cancer has long been a focal point for clinicians, healthcare workers, and

patients.158 Traditional methods used by the medical domain are heavily weighted towards classical

statistics, employing strategies such as the Kaplan-Meier estimator and Cox Proportional Hazards

model.143,153,166 Strategies are often restricted by linearity assumptions with limited capabilities

for predictions. Thus, there has been a rising popularity in investigating the potential of using

machine learning to improve the accuracy of medical diagnostics.77,107 Saavedra et al. (2024)143

found that a boosting approach using component-wise regression as the base learner performed

better than the other models, including classical statistical models, for short-term operations of

36 months. Modern machine learning can capture complex and nonlinear patterns. However, they

require larger sample sizes as opposed to classical statistical approaches due to the importance

of validation.24 This is especially challenging in the medical domain as there are strict ethical

standards regarding privacy and consent. We suggest that effort should be put into preserving the

samples that are available, even though variables are incomplete. We are motivated to maximize

the use of the available data by overcoming challenges such as large proportions of missing values

and small sample sizes.

1.2 Objective

The primary goal of the thesis was to create a reliable model for outcome prediction in GEP NEN

using data with incomplete variables. The thesis is divided into two parts, and we consider two

research questions.

The first part considered implementing a pipeline for data and feature preprocessing. This

included assistance from expert knowledge, handling of missing values, and applying appropriate

encodings for categorical variables. After the data and encodings were implemented, the final step

was fitting models, model selection and interpretation. The research question for the first part was

investigating what models are most suitable for outcome predictions in GEP NENs.

The second part explored the theory and literature of missing values and applied this knowledge

to the first part. In addition, a separate experiment was conducted on a different dataset to evaluate

different strategies for handling missing values. The research question for the second part was to

investigate if it is worth imputing missing values rather than removing all the missingness, either
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by the means of omitting variables or samples with missingness.

1.3 Structure of the Thesis

The thesis is divided into two major parts. The first part considers survival analysis of outcome

prediction in high-grade GEP NEN, and the other part explores approaches for handling missing

values.

The theoretical parts are covered separately, including all necessary materials. Theory is often

used interchangeably between the two parts, and we refer to the correct sections where necessary.

When it comes to the results and discussion, we present the experiment of missing values before

the survival analysis. This makes it easier to refer back to findings when discussing the survival

analysis (second part).

1.4 Notation, Terminologies and Abbreviations

We define our data as follows: capital bold letters represent matrices, whereas lowercase bold

letters represent vectors. A sample from a vector is lowercase and not bold. Next, consider the

feature matrix X ∈ Rn×m. Here, n,m are integers where n represents the number of samples

and m represents the number of columns. For simplicity, we assume that categorical variables are

encoded to a numerical representation to simplify notations. Next, let Y ∈ Rn×2 be the target

variable containing the survival times and if the death was observed.

Common terminologies to represent the columns of the matrix X are independent variables

(IV), explanatory variables (EV), covariates, variables, features and attributes. For y, common

names are target variable, dependent variable, response variable and outcome variable.

Abbreviations are explained upon first use and can be found in Abbreviations.

1.5 Generative AI and Other Tools Used in This Thesis

With the recent breakthroughs of generative AI and other tools, it is natural to explain what has

(and not) been used for the thesis.

OpenAI’s ChatGPT 3.5 and 4 are recently published generative AI models with multiple quali-

ties. They can generate text, answer questions based off of its training data, read pictures, analyze

datafiles and much more.108 These models are great tools, however, they have their downsides.

They are capable of providing false information and do not hesitate to do so.2 The two main uses

of ChatGPT 4 in this thesis was assisting with LaTeX and coding. For LaTeX, example uses was

feeding ChatGPT 4 a reference to receive the appropriate BibTeX entry as reply, or for providing

support with creating LaTeX tables. For the coding part, ChatGPT 4 has mostly been present

as a technical assistant. For example, providing ideas on how to graph certain features or debug

errors. Naturally, all output from ChatGPT was validated before application. The use of genera-

tive AI followed the guidelines from NMBU.105 To emphasize, no generated information from

ChatGPT has been used in the thesis; we always refer to literature. Github copilot

is a software specifically designed to assist with coding and has been a major tool used in the

experimental setup for missing values. It has not been used for the survival analysis part because

of sensitive information related to the GEP NEN dataset.95 In addition to generative AI, we have

used Grammarly as a writing assistant. It is a convenient built-in Chrome extension that provides

grammatical corrections and suggestions.40
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2 Theory Part A: Survival Analysis

2.1 High-Grade GEP NEN

GEP NEN represents a group of rare tumours emanating from neuroendocrine cells. NENs can

develop in various organs and are most commonly found in the gastrointestinal tract, pancreas,

lungs, thymus and various endocrine organs.178

2.1.1 WHO Classification System

The 2019 WHO classification system categorizes NENs into well-differentiated neuroendocrine tu-

mors (NETs), poorly differentiated neuroendocrine carcinomas (NECs), and mixed neuroendocrine-

non-neuroendocrine neoplasm (MiNENs), among other hyperplastic and preneoplastic lesions.101,135

These are distinguished based on the Ki-67 proliferation index, and are shown in Table 2.1. The

Ki-67 is a widely used marker in the assessment of the malignant potential of NENs.96

Table 2.1: WHO’s classification and grading criteria for NENs of the gastrointestinal tract and
hepatopancreatobiliary organs.101

Terminology Differentiation Grade Ki-67 index

NET, G1 Well differentiated Low <3%

NET, G2 Intermediate 3-20%

NET, G3 High >20%

NEC, small-cell type Poorly differentiated High† >20%

NEC, large-cell type High >20%

MiNEN Well or poorly differentiated Variable Variable

† While NECs that are poorly differentiated does not have a formal grading, they are considered
high-grade by definition.

NETs are typically slow-growing, and while they can arise from various tissues, they are pre-

dominantly located within the gastrointestinal tract, accounting for 62-67% of all occurences.

Pancreatic NENs are notable for their aggressive nature, with a significant proportion presenting

as malignant at the time of diagnosis.13,157,178

2.1.2 Treatments and Survival

NENs contribute to around 0.5 % of the total cancer cases.157,178 Xu et al. (2021) found that

the age-adjusted annual incidence of GEP NENs are approximately 5.45 per 100 000 in 2015.176

Detecting NENs primaries and metastases poses challenges due to their tendency to manifest as

diminutive lesions and varying anatomical sites.13,157,178

Tumours are treated with chemotherapy, and the regimens for NENs vary based on tumour

aggressiveness and histological differentiation. Systemic chemotherapy, especially combination

therapies, is typically reserved for rapidly progressing or poorly differentiated tumours like NECs.

Conversely, well-differentiated gastrointestinal NETs often show less responsiveness to such treat-

ments.177 The expected survival for patients with high-grade GEP NENs are poor, even after

chemotherapy treatments. H. Sorbye et al. (2014) found that patients with GEP NEC who did

not undergo chemotherapy had a median survival duration of one month, with a 95% confidence

interval ranging from 0.3 to 1.8 months. In contrast, those who were treated with chemotherapy

had a median survival of eleven months, with a 95% confidence interval between 9.4 and 12.6

months. The two-year survival rate was 14%, while the three-year survival rate stood at 9.5%.151
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2.2 Survival Analysis Fundamentals

Survival analysis generally encompasses a set of statistical techniques used to analyze data in which

the primary focus is on the time it takes for an event to happen, also known as time until an event

occurs.75,124 This type of data is also called lifetime, failure time, or survival data. The event

of interest includes both adverse and positive occurrences. Examples of adverse events include

mortality, disease recurrence, the onset of adverse reactions, or the emergence of a new medical

condition. On the positive side, events could include recovery milestones such as discharge from

the hospital or achieving remission, while also involving reaching educational goals or significant

achievements in personal development.

In the context of survival analysis, we use the term ”survival time” to describe the time variable,

representing the duration for which an individual has remained under observation during a specific

follow-up period.75 We refer to the occurrence we are studying as the event. This term encompasses

various outcomes, including death or disease onset. This term allows for a broader scope of analysis

without implying negativity.

2.2.1 Censoring

One of the main characteristics and fundamental concepts in survival analysis is the event indica-

tor. The target values used for training a survival model include two pieces of information: the

survival duration and an event indicator, signalling whether or not an event of interest has oc-

curred. A significant challenge in this field is dealing with censored observations, which take place

when there is only partial knowledge of an individual’s survival time.75,124,154 Censoring highlights

the complexity of survival analysis by pointing to the limitations in obtaining complete data on

survival times. Censored patients did not experience the event of interest within the specified

study period.34

There are generally three reasons why censoring occurs, as illustrated in Figure 2.1

1. A patient departs from the study due to reasons such as death (if death is not the event of

interest) or other factors like adverse drug reactions or competing risks.

2. A patient does not experience the event before the study ends.

3. A patient exiting the study.

Figure 2.1: Three examples of why censoring occurs. Patient 1 is censored at death due to unrelated
causes where the survival time is from study start to death. Patient 2 is censored as it did not
experience the event of interest throughout the observation period. Patient 3 is censored due to
early exit from the study, and the survival time is calculated from the study’s initiation to the
point of last contact. The figure is inspired by Leboo et al. (2023)83.
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For instance, in the scenario where the study’s event of interest is discharged from the hospital

after successful treatment, patient 1 in Figure 2.1 is censored due to their death. This death,

caused by factors unrelated to hospital treatment, prevents the observation of the event of interest,

namely, hospital discharge. For patient 2, the study ended while the patient was still in remission,

indicating that the event of interest, hospital discharge following successful treatment, had not

occurred. Consequently, this patient is considered censored at the study’s end.75,83 Patient C

withdrew from the study, possibly due to adverse effects, personal reasons, or health changes.

Patient C is censored as the event of interest, hospital discharge following successful treatment,

could not be observed. All of these examples are right-censoring.

There are three types of censoring: right censoring, left censoring, and interval censoring, as shown

in Figure 2.2.

Right Censoring

In right censoring, the complete duration of survival is not fully known.75,83,144,154 This means

the latter part of the survival timeline is not observed and is therefore censored, affecting the

rightmost portion of the data we have. Illustrated in Figure 2.2, patient A and patient B are

identified as right-censored since tA, tB > x2. This categorization is due to the event of interest

not occurring within the observation period, irrespective of whether the event occurs after the

study ends. Right-censoring occurs when the time to an event, denoted as ti, exceeds the study’s

end time, represented by x2. Here, i represents individual patients, i = 1, .., n:

ti > x2

Left Censoring

Left censoring in survival analysis occurs when the event of interest happens before the start of the

study, indicating that the individual’s survival time ti is less than the earliest observable time x1,

which is when the study begins.75,83,144,154 This scenario arises very rarely. In Figure 2.2, patient C

is identified as left censored since tC < x1. This categorization is due to the event occurring before

the study commenced. Consider a stroke-related clinical study where some patients experienced

a stroke before the start of the study. If it is known that these strokes occurred before the study

began but the exact timing is unknown, such patients are classified as left-censored. Left-censoring

is defined when the patient´s survival time ti is less than the value observed when the study starts

x1:

ti < x1

Interval Censoring

Interval censoring in survival analysis occurs when the precise survival time ti of an individual is not

definitively known, but it is known that it occurs during a time interval, from x2 to x3.
75,83,144,154

This type of censoring, common in clinical trials or longitudinal studies with periodic follow-

up sessions, determines that a patient’s event occurs within the interval between two follow-up

visits, not at an exact, identifiable moment. In Figure 2.2, pasient D is interval-censored since

x3 < tD < x4. Interval censoring indicates that the interval in which the event occurred is

known (dotted line), but the precise time of the event, symbolized by the clock, remains uncertain.

Interval-censoring can be described as:

x3 < ti < x4

Patient E experienced the event of interest during the study period, thus it is not considered

censored.
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Figure 2.2: The figure illustrates the timeline for each patient from study start (x1) to end (x2),
highlighting the point at which the event is either known, unknown, censored, or the event occurred.
Patients A and B are still in the study at the end (x2) and are right-censored. Patient C entered
the study (x1) after the event and is therefore left censored. Patient D is interval censored with
the event occurring between two observation points (x3 and x4). Lastly, patient E is not censored
since the event occurred within the study period. The figure is inspired by Leboo et al. (2023)83.

This thesis will consider right-censored data, meaning it covers situations where the event of interest

hasn’t happened by the study’s end.75,124,154

2.2.2 Survival Function

In survival analysis, the emphasis is not on predicting the exact timing of an event, but rather on

forecasting a function, specifically the survival or hazard function.54,155,165 The survival function

S(t) returns the probability of survival P (T > t) past time t, and can be expressed as follows:

S(t) = P (T > t) (2.1)

T represents a random variable that signifies an individual’s survival time, quantifying the duration

until a particular event of interest.75,155 It captures the uncertainty and variability in the survival

times across individuals. Given that T is defined in terms of time, it can only take non-negative

values, meaning T can be any number that is zero or greater. On the other hand, t refers to

a specific point in time within the study period. It is used to evaluate the survival function,

S(t), indicating the probability that an individual´s survival time T exceeds this specific time t.

Essentially, t is the moment up to which survival is being assessed.

For instance, when assessing the probability of a patient surviving beyond 2 years following

cancer treatment, we set t to 2.75,155 This allows us to investigate the value of the survival curve

at T = 2, represents the probability that an individual survives longer than 2 years, t = 2. This

probability is expressed as S(2) = P (T > 2), and as illustrated in Figure 2.3, S(2) is determined

to be 0.8. The survival function is a monotonically decreasing function of t, indicating that the

probability of survival either decreases or remains the same over time. As the time variable moves

from 0 towards infinity, the probability of survival decreases from 1 to 0.
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Figure 2.3: Example of a survival curve showing survival probabilities over time. The shaded steps
indicate changes in survival due to events. To estimate the probability that an individual survives
beyond 2 years, consider S(2) = P (T > 2), which equals 0.8.

2.2.3 Hazard Function

The hazard function h(t) is an important quantitative term in survival analysis. It represents the

immediate risk of an event happening per unit of time, assuming the individual has remained alive

up to that point. h(t) ”gives the instantaneous potential at time t for getting an event, given

survival up to time t”.75 The hazard function primarily concentrates on the occurrence of failure,

or the event happening. Therefore, it can be viewed as providing information that complements

what is offered by the survival function, essentially showing the reverse perspective. The hazard

function is mathematically represented as follows:

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
(2.2)

Eq. (2.2) defines the hazard function, h(t), as the limit of the probability that the event of

interest occurs in a small interval [t, t+∆t], given that the individual has survived until t, divided

by the length of the interval ∆t, as ∆t approaches 0.75,155 The hazard function is also called

conditional failure rate or instantaneous failure rate.165

Since we obtain a probability per unit of time, the hazard function is a rate.75 The hazard

function will never be negative and has no upper bound, so it ranges between 0 and infinity. If

the hazards are high, that indicates a greater immediate risk of the event occurring, suggesting a

shorter expected duration until the event takes place. For example, in a clinical trial measuring

patient survival after treatment, the hazard function represents the immediate risk of a patient

dying at any moment, assuming they have survived up until that point.
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2.2.4 Relationships Between Hazard and Survival Function

The survival and hazard functions are closely related, allowing the derivation of one from the

knowledge of the other. The connection between S(t) and h(t) can be equivalently demonstrated

through two equations presented in Eqs. (2.3) and (2.4):75

S(t) = exp

[
−
∫ t

0

h(u) du

]
(2.3)

h(t) = −
[
dS(t)/dt

S(t)

]
(2.4)

Eq. (2.3) shows that the survival function S(t), which provides the probability of an event not

occurring until after a specific time t, can be calculated as the cumulative hazard function (CHF).

This CHF, H(t), is calculated using the integral
∫ t

0
h(u).75 It reflects the total risk accumulated

up to time t, which, when negatively exponentiated, yields the survival probability. This indicates

how survival decreases as accumulated risk increases over time.

Figure 2.4 illustrates the relationships between the various functions. H(t) and its relationships

with h(t) and S(t) has been detailed earlier.75,155The probability density function (PDF), denoted

by f(t), provides the probability per unit time of the event at time t. The PDF is derived from

h(t) multiplied by S(t). The cumulative distribution function CDF , denoted by F (t), represents

the probability that the event has occurred by or before the duration t. It is the integral of the

PDF from 0 to t,
∫ t

0
f(s)ds. S(t) is the probability that the event has not occurred by time t.

From the relationships shown in Figure 2.4, S(t) can be expressed as 1 − F (t), which is 1 minus

CDF . It is straightforward to convert back and forth between all the different functions.

Figure 2.4: A diagram of the mathematical relationships between the Survival Function, Hazard
Function, Cumulative Hazard Function (CHF), Probability Density Function (PDF), and Cumu-
lative Distribution Function (CDF). The diagram is inspired by155.
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2.3 Survival Analysis Models

2.3.1 Cox Proportional Hazard

While the Cox proportional hazards (Cox PH) is not strictly a machine learning algorithm, it is a

crucial statistical tool used in survival analysis to evaluate the impact of variables on the timing

of events. The Cox PH model stands as the foremost and most popular mathematical method for

calculating survival curves, while simultaneously accounting for multiple explanatory variables.75

It is used to investigate the effect of several variables on the time to an event of interest. The model

is particularly valued for its capability to handle censored data, a common challenge in survival

analysis, although it is worth noting that other survival analysis methods also manage censored

data effectively. The model defines the hazard function h(t|X) as the product of a time-dependent

baseline hazard function, h0(t), and the exponential of a linear combination of time-independent

covariates X. Recall that m represents the number of covariates:

h(t|X) = h0(t) exp (

m∑
i=1

βiXi) (2.5)

As seen, the baseline hazard function h0(t) represents the hazard rate for an individual with all

covariate values set to zero.54,75 It is a function of time t but does not involve the covariates directly,

allowing flexibility in how the hazard changes over time. exp (
∑m

i=1 βiXi) is the exponential e of

the linear sum of βiXi, where the sum is over the m explanatory X variables. Here βi is the

coefficient that quantifies the change in the hazard (risk) of the event occurring for a one-unit

increase in the covariate, also called the hazard ratio (HR).75 For instance, if a study reports an

HR of 1.03 for age, that means that each additional year of age increases the event´s risk by 3%.30

This exponential part adjusts the hazard based on the covariate values and is always non-negative.

This is because when all the X´s are equal to zero, the equation reduces to the baseline hazard

function that is never negative. Therefore, the hazard function will always be positive.75 Given

that X1 is denoted the set of covariates for one individual and X2 denotes the set of covariates

for another individual, and given that we have maximum likelihood estimates denoted by βi, the

hazard ratio (HR) can be expressed as:

HR =
h(t,X1)

h(t,X2)
=

h0(t) exp
(∑m

i=1 βiXi
1
)

h0(t) exp
(∑m

i=1 βiXi
2
) (2.6)

In Eq. (2.6), the baseline hazards cancel out, allowing the expression to be simplified as:

HR = exp

(
m∑
i=1

βi(X
1
i −X2

i )

)
(2.7)

One of the Cox PH key features is the assumption of proportional hazards, namely that the

hazard ratio between two individuals with different covariate values remains constant over time.54,75

Additionally, the model’s semiparametric nature, characterized by its unspecified baseline hazard

function h0(t), allows for great flexibility and robustness in analysis without the need to explicitly

define the shape of the hazard over time. This unique combination of covariates makes the Cox

PH model a versatile and widely used tool in survival analysis, applicable across various fields,

especially in medical research where understanding the impact of covariates on survival time is

crucial.

The Cox PH model, while widely used, does face limitations, particularly in handling high-

dimensional datasets. Cox PH model struggles because it is not naturally equipped to handle

situations where the number of variables is very large compared to the number of observations,

which can lead to difficulties in model estimation and stability.14,26,46 Another challenge with

Cox PH models is their use of group sparse regularization, a technique that reduces the number

of variables to help deal with high-dimensional data. Unfortunately, this can lead to excessive
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smoothing or shrinkage, which can negatively impact the model’s predictive performance because

it may overly simplify the model and miss important predictors.

When using the Cox PH model, it is important to fit the model with the correct parameters

to accurately interpret the impact of covariates on survival times. This fitting process depends on

the method of maximum likelihood estimation (MLE), which, in the context of the Cox PH model,

is called a ”partial” likelihood.74,75,90 That is because the likelihood for the Cox model does not

consider probabilities for all samples. Partial likelihood is also unique because it is based on the

order of events rather than their distribution, focusing just on the probabilities for subjects who

experience events while excluding those who are censored. The partial likelihood approach allows

for the estimation of regression coefficients without the need to fully specify the baseline hazard

function h0(t).

Denoting n as the number of samples and δ as the event (1=observed, 0=unobserved), then D

is the index set of observed events D = {i|δ = 1} ⊆ {1, .., n}.12,15,75,54 Next, xi is the covariate

vector for the i-th individual who experienced an event, and β is the vector of coefficients for each

covariate that are to be estimated. Finally, we use the notation that R(ti) = {j|tj ≥ t}, for any

t ≥ 0, as the risk set at time t. The risk set includes all samples who have not yet experienced the

event or been censored up to and including time ti, making them at risk of the event occurring

at that time. This risk set decreases in size as the observation time increases. xj is the covariate

vector for the j-th individual, which depends on the risk set. With these notations, denoting Lp(β)

as the partial likelihood is defined as follows:

Lp(β) =

D∏
i=1

exp(βTxi)∑
j∈R(ti)

exp(βTxj)
(2.8)

The partial likelihood, Lp(β), in Eq. (2.8), for the Cox PH model, represents a product of condi-

tional probabilities for observed events, given their occurrence, and also factoring the probabilities

of censoring for those samples that have not yet experienced the event. xi and xj are not to be

confused with a specific variable in X, it is the rows of sample i and j. For the Cox model, after

forming the partial likelihood function for a specific model, the next step involves maximizing its

natural logarithm, log(Lp(β)), to achieve the maximization of the overall likelihood function. This

is done by taking the partial derivatives of the log of Lp(β) with respect to each parameter in the

model, illustrated in Eq. (2.9):54,75

∂ log(Lp(β))

∂βi
= 0 (2.9)

i = 1, ...,m

Then log(Lp(β)) is defined as:54,74

log(Lp(β)) =

D∑
i=1

βTxi − log

 ∑
j∈R(ti)

exp(βTxj)

 (2.10)
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2.3.2 Penalized Cox Model (Coxnet)

The Cox PH model, known for making hazard ratios understandable, struggles with high dimen-

sional data across many features due to feature correlation causing singular matrices, which impedes

accurate coefficient estimation.117,147,184 Coxnet, enhancing the Cox model, integrates regulariza-

tion methods like LASSO (L1 Regularization), Ridge (L2 Regularization), or their combination

(Elastic Net Regularization), offering a refined approach to manage complex and high-dimensional

datasets by mitigating overfitting and enhancing model stability and performance.117

Ridge (L2 Regularization)

Introducing an L2 penalty to the Cox PH model helps mitigate issues with singularity by en-

couraging coefficient shrinkage towards zero.117,147,184 This L2-penalty term will be added to the

likelihood function in Eq. (2.8), and the modified objective function becomes:

argmax
β

logLp(β)−
α

2

m∑
j=1

β2
j

 (2.11)

In Eq. (2.11), the symbol m denotes the number of features included in the model and β rep-

resents the vector of coefficients for the m features, β1, ..., βm. The function logL(β) represents

the log-likelihood, while α ≥ 0 is the regularization parameter that controls the magnitude of the

L2 penalty and, therefore, also controls the amount of shrinkage.9,117,147 The L2 penalty term
α
2

∑m
j=1 β

2
j sums the squares of the coefficient values, which contributes to the overall cost function

by increasing the penalty as the magnitude of the coefficients increases. This penalization encour-

ages the optimization algorithm to select smaller or more regularized coefficient values, effectively

shrinking them towards zero to reduce model complexity and prevent overfitting. The goal is to find

coefficient values that optimize the penalized log-likelihood, balancing between model performance

and complexity. The penalty ensures that coefficient weights never reach zero, thus preventing the

solution from becoming sparse. This regularization process is crucial for preventing overfitting,

which is a common concern in any modeling scenario, regardless of whether the number of features

(m) is greater than or less than the number of samples (n). However, it becomes particularly vital

when m exceeds n (m > n) or when m is much greater than n (m ≫ n), as overfitting can occur

more easily under these conditions. However, ridge regression is particularly effective in managing

correlated features. In cases where there is high correlation between features, ridge regression tends

to distribute coefficient weights among them in a way that mitigates multicollinearity issues.147

We obtain the standard unpenalized Cox model by setting the log parameter α to zero.117

LASSO (L1 Regularization)

The L1-Regualization, also called the LASSO penalty, stands for Least Absolute Shrinkage And

Selector Operator.9,117,147,184 The primary distinction between Ridge and LASSO lies in how they

handle coefficients; while Ridge shrinks coefficients towards zero, LASSO has the capacity to set

many coefficients to exactly zero, depending on the strength of the penalty, effectively excluding

them from the model. While this method is frequently advantageous, it can lead to issues. For

instance, when two features exhibit high correlation, LASSO may favour one and completely disre-

gard the other.147 While this method often improves model performance by reducing complexity,

it can create challenges in contexts where understanding the influence of each feature is crucial. As

a result, researchers may overlook critical insights associated with the excluded features. The L1-

penalty can be added to the likelihood function of Eq. (2.8), and the modified objective function

is:117

argmax
β

logLp(β) − α

m∑
j=1

|βj |

 (2.12)
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In the optimization problem defined in Eq. (2.12), the term argmaxβ denote the values of the

coefficient β that maximizes the objective function.147 The function logL(β) represents the log-

likelihood, which assesses the fit of the model with parameters β to the observed data. The sub-

tracted term, −α
∑m

j=1 |βj |, introduces the L1 regularization, also known as the LASSO penalty.

Here, α is the regularization strength, a positive scalar that controls the strength of the penalty

applied to the coefficients. A high value of α leads to stronger regularization, encouraging greater

sparsity by setting more coefficients to exactly zero. Conversely, decreasing α results in less pe-

nalization, allowing more features to remain in the model but potentially increasing the risk of

overfitting if α is too low. The sum
∑m

j=1 |βj | aggregates the absolute values of the regression

coefficients, promoting sparsity. This sparsity is crucial to LASSO’s feature selection and regu-

larization ability, enhancing the model’s prediction performance and interpretability, especially in

high-dimensional data contexts.117

Elastic Net

The Elastic penalty is a regularization technique that combines the strength of both LASSO (L1)

and Ridge (L2) penalties.9,147,117,184 It is designed to feature select like LASSO while effectively

managing the influence of highly correlated features, similar to Ridge. By combining these two

approaches, the Elastic Net overcomes the limitations of each, encouraging both sparsity and

stability in the coefficients, which is particularly beneficial in models with numerous features.

Incorporating the Elastic Net penalty into the optimization of the likelihood function, we redefine

the problem as follows:117

argmax
β

logLp(β)− α

r

m∑
j=1

|βj |+
1− r

2

m∑
j=1

β2
j

 (2.13)

Eq. (2.13) merges L1 regularization from Eq. (2.12) and L2 regularization from (2.11), with the

parameter r blending the regularization balance between these two.147,117 The model transitions

from Ridge to LASSO behavior as r varies from 0 to 1. If r is near 0, the Elastic Net leans towards

a Ridge-like regularization, favoring coefficient shrinkage while managing multicollinearity. When

r is near 1, the behavior aligns more with LASSO, favoring sparsity and potentially setting some

coefficients to zero. This adaptability allows the Elastic Net to combine feature selection and

regularization by tuning the model based on the value of r.

12



2.3.3 Random Survival Forest

Random Survival Forest (RSF) is a nonparametric and advanced ensemble learning method that

leverages base learners, such as survival trees, to analyze right-censored survival data.60,98 By

incorporating randomization in selecting data samples and features for tree construction, RSF

enhances predictive performance from these base learners. This approach significantly improves

traditional ensemble techniques, making RSF a powerful tool for survival data analysis.

RSF operates as a composite estimator, as shown in Figure 2.5, constructing s survival trees

from different subsets of the dataset to bolster predictive performance and reduce overfitting.61,60

The number of survival trees s the model will grow is determined by the hyperparameter n estimators.

These samples in each survival tree are drawn with replacement through bootstrap sampling.61

As shown in Figure 2.5, the survival trees are grown by randomly selecting a subset of g fea-

tures at each node. The optimal split is determined using the log-rank splitting rule, focusing

on the feature that maximizes survival differences across parent nodes while ensuring each child

node has no fewer than a specified number of samples. This is determined by the hyperparameter

min samples leaf . To finalize the model, we estimate an ensemble cumulative hazard function

(Ensemble CHF) by first computing the cumulative hazard function (CHF) as discussed in Section

2.2.4, within every survival tree. Then, we take the average of these CHF survival trees up to the

number of n survival trees. As shown in the Figure 2.5, to further refine the model´s performance,

we assess the ensemble´s prediction error using out-of-bag (OOB) data, data not used during the

survival tree´s training. This prediction error is critical to the model´s ability to make precise and

broadly applicable predictions. Through this comprehensive process, the model is fine-tuned for

optimal performance and generalizability.

Figure 2.5: Overview of the operational mechanics behind the RSF algorithm, depicting the process
from data input through bootstrap sampling to the aggregation of cumulative hazard functions
(CHF) from multiple survival trees into an ensemble CHF. The figure illustrates an example with
two parent nodes at a depth of two, though in practice, each survival tree can have a larger depth.
CHF refers to the cumulative hazard function, which estimates the aggregate risk of an event
occurring over time within each tree. The figure is inspired by Chen et al. (2019)21.

Whenever a decision needs to be made at a parent node based on a specific feature x, we evaluate

the potential splits of the form x ≤ c and x > c, where c represents a threshold value for the feature

x.61 This threshold c is chosen to best separate the data into two child nodes, one left and one
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right child node, each with its own subset of survival data. The split will maximize the survival

differences across these child nodes. As illustrated in Figure 2.5, this process yields two subsets

of survival data located at child nodes 1 and 2 for parent node 1. Similarly, for parent node 2,

additional subsets of survival data are illustrated, corresponding to child nodes 3 and 4.

Let t1 < t2 < ... < tk be the distinct event times in the parent node p, and let an individual i

with an event in child node j be defined as i = 1, . . . , n and j = 1, 2. The risk set for the parent

node is defined as R(t(f)), and for the left and right child nodes, the risk sets, R1(t(f)) and R2(t(f))

are defined as:61

R1(t(f)) = #{ti ≥ t(f), xi ≤ c} = n1 (2.14)

R2(t(f)) = #{ti ≥ t(f), xi > c} = n2 (2.15)

R(t(f)) = R1(t(f)) +R2(t(f)) = n1 + n2 = n (2.16)

where t(f) represents the time at which the number of samples in the child node, either alive or

having an event, is determined. Further is the value of xi for individual i.

The quality of a split within the survival tree is evaluated using the log-rank splitting rule.61

Eqs. (2.14), (2.15), and (2.16) are applied to calculate the log-rank split, which is pivotal for

determining the most informative split. The expression dj(t(f)) denotes the number of individuals

experiencing an event at time t(f) within child node j. The k represents the total number of

individuals who have experienced an event in the parent node at time t(f). The computation of

the log-rank statistic, L(x, c), is defined as:

L(x, c) =

∑k
f=1

(
d1(t(f))−R1(t(f))

d(t(f))

R(t(f)
)
)

√∑k
f=1

R1(t(f))

R(t(f))

(
1− R1(t(f))

R(t(f))

)(
R(t(f))−d(t(f))

R(t(f))−1

)
d(t(f))

(2.17)

From Eq. (2.17), the magnitude of |L(x, c)| quantifies the degree of separation achieved by the

node. A higher value of |L(x, c)| indicates a greater difference between the two nodes, signifying

a more effective split.61 So to find the best split at a node, find the feature x∗ and split value c∗

such that |L(x∗, c∗)| ≥ |L(x, c)|∀{x, c}. After n estimators survival trees in the RSF have been

constructed, as shown in Figure 2.5, the model computes the CHF for each survival tree. The CHF

for each survival tree is determined by adding up the hazard contributions from each terminal node

(the nodes at the bottom of each survival tree), which are child nodes in Figure 2.5. The CHF for

a specific terminal node j, denoted by Ĥj(t), is calculated by summing up the ratio of a number

of individuals with an event dj(t(f)) to the risk set Rj(t(f)) at the ordered failure times for child

node tj,(f):

Ĥj(t) =
∑

tj,(f)≤t

dj(t(f))

Rj(t(f))
(2.18)

Each survival tree provides a sequence of estimates Ĥj(t) equal to the number of terminal nodes

within the respective survival tree. This implies that each survival tree within the ensemble

contributes its own set of CHF for each terminal node.

To compute the CHF for an individual i with features xi, Ĥ(t|xi), we send xi down the survival

tree and toward the terminal node. The CHF at the terminal node j for individual i is:61

Ĥ(t|xi) = Ĥj(t), if xi ∈ j. (2.19)

Ĥ(t|xi) in Eq. (2.19) is computed for all individuals i in one given survival tree. Since this estimate

represents the cumulative hazard in one terminal node, averaging these CHF across all s survival

tree will give the ensemble cumulative hazard estimate, as shown as ensemble CHF in the Figure

2.5. The ensemble CHF, Ĥe(t|xi), over all s survival tree is:61
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Ĥe(t|xi) =
1

n

n∑
b=1

Ĥb(t|xi). (2.20)

Where Ĥb(t|xi) denotes the CHF from Eq. (2.19) for tree b = 1, ..., s. To determine the out-of-bag

(OOB) ensemble cumulative hazard estimate Ĥ∗
e (t|xi) for an individual i, as indicated by ”OOB”

in Figure (2.5), the following approach is utilized:61

Ĥ∗
e (t|xi) =

∑n
b=1 Ii,bĤb(t|xi)∑n

b=1 Ii,b
(2.21)

In Eq. (2.21), the calculation of the estimator is specifically performed for bootstrap samples

corresponding to individual i, provided that i is an Out-Of-Bag (OOB) sample in the bootstrap

sample. The indicator variable Ii,b equals one if individual i is OOB sample for survival tree b,

and equals zero otherwise as shown in Eq. (2.22):61

Ii,b =

1 if individual i is an OOB sample for tree b,

0 otherwise.
(2.22)

Calculating the OOB ensemble in Eq. 2.21 offers a measure of the model´s performance based on

samples not included in the training set for each tree. This method ensures that the performance

metric reflects the model’s ability to generalize to new unseen data, as the OOB set varies for each

tree within the ensemble.

The prediction error shown as the last step in Figure 2.5 can be calculated by measuring

differences between the ensemble of OOB CHF and the ensemble CHF.61 This comparison can be

quantified using different metrics, such as the C-index and the Brier score, to determine prediction

errors

We can also find the ensemble survival function in Eq. (2.23), Ŝe(t|xi), by calculating it from

ensemble cumulative hazard function (CHF) from Eq. (2.20):98

Ŝe(t|xi) = exp

{
−1

n

n∑
b=1

Ĥe(t|xi)

}
. (2.23)
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2.3.4 Gradient Boosting

Gradient boosting is an ensemble technique, like Random Survival Forest discussed in Section

2.3.3 that combines prediction of multiple simple models, known as base learners, to produce a

more robust overall prediction.56,116 In contrast to RSF, which constructs numerous survival trees

independently and averages their predictions, gradient boosting strategically improves predictions

iteratively, focusing on optimizing the loss function for one base learner at a time in a method

known as greedy stagewise.35 Each additional base learner is specifically designed to correct the

residuals errors from the combined predictions of the previous base learners, thus ”boosting” the

model´s predictive performance.35,56 The cumulative prediction of the gradient boosting model is

formulated by iteratively adding the contribution of each base learner k ∈ {1, . . . ,K}. The overall

prediction function f(x) for the gradient boosting model is the sum of weighted base learner

function βkg(x; θk):

f(x) =

K∑
k=1

βkg(x; θk) (2.24)

In Eq. (2.24), βk ∈ R represents the weight of the k-th base learner in the ensemble. The term

g(x; θk) refers to the base learner itself, which influenced by a set of parameters θ which are tuned

during the learning process to minimize the model´s loss function on the training data.116,56 These

parameters vary across the individual base learner k, tailoring each one to target different aspects of

the error in the prediction task. As new base learners are added in the Eq. (2.24), their weights βk

are adjusted to minimize the model’s overall prediction error. This process continues iteratively,

with each new base learner being added to complement the existing ensemble and improve the

model’s prediction.

Different gradient boosting models can be employed, tailored to specific loss function and

base learner. In our study, we use Component-Wise Gradient Boosting, which uses component-

wise least squares as its base learner.56,116 ”Component-wise” means that each base learner fits a

regression model to predict the target variable based on a single feature at a time. This model

will have a linear model as the final model. Scikit-survival’s implementation defaults to optimizing

the partial likelihood loss of the Cox Proportional Hazards model (Section 2.3.1) for Component-

Wise Gradient Boosting. Additionally, in the Scikit-survival implementation, three important

hyperparameters are n estimator, learning rate, and subsample.56,116,134 The n estimator similar

to its use in RSF (Section 2.3.3), specifies the number of boosting stages, which corresponds to the

number of survival trees. The learning rate determines how much each survival tree influences the

final model. Lower learning rate requires a higher number of estimators (n estimator) to model

convergence but improve the model´s robustness to overfitting. In contrast, a higher learning rate

can speed up the training, but it requires careful adjustment of the number of trees to prevent

underfitting. Lastly, the subsample hyperparameter defines the proportion of samples to be used

for fitting the individual base learners. subsample with lower than 1 results in Stochastic Gradient

Boosting (SGB).36 This sets each base learner to train on a random subset of data rather than the

full dataset, introducing randomness. This process also reduces the model variance and increases

bias.
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2.4 Evaluation of Models

2.4.1 Cross Validation

Measuring a predictive model’s performance on unseen data is crucial. Cross-validation is a key

technique that splits the dataset into separate parts, known as folds, for training and testing,

ensuring the model performs well not just on training data but also on new unseen data.64 By

repeatedly training and testing the model across these different folds, cross-validation gives a

complete understanding of the model´s expected performance, helping to avoid overfitting and

select the most suitable model.

K-fold Cross-Validation

K-fold Cross-Validation, often referred to as k-fold CV, is an approach that randomly divides the

dataset into k folds of approximately equal size.64,137 As shown in Figure 2.6 the k is set to 5.

The model is then trained on k − 1 folds, denoted as the orange area in Figure 2.6 while using

the remaining fold as the test set, denoted as blue in Figure 2.6 to evaluate performance. The

process is iterated k times, with each k used as the test set exactly once. The results from each

fold are averaged to produce a single performance metric. This approach enables efficient data uti-

lization, ensuring that each observation is used for training and testing, providing a comprehensive

assessment of the model´s performance.

Figure 2.6: Overview of K-fold cross-validation process using k = 5. This diagram illustrates how
the dataset is divided into five equal parts (folds), each serving as the test set once. For each
iteration, one fold is used for testing (shown in blue), and the remaining four folds are used for
training (orange). This process is repeated five times, with each fold used as the test set exactly
once, ensuring that every data point is used for both training and testing exactly once

Stratified K-fold Cross-Validation

Stratified K-fold, as shown in Figure 2.7 is a variation of K-fold shown in Figure 2.6 ensures that

the distribution of each target class is consistent across all train and test sets.76,119 This method is

useful for classification problems with imbalanced distributions of the target classes, as it maintains

the relative class frequencies, thereby reducing evaluation bias.
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Figure 2.7: This figure demonstrates the Stratified K-fold cross-validation process using k = 5
folds. Each split represents how the dataset is divided into training (orange) and testing (blue)
segments. This method ensures that the proportion of each class (censored and event occurred) is
consistent across all train and test sets, reflecting the overall distribution in the complete dataset.

Repeated Stratified K-fold Cross-Validation

Repeated Stratified K-fold cross-validation, denoted as RepeatedStratifiedKfold, as shown in Figure

2.8, extends this concept by repeating the Stratified K-fold process n times, resulting in multiple

sets of k-folds.76,164 In this thesis, we set k to 5, meaning the data is split into five folds and

repeated the process five times, resulting in a total of 25 splits.

Figure 2.8: Repeated Stratified K-fold Overview. This figure illustrates the Repeated Stratified
K-fold cross-validation process with k = 5 folds and 5 repetitions, resulting in a total of 25 splits.
Each split shows how the dataset is divided into training (orange) and testing (blue) segments,
ensuring that every class is proportionally represented in each fold.
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2.4.2 Performance Metric: Harrel’s C-index

The most frequently used evaluation metric in survival analysis is Harrell´s concordance index,

commonly referred to as the C-index.47,114,155 It evaluates the predictive performance of models

by measuring the rank correlation between predicted risks and actual event times and assessing

the performance of the time ranking predictions. The C-index assesses whether the model can

correctly rank individuals according to their risk of an event. Importantly, the C-index supports

right censoring.This aspect is crucial for survival analysis, as it allows for the accurate evaluation

of the survival models.3

The C-index, closely related to Kendall’s τ , calculates the proportion of all evaluable pairs of

individauls for which the predicted and observed outcomes are in agreement.114 If the predictions

align with the actual order of events, meaning higher risk scores are associated with earlier events,

the pair is considered concordant; if not, it is discordant. Besides these, a third category is tied

pairs, which occurs when the predicted risks for a pair of patients are identical.47,49,114,141 In such

cases, the C-index calculation considers tied pairs by contributing a value of 0.5 to the count of

concordant pairs instead of 1. In the calculation of concordance, tied pairs are excluded because

they do not improve the ranking quality of the samples. The metric ranges from 0 to 1, with

1 indicating perfect concordance, 0 indicating perfect anti-concordance, and 0.5 representing the

expected outcome of random predictions.

The C-index extends the concept of the Area Under the Receiver Operating Characteristic

(ROC) Curve, also known as AUC, by incorporating adjustments for censoring, thereby quantifying

the performance of a binary classifier.64,121

To calculate the estimated risk score η̂i by using the estimated model coefficients β̂ in the Cox

model, we use the Eq. (2.25).64

η̂i = β̂1xi1 + . . .+ β̂mxim (2.25)

i = 1, ..., n

In Eq. (2.25), the risk score, η̂i, is calculated for each sample i, based on a linear combination of

the m features.64

The C-index (Eq. (2.26)) calculates the proportion of sample pairs, i and i′, where the predic-

tions and outcomes are in agreement. This means that the model predicts a higher risk score for the

i′-th sample compared to the i-th sample. This distinction is crucial for calculating the C-index,

defined as the ratio of concordant pairs, η̂i′ > η̂i and ti > ti′ to the total possible pairs. This ratio

serves as a metric for ranking individual survival times based on their risk assessments.64,3

C =

∑
i,i′:ti>ti′

I(η̂i′ > η̂i)di′∑
i,i′:ti>ti′

di′
, di ∈ {0, 1} (2.26)

From the Eq. (2.26), it is expected that the survival time for the i′-th sample, ti′ would be shorter

than that for the i-th sample, ti.
48,49,64,121 Further, di represents the event indicator for the i-th

sample. It is a binary indicator, where di′ = 1 indicates that the event of interest, such as death

or failure, has occurred for that individual Conversely, if di′ = 0, it indicates that the event has

not been observed for the i-th individual within the study period; such cases are referred to as

censored observations.

The indicator variable I(η̂i′ > η̂i) equals one if η̂i′ > η̂i, and equals zero otherwise as shown in

Eq. (2.27):64

I(η̂i′ > η̂i) =

1 if η̂i′ > η̂i

0 otherwise
(2.27)
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Limitations

Harrell´s concordance index is affected by the amount of censoring in the data. With high levels

of censoring, Harrell´s concordance index may be overly optimistic, potentially leading to an

overestimation of model performance.48,114 When there are numerous censored data points, Uno’s

C-index is an alternative metric to Harrell’s C-index. According to Hartman et al. (2023)52, the

C-index heavily depends on the underlying risk differences of the comparable pairs available in

the dataset. Additionally, the C-index is unsuitable for evaluating models that predict specific-

duration events because it assesses the order of event times rather than whether the events happen

by a scheduled time.10 Therefore, it may rate a misspecified model higher than it actually is.

2.4.3 Performance Metric: Brier Score

The Brier score is another popular metric used in survival analysis to evaluate the accuracy of

probabilistic predictions, particularly in the context of forecasting binary outcomes.38,120,140 It

is calculated as the mean squared difference between predicted probabilities p̂i and the actual

outcomes yi, where p̂i is the predicted probabiltity of a class or event for the i-th sample, and yi

is the binary actual outcome, 0 or 1, for the i-the sample. The equation for the Brier score (BS)

is given by:

BS =
1

n

n∑
i=1

(p̂i − yi)
2 (2.28)

Predictive models demonstrating greater performance by generating probabilities p̂i that closely

match the true events yi, will result in a lower Brier Score (BS). In contrast, if a model’s proba-

bilities p̂i are further from the true events yi, the BS will be higher. The Brier score ranges from

0 to 1, where 0 is the best possible value.38,47,120

Notably, Eq. (2.28), illustrates the simplicity of calculating the Brier score when all events of

interest are fully observed, that is, in the absence of censoring. In this context, the time-dependent

Brier score, BS(t), operates under the same fundamental principles as the original Brier score but

is extended to evaluate feature at a specific time point t for all samples 1, ..., n. The time-dependent

Brier score, BS(t), in the absence of right-censoring can be calculated as:120

BS(t) =
1

n

n∑
i=1

(1ti≥t − Ŝ(t, xi))
2 (2.29)

From Eq. (2.29), Ŝ(t, xi) is the estimated survival probability at time t for the i-th observation

with covariates xi. The 1ti≥t is an indicator function that equals 1 if the events time ti for the i-th

observation is greater than or equal to the time point t, and 0 otherwise, given by:

1ti≥t =

1 if ti ≥ t

0 otherwise
(2.30)

If the patient is not alive at time t, Eq. 2.29 results in the survival is considered to be zero, resulting

in the term (0 − Ŝ(t, xi))
2. If the patient is alive at time t, Eq. 2.29 turns into the survival is

considered to be one, leading to the term (1− Ŝ(t, xi))
2.

However, in survival analysis and other contexts such as clinical trials or reliability engineering

where right-censoring is present, we have to extend the time-dependent Brier score to account for

this. The time-dependent Brier score for censored data at time t, denoted as BSC(t), is a function

that includes the predicted survival function for individual i, Ŝ(t, xi), the event times ti, the

censoring indicators δi and the estimated probabilities of censoring Ĝ(t). The equation computes

a weighted average of the squared differences between observed survival statuses and predicted

survival probabilities, where the weights 1/Ĝ are the inverse probabilities of censoring.38,120,140
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BSc(t) =
1

n

n∑
i=1

[
(0− Ŝ(t, xi))

2 · 1ti≤t,δi=1

Ĝ(ti)
+

(1− Ŝ(t, xi))
2 · 1ti>t

Ĝ(t)

]
(2.31)

The denominators Ĝ(t) and Ĝ(ti) adjust these squared errors for censoring, where Ĝ(t) is used to

normalize errors for the entire sample up to time t, and Ĝ(ti) specifically adjusts errors for indi-

viduals censored at their respective times ti, ensuring the calculations reflect the varied censoring

times across the sample. In the left term in the Eq. (2.31), if an individual is censored before time

t, 1ti≤t,δi=1, their contribution to the Brier score is weighted by the probability of being uncensored

until their censoring time ti. For the right term in Eq. (2.31), if the individual is not censored

by time t, 1ti>t, the weighting is done with the probability of being uncensored at time t. The

second term of Eq. (2.31) considers only uncensored individuals, while the first term accounts for

all individuals whose event time ti exceeds the specific time point t.38

The indicator function, 1ti≤t,δi=1, described in Eq. (2.32), takes the value 1 if two conditions

are met simultaneously, namely that the event time ti for individual i is less than or equal to a

specific time t, and the censoring indicator δi equals 1, indicating that the event of interest has

occurred. Otherwise, if neither condition is satisfied, the indicator function takes the value 0.38

1ti≤t,δi=1 =

1 if ti ≤ t and δi = 1

0 otherwise
(2.32)

The indicator function, 1ti>t, described in Eq. (2.33), equals 1 if the event time ti for an individual

i is greater than a specific time t. If the event time ti is not greater than t, the function takes the

value 0. This function is typically used to indicate whether an event has not occurred by time t

and is given by:38

1ti>t =

1 if ti > t

0 otherwise
(2.33)

Integrated Brier Score

The integrated Brier score (IBS) is an extension of the Brier score to measure a model’s performance

over a range of time, providing an overall picture of its predictive performance throughout the entire

period observed.38,47,120,142 tmax is the maximum event time, and the integrated time-dependent

Brier score, IBS(tmax), over the interval [t1; tmax] is defined as:

IBS(tmax) =
1

tmax − t1

∫ tmax

t1

BSC(t) dt (2.34)

By using the integrated Brier score, we can effectively compare the predictive performance of

models across the entire duration for which survival data is available, including adjustments for

censoring up to the time of censoring.38
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2.5 Data Preprocessing

2.5.1 Encoding Variables

In predictive modelling, the encoding of categorical covariates is a crucial step in preprocessing

data. It involves converting categorical data into a numerical format that can be handled by

machine learning algorithms. The need for encoding arises because humans can interpret text and

labels, but most machine learning models require numerical input to perform calculations.126

Categorical data typically fall into one of two categories: nominal or ordinal.53 Nominal

data consists of discrete categories without any inherent order, such as different colours. Ordinal

data, however, have a clear, ordered relationship between values, like rankings or levels. This

often requires a manual definition of the mapping, as it is not possible to inherently determine the

correct order of the labels.

It is traditional to employ one-hot encoding for nominal variables, which generates a set of

new dummy variables for each unique value in the nominal variable column.138 While this method

introduces multicollinearity due to the creation of highly correlated features, making matrices

computationally challenging to invert and potentially leading to unstable estimates, there are ways

to handle such issues.126 Simply removing one feature column from the one-hot encoded array can

significantly reduce the correlation among variables, mitigating the issue of multicollinearity.

To encode ordinal variables, creating an integer representation of the categories is conven-

tional.168 This is because it is possible to rank the levels of the categorical variable, and appropriate

ranking should be obtained from domain knowledge. This strategy assumes that the progression

or distance between the category levels is the same. Otherwise, an evenly-spaced integer encoding

will be biased.

Target Encoding

When a nominal variable has a large number of categories, one-hot encoding can drastically increase

the dataset´s dimensionality. In contrast, target encoding offers a modern solution that efficiently

handles these variables without increasing the dataset’s variable dimensions.109 In its simplest

implementation, it works by replacing the categorical levels with the mean of a target variable y of

their respective levels. This approach assigns each category a value based on the average outcome

of the target variable, thereby embedding the variables with information directly relevant to the

model’s predictions, which can improve performance.94,106

To clarify this approach, we have to differentiate between a numerical and categorical target

variable. For example, it is not possible by taking the mean of categories. We discuss three

implementations: numerical, categorical binary, and categorical multiclass target variables.

We start with a simple illustration, assuming a train and test set where the target is nu-

merical.94,109 Let l ∈ {c1, . . . , ck} be an arbitrary level of all k levels of a category for feature

xj , j ∈ {1, . . . ,m}. Then, target encoding simplifies this feature by replacing each category level

{c1, . . . , ck} with the means of the training target {ȳtrain1 , . . . , ȳtraink } corresponding to their re-

spective category levels. Each category level is now represented by its mean target value in the

new, target-encoded feature, which is used for all instances, such as in the test set. Specifically,

the average of the target variable x̄l for category l from the train data is computed by summing

the target values ytraini for all samples where the category is l, followed by division by the number

within this category level, Nl.
94,109

x̄l =

∑
i:xtrain

i =l y
train
i

Nl
(2.35)

We present a simple example for clarity. Referring to Table 2.2, we apply the target encoder in Eq.

(2.35) to calculate the encoded values for three categories. Consider the category ”cat” within the

”Animal” variable as an example: we have five observations of ”cat”; thus, Ncat = 5. The sum of
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the target values for ”cat” is
∑

i:xtrain
i =cat y

train
i = 1+0+ 1+ 0+ 0 = 2. Dividing this sum by the

count gives us 2
5 = 0.4, matching the ”Target encoded Animal” column value for ”cat” in Table

2.2.

Table 2.2: Example of target encoding for categorical variables. This table illustrates how cate-
gorical animal types (cat, dog, hamster) are converted into numerical values based on the mean of
the target variable (1 or 0) for each category.

Animal Target Target encoded Animal

cat 1 0.40

hamster 0 0.50

cat 0 0.40

cat 1 0.40

dog 1 0.67

hamster 1 0.50

cat 0 0.40

dog 1 0.67

cat 0 0.40

dog 0 0.67

In this example (Table 2.2), none of the averages in the groups had the same value, however, if

they did, it would indeed be encoded with the same value using target encoding. If, for example,

”dog” has an average target value of 0.4, similar to ”cat”, both categories would receive the same

encoded value of 0.4. This means in the encoded space, the two categories, ”cat” and ”dog”, would

be equal.

The problem with the presented target encoding in Eq. (2.35) may lead to overfitting, partic-

ularly for rare categories and levels, which can cause models to perform well on training data but

poorly on unseen test data.179 Regularized target encoding mitigates this with its smoothing pa-

rameter by shrinking the encoded values towards the global mean.106,109 Additionally, integrating

target encoding within a cross-validation framework can help validate the robustness of these en-

codings across different data folds, improving model performance on test data. This is the standard

implementation in software.94

Note, for the following equations, we follow the notation of the referenced implementation by

Scikit-learn. They use Y to refer to the target variable. Let us first consider the case of a binary

target variable. The formula for target encoding is given in Eq. (2.36).94,106,111

Si = λi
niY

ni
+ (1− λi)

nY

n
(2.36)

Here, the symbol niY counts how many times the target variable Y is 1 within category i. ni

is the total number of times category i appears in the data, and nY sums up all observations

where the target variable is 1 across all categories. n is the total number of observations, and λi

is the shrinkage factor for category. The shrinkage factor adjusts the influence of category-specific

averages, preventing overfitting, particularly in categories with few observations. The shrinkage

factor λi is defined in Eq. (2.37).94,106,111

λi =
ni

m+ ni
(2.37)

Here, m is the smoothing parameter that adjusts the shrinkage, blending the category mean with

the global mean based on the number of observations ni within category i.

Scikit-learn’s TargetEncoder class has a smoothing parameter smooth that can be controlled.112

A high value for the smoothing parameter will put more weight on the global mean, but if one

set smooth = "auto", the smoothing parameter will be calculated as a Bayes estimate using Eq.

(2.38).94,139
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m =
σ2
i

τ2
(2.38)

Here is σ2
i the variance of target Y with category i, and τ2 is the global variance of Y.

In situations involving multiclass targets, the target encoding formula is adapted to Eq. (2.39).94,139

Sij = λi

niYj

ni
+ (1− λi)

nYj

n
(2.39)

This extends the binary classification approach by considering the occurrence of each class j within

category i. Here, niYj
is the count of class j observation within category i, and nYj

is the total

count of class j across the dataset.

The target encoding equation for continuous targets is similar to the method used in binary

classification. It is presented in Eq. (2.40).94

Si = λi

∑
k∈Li

Yk

ni
+ (1− λi)

∑n
k=1 Yk

n
(2.40)

Eq. (2.40), Li represents the set of observations corresponding to category i, and ni is the count

of observations within the category. Yk represents the target value for the k-th observation in the

dataset, iterating through all relevant data points, either within a subset of data belonging to a

particular category i, denoted by Li, or across the whole dataset for the global average. n signifies

the total number of observations across all categories in the dataset.94

Conventionally, missing values are treated as their own distinct category, meaning they are

neither ignored nor filled with other values such as the mean or median from the dataset. They are

grouped and encoded based on the average of the target variable for instances where the feature

is missing.94,106 In our thesis, we did not treat missing values as a separate category as we would

not be able to impute these. We applied target encoding only to nominal variables with more than

two categories and initially ignored missing values. Later, we used different imputation methods

to fill in these missing values.

2.5.2 Outlier Detection

An outlier is an observation that significantly differs from the other data points in the sample

where it appears.44,89 Considering that most of the variables in our datasets discussed in Section

4.1 are categorical, outliers may not influence models much. This is because categories do not have

”extreme” values. One could argue, however, that non-sensible combinations of categorical levels

could exist for a sample, such as giving a treatment even though they are healthy. This is out of

the scope of the thesis as it would require a separate special analysis of the categorical variables.

Principal Component Analysis

There are many popular strategies for detecting outliers; however, we will limit the search for

outliers to applying principal component analysis (PCA) with manual inspections of the score

plot.1

PCA is a widely applied strategy for analysis of high-dimensional data with the purpose of

reducing the dimensions of the original dataset. Though it is not designed for the purpose of

detecting missing values, it presents desirable properties by reducing the dataset dimensions. It

works by projecting the samples onto a new subspace, where the transformation is given by linear

combinations of the variables that maximize the explained variance of the data. These linear

combinations are called principal components. The first component always explains the most

variation, and each subsequent component captures progressively less of the remaining variation

under the constraint that it is orthogonal to all previous components.66,41

To be more precise, consider the covariate matrix X ∈ Rn×m, and let q be the number of

principal components computed. The goal is to find the weights {w(1), . . . ,w(q)} used to transform
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X into scores T ∈ Rn×q, where q < m. The transformation is given by the linear combination of

the weights and the entries T = XW where W = [w(1), . . .w(q)] ∈ Rm×q. The weight vectors are

often referred to as loadings, and the projected samples as the scores. Scaling the data so that

the contributions to the explained variance are fair between the covariates is generally advised.

Feature scaling is discussed in the next subsection.

In terms of outlier detection, applying PCA to the data will provide components and scores

that can be easily visualized in comparison to plotting all the variables separately. In particular,

by visualizing the scores of the first two principal components, samples far off the origin may be

an outlier. The benefit of this strategy is that it considers contributions from all the variables and

allows for more understanding through investigations of the loadings.

2.5.3 Feature Scaling: Standard Scaling

Feature scaling is a method for standardizing the range of data features. It is important because

it brings all the variables to the same scale, allowing algorithms that rely on the distance between

samples, such as K-Nearest Neighbors, to perform more effectively.126 Additionally, feature scaling

benefits other algorithms, such as logistic regression, by providing numerical stability.

Standard scaling is a specific approach to feature scaling and is often more beneficial for many

machine learning algorithms, especially for linear models.126 By standardizing, we adjust the ith

sample´s feature value, x(i), so that the transformed features x, across all samples has a mean, µx,

of zero and a standard deviation, σx, of one. This process rescales the data to have properties of a

standard normal distribution, thereby simplifying the weight learning process due to its uniformity.

The standardization Eq. (2.41) is given as:126

x
(i)
std =

x(i) − µx

σx
(2.41)

Standardization also preserves outlier information without letting them overly influence the algo-

rithm.126

2.5.4 Feature Selection: Permutation Feature Importance

Permutation feature importance is a model inspection technique that evaluates individual features’

importance in the model by observing their random shuffling’s impact on model performance as

shown in Figure 2.9. This shuffling breaks the association between the feature and the target and,

therefore, gets an insight into the feature´s prediction power and importance.11 Building on this

foundation, permutation feature importance was first introduced by Breiman (2001)11 for Random

Forests as a means to understand the interaction of features contributing to predictive performance.

This method has since been applied to various modelling approaches, including ensemble methods

like RSF.

As discussed in Section 2.3.3, RSF utilize feature importance within the survival model frame-

work to select relevant features.115,126 This selection is based on the measurement of impurity at

each child node resulting from a feature´s split thereby the importance of each feature is determined

by the reduction in impurity due to a split.
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Figure 2.9: Diagram demonstrating the process of permutation feature importance. The original
dataset with features X1 and X2 is used to evaluate a model to establish a baseline performance
metric (Sbase). The feature X2 is then shuffled, disrupting its relationship with the target variable
Y , and the model is re-evaluated to determine the impact on performance (Sbase−Sshuffled). The
difference in performance metrics quantifies the importance of X2 in predicting Y .

Now, let us examine the mathematical basis of permutation feature importance within the

context of a supervised learning model.113,136 As shown in Figure 2.9, the dateset for the baseline

is represented as X with corresponding targets Y. We measure the model´s baseline performance

score, denoted by sbase, using the model f . During the permutation process, as shown in the

blue part of Figure 2.9, the samples of one feature j are shuffled while the samples of all other

features remain unchanged. To get a robust estimate of the importance, the process is repeated

K times. Thus, for each permutation iteration k ∈ {1, . . . ,K} in the dataset X, we calculate the

performance score sk,j of the model f on the newly shuffled dataset where variable j is shuffled.

The permutation importance, PFIj , for the j-th feature is then determined as follows:

PFIj = sbase − sshuffled = sbase −
1

K

K∑
k=1

sk,j (2.42)

The importance of feature j, denoted as Eq. PFIj in (2.42), is determined as the difference

between the baseline performance score s and the average performance scores from the K shuffled

datasets sshuffled. This calculation reflects how much the model’s performance is affected by the

random shuffling of each feature’s samples. The larger the difference is, the more important the

feature j is considered to be.
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3 Theory Part B: Missing values

3.1 What Are Missing Values?

By definition, missing values are the values of data that remain unrecorded or absent for a spe-

cific variable in the observed subject.70 Missing data are common in research and, if investigated

improperly or neglected, can introduce incorrect statistical conclusions.39 For example, removing

samples with missingness reduces the information available in the data and can make machine-

learning models prone to overfitting.

Missing values can occur for multiple reasons. Human error, such as when converting data

from analogue to digital, machine error, such as equipment malfunctioning, and survey respondents

avoiding questions are some examples. It is often also not possible to determine the source of why

data is missing.57,156 Generally, the treatment of missing values receives relatively little attention

compared to the level of engagement that papers demonstrate in creating accurate and reliable

statistical or machine learning models.17,22

In the subsequent subsections, we will discuss the underlying mechanisms of missing values

and alternatives for handling them. In addition, we will explain with simple examples why it is

important to be thorough when handling them.

3.2 Missing Value Mechanisms

The underlying mechanisms that source missing values were formally established by Donald Rubin

in 1976 as a theoretical framework widely used today.128 He assigned missing values into three

categories: missing completely at random (MCAR), missing at random (MAR) and missing not

at random (MNAR). For the following subsections concerning the missing value mechanisms, ’ob-

served variables’ refers to the variables in X, whereas the ’unobserved variables’ are those not

present in X (not to be confused with missingness).

3.2.1 MCAR

MCAR is the simplest mechanism to deal with and the least likely to introduce bias. As this type

of missing value is, given by its name, completely random, the probability of observing missing

values of this type does not depend on the observed and unobserved variables. This is desirable

because, other than the loss of information, the consequences related to the missing data can be

ignored. Under MCAR, one would not expect the distribution of the variable to change as there

is no systematic reason for the missingness. Examples of MCAR are data lost due to equipment

malfunctions or doctors forgetting to fill in a value in a form.

3.2.2 MAR

MAR, on the other hand, is a broader mechanism than MCAR. This type of missing value is only

dependent on the observed variables and is independent of the unobserved ones. It is helpful to

think of MAR as a conditional missingness. Compared to the complete randomness in MCAR,

MAR, on the other hand, has some systematic relationship between the missing values in a variable

and the other variables. To give an example, consider two observed variables age and blood pressure

collected by a doctor. It is likely that blood pressure is missing if the patient is young because

there is no need to test for this. Thus, potential missingness in blood pressure depends on the

observed variable age, but not the blood pressure itself. Generally, modern imputation strategies

assume MAR.18

3.2.3 MNAR

Missing values are MNAR if it is neither MCAR nor MAR. This type of missing value depends

only on the missing variable itself. MNAR is the most difficult missing value to account for, and
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handling this can be impossible because it depends on unobserved data.31,86,129 To give an example,

suppose a student collects information on exam grades. It is likely that students with good grades

report them, but it is less likely for those who fail. Thus, potential missingness in this variable is

most likely to be a lower grade, but it can also be a top grade.

3.2.4 Identifying the Mechanisms

MAR and MCAR can be modelled very well and are the standard implementations in software.170

To describe MNAR, models would have to introduce a latent variable to describe the real missing-

ness, which would complicate algorithms and potentially introduce bias.

It is impossible to distinguish between MAR and MNAR only using the observed data; it is

advised to seek expert or domain knowledge concerning the missingness.152 If this is not possi-

ble, the alternative suggestion is to compare subjects with missing values with the subjects with

complete data. If the samples with missing and complete data show variations, it is conceivable

that they might also vary in the unobserved variables. This can strengthen the plausibility of the

missingness being MAR, but considering it employs univariate comparisons, it does not provide a

proof.7

Interestingly, in a literature review of missing values between 2006 and 2017, Lin and Tsai

(2019) discovered that many articles and papers overlook the importance of all three missing value

mechanisms.85 To be specific, the majority of the papers assumed MCAR, and only 15 out of 111

considered all three.

The key takeaway is that the underlying mechanics of MCAR and MAR can be ignored because

they, in a sense, remove the necessity of taking into account the distribution of the missing values

when imputing.99 More care would be required for MNAR, and thus, it is important to identify

the mechanisms in data containing missingness before dealing with them.

3.3 Missing Value Patterns, Influx and Outflux

An important consideration for missing values is the pattern of missing values, as by using the

pattern information, it is possible to remove predictors based on proportion statistics called influx

and outflux, as defined by Buuren (2018).18 All information presented in this subsection is under

chapter 4.1 Missing data pattern.

Let xj and xk be two column pairs of the data X. They have the following patterns:

1. rr if both xj and xk are observed.

2. rm if xj is observed and xk is missing.

3. mr if xj is missing and xk is observed.

4. mm if both xj and xk are missing.

Thus, one can produce a symmetric matrix for each of the patterns for all columns in the data

matrix X. For illustration, we use the same example as in Buuren (2018).18 Let A, B and C be

the columns of the data given in Table 3.1.
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Table 3.1: Data with columns A, B and C. Blue are observed and red are missing.

A B C

The four defined patterns of Table 3.1 are described in Table 3.2. What is shown is the count of

each pattern for the variable pairs. For rr and mm, the main diagonals are the counts of observed

and missing samples in a single variable, respectively. The main diagonals in rm and mr will always

be 0 because a sample cannot be observed and missing at the same time.

Table 3.2: The four missing value patterns for variables A, B and C from Table 3.1.

rr rm
A B C

A 6 5 3

B 5 5 2

C 3 2 5




A B C

A 0 1 3

B 0 0 3

C 2 3 0


mr mm

A B C

A 0 0 2

B 1 0 3

C 3 3 0




A B C

A 2 2 0

B 2 3 0

C 0 0 3


For example, the pair (A,A) has 6 observed samples (rr). Only five observations exist where

both A and B are observed (rr). There is one observation where A is observed, but B is missing

(rm). Note that rm and mr are the transpose of each other.

We will not be showing this type of table for our data because there are too many columns to

present. Instead, we introduce influx and outflux, which are two simpler statistics to report. Influx

and outflux extend the information from columns xj and xk to all columns and thus return scalar

statistics. Let r be a random variable denoting whether the sample is observed (1 = observed, 0

= missing). Then, for column index j ∈ {1, . . . ,m} with the set of samples {1, . . . , n}, the influx

is defined as

Ij =

n∑
i

m∑
k

(1− rij)rik

n∑
i

m∑
k

rik

(3.1)

Influx depends on the proportion of observed values in the variable xj . The numerator can be

read as the total number of variable pairs (xj ,xk) where xj is missing and xk is observed, whereas

the denominator is the total number of observed samples. For a completely observed variable, the

influx is 0, and for a completely missing variable, it is 1. If two variables have the same proportion

of missingness, the one with a higher influx might be easier to impute.

Outflux is defined as
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Oj =

n∑
i

m∑
k

rij(1− rik)

n∑
i

m∑
k

1− rik

(3.2)

The outflux is a measurement of the usefulness for imputing other variables using xj . The

numerator is the number of variable pairs where xj is observed and xk is missing, whereas the

denominator is the total number of missing samples. For a completely observed variable, the

outflux is 1, and for a completely missing variable, it is 0. (1)

The point to raise here is that both a high influx and outflux are desired. The former might

be counterintuitive. A variable with a high influx might be easier to impute because there are

many available columns that can be used to impute this variable. However, it also signifies that

the proportion of missingness in this variable is high. A high outflux is desired because it means

that the variable has a high potential to impute the other variables. Note that it is only a potential

because the variable could be completely useless for imputation even if the outflux is high. Consider

the case of imputing xj using information from the variablesX ̸=j . Suppose some of the covariates in

X ̸=j are binary and imbalanced. If the imputation step happens inside of a k-fold cross-validation,

the imbalanced variables will likely end up constant because the rare cases end up in different

folds. Thus, they have no imputational power and should be omitted. Note, however, that reliable

features capable of yielding good imputations are limited if the outflux is low.

Influx and outflux for Table 3.1 is shown in Figure 3.1. C is better connected to the data,

which is simple to see in the Table 3.1. This is because both A and B have missingness in the same

samples (2 in particular), and C has no missingness related to A and B. Thus, more information

is available in C.

Figure 3.1: Influx and outflux for variables A, B and C from table 3.1 calculated using eqs. (3.1)
and (3.2). The influx relates to how well a variable’s missingness is related to the observed data
in the other variables. The outflux relates to how well the observed samples in a variable are
connected to the missing data in the other variables.

(1)The formulas for influx and outflux by Buuren (2018)18 were slightly adjusted to better fit to our investigated
scenario. This was discussed with the supervisors.
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3.4 The Basics of Handling Missing Values

We extend the notations of X ∈ Rn×m from Section 1.4 to include missing values which are not in

the set of real numbers. If we have an incomplete covariate matrix, we write X ∈ (R∪{NA})n×m.

Suppose that we pick out some column in X denoted as xj that contains missing values; then we

consider the complete and missing parts as x
(c)
j and x

(m)
j , respectively. Thus, if we combine the

two, assuming the indices are preserved, then xj = x
(m)
j ∥x(c)

c . When missingness in incomplete

variables are replaced with real values, they are imputed. This involves drawing an estimate often

inferred from a variable, or multiple variables.29 We denote imputed variables with a hat notation.

For example

I : (R ∪ {NA})n×m → Rn×m

I(X) =

X̂ if X = NA

X if X ̸= NA

would be an imputation function that imputes the missing variables. A simple example is replacing

the missing values with the mean of the corresponding variable, calculated from the complete

variables.

3.4.1 Two Strategies for Handling Missing Values

Consider the covariate matrix X ∈ (R ∪ {NA})n×m that contain missing values. There are two

ways of handling missing data. The first is deleting samples (rows) or variables (columns), and the

second is imputing.

The former method is generally the simplest and is frequently utilised by researchers.4 This

approach is austere because it requires no deduction on the missing values and works as a good

baseline strategy for comparing against more sophisticated approaches. The latter approach of

imputing involves replacing the missingness with values generally inferred from the data. We

say generally, because the imputation function does not necessarily require to be parameterized

by the data. An example of such a function is replacing the missing values with some fixed

constant, such as 0, or a factor, like ’unknown’, for continuous and discrete data, respectively.

However, using the complete parts of the data to infer the missing values is more common.29

Missing data is rarely acknowledged in published research, and the progression has been very slow

to be adopted by non-specialist researchers.59 However, poor handling of missing data can lead

to biased or inefficient parameter estimates.170 Various papers and literature reviews demonstrate

the importance of imputation, and propose that imputing variables with missing values can reduce

bias and increase precision.7,73 This naturally requires that the data is thoroughly investigated and

methods are carefully applied. Theory concerning the removal of missingness and imputations are

discussed in detail in Section 3.5 and 3.6, respectively.

3.5 Removing Rows, Columns or Both?

In this subsection, we will consider three options for handling missing data that do not involve

imputations. These are either deleting the missing samples (rows), variables (columns) or both.

One traditional way to handle missing values is complete case analysis (CCA). This involves

removing the samples that contain missing values, such that what is left is only the complete

cases.42,167 The benefit of this strategy is that it is very simple, and if the complete samples

are representative of the population, very little information is lost by the removal. Newman

(2014) proposes that CCA is unbiased under the MCAR mechanism.104 This is because there is

no systematic reason for the missingness. However, we suggest that this should be interpreted

with vigilance. If deleting entries results in losing levels in categorical variables, those omitted
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will never have any contribution to machine learning models. Multiple studies and reviews have

highlighted the disadvantages of dropping samples.86,132,133 For instance, Ambler (2007) found in

their simulation study that CCA leads to a substantial bias and poor predictions in a risk model

with binary outcome.5 Furthermore, with incomplete variables, there is a risk of losing precision and

power when estimating statistical parameters. To be specific, the loss of sample size contributes to

more uncertainty and, in some cases, can give misleading or biased parameter estimates.103 In the

specific case of regression analysis, the model is prone to overfitting if there are many independent

variables present when estimating statistical parameters using standard techniques (i.e. OLS) after

removing samples with missing values.50

To illustrate this, consider a simple example where there are two independent variables x1

and x2 that model some target variable y using a linear regression model. These variables have

no missing values. Furthermore, say, arbitrarily, that both x1 and x2 have significant regression

coefficients β1 and β2, respectively. Next, introduce a third variable x3 that contains many missing

values. If regression of y is done using all three variables as well as the CCA strategy, it may be

very likely that either x1 or x2 have an insignificant coefficient. The lack of effect is not tied to

the predictive power of x3, but instead to the sample size reduction. See Table 3.3 for a simple

illustration.

Table 3.3: Example highlighting the problem of applying CCA before regression analysis. All
values are arbitrary. coef is the coefficients and p is the p-value. The asterisk represents the
significant codes. For case 1, the complete data is used for fitting because x1 and x2 have no
missing values. Case 2, x3 has 960 missing entries, thus CCA leads to fitting with only 40 samples.

(a) Case 1

y ∼ x1 + x2

n=1000

coef p

x1 5 < 0.001 (***)
x2 10 < 0.001 (***)

(b) Case 2

y ∼ x1 + x2 + x3

n=40

coef p

x1 0.01 0.3
x2 0.9 0.01 (*)
x3 1 0.05 (*)

Next, we consider the option of removing the columns with missing values rather than the

samples. This becomes a viable option with high dimensional data because when the feature

dimension increases, it becomes infeasible to remove samples.99 Consider our defined matrix X

that has the dimensions n×m and let p denote the probability of an entry missing independently

of the others (MCAR). Using the example from Zhu et al. (2019), when p = 0.01 and m = 5,

applying the CCA strategy would result in keeping around 95% of the entries. However, if we use

the same probability but increase the feature dimensions such that m = 300, we expect to keep

only 5% of the original samples.183

If the variable(s) removed had very little effect on the target, it may not be a substantial loss by

removal. Generally, unless inference on all variables is important to consider, removing variables

is a better choice than samples.171 This is especially the case if removing samples would make the

complete cases non-representative of their original population.171,152 The apparent disadvantage of

dropping a variable is that it will not be available for statistical models to infer information from.

It is also important to look at the missingness mechanisms before omitting any variables. If the

variable with missing data is MCAR or MAR, preserving the column can be reasonable. However,

for MNAR, it is different, as the probability of observing this variable depends on the unobserved

parts of the variable itself, it is reasonable to remove it. Some software, such as mice discussed in

Section 3.6.3, assume MAR so preserving these variables are beneficial.170

Moreover, considering all the points made above, we propose that applying both strategies is

the most sensible approach. This proposition can be deduced as follows: consider the covariate

matrix X with the dimensions n ×m. Let j ∈ {1, . . . ,m} be a column index of a variable where
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all samples except for one are missing, and i ∈ {1, . . . , n} be a sample index with many missing

values. In this instance, removing the column with index j would be required, otherwise CCA

would result in a single row vector of dimension 1 ×m. Moreover, assuming that the remaining

samples {1, . . . , n}\ i are representative, removing sample i would make sense. Therefore, in short,

if removing the missing values is desired, it would require removing variables that are not of interest

or contain too many missing values, and samples that do not affect the remaining ones. For large

datasets, this is generally not an issue, but care is required for smaller ones.

In conclusion, we have highlighted one of the simple approaches of handling missing values,

namely by removing them. With simple examples, we show that it is important to carefully

consider the proportions of missing values and also their missingness mechanism. This approach

should be considered as a baseline.

3.6 Imputation Methods

This section considers some common imputation strategies, It is divided into three parts, with

increasing complexity. The first and second parts concern global imputations and multivariate

imputations, respectively, where only one variable has missing values. The third part concerns

multiple imputations, where missing values occur in multiple variables.

3.6.1 Global Imputation

Consider X ∈ (R∪{NA})n×m where only one variable j ∈ {1, . . . ,m} is incomplete. If the sample

size is small, it is a motivation to impute the missing values with some sensible real numbers. As

illustrated in the previous subsections and with support from literature, blindly removing samples

or variables can lead to bias in conclusions or loss of information, respectively. Thus, it is important

to be familiar with imputation techniques. This subsection considers some simple global imputers

for handling missing values. Global imputations mean that all the missing values in a variable are

imputed by the same value. We consider imputations of discrete and numerical variables separately.

Categorical Imputation

A global imputer for categorical data is mode imputation.28 It might be tempting to replace

missingness with an indicator value such as ’unknown’. However, we will show that this is not

necessarily a good strategy.

The term ’mode’ in statistics represents the most common value from a set of values.45 Thus,

mode imputation involves replacing all missing values in a variable with the most common occur-

rence of the categories in that variable. If the most common value is not unique, it is possible to

randomly sample from the ties. This is the easiest strategy to handle missing values of discrete

data; it is computationally efficient and easy to implement. However, as the proportion of missing

values increases, this strategy becomes proportionally more unsuitable. Firstly, as the missingness

increases, the variable will approach a constant category. This changes the distribution of the

variable, and artificially reduces its variance. A drawback to this is loss of predictive performance,

but also potentially biased conclusions. A. B. Soom et al. (2022)149 studied the effects of mode im-

putation on data with simulated MCAR missingness, and showed that, for their particular dataset,

mode imputation yielded a higher discrepancy between the original and imputed data. In contrast,

predictive mean matching, a strategy we will discuss later, was much more accurate.

Next, we highlight why it is generally not good practice to set missingness to a new category.

The apparent problem with this is that it generalizes every missing entry to the same category,

but in reality, they can be missing for various reasons. The variable could also be biased in the

sense that the ’unknown’ indicator (may have) contradicting effects with the other variables.42,67

Consider, for example, two variables sick and tumour location. If there are two patients, one sick

and one healthy, but both are missing the tumour location, it makes little sense to assume that

their location is the same using the indicator replacement.
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The mentioned global imputers do not require any form of encodings or numerical representation

of the category levels. This is an important consideration for imputation strategies that require

numerical representations in intermediate steps, such as k-Nearest Neighbor imputations when

calculating distances and computing averages, discussed in Section 3.6.2. We address this in

Section 3.7 after discussing multivariate imputers.

Numerical Imputation

Next, we consider global imputations of missing numerical values. Popular techniques are mean

and median imputation.29,63

The mean, in our particular case, arithmetic mean, is the sum of a collection of numbers divided

by the count of numbers in that collection.62 It signifies the central point of a set of numbers. Thus,

mean value imputation is the strategy of replacing the missing values in a variable with the average

of the complete values in that variable. This is the most popular approach to handling continuous

variables with missing values. However, it has its downsides. The mean is not a robust statistic,

which directly implies that if the distribution of the observed (and unobserved) variables is not

Gaussian, it will either over- or underestimate the true value. In addition, mean value imputation

artificially removes variance in the data. As the number of missing values approaches zero the

standard deviation will approach zero.7 There is also a minor problem where mean imputation

does not guarantee integers, but if it is required, rounding the imputation is a simple workaround.

The median is the value separating a set of numbers’ lower and higher half. This is a robust

statistic of the central tendency because it does not matter if the distribution is Gaussian or not.

Median imputation involves replacing the missingness in a variable with the median of the complete

values of said variable. It is suitable if the variable is skewed or has extreme values present that

do not make sense to remove.146

We propose that imputing missing values with zero can be reasonable under certain circum-

stances. As this does not use any information from the observed samples, it makes the most sense

if the real value is known to be 0 or have no contribution, but is missing for some reason. Consider,

for example, two variables smoking and smoking amount. If the sample is not smoking, then the

amount smoked could be missing, and zero would be the appropriate value to assign. However, if

zero is not within the typical range of the distribution or does not fit the nature of the data, this

will not be suitable. For example, for variables age or salary, it would be a poor choice to impute

with zero.

Random Imputation

All global imputers have the inherent problem of reducing the variance of the imputed variable.

Thus, variables with large proportions of missing data may become less distinctive after imputing.

A proposed solution to this is random imputations.69

Random imputations involve sampling the imputations from a uniform distribution. For nu-

merical variables, this could be sampling from a uniform distribution that respect the domain of

the variable. For example, imputing a variable age by randomly sampling values between 18-90.

For categorical variables, it could be randomly sampling from all possible values the variable take.

This strategy relaxes the global imputations by preventing the reduction in variance.

3.6.2 Multivariate Imputations

For this section, we assume that missingness in X is only present in one variable. The apparent

downside to global imputation is that they do not utilize the information in the other variables.

This is not a problem for MCAR if the variable’s distribution does not change, but for MAR, one

has to be more cautious. We start by presenting k-Nearest Neighbors as a standalone imputer,

and after that, the four imputation functions used in multiple imputations (discussed in Section

3.6.3).
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K-Nearest Neighbor Imputation

The k-Nearest Neighbor imputer (kNN) is the most widely applied multivariate imputer.85 It

was shown in a study comparing imputation methods for categorical data that the kNN imputer

outperformed all other imputation strategies that it was compared against.93 This makes it an

interesting choice for our datasets, as the majority of the variables are categorical. The algorithm

is a neighbour-based approach that fetches the k most similar neighbours to the missing entry.

Each value of the variable from the k-nearest neighbors is averaged and used as imputation. By

default, the distance metric used in our software (discussed in Section 4.2) is given by

dist(x,y) = sqrt(w*sq. distance from present coordinates) (3.3)

and

w =
#features

#non missing features

is a weighting factor.148 To illustrate with a simple example, suppose s1 = (3, NaN,NaN, 6)

and s2 = (1, NaN, 4, 5) are two samples of the variables x1, .., x4. Then only the first and

fourth variables with values 3 & 1 and 6 & 5 contribute to the distance, and the weighting

w would be 4
2 because two variables are omitted. This would give the distance dist(s1, s2) =√

2((3− 1)2 + (6− 5)2).

To explain the kNN algorithm more precisely, we use the notation of tuples. The notation

is inspired by Zhang et al. (2019).180 Let r = {t1, . . . , tn} be all the tuples of the data and

R = {x1, .., xm} the schema for the variables. Then ti[xj ] is the value of the tuple ti ∈ r on

variable xj ∈ R. In addition, we say that tmiss ∈ R is a tuple over R with a missing value on

variable xmiss. Then F = R\{xmiss} is the schema of complete variables, under the assumption

that missingness is only present in the one variable. The algorithm for imputing a single tuple can

be summarized in algorithm 1.

Algorithm 1 k-Nearest Neighbor Imputation

Let NN(tmiss,F , k) denote the k nearest neighbor tuples of the tuple tmiss on attributes F from

r. These are the tuples with the smallest distance to tmiss. For a tuple ti ∈ r, the distance to the

tuple with missing value tmiss is given by

d(tmiss, ti) =

√∑
x∈F

(tmiss[x]− ti[x])2

The imputation is then summarised in two steps:

1: T ← NN(tmiss,F , k)
2: t̂miss[xmiss]← 1

k

∑
tj∈T

tj [xmiss]

Step 1 of the algorithm involves finding the k set of tuples that lie closest to the tuple with

missingness tmiss denoted as T , and step 2 is the imputation step. Here the imputation is the

arithmetic mean of the missing feature xmiss in the observed tuples T.163,6 The imputation is not

limited to the average as it can be any statistic such as median or weighted mean. One could

extend it further and apply linear interpolation to the local neighbourhood. As kNN relies on

computing distances, it is important to scale the data before imputing.

We tacitly assume that only one variable contains missingness. When there are missing values

in more than one variable, the appropriate distance to use is Eq. (3.3). In this case, the distances

only have contributions where both values in two tuples are observed. Thus, all samples will

contribute to the distance calculation, but not necessarily all variables. So, if many of the samples

being compared have many missing values, the distance metric may not be very representative.

In other words, the variable being imputed should have a high outflux to get neighbors that are
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representative and not primarily based on the weighting w.

Let us consider a simple example of three variables x1,x2,x3. Here, we want to illustrate the

imputation of one of the values in x3 where we have NA present in two of the three columns in

the data. See Table 3.4.

Tuple ID x1 x2 x3

t1 1 0.0 1.1

t2 1 1.0 1.2

t3 1 1.5 NA

t4 1 1.0 1.5

t5 0 NA NA

t6 1 2.0 0.6

t7 0 0.0 0.0

t8 0 1.0 1.0

Table 3.4: Dummy data for illustration of kNN imputation.

The distances using Eq. (3.3) are listed in Table 3.5. Most of them are straightforward because

only the distances in x1 and x2 are calculated, and then weighted by 3
2 . The minor deviation

is the distance between t3 and t5, because only one complete feature is observed for t5, thus the

weight and distance calculation changes. So, for our example, the four nearest neighbours to t3

are T = {t2, t4, t6, t8}. The imputation is then the arithmetic mean of x3 of the neighbors T , i.e.

t̂3[x3] =
1.2+1.5+0.6+1

4 = 1.075

Table 3.5: Euclidean distances (dist) from tuple t3 to the tuples listed in table 3.4. Distances are
calculated using Eq. (3.3).

Tuple ID w Formula Dist

t1
3
2

√
3
2 (1− 1)2 + (1.5− 0)2 1.84

t2
3
2

√
3
2 (1− 1)2 + (1.5− 1)2 0.61

t3
3
2

√
3
2 (1− 1)2 + (1.5− 1.5)2 0.0

t4
3
2

√
3
2 (1− 1)2 + (1.5− 1)2 0.61

t5
3
1

√
3
1 (1− 0)2 1.73

t6
3
2

√
3
2 (1− 1)2 + (1.5− 2)2 0.61

t7
3
2

√
3
2 (1− 0)2 + (1.5− 0)2 2.21

t8
3
2

√
3
2 (1− 0)2 + (1.5− 1)2 1.37

This example shows that for the distance between t5 and t3, only x1 contributes to the distance,

and it is therefore heavily weighted. This relates back to the idea that it is preferable to have high

outflux variables to get a more accurate contribution to the distances.

Predictive-Mean Matching Imputaton

Predictive-mean matching (PMM) is an efficient strategy that works well on all data.170 It is

attractive because it assures that the imputations respect the domain of observed variables. For

example, samples that are required to be integers or strictly positive, or the fact that counts cannot

be negative. Given any predictive model, often a linear main effects model, a pool of the observed

variables that have predictions close to the missing sample is created. The imputations are drawn

randomly from the donor pool of observed samples. Thus, imputations will not generate new values

but instead be sampled from the observed ones.
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Logistic Regression Imputaton

Logistic regression is a traditional function used to model a binary outcome variable.82 Given the

linear model

y = β0 + β1x1 + . . .+ βmxm + ϵ = Xβ + ϵ

where X ∈ Rn×m+1 and the sigmoid

σ(x) =
1

1 + exp(−x)
R→ (0, 1)

The logistic regression model is given by

p(y = 1|X) =
1

1 + exp(−Xβ)

The interpretation of the logistic model is that, given some data xi (column vector), and a binary

outcome yi, i ∈ {1, . . . , n} with values {1, 0}, the logistic function gives the probability p(yi =

1|xi,1, . . . , xi,m) of a sample’s event being 1 given the information in the variables.23 For predictions,

a threshold is set for assigning class membership. For example, probabilities above 0.5 are assigned

to class 1, and 0 otherwise.

Multinomial Logistic Regression Imputaton

The multinomial logit model, also known as polytomous regression, is an extension of logistic

regression that considers more than two outcomes in the target variable.78 Let k denote the number

of unique categories in the target variable y, and let the first category be the reference. The

extension from binary logistic regression is that instead of treating the outcome as a probability

of belonging to class 1, the multinomial logistic model compares the probability of membership in

each category level j ∈ {2, . . . k} to the probability of membership in the reference category.32,172

This results in k − 1 binary logistic regression models being fitted.

The multinomial logistic model is given by

p(y = j|X) =


exp(Xβj)

1+
k∑

i=2
exp(Xβi)

j = 2, 3 . . . , k

1

1+
k∑

i=2
exp(Xβj)

j = 1

βj is not to be confused with a scalar coefficient. It is the vector of coefficients estimated for class

j when it is compared against the reference. For predictions, the class membership is assigned to

the class with the highest probability.

Ordered Logit Imputaton

The ordered logit model is necessary when the order of the category matters. For example, ’poor’,

’fair’, ’good’. The idea behind the ordered logit model is looking at the cumulative probability of the

outcome. For a target y that contain an order of categories c1, c2, . . . , ck, such that c1 < c2, . . . , <

ck, the model for one sample looks at p(yi ≤ cj |X). For example, with the categories ’poor’, ’fair’

and ’good’, looking at ’fair’ implies the probability p(yi = ’fair’ or ’good’|X). Naturally, the sum

over these cumulative probabilities is 1.43. The formula for the cumulative probability is given by

p(yi ≤ cj |xi) =
1

1 + exp(−aj + βxi)

Here, aj is defined as the threshold parameter, and is a constant that determines if the sample is
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more likely to belong to the current rather than previous category. The thresholds are additional

parameters estimated. The reference category, as mentioned in the multinomial logistic model, gets

assigned this value to 0. For predictions, there is a probability of falling within the range of each

threshold. To assign a class membership, it is assigned to the class with the highest probability.

3.6.3 Multiple Imputations

There are two reasons for seeking more sophisticated imputation approaches: either removing the

samples or variables is not viable due to low sample size, or one may want to see if more complicated

strategies can outperform the already mentioned approaches in such a way that it is reasonable to

choose the new, more intricate approach. It is also a suitable approach if there are missing values

in more than one variable.

As previously mentioned in Section 3.6.1, global imputations are unrealistic in the sense that

there is little to no variability in the imputations. We distinguish between two approaches: single

imputation vs multiple imputation. All methods discussed so far are single imputations because

a missing value gets assigned a single point estimate when imputing. There are, however, dis-

advantages to this approach. Tests and confidence intervals can often be distorted by wrongful

precision.87 Intuitively, it makes sense because it is difficult to infer certainty from point estimates

with no information about the variations. Therefore, an alternative approach is applying methods

of multiple imputation.18 This means that each missing value gets assigned multiple unique impu-

tations instead of a single point estimate. This results in distinct datasets containing the imputed

values, and analysis can be applied to each of these. Pooling the multiple analysis results allows

for understanding and assessing the uncertainty of the missing values.7 More specifically, because

multiple datasets are generated, it is possible to look at the distribution of the imputations of a

variable. If the variability of the imputations is low, it can be an indication that the imputation

is fitting. In addition, if some model is fit on the imputed datasets and used for prediction, it is

possible to get an empirical distribution over the predictions.

Figure 3.2: Illustration of the multiple imputations strategy. (1) Data with missing values (red)
and complete values (blue) are parsed to the imputer (2). Analysis (3) is done on each of the
datasets generated from (2). The multiple results from the analysis step can be pooled (4) to a
single point estimate using Rubin’s rules.
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The general approach for multiple imputations are shown in Figure 3.2. For the thesis, we let G

be the number of imputed datasets to generate. This means we get G uniquely imputed datasets

in step (2), where each of these is analysed separately in step (3). The estimates of interest derived

from the G datasets can be pooled into a single estimate using Rubin’s rules in step (4).129 These

are rules based on asymptotic theory derived from the Bayesian framework. Examples of estimates

are the expectation of a prediction or statistical parameters of a linear model. The benefit is

that the imputation provides an empirical distribution of the estimates with information on the

variance.170

Rubin’s rules can be summarized as follows: Let G be the number of imputed datasets gener-

ated, and θ̂ ∈ RG be the vector where each element in the vector corresponds to the estimand of

interest of each G imputed datasets. The overall, or pooled, estimate θ̄ is the mean of the vector

entries:

θ̄ =
1

G

G∑
j=1

θ̂j . (3.4)

According to Rubin, the variance of the estimate has a slightly more intricate calculation to address

both the within-imputation variation and between-imputation variation. Denote W as the within-

imputation variance and B the between imputation variance, then the variation of the estimates

θ̂ is:

Var(θ̂) = W +

(
1 +

1

m

)
B. (3.5)

where

W =
1

G

G∑
j=1

Wj

B =
1

G− 1

G∑
j=1

(θ̂j − θ̄)2

The most popular strategy for multiple imputation is multiple imputation by chained equations.

Multiple Imputation by Chained Equations

Multiple imputation by chained equations (MICE), also known as fully conditional specification or

sequential regression multiple imputation, is a popular multiple imputation technique.7 It works

by specifying a multivariate imputation model for each variable individually, using a series of

conditional densities tailored for each variable with missing data. The missing values are replaced

by drawing imputations from each conditional density. The benefit of this strategy is that it imputes

each variable conditional to the others by effectively using the information from the variables.

MICE assumes that data respects the MAR mechanism.8 This is important because it offers

some systematic relationship between the variables to use for imputations. Consider the simple

example with two variables age and blood pressure. Blood pressure measurements are often not

necessary for young patients and may not be routinely taken. However, when blood pressure data

is available for some young individuals, MICE can utilize this information to impute the remaining

missing ones.

A general description of the algorithm can be summarized in algorithm 2.
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Algorithm 2 MICE algorithm7,20,18

Let X ∈ (R∪{NA})n×m be the matrix with a mix of complete and missing values, and Dm = {j :
∃i,Xij = NA, j = 1, 2, . . . ,m} be the set of column indices with at least one missing value in X.

Furthermore, denote x
(m)
j the vector of missing values and x

(c)
j the vector of non missing values

in xj for j ∈ Dm, respectively. This means that xj = x
(m)
j ∥x(c)

c .

The algorithm requires two parameters: the number of imputed datasets to generate G and a

specified imputation model I for each variable.

1: Initialization

2: for all j ∈ Dm do

3: for all i ∈ {1, . . . ,dim(x
(m)
j )} do

4: xij ← random(x
(c)
j )

5: end for

6: end for

7: for all j ∈ Dm do

8: Set x
(m)
j ← NA

9: mj(x
(c)
j ) = fit(x

(c)
j ∼ I (X ̸=j)).

10: x
(m)
j ← pred(mj ,X ̸=j)

11: end for

12: Steps 7-11 are repeated multiple times (suggested 5-20) to iteratively update the imputations,

where the final imputations are retained.

13: Repeat steps 1-12 G times to get G imputed data sets.

Output: X̂ ∈ Rn×m×G

Step (4) of the MICE strategy is the initialization of MICE; any missing values are temporarily

filled with placeholder values that are random samples drawn from the existing observations in

their respective variables. In steps (8)-(10), the algorithm sequentially goes through each variable

to prepare the imputations. For each column that is being imputed, the placeholder values are set

back to missing, and the specified imputation model is fit on the complete data using the other

variables as predictors. Note that because all other variables have placeholder values where they

are initially missing, only the missingness in the current variable determines how many samples

are used in the fit. The final imputations are the predictions from the last iteration in step (12).

The strategy of specifying imputation functions is why it is named ’chained equations’; it is

advised to specify the imputation functions for each single variable to address them properly.

For instance, it makes sense to use logistic regression for binary variables and predictive-mean

matching for integers.20 A list of implemented imputation models in R’s mice package is listed in

Table 3.6. The four default strategies are predictive-mean matching (PMM), logistic regression

(logreg), polytomous regression (polyreg) and the ordered logit model (polr).
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Table 3.6: Implemented imputation functions in the mice package in R.20 Default Y denotes that
if no imputation functions are specified, it will default to these strategies.

Method Description Scale type Default

pmm Predictive mean matching numeric Y

norm Bayesian linear regression numeric

norm.nob Linear regression, non-Bayesian numeric

mean Unconditional mean imputation numeric

2L.norm Two-level linear model numeric

logreg Logistic regression factor, 2 levels Y

polyreg Multinomial logit model factor, >2 levels Y

polr Ordered logit model ordered, >2 levels Y

lda Linear discriminant analysis factor

sample Random sample from the

observed data any

It is important to consider what variables should be used in the imputations. Including more

variables provides more information to use in the imputations, and it makes the MAR assumption

more plausible.131 This will likely not cause issues for small datasets. However, larger datasets

can run into problems such as multicollinearity and long computational time. A useful feature

in the mice software in R is the ability to specify what variables should be used to model every

incomplete variable.18

The MICE algorithm uses information from incomplete samples, which makes it more efficient

than CCA. If the data is MAR, it will also correct the bias.84
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3.7 A Note About Categorical Variables

Most algorithms require a numerical representation of categorical variables before imputing. Con-

sider two variables x1 and x2 that contain the set of values {Yes, No} and {Small, Medium,

Big, Huge}, respectively. Using kNN imputation would not work because the distance metric in

Eq. (3.3) requires real numbers. A solution is mapping the categories to integers. This works

reasonably well if the variables are ordered or binary, but caution is required for nominal ones.

We first consider the case of ordinal variables. Suppose we map x1 and x2 to an integer represen-

tation x1 = {0, 1} and x2 = {0, 1, 2, 3}. Now, suppose we have some arbitrary missingness in x1 or

x2, and use kNN to find the 4 nearest neighbors. Let the four tuples T = {(0, 1), (0, 1), (0, 3), (0, 3)}
(the first value is x1 and the second is x2) be the nearest neighbors. Then it can fairly be said that

if x1 was to be imputed, 0 is the correct imputation. If x2 was to be imputed, we would impute

using 1+1+3+3
4 = 2. As x2 is ordered, it makes some sense to say that the average of medium and

huge is big.

A problem arises when x2 is nominal. Suppose we have the exact same example, but instead

of {Small,Medium,Big,Huge}, we have {France,England,Norway,Australia}. Then the av-

erage of England and Australia would be Norway, which may not make much sense. In addition,

if an imputation returns a float, it is required to round it to an integer to be able to map the

imputation back to the categories.

We propose a solution to this by employing the target encoding discussed in Section 2.5.1.

Instead of mapping category levels to integers, each category is mapped to the average of the

target variable. Generally, target encoding is mostly used with nominal variables with many

levels, such as zip codes. However, it resolves the problem mentioned above of mapping nominal

variables. Target encoding the nominal variables allows for both computing sensible distances and

employing imputations that are reasonable. The apparent downside is that it is difficult, if not

impossible, to map the encoding back to categories. This is because the averages are computed

using cross-validation, and it is not guaranteed that the averages of each factor are the same. If

they overlap with other category levels, it is an extra level of complication. Thus, this has to be

done as a last step before the variables are passed on to a model.

3.8 Evaluating Imputation Methods

When replacing missing values, one key point is assessing how suitable the imputations are. As

suggested by Lin and Tsai (2019)85 in their literature review on missing value imputation, one

should consider three approaches: direct evaluation, indirect evaluation and computational time.

The latter should be considered because it provides context to the efficiency of the imputations,

and it is especially important for larger datasets. Investigating all three evaluation strategies allows

for a better understanding of the performance of the imputation, and also potential suggestions

for developing better techniques.

To limit the thesis to a reasonable scope, we do not emphasise computational efficiency as we

are not developing any new imputation strategies. We will, however, mention the runtimes of

the experiments. Our main focus is evaluating the imputation methods using direct and indirect

evaluations. Details on both strategies follow in the two subsequent subsections.

3.8.1 Direct Evaluation of Missing Value Imputation

Direct evaluation of an imputation involves measuring the distance between the ground truth value

and the imputed value.85 Naturally, the disadvantage of direct evaluation is that the missing value

must be known to have something to compare with the imputed value.

There are many evaluation metrics to choose from. For numerical data, mean absolute error

(MAE), root mean square error (RMSE) and mean square error (MSE) are the most common,

and for categorical data, proportion of correct predictions (PCP) is a valid option.85 The choice
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of metric depends on the application. For example, the disadvantage to MSE is that it deviates

from the original scale of the data because it is squared. Another example is in comparisons of

imputation performance across different datasets of different sizes, then blindly applying one of

the mentioned metrics can be misleading. Consider the scenario with two datasets, one containing

information on sturgeons and one on whales; when imputing a variable such as weight, it would

make sense to normalize the metric in order to make imputations between these comparable.

A brief point to raise is Buuren (2018)18 suggesting that RMSE is not the best metric to

use for assessing the quality of imputations. The minimum RMSE is acquired when the missing

value is predicted by a linear model where the weights are acquired by the ordinary least squares

(OLS) estimate. This will, however, always replace the missingness with the same value repeatedly

because it replaces the missing value by the most likely value defined by the model. The downside

to this is that it completely omits the uncertainty of the missingness, and should therefore not be

used as a metric to separate good and bad imputations. While they do not propose alternative

metrics, it may encourage the strategy of using indirect evaluations.

For the following definition, recall that x̂ij is the imputed value, and xij is the ground truth

value for the indices (i, j). n denotes the number of samples, and m the variables (Section 1.4). The

missing value experiment in Section 4.3 only considered categorical variables. Thus, we limited the

direct evaluation to the accuracy classification metric to assess the quality of the imputations.55

As an imputation is either correct or incorrect, we use the definition

accuracy =
1

|T |
∑

(i,j)∈T

1x̂ij=xij (3.6)

Here T denote the set of coordinates of the missing values T = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤
m,xij missing}. The denominator is the magnitude of the set, i.e. the total number of samples

that are missing. The lowest score is 0, and the highest is 1; values close to 1 are desired.

3.8.2 Indirect Evaluation of Missing Value Imputation

Indirect evaluation of an imputation involves estimating some effect of the variable(s) after imput-

ing. We define two categories of indirect evaluations: the first is where no information on the real

value is required, and the second evaluation is where the ground truth value has to be known.

An example of the first one is the R2 of a regression model.37,102 This is because the underlying

real value does not need to be known in order to estimate this parameter. This has limitations, for

example, when these effects cannot be estimated after imputing. Consider a model that requires

calculating the inverse of a matrix. In some situations, the imputation model can induce a singular

matrix - thus, the problem has infinite (or no) solutions. There are solutions to this problem, such

as computing an alternative inverse or penalizing the loss. However, it would require changing the

problem, which in itself is a sign that the imputation, or problem, is ill-posed.

The second category is dependent on the missing values themselves. For example, comparing

the imputed variables’ impact on fitting a model where the ground truth model is known from

the complete data. Lee and Huber (2021)84 simulated MCAR, MAR and MNAR of different

proportions, where the original data was modified in such a way that they had complete data.

Using the complete data, they estimated the ’real’ parameter of interest, namely the mean of a

variable. Next, they measured the absolute bias for each missing value mechanism and different

proportions after either removing missing rows or using multiple imputation.

It is possible for the indirect approach to shadow the effect of an imputation. Consider a

strategy where the real model y = β0 + β1x1 + ϵ is known. Here we just present a regular linear

model with no relation to imputation. Next, suppose it is of interest to know the deviation of β1

from an estimated β̂1 given by y = β̂0+β̂1x1+ϵ, where the hat β′s are model parameters estimated

from imputations of the original dataset. If the true x1 has no significant effect on the target y,

then the assigned weight to β0 will lie somewhere close to zero. Thus, assessing the difference of
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β1 and β̂1 will most likely not be very large, and poor imputations may not show any bias of β̂1.

3.9 Limitations of Modern Imputation Strategies

Imputation strategies are still a domain that requires attention, and we will discuss a few main

concerns about current limitations. Two issues related to numerical data are the problems of

sparsity and heterogeneity. In addition, we discuss the problems of valid imputations.

Sparsity refers to the fact that a sample may not share similar values for imputation.180 This

issue is more pronounced with smaller datasets. A consequence is that imputation strategies

which directly use the values of the other entries to extrapolate will have poor performance. For

example, kNN imputation uses the average of the closest neighbors as the imputed value. However,

the average will not be a good estimate if no tuples share similar values. Heterogenity relates to

the fact that data can originate from different sources, and variables can describe different things.

Thus, finding a single imputation model that fits all the data may be unsuitable.130 Figure 3.3

illustrates both sparsity and heterogeneity. It is clear that linear interpolation is unsuitable due to

non-linearity, and kNN suffers from sparsity.

Figure 3.3: Illustration of sparsity and heterogeneity. kNN assumes 3 neighbors for imputation.
While linear interpolation is not a strategy we have discussed or implemented, we present it as a
brief example to illustrate a potential flaw. The figure is inspired by Zhang et al. (2019).180

Apart from the technicalities of finding a good fit for the data, a different problem is that

imputations are not guaranteed to be valid. Nothing stops an imputation of pregnancy to suggest

that a male is pregnant, which makes no sense. This is difficult to combat because it relates to more

than respecting the domain of a variable. For instance, PMM in multiple imputations assures that

the suggested imputation will never be outside of the domain. If a variable contains only positive

values, then the donor pool for PMM will always contain positive values. The problem is that it

does not guarantee that it respects the relations with the other variables. This is related to the

brief point raised in Section 2.5.2 of detecting outliers of odd combinations of factor levels.
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4 Materials and Methods

This section covers the two experimental setups. It is divided into two major parts: (1) the

experimental setup for handling missing values and (2) survival analysis of GEP NEN. The end

goal is explainable and accurate survival modelling of patients with high-grade GEP NEN. The

motivation for conducting the missing value experiment is to address two main concerns from the

literature: the scarcity of missing value experiments when working with survival models and the

main issues found in litterature reviews raised in the theory part.

4.1 Data

We considered two datasets in our study. For the missing value experiment, we used the open source

colorectal dataset found in R81 and for the survival study, we used the GEP NEN dataset.153

The GEP NEN dataset contains patients diagnosed with gastrointestinal or pancreatic cancer

treated with one or multiple rounds of chemotherapy.153 This was the one of scientific interest,

however it posed various challenges. The most prominent one was that it was a combination of two

clinical studies with a different number of variables, which led to a high number of missing values

and a mismatch in features. It also had many missing entries that were unrelated to what study

they belonged to. Therefore, it was important to handle the missingness with care and utilize as

much information in the variables as possible. This is why we used the colon dataset as the main

study object for the missing value experiment. It was complete and thus could be used for realistic

simulations of missingness by dropping values to mimic an incomplete dataset.

4.1.1 Colon

The colon dataset originates from one of the first successful trials of chemotherapy for colon can-

cer.81 The data is open source and can be found in R by using data(cancer, package = ”survival”)

from the survival package. A description of the variables and the encodings are given in Table 4.1.

The two treatments given were Levamiosole and Levamiosole+5-FU. The Observation group was

the control group. The time to event variable time was the target variable of interest.160

The dataset contains 16 variables and 1858 samples. However, all patients were listed twice,

with one record for recurrence and one for death. After removing the recurrent rows, the sam-

ple dimension was halved. The two variables nodes and differ contain 36 and 46 missing values,

respectively, which lead to the final sample dimension of 888 when removing the samples with

missingness. For the variables, age was removed because it violates the proportional hazard as-

sumption. nodes4 is a binary variable indicating if the number of lymph nodes with detectable

cancer in the nodes variable is greater than 4. We removed nodes4 due to the strong correlation

between them. Finally, removing the non-informative columns id (patient ID), study (constant),

etype (constant after removing recurrent rows) gave the final dataset dimensions 888× 11. A plot

of the distribution of the variables, separated by censoring status, is given in Figure 4.1. See Figure

4.2 for the correlations. nodes and nodes4 are highest correlated as the latter is derived from the

first.

There are two main motivations for choosing this dataset as opposed to simulating an arbitrary

one. The first being that it is closely related to the GEP NEN dataset from a medical perspective;

the colon and gastro is anatomically similar. The second is that it poses similar challenges as

the GEP NEN dataset presented in Section 4.1.2, namely that the majority of the variables are

categorical, with heavily imbalanced class distributions in some variables, as seen in figure 4.1. For

instance, perfor has the distribution of 3% Yes and 97% No. For the four levelled variable extent,

the levels make up the following proportions: Submocosa 2.1%, Muscule 11.5%, Serosa 82.2% and

Contiguous structures 4.2%.
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Table 4.1: Description of the variables in the colon dataset.161 Variables with an asterisk (*)
were omitted in the experiment. The variable nodes, marked with (†) was binned to a categorical
representation (discussed in Section 4.3).

Variable Type Description Encoding

id (*) Numerical, integer Patient ID -

study (*) Numerical, integer 1 for all patients -

rx Factor, 3 levels Treatment type Target

sex Factor, 2 levels Gender One-hot

age (*) Numerical, integer Age in years -

obstruct Factor, 2 levels Obstruction of colon by tumour One-hot

perfor Factor, 2 levels Perforation of colon One-hot

adhere Factor, 2 levels Adherence of nearby organs One-hot

differ Factor, 3 levels Differentiation of tumour Ordinal

extent Factor, 4 levels Extent of local spread Target

surg Factor, 2 levels Long or short time from

surgery to registration One-hot

nodes (†) Numerical, integer number of lymph nodes with detectable cancer Ordinal

node4 (*) Factor, 2 levels more than 4 positive lymph nodes -

status Factor, 2 levels Censoring status Boolean

time Numerical, integer Time to event or censoring -

type (*) Factor, 2 levels Event type (recurrence or death) -

46



Figure 4.1: Distribution of the variables from Table 4.1, separated by censoring status.
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Figure 4.2: Correlation of the variables from Table 4.1. The figure shows correlations before nodes
was binned.
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4.1.2 GEP NEN

This study involved 192 patients treated at the Department of Oncology, Oslo University Hospital

from January 2000 to July 2018.153 These patients were part of two multi-institutional Nordic

NEC studies overseen by the Nordic Neuroendocrine Tumour Group. All patients received treat-

ment in the form of surgery, chemotherapy, or both.65 The effectiveness of the chemotherapy was

evaluated using CT/MR imaging, applying the Response Evaluation Criteria in Solid Tumors (RE-

CIST).65,151 This evaluation primarily measured changes in tumour size from one imaging session

to the next. The target variable measured was overall survival (OS), expressed in days. OS was

calculated from the date of diagnosis to the date of death or last observation. Patients alive at the

last observation date were censored.153

The dataset includes 192 patients, 79 from the original study and 113 from the subsequent

study. This latter study, an extension of the original, aimed to examine additional variables,

necessitating a new case report form (CRF). For analytical clarity, we designated these as the ”old”

and ”new” studies. From these studies, we generated three main datasets for detailed exploration

and analysis: one containing only patients from the old study, another exclusively for patients from

the new study, and a third, a combined dataset that includes only the features common in both

studies. Our evaluations determined that the dataset from the new study was the most optimal.

The dataset from the old study was found to be less informative, and the combined dataset was

constrained by a limited number of variables. Consequently, following preparations for the new

study, the dataset included 99 patients and 50 variables. Tables 4.2, 4.3, 4.4, and 4.5 contain the

variables included in the new study. The tables show the datatypes, a short description of the

variable, and the missingness mechanisms discussed in Section 3.2.1. The latter were found from

expert knowledge. Categorical variables were divided into three types based on how they were

gonna be encoded: binary, ordinal, and nominal. Binary variables were processed using one-hot

encoding, while nominal variables with more than two categories were target encoded (Section

2.5.1).

Table 4.2: This table provides an overview of various numerical variables used in the dataset for
the new study, including their data types and brief descriptions of what they are. It also details
the missingness mechanisms, along with the percentage of missing values (NA%) for each variable.
Note that all float variables were integers, just of float datatype.

Variable Type Description Mechanism NA (%)

BMI Numerical (float) Body Mass Index MCAR 3

Ki-67 Numerical (float) Ki-67 expression - 0

Absolute Neutrophil Count Numerical (float) Neutrophil count per µL blood MCAR 2

Albumin Numerical (float) Blood albumin level MCAR 1

CRP Numerical (float) Blood C-Reactive Protein level MCAR 1

Number of Courses Numerical (float) Number of treatment courses MAR 15

Time from diag to mets

(days)

Numerical (float) Time from diagnosis to metas-

tasis in days

- 0

Age at Diagnosis Numerical (int) Patient´s age at diagnosis time - 0

OS (days) Numerical (float) Overall Survival (days) - 0
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Table 4.3: Description of ordinal variables. This table summarizes the ordinal variables used in
the dataset for the new study, categorized by type, description, and the missingness mechanisms.
It also presents the percentage of missing data for each variable.
Note that the descriptions of Chromogranin A and A2 were the same, as they initially had the
same variable names but different categorical levels.

Variable Type Description Mechanism NA (%)

WHO Perf Stat Factor, 4 Status of the patient’s well-being MCAR 5

T-stage Factor, 5 Tumour size/extent MCAR 3

N-stage Factor, 4 Lymph node spread/metastasis MCAR 3

Chromogranin A Factor, 4 Neuroendocrine tumour markers MCAR 7

Chromogranin A2 Factor, 4 Neuroendocrine tumour markers MCAR 26

Synaptophysin Factor, 4 Synaptophysin level in blood MCAR 7

LDH Factor, 3 Lactate dehydrogenase level in

blood

MCAR 4

NSE Factor, 3 Neuron-specific enolase level MCAR 7

CD-56 Factor, 3 Neuroendocrine tumour marker MCAR 63

Differentiation Factor, 3 Cell maturity level MCAR 40

Octreoscan Factor, 3 A radionuclide imaging scan MAR 54

ALP Factor, 3 Liver enzyme levels MCAR 5

Table 4.4: Description of binary variables. This table lists the binary variables used in the dataset
for the new study, all classified as type factor 2 (binary), description, the missingness mechanisms,
and the percentage of missing data (NA%).

Variable Type Description Mechanism NA (%)

Sex Factor, 2 Gender (M/F) - 0

Co-morbidity Severity Factor, 2 Comorbidity-severity level MCAR 28

Co-morbidity Factor, 2 Presence of co-morbid conditions - 0

Hist Exam Metastasis Factor, 2 Diagnosis confirmed from metastasis - 0

Hist Exam Primary Tumur Factor, 2 Diagnosis confirmed from primary tu-

mour

- 0

Living Alone Factor, 2 Living situation - 0

Prior Other Cancer Factor, 2 Previous cancer history - 0

Primary Tumour Resected Factor, 2 Surgical removal of primary tumour - 0

Stage grouped Factor, 2 Cancer stage classification - 0

Haemoglobin Factor, 2 Haemoglobin concentration - 0

Platelets Factor, 2 Platelets count in blood MCAR 1

WBC Factor, 2 White blood cell count - 0

Dev of Bone Mets Factor, 2 Development of bone metastases MCAR 7

Loc Adv Resectable Disease Factor, 2 Locally advanced disease resectability - 0

Mets(Other) Factor, 2 Metastases to other sites - 0

Mets(Lung) Factor, 2 Lung metastases - 0

Mets(Liver) Factor, 2 Liver metastases - 0

Mets(LN) Factor, 2 Lymph node metastases - 0

Mets(LN Retro) Factor, 2 Retroperitoneal lymph node metastases - 0

Mets(LN Regional) Factor, 2 Regional lymph node metastases - 0

Mets(LN Distant) Factor, 2 Distant lymph node metastases - 0

Mets(Bone) Factor, 2 Bone metastases - 0

Status Factor, 2 Event/censored - 0
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Table 4.5: Description of non-binary nominal features. This table details the variables in the study
that have more than two categories, each defined as a type of factor with a specified number of
categories (e.g., a factor of 3 has 3 categories). It provides an overview of each variable’s description,
the missingness mechanism, and the percentage of missing data (NA%).

Variable Type Description Mechanism NA (%)
Tumour Morphology Factor, 3 Tumour cell type MCAR 27
Primary Tumour Factor, 9 Primary Tumour Location - 0
Smoking Factor, 4 Smoking status MCAR 10
Best Response (RECIST) Factor, 6 Response to treatment MCAR 24
Treatment Stopped Factor, 5 Reason for cessation of treatment MAR 15
Chemotherapy Type Factor, 4 Chemotherapy regimen used MAR 14

Figure 4.3: Pearson correlation of the GEP NEN dataset illustrates the Pearson correlation among
all variables. The color spectrum from blue to red represents correlation values ranging from -1.00
to +1.00, indicating strong negative to strong positive correlations.
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Figure 4.4: PCA plot of the patients (PATNO) in the GEP NEN dataset using only the numerical
variables. The plot visualizes the distribution of patients along the first two principal components
(PC1 and PC2). Each point represents a patient and helps identify potential outliers among them.
Discussed in Section 2.5.2.

Figure 4.5: Distribution of censoring over survival time (days) for GEP NEN dataset. 8 patients
were censored, and 91 patients experienced an event.
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4.2 Software and hardware

4.2.1 Software

The main software used for the thesis was Python (3.11.7)122 and R (4.3.1)159. Python was

primarily based on notebooks, but where convenient such as utility files, .py files were used. R was

ran in R-studio in notebooks.

The main packages used in Python was scikit-learn (1.3.2)111, Pandas (2.1.4)92 and NumPy

(1.26.4)51 for preprocessing and handling data. Matplotlib (3.8.0)58 and SeaBorn169 (0.13.2) were

the main graphical tools. For survival analysis, lifelines (0.27.8)27 and scikit-survival (0.22.2)116

were used. PyTorch (2.2.1)110 was used for parts in the missing value experiment described in

Section 4.3.

For the experimental setup in Section 4.3, a local clone of a GitHub repository was used for

simulating missing values. This is discussed in detail in Section 4.3.4 of generating missing values

under the experimental setup.

R was primarily used for the mice (3.16.0)20 package for multiple imputation. In addition to

imputations, the package contains built-in functionality for calculating influx and outflux. The

missing value experiment in Section 4.3 was primarily conducted in Python, however, we used the

mice package in R for multiple imputations. As it was necessary to move simulated data with

missingness from Python to R, the package reticulate (1.35.0)68 was used for this.

4.2.2 Hardware

The code was run on two separate machines, denoted machines (1) and (2). (1) The missing value

experiment in Section 4.3 was on a Windows 11 laptop with CPU AMD Ryzen 9, and dedicated

GPU AMD Radeon RX 6800HS (3.3 GHz) and 32 GB RAM. (2) The survival models on a Macbook

Air M2-chip with an 8-core CPU and 16 GB RAM.

4.3 Experimental Setup: Missing Values (Colon)

4.3.1 Motivation

We briefly introduce the important topics we considered in the missing value experiment and the

motivation for addressing them. We will mention (a) missingness with survival models, (b) miss-

ingness mechanisms, (c) robustness of repeated simulations, (d) both direct and indirect evaluation

and (e) validation.

Point (a) relates to the concern of papers that demonstrate statistical or machine learning

models where they have data with missingness, but they perform quick imputations with little

consideration as a preprocessing step.173 Pairing this with papers that discuss survival analysis,

the list grows short.

Furthermore, point (b) considers the problem that many disregard the missingness mechanisms,

as found in the literature reviews in Section 3.2.1. This is a crucial step for imputing, especially

because of imputation model assumptions. For our experiment, we considered MCAR and MAR,

because we found it plausable that MNAR is not present in the GEP NEN dataset.

Next, (c) is not mentioned in the literature reviews we cite but is a concern anyway. The idea is

that performing a single simulation of missingness to then impute and evaluate is not sufficient. It

can very likely happen that the parts of the data containing simulated missingness are not repre-

sentative, thus leading to biased imputations and conclusions. For this reason, we will repeatedly

simulate missingness by varying the samples and variables used in simulating missingness and

finding the expected values and variations of the metric of interest over the repeated simulations.

Point (d) is related to the suggestion of multiple evaluations. Measuring the quality of impu-

tations by means of direct evaluations (such as minimizing RMSE) may not be sufficient. It was
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inspired by the literature review of Lin and Tsai (2019)85 in Section 3.8 where they propose that

future literature should both directly and indirectly evaluate the imputations.

Finally, point (e) is present to be consistent with modern machine learning approaches. More

specifically, splitting data into train and test is standard. The goal is then only to use information

inferred from the train part to handle the test part. So, for example, applying mode imputation

on categorical features would imply that the missingness in the test set is replaced by the mode in

the training set.

The experimental setup is described in the following order: the strategies applied in the ex-

periment (4.3.2), the evaluations (4.3.3), how missing values are generated (4.3.4) and finally the

pipeline (4.3.5).

4.3.2 The Strategies Applied

The purpose of the experimental setup was to see the effect of various strategies applied when

handling missing values under MCAR and MAR, for increasing proportions of missing values. See

Table 4.6 for an overview of the strategies applied, along with the missingness mechanisms. CCA

was discussed in Section 3.5, and the imputation strategies in Section 3.6.

The experiment was limited to categorical variables only. We would require separate metrics

for evaluating the numerical and categorical imputations if both were included. This could be

applying RMSE to the numerical variables and accuracy to the categorical. However, under MAR,

the sampling of which variables are chosen to contain missingness would yield a large variation

in the metrics as RMSE is unbounded. Thus, under MAR, interpreting the RMSE would not

make any sense. The only numerical variable in the colon dataset was nodes. As this variable was

skewed, we found that binning it into the four groups [1], (1− 3], (3− 7] and (7, 33] gave the most

balanced distribution. For this reason, we did not consider any numerical global imputers.

The motivation for the strategies was as follows: for the global, mode imputation was one of

the few options available to compare against the ground truth values. For example, by replacing

a missing category with an indicator variable such as ’unknown’, it would not be possible to

compare it with the ground truth. Next, for the multivariate, kNN is a popular strategy for

multivariate imputations, and literature suggests it performs well. For the multiple imputations,

MICE is widely praised in literature for providing state-of-the art imputations. CCA was applied

to compare imputations with no imputations.

Table 4.6: Strategies for handling missing values used in the experimental setup of missing values
on the colon dataset.

Scope Strategy Mechanism
Global, categorical Mode MCAR, MAR
Multivarite kNN MCAR, MAR
Multiple MICE MCAR, MAR
- CCA MCAR, MAR

4.3.3 Evaluation

We considered three ways to evaluate the strategies applied to the missing data. (1) accuracy

(direct evaluation), (2) bias of coefficients of a Cox PH model (indirect evaluation) and (3) Harell’s

concordance index (indirect evaluation). The accuracy from Eq. (3.6) was suitable as we restricted

the colon cancer dataset to categorical variables only.

The bias (2) can be described as follows: with the complete dataset with no missingness sim-

ulated, we fitted a Cox PH model from Eq. (2.5) and extracted the coefficients. The idea was to

use coefficients fitted on the complete data with no missingness as a proxy for the ’ground truth’

coefficients. Next, for each missing value strategy applied, a new Cox PH model was fitted, and

the bias of these newly estimated coefficients were measured.
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Let i ∈ {1, . . . ,M} represent the index of one of the simulated datasets, and j ∈ {1, . . . ,m} be
the index of a variable in X. Then β̂

(i)
j is the estimated parameter for the j-th imputed variable

in the i-th dataset, and βj is the proxy ground truth parameter from the Cox PH model fitted on

the complete dataset. We define the bias as:

Bias(β̂
(i)
j ) =

β̂
(i)
j − βj

|βj |
(4.1)

For the equation, the numerator represents the deviation from the proxy ground truth parameter,

and the denominator is present for standardization. The absolute value is to keep the direction of

the bias consistent. Note that if the proxy ground truth model weights are very small, the bias

becomes very large as it is sensitive to small changes.

Finally, (3) refers to Harell’s concordance index defined in Section 2.4.2. For each imputation

strategy, the concordance index of the same fitted Cox PH model from above was measured.

It may be helpful to visualize the concept of the evaluations. See Figure 4.6 for an illustration.

The evaluations can be thought of as three different levels. Data with missing values was passed

from step (1) to (2). In the second step, missing values were handled by either imputation or CCA.

With imputations, the imputer could be evaluated directly (such as RMSE or accuracy) as a level

one evaluation. The imputed data was then passed to a predictive model in step (3), in our case,

Cox PH. For level two, it was possible to evaluate the imputations on a model based level, such

as the influence on statistical parameters associated with the model. Finally, step (4) related the

imputations to the output of the model, such as predictions. For level three, we could assess the

influence imputations had on the predictions. In our experiment, accuracy was level one, bias was

level two, and concordance was level three.

Figure 4.6: Evaluation pipeline for missing value experiment. The quality of the imputations was
assessed on three levels. Level one was a direct evaluation of the imputation, level two was the
evaluation of the model parameters and level 3 was the evaluation of the predictions.

4.3.4 Missing Value Generation

We will introduce how we artificially generated missing values for the colon cancer dataset. For

the mechanisms, MCAR was straightforward. However, MAR was more intricate.

Simulating missingness with MCAR and MAR mechanisms was based on Muzellec et al.

(2020).99 Their utility function is available on GitHub.100 The repository was cloned, and a few

necessary modifications to the utility function file were made.

Firstmost, they did not have the functionality of MCAR. This was implemented where missing-

ness was determined by the realization of a Bernoulli random variable. For each variable 1, . . . ,m,

there was a p probability of a sample being dropped. After simulating, it was expected for each

variable to have approximately the same proportion of missing values. We denote the proportion

of missing values as pmiss.

The MAR mechanism works as follows: a fixed proportion of randomly sampled columns were

set aside and would not contain any missing values. Next, logistic models with random weights

were fitted on the remaining variables using the non-missing variables as features. An intercept

was added using a line search to ensure the desired proportion of missingness. The proportion of
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missing values for MAR is also denoted as pmiss, and the proportion of retained columns is denoted

pobs.

Since the utilities file had no seed functionality, we added this. Two functions set sample seed(seed)

and set column seed(seed) were defined to be able to control for the randomness in the columns

and samples, respectively. The randomness of the samples refers to the missingness in the rows,

and the randomness in columns is of interest when looking at MAR because of the possibility of

reserving a proportion of columns that will not contain missingness. To be more specific about

the latter, by setting a column seed, a (random) set of columns with proportion pobs would not

be simulated with missingness. By then changing the column seed, a different set of columns with

the same proportion would be chosen.

The experiment was repeated many times for the same pmiss and pobs, and therefore introduced

two options for the MAR mechanism: either fix the column seed such that for each iteration, the

same columns are retained, or vary the column seed such that new, possibly different columns

with no missingness are introduced. The first choice is prone to an issue, namely, what columns

are chosen (and what not). Because we have m number of variables in the dataset, we would be

forced to set pobs to 0 to have a fair exclusion of all the variables. However, this will not make

sense as we require at least one variable to model the others. Thus, the smallest possible value

of pobs we can set is 1
m . Then, we would expect to keep exactly one variable. However, this will

introduce some bias in the sense that for the whole experiment, one column will never contain

any missingness. The alternative choice is objectively better and is the one we applied. For each

iteration, randomly vary the column seed so that potentially new variables are sampled. This will

not introduce any bias in the column selections and also have the largest possible variance - the

variation from selecting the columns, and the variation due to simulated missingness.
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4.3.5 Pipeline for the Missing Value Experiment

The experiment was primarily segmented into two parts: MCAR and MAR. The major difference

between MCAR and MAR, other than the missingness mechanism, was the ability for MAR to

control for the proportion of columns to retain, i.e. columns that would not be simulated with

missingness and instead be used for modelling the missingness in the remaining variables.

Figure 4.7: Illustration of the experimental setup of the missing values pipeline. The complete
data is passed through steps (1)-(9), and step (1) determines whether MCAR or MAR missingness
is being simulated.

The pipeline in Figure 4.7 was based primarily on two parent classes in Python: one for single

imputation and one for multiple. Both have two subclasses, one for MCAR and one for MAR.

The classes contain all the necessary methods for fitting and extracting information. For clarity,

some intermediate steps such as temporarily converting categories to integers or Torch tensors to

NumPy arrays are not shown.

The pipeline starts at (1) by taking in the colon cancer dataset, which contained no missing

values and only categorical variables, by initializing either the MCAR or MAR subclass. The

pipeline was designed in such a way that any dataset with only categorical variables can be passed

in. The initialization also required the name of the time and status variables, as missingness was

not simulated for these.

It is not present in the figure, but during initialization, a Cox PH model was fitted on the

complete data where the weights and concordance index were stored. The weights were used as

the proxy ground truth for calculating the bias defined in Eq. (4.1).

Next, (2) concerns the actual simulation of missingness. Here, all variables but time and status

were passed to the utilies.py file M times to simulate missingness. The parameters passed to the
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simulation were M (number of datasets with missingness to generate), p miss (the proportion of

missing values) and p obs (only for MAR, the proportion of variables to retain). This yielded three

tensors of dimensions n ×m ×M . The first tensor was the initial data (just repeated M times),

the second was the same, but with missing values, and the third was a mask of booleans indicating

if a value was missing or not. Each simulated missingness 1, . . . ,M were unique because the seeds

vary as mentioned in Section 4.3.4.

After simulating the missingness, the tensors in (3) were split into train and test using 70% for

train and the remaining 30% for test. Thus, we got six tensors, the three mentioned previously

but for both train and test. We also kept track of the time and status corresponding to train and

test that was omitted before simulating.

Next is the imputation steps (4a-c). All categorical variables were mapped to integers before

imputing. As discussed in Section 3.7, this was not an ideal strategy for nominal variables and can

give misleading imputations. However, there was no simple alternative. As we were interested in

comparing the imputation with the corresponding ground truth value, we could not target encode

the nominal categories as we would be unable to return to the original categories. Furthermore, all

imputations were performed on the train set first and after on the test set using information from

the fit on train. So, for example, considering mode imputation, the test set was imputed using the

mode of the training set. The strategies applied are found in Table 4.6. For MICE, the tensors

from (3) were saved locally and run in R-studio. For each of the simulated datasets 1, . . .M , MICE

generated G imputed datasets and returned them to Python with dimensions n×m×G×M to

proceed with the pipeline.

Table 4.7: Imputation functions in MICE. See table 4.7 for a description of these.

Variable Imputation model
rx polyreg
sex logreg

obstruct logreg
perfor logreg
adhere logreg
differ polr
extent polyreg
surg logreg

nodes (binned) polr

After all the imputations were complete, step (4) calculated the accuracy between the imputed

and ground truth data tensors defined in Eq (3.6).

The next step in the pipeline is the comparison between imputation and removing samples.

Step (6) did not impute anything but instead removed all samples that were missing. Note that

because we wanted to measure the bias of coefficients for the Cox PH model, we did not remove

any variables. We looked only at the effect of removing samples.

After applying all the strategies for handling the missing values (4a-c, 6), step (7) fits a Cox

PH model on each of them. This was done using CoxPHSurvivalAnalysis from the scikit-survival

package. An important consideration before model fitting was the appropriate encodings. The

encodings were automatically decided during initialisation: categories with binary levels were one-

hot encoded where the first level was dropped, ordinal categories were assumed to already be

integers, and nominal categories were target encoded. The target encoding used the survival times

as the target. In addition, the data was scaled after encoding. This was linked to the target

encoding as it introduced variables of magnitude 103. The next consideration was matrix inversion

problems. The pipeline was designed to flow automatically and, therefore, was required to handle

this. The simplest solution we employed was attempting to fit a model without regularization but

gradually increasing the regularization strength if the fit failed due to inversion problems.

With models fitted for all strategies, the next step (8) involves calculating Harrel’s concordance
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index and the coefficients’ bias. For accuracy and concordance, we got estimates for both train

and test. This was not the case for bias, as it is an estimate based on the coefficients tied to the

fitted model.

Step (9) combines all estimates into a single point estimate, including the variations. For all the

instances with mimicked missingness 1, . . .M , we found the expected value as the arithmetic mean

and the standard deviation as the population standard deviation. For multiple imputations, it was

a little different. We found the arithmetic mean and standard deviation for each of the 1, . . . ,G

datasets (for each 1, . . .M). To pool them into a single estimate for each of the M simulations, we

found the expected value of both the mean and the standard deviation of the G datasets.

To make the pooling more clear, denote θ as the parameter of interest (accuracy, bias or

concordance). This is a vector of size M for single imputations and a matrix with dimensions

M × G for multiple. The bias is an exception, as every variable has an associated bias. For

simplicity, assume only one variable is being pooled. The strategy for pooling the bias is simply

applied to each variable iteratively.

Pooling Single Imputation

For single imputations, the parameters were pooled across the M imputed datasets. Let µ denote

the mean and σ the population standard deviation, they are given as

µ(θ) =
1

M

M∑
i=1

θi

σ(θ) =

√√√√ 1

M

M∑
i=1

(θi − µ(θ))2

Pooling Multiple Imputation

For multiple imputations, the within mean µ(w) and population standard deviation σ(w) of dataset

index i ∈ {1, . . . ,M} were found in the G imputed datasets as follows

µ(w)(θi) =
1

G

G∑
j=1

θij

σ(w)(θi) =

√√√√ 1

G

G∑
j=1

(θij − µ(w)(θi))2

then the outer mean µ(o) and population standard deviation σ(o) was given by the arithmetic mean

of these two estimates across the M datasets. These outer statistics were the ones reported.
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4.3.6 Parameters and Hyperparameters Used for Simulation

We will briefly examine the parameter and hyperparameter selections for the simulation. For the

parameters, we was concerned with pmiss, pobs and M and G. For the hyperparameters, we only

mention n neighbors.

First, consider pmiss, the parameter that decides the proportion of missing values to simulate.

For all imputation strategies, we simulated missingness for the values {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
For CCA, we only used {0.05, 0.10, 0.15, 0.20, 0.25}. The reason for limiting the missingness in

CCA was because of the expected rows to keep under the MCAR mechanism. This was mentioned

in Section 3.5, and we will illustrate now with numbers from our dataset. Recall that the original

dimension of the colon cancer dataset was 888×9 (after removing event and duration). Next, after

performing a 70/30 train/test split, we expected to keep 622 rows for the train. For an overview

of the expected number of rows to keep after deleting entries with missing values under each

proportion of missing values, refer to Table 4.8. In short, everything after 30% became infeasible

to use.

Table 4.8: Expected number of training rows to keep for different pmiss under MCAR

Probability (pmiss) Formula Num. rows kept

0.05 (1− 0.05)9 ≈ 63% 392 rows

0.1 (1− 0.1)9 ≈ 39% 240 rows

0.2 (1− 0.2)9 ≈ 13% 83 rows

0.3 (1− 0.3)9 ≈ 4% 25 rows

0.4 (1− 0.4)9 ≈ 1% 6 rows

0.5 (1− 0.5)9 ≈ 0.002% 1 row

It was not as easy to calculate the expected number for MAR because the variables were not

independent. For consistency, we used the same proportions for both mechanisms. Next, we

considered pobs, the proportion of variables that would not contain missing values. Because we

had 9 variables to simulate, a reasonable set of proportions was { 89 ,
7
9 ,

6
9 ,

5
9 ,

4
9 ,

3
9}. This guaranteed

that the numerator was the number of variables to keep. It also gave a nice grid of 3× 2 or 2× 3

subplots for visualization, and was a fair proportion of columns to retain.

The choice of how many simulations to run, M , was arbitrary, and asM increased, the estimates

become more precise. However, the simulation was computationally expensive, so we found that

50 was a suitable number of missing datasets to generate. Buuren (2018) suggests that the number

of imputed datasets, G, to impute with MICE, should be as high as possible, though it requires

more computational power and storage.18 Anywhere between 5-20 was sufficient, but the range

between 20-100 could be beneficial for higher-quality imputations. We set G to 50.

Finally, the choice of n neighbors in kNN was 10. There is no fixed integer that works best.

However, the default implementation for kNN imputer is 10 and 5 for R and Sklearn, respec-

tively.16,127
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4.4 Experimental Setup: Survival Analysis (GEP NEN)

4.4.1 Motivation

We introduce the important topics we considered in the survival analysis experiment. It was of

interest to explore how data science can help to make better decisions for clinical patients. In par-

ticular, we wanted to address the challenges with the GEP NEN dataset, which had issues such as

small sample size and large proportions of missing values, complicating our analysis. This involved

thorough preprocessing to establish a good foundation for further analysis with assistance from

expert knowledge. Our preprocessing pipeline addressed missing values and applied appropriate

encodings for categorical variables. This was crucial for selecting the most effective models to

predict outcomes in GEP NENs, aiming to make medical predictions more accurate and improve

clinical decision-making.

The experimental setup for the survival analysis contained two main parts. The first involved

developing a survival analysis pipeline that preprocessed the GEP NEN dataset and identified the

most effective models for predicting outcomes. The second part evaluated various strategies (CCA,

kNN, and MICE) for handling missing values to determine the most suitable method to apply in

a survival model to the GEP NEN dataset.

The experimental setup for the survival analysis is described as follows: preparation of the GEP

NENs dataset (Section 4.4.2, survival analysis pipeline (Section 4.4.3), hyperparameters used for

the survival models (Section 4.4.4), pipeline methodology for CCA (Section 4.4.5), multiple im-

putations for survival analysis (Section 4.4.6), evaluating the imputations strategies used (Section

4.4.7) and interpretation of the survival models (Section 5.2.4).
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4.4.2 Preparation of the GEP NEN Dataset

The preparation of the data contained several steps, illustrated in Figure 4.8. Duplicated data

were removed and was not included in the new study’s original dataset.

Figure 4.8: Pipeline for the preparation of the dataset for the new study.

(1) Replace ’Not Done’/’Unknown’ with NA

The term ’Not Done’ indicated that the outcome or status of the method or experiment was unclear

or not established, which means that even though the activity may have been conducted, the results

or details about it are not available or have not been disclosed. The difference between ’Not Done’

and ’Unknown’ lies in the stage of action and the availability of information. ’Not Done’ explicitly

indicated that the activity had not been initiated hence there were no results or data to report.

’Unknown’ implied that the activity might have happened, but the results or details were missing

or unclear, leaving a gap in our understanding. We decided to transform all values containing ’Not

Done’ or ’Unknown’ into missing values represented by NA.
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(2) Samples Without Status/Overall Survival

For survival analysis, it was important to have data for the target values, status and survival

time, OS (days). Nine patients were removed, as patients did not belong to any of the studies we

examined. One patient had no information about the survival time and was removed. Thus, a

total of 10 patients were removed in step 2.

(3) Columns with Dates

Since the overall survival (OS) calculation had been completed, there was no longer a need to

use calendar dates, so they were removed from the analysis. This removal not only simplified

the dataset by avoiding complications with date formats but also enhanced the privacy of the

individuals by eliminating potentially identifiable information. A total of 14 columns were removed

in step 3.

(4) Columns Based on Domain Knowledge

Based on expert knowledge, several variables were omitted as they would not be useful for the

analysis. In total 28 columns were removed in step 4.

(5) Columns with Imbalanced Class Distributions

When conducting a survival analysis model with cross-validation, it was important to ensure that

all categories within each feature were represented in both the training and testing folds. This was

particularly challenging with imbalanced features, where certain categories might not be included

in all the folds. For binary variables, imbalanced features could cause singular matrices when

estimating parameters, and removing these made the model more stable. To solve this problem,

we implemented a thresholding approach to exclude features that did not have all their categories

represented in the test folds. The threshold was determined by iteratively testing different values

until the minimum threshold was found that allowed the survival analysis model to run without

matrix inversion problems. To quantify the imbalance across features, we calculated the imbalance

ratio. This was done by dividing the occurrence count of the least frequent category by that of the

most frequent category within each feature. The formula for the imbalance ratio was as follows:

Imbalance Ratio =
Count of Least Frequent Category

Count of Most Frequent Category

The threshold was set at threshold = 13. Features that had higher values than the imbalance

ratio threshold of 13 were removed. In total 15 columns were removed as of imbalance class

distribution in step 5.

(6) Columns with Large Proportions of Missingness, Low Influx and Outflux

Handling missing values was a critical preparation step to ensure the quality and reliability of

survival analysis. Table 4.9 shows the top 20 columns with the highest percentage of missing

values in descending order. Retaining variables with a high proportion of missing values could

introduce bias, reducing the analysis’ performance (Section 3). Moreover, it might weaken the

model’s predictive performance by affecting its ability to establish meaningful relationships between

features. In preparation step 6, we also used methods of influx and outflux (Section 3.3) to assist

with what columns should be removed.
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Table 4.9: Percentage of NA for each Column. All features above the line are removed.

Column Name NA (%)

Albumin Not Done 99.0

Toxicity Yes 99.0

CRP Not Done 99.0

ANC Not Done 99.0

Exploration Only, No Resection 91.0

Date of Brain Mets 90.0

Pack–years 85.0

OctreoScan 80.0

Resection 78.0

5–HIAA 24h Urine 72.0

CD–56 64.0

SRI 60.0

Octreoscan 55.0

Differentiation 41.0

Tumour Morphology 29.0

Chromogranin A2 28.0

Best Response (RECIST) 27.0

Co-morbidity Severity 27.0

Number of Courses 18.0

Treatment Stopped 18.0

Figure 4.9: Influx and outflux of the variables in the GEP NEN dataset before removal variables
marked in red.

Figure 4.9 shows the values of influx and outflux for features with lower outflux than 0.8. As

discussed in Section 3.3, a high outflux was preferable because it indicates that a feature had a

high potential to impute missing values in other variables. A high influx was also preferable, as it

suggests that the feature may be easier to impute. The variables located higher up in Figure 4.9

was more complete and therefore potentially better to use for imputations.

If we removed all features with outflux lower than 0.30 and influx higher than 0.65 as detailed
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in Table 4.9, these features would correspond to those removed under a threshold of 65% missing

values, as shown in Table 4.9. In conclusion, in step 7 in Figure 4.8, we removed 10 features due

to many missing and high values for the influx and low outflux.

(7) Highly Correlated Columns (|ρ| > 0.85)

Highly correlated columns in a dataset signify that some columns share a strong linear relationship,

often leading to redundancy. This can complicate analysis and predictive modelling by introducing

multicollinearity, which may skew results.145 The correlation matrix shown in Figure 4.10 was a

powerful tool for identifying the strength and direction of linear relationships between the columns,

showing those with an absolute correlation exceeding 0.85. When deciding which columns to

remove based on these correlations, we chose to keep the column with fewer missing values. As a

result, the columns M-stage, TNM-staging NEC, Time from diag to mets (months), SRI, and Age

at Death were removed. Five columns were removed during step 7, as shown in Figure 4.8.

Figure 4.10: Correlation matrix for columns with absolute correlation higher than 0.85. Keep the
column with fewer missing values for each correlation pair.

(8) Removing Samples with Many Missing Values

In addition to removing variables with high proportions missing values, it was important to remove

samples with large proportions of missingness. The samples with missingness exceeding 20 % were

removed. Table 4.10 details the samples with the highest percentages of missing values; all samples

above the line were removed. In total, four samples were omitted.
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Table 4.10: Number of missing values (NA (%)) for each patient (PATNO).

PATNO NA (%)

9063 70.0

9012 68.0

9020 36.0

9010 36.0

9098 20.0

9120 18.0

9039 18.0

9060 16.0

9033 16.0

9056 16.0

The original dataframe consisted of 113 samples and 122 columns. After preparation, the

dataset was reduced to 99 samples and 50 features.

4.4.3 Survival Analysis Pipeline

Figure 4.11 illustrates the pipeline methodology used across various survival models, including

Coxnet, Cox PH, RSF, and CGB.

Figure 4.11: Survival analysis pipeline methodology. Used the prepared dataset to generate MI
datasets and the CCA dataset. The pipeline involves encoding categories, kNN-imputation, and
hyperparameter tuning. After these steps, all scores and coefficient values are organized into four
dictionaries. These four outcomes are used to plot figures.

After the preparation, the resulting dataset consisted of 99 samples and 50 columns. The

prepared dataset was used to generate MI datasets (a) and the CCA dataset (b). The survival
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analysis pipeline can be utilized for all three datasets. However, steps 4B and 4C were not applied

to the MI datasets (a) and the CCA dataset (b) as they did not include any missing values.

The first step (1) involved encoding the ordinal and binary categorical variables. All binary

categorical variables without missing values were encoded using the Python function get dummies

by the Pandas library to one-hot encode (Section 2.5.1). For binary categorical variables with

missing values and ordinal variables, we manually encoded them to integers temporarily using the

map function in Pandas. Thus, after step (1), all binary and ordinal variables had been encoded.

In step (2), the pipeline entered the hyperparameters tuning. Various hyperparameters were

defined and iterated to optimize the model´s performance. The step was creating cross-validation

folds (3), where the dataset was partitioned into multiple folds. We used the RSKF (Section 2.4.1),

with 5 splits and 5 repetitions, resulting in 25 folds. In every fold, the dataset was divided into

train and test. These divisions were utilized throughout the remainder of the pipeline.

When calculating the Brier score, it was essential to ensure the survival times for test data

estimation (slicing the time) did not exceed the maximum survival times observed in the train set.

If any test times were longer than max training time, they had to be truncated. Otherwise, it was

not possible to correctly determine individual survival probabilities.

Step (4) used the function called Preprocessing() within each fold of the cross-validation

and conducted a series of four steps (4A-D). The first step (A) used a target encoder with the

function MultiTargetEncoder, based on sklearn’s target encoder, to encode nominal variables

with more than two categories. The default target encoder did not ignore the missing values but

handled them by replacing them with another category (Section 2.5.1). Therefore, employing our

MultiTargetEncoder ensured that missing values were ignored during the encoding process. Using

the target encoder, our target variable, survival time, which is a continuous variable, was used as

the target value when calculating the encoding for the nominal variables.

After step (A), where all variables had been encoded, the next step involved imputing missing

values (B) with kNN imputation (Section 3.6.2). Prior to imputing, variables were required to

be scaled (Section 2.5.3). In the next step (C), binary variables that originally contained missing

values prior to step (2) were rounded to the nearest integer, resulting in either 0 or 1. These

integers were mapped back to their original categories before being one-hot encoded. This was

done as they had now been imputed. In the final step (D), the entire dataset, both the train and

test folds, was scaled using standard scaling (Section 2.5.3).

After completing step (4), we obtained a fully preprocessed dataset. In the modeling and scoring

step (5), the machine learning model was trained using preprocessed data, and its performance was

evaluated using the survival models scoring metrics Brier Score, IBS and Harrell’s C-index (Section

2.4.3 and 2.4.2). The outcomes of the survival models, including their respective parameters,

were organized into four dictionaries (right side, Figure 4.11). In the dictionary (6), the average

scores for Brier score, IBS and Harrell’s C-index across all folds were compiled for each set of

hyperparameters. The dictionary (7) encompassed all permutations (Section 2.5.4) of variables for

each fold alongside their corresponding hyperparameters. The dictionary (8) aggregated Harrell’s

C-index scores for each fold under each hyperparameter. The final dictionary (9) included all

coefficients for each variable across each fold alongside their corresponding hyperparameters.

These outcomes of the survival models (6-9) were used to create Figures (10) that are further

described in Section 4.4.8 in Figure 4.13. All four survival models used dictionaries (6-8) in Figure

4.11, and only the Coxent model used the dictionary (9).
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4.4.4 Hyperparameters Used for the Survival Models

We will explain the hyperparameter used in each survival model.

Coxnet

For the Coxnet algorithm (Section 2.3.2), the hyperparameters optimized were alpha and L1 ratio

as shown in Table 4.11. Alpha controls the strength of the regularization. In contrast, the L1 ratio

controls the balance between L1 and L2 regularization. The alpha values we used ranged from 0 to

1000, with 19 different values within this interval, totaling 21 alpha values. This range encompassed

both low and high regularization strengths, ensuring exploration of the model’s behavior across

various scenarios. As for the L1 ratio was set to 0.0001, 0.001 and in addition from 0.1 to 0.9 in

increment of 0.1, totaling 12 L1 ratios. This selection was intended to explore the influence of both

sparse and dense models on the performance.

Table 4.11: Hyperparameter values used in the Coxnet model in the GEP NEN dataset.

Parameter Values

Alpha 0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 20, 50, 70, 100, 200, 500, 700, 1000

L1 Ratio 0.0001, 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Cox Proportional Hazards

In the Cox PH algorithm, alpha served as the only hyperparameter as shown in Table 4.12, with

the identical set of alpha values used as in the Coxnet algorithm.

Table 4.12: Hyperparameter values used in the CoxPH model in the GEP NEN dataset.

Parameter Values

Alpha 0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 20, 50, 70, 100, 200, 500, 700, 1000

Random Survival Forest

In the RSF algorithm (Section 2.3.3), four hyperparameters were tuned as shown in Table 4.13:

n estimators, max depth, min samples split, and min samples leaf. The n estimators parameter,

which determines the number of survival trees, was tuned from 10 to 50 in increments of 10.

The max depth of the survival trees influenced the complexity of the model. A deeper tree can

model more complex patterns but might lead to overfitting. Tuning from 2 to 5 allowed us to

explore a range from simpler to moderately complex models, aiming to find the optimal model for

generalization.

min samples split is the minimum number of samples required to split an internal node. Higher

values of min samples split prevent the model from learning specific patterns, thus reducing over-

fitting. Values of 2, 6, and 8 were chosen formin samples split. We also tuned themin samples leaf

parameter, which determines the minimum number of samples a leaf node must have, ranging from

1 to 5. This hyperparameter aims to prevent the model from capturing noise in the train data,

thus improving its predictive stability.
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Table 4.13: Hyperparameter values used in the RSF model in the GEP NEN dataset.

Parameter Values

n estimators 10, 20, 30, 40, 50

max depth 2, 3, 4, 5

min samples split 2, 6, 8

min samples leaf 1, 2, 3, 4, 5

Component-Wise Gradient Boosting

In the Component-wise gradient boosting algorithm (Section 2.3.4), three hyperparameters were

tuned as shown in Table 4.14: n estimator, learning rate, subsample. The n estimator was tuned

with the same identical set of n estimator values used as in the RSF model. The learning rate and

subsample were tuned from 0.1 to 1 in increments of 0.1. Tuning the learning rate affects how a

slower or faster learning rate affects the model’s performance. For the subsample, we want to tune

the whole range where it occurs to achieve the optimal model. Additionally, this lets us explore

the effect of stochastic gradient boosting (subsample< 1.0) by varying the degree of randomness

in the training process.

Table 4.14: Hyperparameter values used in the CGB model in the GEP NEN dataset.

Parameter Values

n estimator 10, 20, 30, 40, 50

learning rate 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

subsample 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

4.4.5 Pipeline Methodology for CCA

CCA was a dataset without using any imputation method. Instead, it leaves out columns and rows

with missing values from the preparation dataset as illustrated in Figure 4.11. Initially, the number

of columns with the highest proportion of missing values was removed, followed by the removal

of samples containing missingness. To create the highest-performed CCA dataset, we introduce a

hyperparameter that establishes a threshold for the percentage of missing values a column can have

before removal. For instance, setting the threshold to 3 implies that any column with more than 3%

missing values will be removed. By integrating this additional hyperparameter, the model explores

performance across various CCA datasets, ultimately identifying the best-case CCA dataset. The

hyperparameter that produced the highest-performing dataset was consistently set to 3 across all

four survival models. The columns removed under this hyperparameter setting were shown in

Table 4.15, along with their respective percentages of missing values. The pipeline methodology

was the same as for multiple imputation datasets where 4(B-C) was ignored, illustrated in Figure

4.11.
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Table 4.15: Columns removed from the CCA dataset based on a hyperparameter threshold of 3%
missing values, showing the percentage of data missing for each column.

Variable NA (%)

CD-56 62.62

Octreoscan 53.53

Differentiation 40.40

Co-morbidity Severity 28.28

Tumour Morphology 27.27

Chromogranin A2 26.26

Best Response (RECIST) 24.24

Treatment Stopped 15.15

Number of Courses 15.15

Chemotherapy Type 14.14

Smoking 10.10

NSE 7.07

Chromogranin A 7.07

Synaptophysin 7.07

Dev of Bone Mets 7.07

ALP 5.05

WHO Perf Stat 5.05

LDH 4.04

N-stage 3.03

T-stage 3.03

BMI 3.03

4.4.6 Multiple Imputation

Figure 4.11 shows the pipeline for CCA, kNN and multiple imputations. The difference between

them was that for multiple imputations, the imputed datasets in (a) were passed to step (1) instead

of the preparation dataset, and steps (4B-C) were skipped as they were already imputed.

First, multiple imputation was done in R using the mice package (Section 3.6.3) using the

Preparation dataset in Figure 4.11. The pipeline was repeatedly applied to each of the 1, . . . , G

imputed datasets. As multiple datasets were generated instead of one, Rubin’s rules were used to

pool parameters to point estimates. We also generated a model-based imputation using MICE,

where only one imputed dataset was generated. This was included to assess the performance of

mimicking single imputations with the benefit MICE has by the changed equations.

Multiple imputations were carefully applied, following most of the approaches recommended

by the software author and this book.18 They approached the implementation from a statistical

point of view as the goal was to make good imputations. They suggest including all available

information, such as the target variable and the entire dataset - not just a subset. They only

recently added the functionality of train/test imputations.19

This meant two things. Firstly, we did not use MICE’s train/test imputation feature. In

the first iteration, we tried this. However, the test imputations were poor and gave very low

concordance, but it also posed a technical limitation. The target encoding in Figure 4.11 (step 4A)

was conducted within each cross-validation fold, and there was no feasible way to impute using

only information from each fold in R, and then somehow refer back to those folds in Python. We

investigated Python implementations of MICE, but most of them lacked the elements required

for our application. An example of one we tried was Autoimpute, a popular Python variant with
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numerous imputation strategies.72. The problem with this software is that it was very strict with

categorical data. For example, if a variable was fitted to a category with three levels, but only two

showed up in the test set, it would fail.

We avoided using the variables representing status and survival times for imputation. We were

interested in seeing how well imputations perform without introducing too much data leakage to

make the multiple imputations comparable to the kNN imputations.

For the specifics of the actual imputations, we can spare some reading by not listing all the

imputation functions used for each variable. Instead, refer to Table 4.16 for an overview of the

imputation functions used for each variable’s datatype. The variables was in detail described in

Tables: 4.2 (numerical), 4.3 (categorical, ordinal), 4.4 (categorical, binary) and 4.5 (categorical,

nominal). In addition to tailoring the imputation functions to each variable, we also tried imputing

using only PMM.

Table 4.16: Imputation functions used in MICE depending on the variable datatypes. See table
3.6 for MICE details.

Variable Imputation model

Numerical pmm

Factor, ordinal polr

Factor, nominal polyreg

Factor, binary logreg

Note that all the numerical variables were floats but rounded down. Thus, we found that PMM

was appropriate. Alternatives would be one of the continuous models, such as linear regression. The

latter model has accompanying assumptions about the residuals, like being independent, Gaussian

distributed and with constant variance.118 Verifying this would be difficult.

The next step before doing imputations was a variable selection of predictors. Variables with

too many missing values can do more harm than good. The preprocessing step in Section 4.4.2

dealt with this by looking at the proportions of missingness, along with influx and outflux. Next,

we investigated the predictor matrix used for imputations. This is a binarym×mmatrix indicating

what predictors (columns) should be used for imputing (rows). It was important not to use all

variables as predictors as the occurrence of collinearity would be more likely, i.e. one or more

variables explain more or less the same information, which can trouble the imputations. The final

concern was the degrees of freedom available for the models. This was how many samples were

independent of the estimated parameters, and it relates to how much information was left for

imputing. Nonparametric imputation functions, such as PMM, did not suffer from this. However,

all the others we listed do. In fact, by including all the predictors, we ended up with negative

degrees of freedom. We found it sensible to filter the variables such that they required at least

30% absolute correlation with the imputation target to be used.

4.4.7 Evaluating the Strategies: A Statistical Approach

We used a t-test to determine if there was a significant difference between the means of the model

performances after applying each missing values strategy (CCA, kNN, MICE). Since we used RSKF,

the t-test analyzed a list of C-index scores for the testing set to determine whether there was a

significant difference. We verified the normality assumptions, and all the groups compared were

reasonably normally distributed. Figure 4.12 illustrates the methodology for retrieving the C-index

list for the highest-performing model. The process involved selecting the hyperparameters that

yielded the highest C-index in the test phase of the model as part (6) in Figure 4.11. Subsequently,

these parameters were used to retrieve the C-index for each fold as part (8) in Figure 4.11 that

corresponds to these parameters.
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Figure 4.12: Comparison methodology to find the list of C-index used in the t-test.

First, kNN imputation was compared with CCA. This comparison was conducted across various

survival analysis models, including Coxnet, Cox PH, RSF, and CGB. Subsequently, we identified

the superior model from these based on its performance with either kNN imputation or CCA. This

high-performance model was then used to evaluate whether the application of the model-based

imputations method (MI with only one imputed dataset) resulted in any significant differences.

Lastly, we evaluated whether the application of MI also resulted in any significant difference. An

overview of all the comparisons conducted using the t-test is illustrated in Table 4.17.

Table 4.17: t-test comparison between KNN, CCA, Model-based, and MI.

Comparison: t-test Survival Model

kNN vs CCA Coxnet

CoxPH

RSF

CGB

kNN vs Model-based Coxnet

kNN vs MI Coxnet

Since MI generated multiple datasets, obtaining a list of C-indexes was more complex. The

process began by executing the pipeline shown in Figure 4.11 for each MI dataset. The next step

was to identify the model on each dataset with the highest C-index during the testing folds. The

hyperparameter combinations that were most common across all datasets were then selected to

rerun the pipeline in Figure 4.11, but now applied to all the datasets. Finally, to correctly collect

the list of C-indexes, we calculated the mean of the C-index values from all the datasets.

4.4.8 Visualization of Survival Model Performance and Evaluation

Figure 4.11 shows plots that visualized the operation of different survival models executed in the

pipeline. These plots were created for the imputation method that gave the highest performance

of the model. All the plots, 10(a-f), are illustrated in Figure 4.13.

Figure 4.13: Figure overview: figures (a-c) used all survival models, while figures (d-f) exclusively
for the Coxnet model.
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(10a) Permutation Feature Importance

The permutation feature importance (10a) (Section 2.5.4), as shown in Figure 4.13, was plotted

across all four survival models using the dictionary (7) illustrated in Figure 4.11. Since we used

RSKF, it was necessary to average the feature importance values for each feature across all folds.

These averages were then ranked by their highest values to identify the most important features.

The average feature important across all survival models was also calculated.

(10b) Time-Dependent Brier Score

The time-dependent Brier score plot (10b) (2.4.3) in Figure 4.13 used the Brier score at each

survival time for each survival model. Since we used RSKF, the stratified k-fold was repeated five

times, which implied that the maximum time point in the train folds varied. Therefore, the times

from each set of five folds were adjusted by truncating the minimum length observed among them.

Then, Brier scores from these adjusted time points were averaged and plotted. The average of

these five-folds was plotted along with the standard deviation to show the overall Brier score and

variability.

(10c) Survival Curves

Two survival curves were generated for four selected patients, one for single imputations and one

for multiple imputations.

The first was a survival curve in the testing fold using a RSKF method with five folds and

five repetitions. Consequently, each patient was included in the testing set five times, and each

patient´s survival probability was plotted five times. The mean and standard deviation of the

survival probabilities were computed across all these five survival probabilities.

The second was a survival curve in the testing fold using stratified k-fold, for 50 imputed

datasets with MICE. This implied that each patient was in the test set once for each of the 50

imputed datasets. The mean and standard deviation of the survival probabilities were computed

across all 50 survival probabilities.

Both survival curves’ observed and expected survival times were also plotted. The expected

survival time was computed by discrete integration of the mean survival function over time.

(10d-f) Coxnet Plots

The performance of the Coxnet model across various alpha values and L1 ratios (10d) was plotted

using dictionaries (6) and (9) as shown in Figure 4.11. Detailed model performance metrics were

presented in the dictionary (6), while information regarding the coefficients of each model feature

was found in the dictionary (9). To determine the features eliminated through feature selection,

we evaluated the coefficients: features with a coefficient of zero were identified as removed. This

approach allowed us to visualize the impact of different hyperparameters, alphas and L1 ratios, on

both the feature selection process and the performance metrics.

To observe how the coefficient of a feature and performance metrics varies with different reg-

ularization parameters (10e), we used the dictionaries (6) and (9) illustrated in Figure 4.11. Per-

mutation feature importance (Section 2.5.4) was computed similarly to (10a) in Figure 4.13, but

specifically for the Coxnet model.
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5 Results

5.1 Experimental Setup: Missing Values (Colon)

This section covers the results from the missing value experiments on the colon dataset described

in Section 4.3. We investigated the effects of various strategies applied to the MCAR and MAR

missingness mechanisms for increasing proportions of missing values. The three effects we measured

were accuracy, concordance and bias of coefficients of a Cox PH model.

Representative results are shown, due to the large amount of figures. The train and test results

were approximately the same if both are not shown. More figures are found in Appendix A.

5.1.1 Runtimes of Missing Value Experiment

The runtimes for each strategy applied to the missing value experiment are given in Figure 5.1.

MAR generally had longer runtimes as the extra parameter pobs led to an additional loop to iterate

through.

Table 5.1: Runtimes of the strategies applied to the simulated missingness in the colon dataset.
This was run on machine (1) (Section 4.2.2).

Strategy Runtime (MCAR) Runtime (MAR)

Mode 32s 3m 58s
CCA 16s 2m 38s
kNN 49s 4m 47s
MICE 48m (R) + 5m (Python) 1h 28m (R)+ 28m (Python)

5.1.2 The Cox Proportional Hazards Model

The two evaluations, bias of the coefficients and concordance, were related to a Cox PH model.

Table 5.2 shows the proxy ground truth Cox PH model fitted on the colon dataset with no missing

values. It was fitted using the same pipeline as for the ones with simulated missing values (scaling,

encoding, etc.). The coefficients coef were used for calculating the bias in Eq. (4.1). The vari-

ables nodes and extent had coefficients significantly different from 0 at a 5% rejection level. The

concordance was 0.66.

Table 5.2: Ground truth Cox PH model fitted on the colon dataset before simulating missingness.
Coef shows the proxy ground truth coefficients, with standard deviation (se), upper 95% confidence
intervals (coef lower 95%) and lower 95% confidence intervals (coef upper 95%) are also shown.
The z-statistic (z) and p-value (p) with H0 : coef = 0 vs HA : coef ̸= 0 is provided. The c-index
(concordance) is also included.

coef se(coef) coef lower 95% coef upper 95% z p

nodes 0.44 0.05 0.34 0.53 9.06 < 0.005

rx -0.08 0.05 -0.18 0.02 -1.60 0.11

differ 0.09 0.05 -0.02 0.19 1.66 0.10

extent -0.16 0.05 -0.27 -0.05 -2.94 < 0.005

sex M -0.01 0.05 -0.11 0.09 -0.31 0.76

obstruct Y 0.09 0.05 -0.00 0.18 1.89 0.06

perfor Y -0.03 0.05 -0.12 0.05 -0.54 0.59

adhere Y 0.09 0.05 -0.00 0.19 1.86 0.06

surg S -0.11 0.05 -0.20 -0.02 -2.32 0.02

concordance 0.66
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5.1.3 Missing Completely at Random (MCAR)

Figure 5.1 shows the training accuracy after applying all the imputation strategies under MCAR,

for increasing proportions of missing values. kNN and MICE were the least affected by increasing

the missingness. kNN and mode imputations had the highest and smallest overall accuracy, re-

spectively. The latter performed slightly worse when the proportion of missingness increased. The

performance of MICE was close to mode imputation.
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Figure 5.1: Train accuracy as a function of the proportion of missing values using mode, kNN and
MICE imputations on simulated missingness (MCAR) in the colon dataset, where missingness was
simulated 50 times. The standard deviations (shaded area) and averages (solid line) are shown.
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The bias of the Cox PH model coefficients after applying all strategies, except for mode, is shown

in Figure 5.2. For mode, see Appendix A.1. CCA had the highest bias in perfor Y for simulated

25% missingness. For the same proportion, the variables sex M and adhere Y followed with a

large standard deviation of 24 and 11, respectively. The heatmaps of kNN and MICE may be

misrepresentative in comparison to CCA, due to the scale of the colors for CCA. MICE and kNN

had approximately the same bias in most variables, with MICE having slightly lower standard

deviations. Both corrected the bias of perfor Y as their maximum bias were 1.08± 2.14 for kNN,

and 1.21± 1.93 for MICE.
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Figure 5.2: Bias of coefficients from a Cox PH model of the variables as a function of the proportion
of missing values after applying CCA, kNN and MICE on simulated missingness (MCAR) in the
colon dataset, where missingness was simulated 50 times. The whitest colour implies no bias, while
blue and red lean towards negative and positive bias, respectively.
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The train and test concordance after applying CCA under MCAR, when increasing the proportions

of missing values, gave a larger discrepancy between the curves as the proportion of missingness

increased, as shown in Figure 5.3. There was an increasingly larger standard deviation in the test

concordance.

Figure 5.3: Train concordance as a function of the proportion of missing values after applying
CCA to simulated missingness (MCAR) in the colon dataset, where missingness was simulated 50
times. The standard deviations (shaded area) and averages (solid line) are shown.

For all the imputation strategies, the concordance decreased as the proportion of missingness

increased. See Figure 5.4 for kNN, and 5.5 for MICE. All imputation strategies, for both train

and test, had approximately the same descent. MICE had the smallest standard deviation. Mode

imputation is found in Appendix A.2.
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Figure 5.4: Train and test concordance as a function of the proportion of missing values after
applying kNN imputation on simulated missingness (MCAR) in the colon dataset, where missing-
ness was simulated 50 times. The standard deviations (shaded area) and averages (solid line) are
shown.
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Figure 5.5: Train and test concordance as a function of the proportion of missing values after
applying MICE imputation on simulated missingness (MCAR) in the colon dataset, where miss-
ingness was simulated 50 times. The standard deviations (shaded area) and averages (solid line)
are shown.
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5.1.4 Missing at Random (MAR)

For MAR, we investigate strategies that consider the relationships between the variables, such as

MICE.

See Figure 5.6 for the accuracy after applying kNN and MICE iputations under MAR, for increasing

proportions of missing values. We selected only the figures showing the proportion of observed

variables (p obs) for 8
9 and 3

9 . This was because it was a general trend that the standard deviation

decreased when p obs decreased. For the complete figures, see Appendix A.3 for kNN and A.4 for

MICE. For all models, MICE had the smallest standard deviations. However, if only looking at

the expected accuracy, kNN performed the best as it had the highest accuracy.

Figure 5.6: Train accuracy as a function of the proportion of missing values after applying kNN
and MICE imputation on simulated missingness (MAR) in the colon dataset, where missingness
was simulated 50 times. Only figures for p obs 8

9 and 3
9 are included. The standard deviations

(shaded area) and averages (solid line) are shown.
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Similarily to MCAR, there was bias present in perfor Y for MAR when applying the CCA strategy,

as seen in Figure 5.7. It was only present when pobs decreased and the proportion of missingness

was high. There was not much bias in the other variables for both CCA and MICE. CCA showed

smaller averages in the most variables, however, compared to MICE, it had larger standard devia-

tions. Little bias was present, with averages ranging mostly between -1 and 1 with small standard

deviations when excluding CCA. This includes the global imputations and kNN, though they are

not shown. The complete figures are found in Appendix A.5 for CCA, A.6 for kNN and A.7 for

MICE.

Figure 5.7: Bias of coefficients from a Cox PH model of the variables as a function of the proportion
of missing values after applying CCA and MICE on simulated missingness (MAR) in the colon
dataset, where missingness was simulated 50 times. Only figures for p obs 8

9 and 3
9 are included.

The whitest colour implies no bias, while blue and red lean towards negative and positive bias,
respectively.
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The concordance of all strategies except CCA followed the expected behavior, as the proportion

of retained variables (pobs) decreased, or the proportion of missing values (pmiss) increased, the

concordance went down. This is shown for CCA, kNN and MICE in Figure 5.8. For CCA, it

remained approximately constant, with the exception of when pobs got very small, the disparity

between the train and test concordance (not shown) grew larger, similarly as for MCAR. kNN

and MICE were affected by both pobs and pmiss. They performed worse when the proportion of

missingness got larger, and especially in combination with few variables being left with no missing

values. When most variables were retained, MICE had zero standard deviation. The complete

figures are found in Appendix A.8 for CCA, A.9 for kNN and A.10 for MICE.

Figure 5.8: Train concordance as a function of the proportion of missing values after applying
CCA, kNN and MICE on simulated missingness (MAR) in the colon dataset, where missingness
was simulated 50 times. Only figures for p obs 8

9 and 3
9 are included. The standard deviations

(shaded area) and averages (solid line) are shown.
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5.2 Experimental Setup: Survival Analysis (GEP NEN)

This section presents the results from the survival analysis experiments. In the first part, the

survival analysis models are presented, and their representative performance will be assessed using

both the C-index and the integrated Brier score. We investigate whether there was significant

differences between all survival models when using kNN imputation compared to no imputation

(CCA). We also compare the performance of kNN imputation and no imputation against both

model-based and multiple imputation methods. Recall that model-based imputation refers to

MICE where only one imputed dataset is generated. This comparison will focus on the survival

model with the highest testing C-index. Multiple imputation used the imputation functions given

Table 4.16. Lastly, different visualization plots (Figure 4.13) will be presented.

5.2.1 Runtimes of the Survival Analysis

The runtimes for each survival model applied to GEP NEN dataset are given in Table 5.3. RSF

and CGB models had longer runtimes as they are more complex models.

Table 5.3: Gridsearch runtime for survival analysis models applied to GEP NEN dataset, where
kNN and CCA were used for all four models. Model-based (MICE with one imputed dataset) and
MI methods were used exclusively for the Coxnet model, which achieved the best performance
model as measured by the test C-index. This was run on machine (2) (Section 4.2.2).

Model Runtime (kNN) Runtime (CCA) Runtime (Model-based) Runtime (MI)
Coxnet 50m 48s 35s 1m 31m 27s
Cox PH 3m 47s 9s - -
RSF 113m 9s 8m 14s - -
CGB 112m 56s 14m 48s - -

5.2.2 Hyperparameter Optimization

Four survival models were applied to the GEP NEN dataset following imputations with kNN. This

was the primary imputation strategy used when tuning hyperparameters for each model. The

choice of using kNN follows from the results of the experimental setup in Section 5.1, where it was

shown that kNN performed well under both MAR and MCAR.

Coxnet

For the Coxnet algorithm, the hyperparameters optimized were regularization strengths alpha and

L1 ratio (Section 4.4.4). Table 5.4 shows top 10 performance scores for C-index. Alpha represented

the regularization strength where higher values indicated stronger regularization. The values vary

significantly across models, ranging from 3.0 to 1000.0. L1 ratios indicated the proportion of L1

regularization in the elastic net model (Section 2.3.2). All models in the Table 5.4 used low L1

ratio of 0.01, 0.001, and 0.0001, suggesting a preference for L2 regularization (Ridge). There were

marginal differences across the top 10 hyperparameter combinations for both the train and test

sets in terms of the C-index. For IBS in the test dataset, there were differences between the top

and worst contenders, where the difference was approximately 3 %.

Given this, the model with alpha of 3.0, L1 ratio of 0.01, a C-index test of 0.790, a C-index

train of 0.827 and an IBS test of 0.123, achieved the best IBS performance without much decrease

in the C-index.
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Table 5.4: Sorted by their C-index test performance, the top-performing Coxnet models, optimized
through tuning of the regularization strength alpha and L1 ratio, are listed. The table shows the
performance scores for the C-index on both the training and test sets, along with the IBS score on
the testing set.

Alpha L1 ratio C-index test C-index train IBS test

1 1000 0.0001 0.796 0.813 0.161

2 100 0.001 0.795 0.813 0.159

3 700 0.0001 0.795 0.812 0.161

4 70 0.001 0.794 0.813 0.158

5 5 0.01 0.793 0.820 0.132

6 10 0.01 0.792 0.815 0.145

7 500 0.0001 0.792 0.812 0.161

8 50 0.001 0.792 0.813 0.156

9 3 0.01 0.790 0.827 0.123

10 5 0.001 0.790 0.823 0.129

The Appendix C Tables C.1, C.2, C.3, C.4, C.5, C.6, C.7 and C.8 show that L1 ratios of 0.2

or higher with alpha values of 3 and more results in a C-index performance of 0.5. This indicated

that these models was performing no better than random guessing.

Cox Proportional Hazard

In the Cox Proportional Hazard model, the regularization strength alpha was the only hyperpa-

rameter used to tune the model (Section 4.4.4). Table 5.5 shows that models with higher alpha

values consistently achieved higher C-index scores on the test set and demonstrated less overfitting

compared to those with lower alphas. IBS tends to increase with higher alpha values, which is espe-

cially noticeable for alpha values exceeding 50. This trend indicated that performance marginally

decreases with stronger regularization (alpha). The C-index for the test set showed negligible dif-

ferences between alpha values 500 and 200. Additionally, the similarity between the test and train

results suggests minimal overfitting. Given the decrease in the IBS from 13.2% to 11.9% when

reduced alpha from 500 to 200, the optimal model was with alpha 200.

Table 5.5: Sorted by their C-index test performance, the top-performing Cox PH models, optimized
through tuning of the regularization strength alpha, are listed. The table shows the performance
scores for the C-index on both the training and test sets, along with the IBS score on the testing
set.

Alpha C-index test C-index train IBS test

1 500 0.789 0.820 0.132

2 200 0.788 0.832 0.119

3 700 0.787 0.818 0.137

4 1000 0.787 0.816 0.142

5 100 0.785 0.841 0.112

6 70 0.783 0.848 0.110

7 50 0.779 0.854 0.109

8 20 0.766 0.870 0.109

9 10 0.761 0.879 0.113

10 5 0.756 0.884 0.120
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Random Survival Forest

In the Random Survival Forest algorithm, four hyperparameters were tuned, the regularization

strengths n estimators, max depth, min samples split, and min samples leaf (Section 4.4.4). Table

5.6 illustrates that the top 10 C-index scores were relatively close to each other, indicating con-

sistency in performance across all these combinations of hyperparameters. IBS performance also

remained relatively stable. Despite a general trend of overfitting observed in all top 10 models,

the first row from the top model showed the least overfitting, indicating that it may be the most

balanced and potentially the best-performing model for the RSF. Therefore, the optimal hyperpa-

rameter combinations for the RSF included 40 estimators, a max depth of 5, a minimum sample

split of 8, and a minimum sample leaf of 4.

Table 5.6: Sorted by their C-index test performance, the top-performing RSF models, opti-
mized through tuning of the regularization strength n estimator, max depth, min samples split
and min samples leaf, was listed. The table shows the performance scores for the C-index on both
the training and test sets, along with the IBS score on the testing set.

n estimator max

depth

min samples

split

min samples

leaf

C-index

test

C-index

train

IBS

test

0 40 5 8 4 0.777 0.883 0.121

1 40 5 6 4 0.777 0.883 0.122

2 40 5 2 4 0.777 0.883 0.121

3 40 4 2 6 0.776 0.862 0.122

4 40 4 8 6 0.776 0.862 0.121

5 40 4 6 6 0.776 0.862 0.118

6 40 5 2 6 0.775 0.863 0.121

7 40 5 8 6 0.775 0.863 0.125

8 40 5 6 6 0.775 0.863 0.121

9 40 3 8 6 0.775 0.856 0.118

Component-Wise Gradient Boosting

In the Component-wise gradient boosting algorithm, three hyperparameters were tuned, the regu-

larization strengths n estimator, learning rate, subsample (Section 4.4.4). In Table 5.7, the training

and test sets for the C-index show marginal differences across all models and demonstrate minimal

overfitting. This marginal difference was also consistent for the IBS. Since there were small differ-

ences between the models in C-index and IBS, the first row from the top was the optimal model

with 10 estimators, a learning rate of 0.6, and a subsample rate of 0.6.
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Table 5.7: Sorted by their C-index test performance, the top-performing CGB models, optimized
through tuning of the regularization strength n estimator, learning rate and subsample, are listed.
The table shows the performance scores for the C-index on both the training and test sets, along
with the IBS score on the testing set.

n estimator learning rate subsample C-index test C-index train IBS test

1 10 0.6 0.6 0.789 0.818 0.111

2 10 0.7 0.6 0.787 0.822 0.110

3 20 0.6 0.7 0.786 0.838 0.112

4 20 0.5 0.2 0.785 0.831 0.111

5 10 0.5 0.3 0.785 0.814 0.115

6 10 1.0 0.6 0.784 0.824 0.110

7 20 0.6 0.8 0.784 0.839 0.112

8 30 0.3 0.6 0.784 0.831 0.113

9 10 0.5 0.6 0.784 0.817 0.113

10 20 0.5 0.9 0.784 0.834 0.111

5.2.3 Evalution of Missing Value Strategies

For the missing values, we used a t-test to determine if there was a significant difference between

the performances based on the missing value strategies applied to the data. This was an indirect

evaluation (Section 3.8). Since we used RSKF, the t-test will compare the list of C-index scores

for the test set to determine whether there was a significant difference in their means. Initially, we

evaluated how well kNN imputations was compared with CCA across various the survival analysis

models Coxnet, Cox PH, RSF, and CGB. Subsequently, we used the highest-performed survival

model to determine whether the model-based imputation resulted in any significant difference.

Recall that model-based imputations refer to using MICE with only one dataset being generated.

Finally, we estimated whether applying multiple imputations with MICE resulted in any significant

differences.

For multiple imputations, PMM gave an equal score to the third digit, so we will not present

these as separate results.

Comparing kNN Imputation with CCA Across Different Models

Table 5.8 shows the t-tests that compared the performances of kNN imputation with CCA across

the survival models. The differences in mean performance were statistically significant for in

models.

Table 5.8: Comparative analysis of kNN imputation and CCA across survival analysis models
Coxnet, Cox PH, RSF, and CGB. The table reports the mean and standard deviation of the C-
index test performance (RSKF) for each model under both kNN imputation and CCA. It also
provides the t-test statistics and corresponding p-values to assess the statistical significance of the
differences between the kNN-imputation and CCA.

Model CCA kNN imputation t-test statistic p-value

Coxnet 0.75 ± 0.049 0.796 ± -0.038 -3.562 0.00084

Cox PH 0.75 ± 0.049 0.789 ± 0.033 -3.3961 0.00025

RSF 0.739 ± 0.063 0.777 ± 0.037 -2.5644 0.01359

CGB 0.752 ± 0.05 0.788 ± 0.045 -2.6268 0.01153
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Model-based Comparison

For the most common survival model, Coxnet was chosen for in-depth analysis. Table 5.9 provides t-

test comparisons for the Coxnet model using different imputation methods by comparing the model-

based imputation with kNN and CCA. The comparisons suggest that model-based imputation

provided an improvement over CCA, as indicated by the significant p-value. When comparing

model-based imputation to kNN, they are not statistically different.

Table 5.9: Comparisons for the Coxnet model using model-based imputation (MICE with one
imputed dataset), kNN imputation and CCA. The table reports the mean and standard deviation
of the mean C-index test performance (RSKF) for model-based imputation, kNN imputation,
and CCA. It also provides the t-test statistics and corresponding p-values to assess the statistical
significance of model-based imputation to kNN imputation and CCA.

Mean ± SD

Model-based 0.788 ± 0.046 t-statistic p-value

CCA 0.750 ± 0.049 2.7058 0.00940

kNN 0.796 ± 0.038 -0.6541 0.5161

MI Comparison

For the most common survival model, Coxnet was chosen for consistency and comparisons. Table

5.10 provides the t-tests for Coxnet when comparing MI with kNN imputations and CCA. The

results show that MI was a better choice over CCA. In contrast, when comparing MI with kNN,

their means were not statistically significant, given the relatively high p-value.

Table 5.10: t-test comparisons for evaluating the performance differences between multiple im-
putation (MI), kNN imputation, and CCA using the C-index test set values. The table reports
the mean and standard deviation of the mean C-index test performance (RSKF). For multiple
imputations, the performance is averaged across all datasets (mean MI). It also provides the t-test
statistics and corresponding p-values to assess the statistical significance of MI to kNN imputation
and CCA.

Mean ± SD

Mean MI 0.785 ± 0.041 t-statistic p-value

CCA 0.750 ± 0.049 2.7014 0.0095

kNN 0.796 ± 0.038 -0.9794 0.3323
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5.2.4 Visualization of Survival Model Performance and Evaluation

The visualization plot of the survival model performances were described in Figure 4.13 in Section

4.4.

Analysis of Coxnet Model Performance across Regularization Strength

Figure 5.9 presents the effects of varying the regularization strengths, alpha and L1 ratio, on

the performance metrics, including IBS and the C-index, both on train and test folds, as well as

feature selection within the Coxnet model. Figure 5.9 is divided into four plots, each representing

a different L1 ratio: 0.0001, 0.001, 0.01, and 0.1. As the alpha value increased, indicating stronger

regularization, the number of features selected by the model decreased. For higher L1 ratios,

feature weights quickly reduce to zero at lower alpha values, reducing the number of selected

features. These results lead to performance equivalent to random guessing as all features got

omitted by the regularization.

For an L1 ratio of 0.0001, the test C-index improved as overfitting was less persistent with

increasing alpha value, while the number of features stayed almost constant. At an L1 ratio of

0.001, an alpha of 200 offered a good balance between minimal overfitting and a high number of

features. For an L1 ratio of 0.01, the ideal alpha values were around 3, 5, or 10. In contrast, the L1

ratio of 0.1 generally leaned towards overfitting compared to the others. Specifically, at an alpha

of 1, the model overfitted more while maintaining a higher number of features, whereas an alpha

of 3 resulted in less overfitting but also reduced the number of features significantly.

The IBS across all four subplots showed an improvement simulatinously with the C-index.

Unlike the C-index, the IBS initially decreased before rising and stabilizing as alpha changes. The

IBS changes happened at the same point the C-index started getting better and stopped when the

C-index began to drop. The best performance of the IBS was seen in the middle of this range.

Figure 5.9: Coxnet model performance across regularization strength, alphas and L1 ratios. These
plots show the C-index for the training folds (dark blue line), the C-index for the test folds (light
blue line), IBS (red line), and the number of features used (green dashed line), as the alpha
parameter varies. Each plot has two y-axes: the left y-axis shows metric performance (ranging
from 0 to 1), and the right y-axis shows the number of features used (ranging from 0 to 50). The
x-axis, common to all plots, represents the alpha parameter, ranging from 0.0001 to 1000. Note
that the spacing between each point on the x-axis varies due to the different alpha values.
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Permutation Feature Importance

The top 15 most important features for the four survival models (Coxnet, Cox PH, RSF, and CGB)

are compared in Figure 5.10. Alongside the bars, the purple line represents the average importance

across the models for each feature. Each bar´s height indicates the importance of that feature in the

model, with separate colours for each model. Figure 5.10 shows that some features, like Number

of Courses, Ki-67, and NSE, were considered highly important across all survival models. The

selected hyperparameters for the survival models were described earlier (Section 5.2.2).

Figure 5.10: Permutation feature importance across the different survival models, where the purple
line represents the average importance across the models for each feature. Coxnet (alpha: 3, L1
ratio: 0.01), Cox PH (alpha: 200), RSF (n estimator : 40, max depth: 5, min samples split : 8,
min samples leaf : 4), CGB (n estimator : 10, learning rate: 0.6, subsample: 0.6)
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Time-Dependent Brier Score

The time-dependent Brier score in Figure 5.11 compares the performance of four different predictive

models over time in terms of their mean time-dependent Brier score. The selected hyperparameters

for the survival models were described earlier (Section 5.2.2).

Looking at IBS for each of the survival models, the Coxnet model, yielded an IBS of 12.3%,

while the Cox PH model´s resulted in a slightly lower IBS of 11.9%. RSF and CGB models had

IBS values of 12.0% and 11.1%, respectively. Notably, CGB had the lowest overall Brier score

throughout the entire range of survival times, as detailed in Figure 5.11. Although the Cox PH

and RSF models were quite similar in Brier score performance across these times, they fell behind

CGB.

Initially, all models start with very low Brier scores, suggesting that the models excels with

accurate predictions of early survival, which gradually decrease, peaking around 400 days. After

that, the performance started to get improve towards 800 days, with some variations, until it

stabilized after 800 days.

Figure 5.11: Mean time-dependent Brier score for the four survival models. The shaded area is the
standard deviation. The table on the right side shows the performance (C-index and IBS) and the
hyperparameters for each model. Coxnet (alpha: 3, L1 ratio: 0.01), Cox PH (alpha: 200), RSF
(n estimator : 40, max depth: 5, min samples split : 8, min samples leaf : 4), CGB (n estimator :
10, learning rate: 0.6, subsample: 0.6)
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Survival Curves

Survival curves obtained using Coxnet and CGB for four representative patients are shown in

Figures 5.12 and 5.13. The survival curves by RSKF imputed with kNN are shown in Figure 5.12,

and the survival curves between the suggested imputations with MICE are shown in Figure 5.13.

Both show the same patients and were fit with the same hyperparameters, selected in Section

5.2.2, for comparability. The prior shows the variation in the predictions when the covariates used

for predicting a patient vary and the imputations are fixed, whereas the latter shows variation in

predictions when the covariates are fixed and imputations (potentially) vary.

Both figures show survival probabilities starting at 100% and declining over time. The survival

curves have two dashed lines, where the expected survival time offers a benchmark for evaluating

the model’s performance with the observed survival time.

We first consider Figure 5.12. Both models performed well for patients 9007, closely matching

the observed survival times. For patients 9024, 9065, and 9040, both models showed a decrease

in predictive performance as the observed survival times exceeded 400 days. For patient 9024,

the expected survival time was closer to the observed survival time for Coxnet than for the CGB

model, and the CGB model had a larger standard deviation. For patient 9065, both models

displayed nearly identical standard deviations, but the expected survival time for CGB was closer

to the observed than for Coxnet. The last patient, 9040, had a longer survival time than most in

the GEP NEN dataset, and none of the models were close to the observed survival time. Both

models showed low variability and nearly similar survival curves.

Next, by considering Figure 5.13, larger variations between the curves was present. CGB

showed high standard deviations for patients 9024, 9065 and 9040. The expected survival times

with CGB for these patients were still closer to the actual survival times than Coxnet. Similarly to

Figure 5.12, both models performed well for patient 9007, as their expected and observed survival

times were close. The expected survival time of patient 9065 was predicted closer to the actual

survival time for multiple imputations with both Coxnet and CGB. There is much less variation

in the survival curves Coxnet predicted than CGB predicted.

As illustrated in Figures 5.12 and 5.13, among the four patients, Coxnet generally provided

more conservative survival estimates, displaying similarity in the curves across different patients

with minimal variation. In contrast, CGB showed more distinct curves between the patients, and

acknowledged uncertainty with higher standard deviations. Both models were challenged by the

long survival times.
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Figure 5.12: Survival curves for the different patients (9007, 90024, 9065, and 9040), for Coxnet
and CGB models with kNN imputations. The different curves are given by repeated stratified k-
fold. The blue curve is the average estimated survival curve and the shaded area (Std Dev) is the
standard deviation. The red line indicates when the event of interest occurred (observed survival
time) and the green line marks the model’s prediction for when the event was expected to happen
(expected survival time). Coxnet (alpha: 3, L1 ratio: 0.01), CGB (n estimator : 10, learning rate:
0.6, subsample: 0.6).
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Appendix B.3 extends the findings from Figure 5.12 by providing survival curves for all patients

who experienced an event. CGB typically performed better than Coxnet in cases with shorter

observed survival times. Figure 5.12 shows that the CGB model performed better than Coxnet

when survival exceeded 400 days. However, Appendix B.3 shows other cases with also opposite

results. Uniformity in Coxnet’s survival curves might not be immediately clear when examining

a few patients, as illustrated in Figure 5.12. However, a broader comparison involving all patient

survival curves in Appendix B.3 provides clearer insights. Figures B.1 and B.2 show the Coxnet

model set to an alpha of 1000, which yielded the best testing C-index performance, demonstrates

that the survival curves remained even more consistent across the patients.
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Figure 5.13: Survival curves for the different patients (9007, 90024, 9065, and 9040), for Coxnet
and CGB models with multiple imputations using 50 imputed datasets. The blue curve is the
average estimated survival curve and the shaded area (Std Dev) is the standard deviation. The
red line indicates when the event of interest occurred (observed survival time) and the green line
marks the model’s prediction for when the event was expected to happen (expected survival time).
Coxnet (alpha: 3, L1 ratio: 0.01), CGB (n estimator : 10, learning rate: 0.6, subsample: 0.6).
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Analyzing Feature Coefficients with Varying Regularization Strengths

The two subplots for feature Absolute Neutrophil Count and Chemotherapy Type in Figure 5.14

illustrate the relationship between the regularization parameter alpha, the C-index and integrated

Brier score for the test fold. Each plot shows how the feature coefficients vary with changes in

the alpha regularization parameter. As alpha increased, we generally observed coefficient values

converging to zero. Simultaneously, the C-index demonstrated an optimal range before declining,

underscoring the trade-off between model complexity and predictive performance. In contrast, IBS

increased, suggesting a drop in how well the model predicts outcomes as we adjust alpha. For both

features, Absolute Neutrophil Count and Chemotherapy Type, their coefficients shift sign towards

zero. Note that both variables changed the direction of the weight as alpha got larger.

Figure 5.14: C-index (blue), IBS (red), and model coefficients (green) as a function of the regu-
larization parameter alpha for Coxnet model of L1 ratio of 0.01. Showing changes across different
alpha values for the Absolute Neutrophil Count and Chemotherapy Type features.
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Permutation Feature Importance for Coxnet Model

Figure 5.15 illustrates the permutation feature importance for the Coxnet model, with parameters

alpha set to 3.0 and L1 ratio to 0.01. The bar chart ranks features by their impact on model

performance when they were permuted. Features that greatly influenced the model’s predictive

performance appear at the top, with Number of Courses, Ki-67, and NSE being the most important

ones.

Figure 5.15: Permutation feature importance for the Coxnet model (alpha: 3.0, L1 ratio: 0.01)
showing the average importance of each feature.
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Coefficients of the Features for Coxnet

Figure 5.16 is a horizontal bar graph representing the coefficient weights assigned to each feature in

the Coxnet model, with an alpha of 3.0 and L1 ratio of 0.01. The length and direction of the bars

indicate the magnitude and effect direction (positive or negative) of the features on the model’s

predictions. Features with longer bars are more influential in the model, with positive coefficients

indicating increasing risk and negative coefficients indicating a reduced risk for model predictions.

Figure 5.16 shows that Ki-67 and NSE had a positive effect, while Number of Courses appeared

to have a negative effect.

Figure 5.16: The bar chart shows the coefficient weights for all features in the Coxnet model (alpha:
3.0, L1 ratio: 0.01), with the magnitude and direction indicating their respective influence on the
model’s predictions.
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6 Discussion

6.1 Experimental Setup: Missing Values (Colon)

For the missing value experiment, we will discuss the most interesting results presented in Section

5.1. In particular, we will discuss the flaws of the experimental setup, RMSE, the behaviour of the

concordance index and the corresponding bias.

6.1.1 Flaws of the Experimental Setup

We want to discuss the experimental setup’s flaws as it can give clarity to some of the results.

First, we have not looked at combinations of the missingness mechanisms; we have only looked at

separate cases. While this was not found in the literature, it is unrealistic to only have MCAR or

MAR present and not both. However, by going for mixtures of both, there would be an additional

layer of complexity, namely all the pairs of combinations of hyperparameters. Next, the status

variable was not incorporated in any way when simulating missingness. This was because the

status and time-to-event variables were reserved for the Cox PH model, and we did not want to

impute the target variable. There were about 40% censored samples in the complete dataset, which

means 40% were still alive at the time of the event. Thus, it may not be reasonable to assume that

the distribution of the covariates was equal between these two groups. This is shown in Figure 4.1

from Section 4.1.1. In particular, there was a substantial difference in the nodes variable between

censored and non-censored samples. The point to raise here is that by not incorporating status, it

may have challenged the imputations. For example, mode imputation assumes a global mode, but

that may not be the case if there are differences between the censored and non-censored samples.

As for kNN, the same argument holds true, and the neighbors may not be representative. The last

flaw is that the ground truth Cox PH model was fitted on the complete dataset. However, when

comparing the bias of the coefficients from the imputed datasets, we used the training coefficients.

This results in potential bias from two sources: the missing 30% reserved for testing, and the

actual imputations. One could claim that it would be better to fit the ground truth model on the

complete training data. This would have two potential issues. The first and most obvious one

being that less information would be used to estimate the proxy ground truth coefficients, and the

second being computational efficiency. The latter is because each of the 1, . . . ,M imputed datasets

had unique train/test splits, so it would have required fitting the ground truth model to each of

these unique train/test splits.

6.1.2 Accuracy

For MCAR, kNN imputation performed the best in terms of attaining the highest accuracy, whereas

mode was the worst. MICE’s performance was in-between mode and kNN imputations. This is

likely explained by the violation of the MAR assumption mentioned in Section 3.6.3. Although, for

MAR, while the accuracy of mode imputations was not shown, their rankings were still the same.

MICE and kNN were slightly closer together in performance, and the latter still performed the best.

All imputations had higher standard deviations, except for MICE, which remained unchanged. One

would expect MICE to perform better for the MAR mechanism; however, primarily evaluating the

accuracy as a direct evaluation may be insufficient.85,18

6.1.3 Bias

For the bias there are a few important key points to raise. Notice how the concordance after

applying CCA increased with the proportion of missingness, but at the same time, the bias in-

creased as well. To be specific, for MCAR under 25% missing values, perfor Y and sex M had bias

estimated to −33± 50 and 2± 24, respectively (Figure 5.2). For MAR, the same variables had at

their worst −13± 33 and 1± 9 in the same order (Figure 5.7). Thus, dropping samples seemed to
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have a large effect on the bias of the coefficients, even if the training concordance was promising.

This illustrates why a single metric for evaluation can be misleading. For the imputations, under

both MAR and MCAR, kNN and MICE had the lowest overall bias, with MAR having a slightly

lower bias. This was expected because of the additional information in the observed variables for

the MAR mechanism. Notice an important detail. The highest bias using MICE of the variables

perfor Y and sex M were, for MCAR, 1.2 ± 1.9 and 1.2 ± 2.8, respectively, compared to CCA’s

much higher standard errors.

Note that CCA was only measured for the proportion of missingness {0.05, 0.1, 0.15, 0.20, 0.25}
and all imputations {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. This means that for comparison’s sake, the worst

estimates of perfor Y and sex M from MICE stemmed from twice as large a proportion of miss-

ingness, and yet the bias was much lower. Now, there are two potential sources that might cause

this: either the automatic regularization applied to guarantee successful fit gave coefficients that

are far off in the sense that they are close to 0, or overfitting in the sense that the coefficients were

large in magnitude. Recall that our definition of the bias in Eq. (4.1) has a denominator present

for scaling. This implies that if the proxy ground truth coefficient is small, the division by near 0

will cause small changes in the estimated coefficients to make the bias blow up in magnitude. For

example, with βj = 0.01 and β̂j = 2.01, we would get bias(β̂j) = 200. We defined the bias in such

a way that it measures the count of standard deviations from the real value, much like a z statistic.

If the source of the bias is indeed from forcing the weights very small, the worst possible scenario

would be an estimated coefficient of 0 with the ground truth weight far away from 0, which would

give a bias of ±1. This applies to any of the coefficients because the denominator scales it. The

bias will, at most, be one standard deviation away from the proxt ground truth coefficient if the

coefficients are shrunk to 0. It is more likely that the high biases were from overfitting. A manual

check was done to see if the regularization strength ever increased, which it did not. (2) The

unusual coefficients were also double-checked to see if they made sense. For perfor Y , in some of

the iterations, three randomly sampled coefficients were estimated to be −0.34, 0.75 and 0.13. By

referring to Table 5.2 for the groundtruth coefficients, these three resulted in biases of −33, 76 and

14, respectively. Thus, not only was it overfitting, but the direction of the bias was inconsistent.

It is not surprising that overfitting was the case, as that is generally the implication of reducing

the sample size.33,179

Notice how the two candidates that projected the largest bias, namely perfor Y and sex M ,

were the two least significant coefficients from the proxy ground truth coefficients in Table 5.2. As

these coefficients were close to 0, the division of these small numbers caused minor changes in the

estimated coefficients to cause the bias to blow up. This means that while CCA overestimated the

effect of these insignificant coefficients, the quantification of how much they overestimated may be

difficult to interpret.

6.1.4 Concordance index

For the concordance index it is worth discussing the interesting behaviour after applying CCA.

Recall that the training concordance index increased as the proportion of missingness increased

for CCA from Figures 5.3 (MCAR) and 5.8 (MAR). It was clear overfitting, due to both of the

test concordances for MCAR and MAR having a decreasing trend in comparison to the training’s

increasing trend. This is explained by the expected number of samples retained after removing

the samples with missing values. Recall that the expected number of rows kept decreased rapidly

as the proportion of missingness increased. For MCAR, at 25%, which yielded the highest train

concordance, we expected to keep (1 − 0.25)9 · 622 ≈ 47 rows, which was very little compared

to the number of samples before omitting the rows with missing values. For MAR, we cannot

calculate this as the variables are not independent. This highlights the importance of having a

(2)It would have been useful to provide the regularization strengths for each of the proportions of missingness,
however, due to repeated simulations, it may vary. For that reason it was not included. This is also why including
variable selection was infeasible; the variables selected can vary for each iteration.
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test set available for evaluation or fitting models with cross-validation. Trusting only the training

concordance can be very misleading.

As for the imputations, no data was lost, and the decrease in concordance was primarily related

to the quality of the imputations. For MCAR, the decrease was rather rapid, and at the highest

proportion of missing values, kNN and MICE had approximately a 5-6 % decrease in concordance.

For MAR, both the proportion of retained variables and the proportion of missing values had

joint effects. In particular, the prior had to decrease and the former to increase to result in lower

concordance. This is no surprise, as the more variables are forced to be imputed, the higher the

impact it has on the Cox PH model. Under MAR, when p obs= 3
9 and p miss= 0.5, kNN and MICE

had a loss of 3% and 4%, respectively. MAR being less affected than MCAR is not surprising,

as, for MAR, three variables had no missingness compared to MCAR, where all variables had

missingness.

6.1.5 Summary

With all the major points discussed, we can see that much of the findings are consistent with

the literature and apply to survival analysis. For instance, the popular strategy of removing

samples with missingness did indeed contribute to bias and loss of precision. In addition, the paper

discussing that kNN performs the best on categorical data is also consistent with our findings.93 On

the contrary, the most unexpected result was the performance of MICE. According to (Buuren,

2018)18, Austin et al. (2021)7, Klebanoff and Cole (2008)73 and Zhou et al. (2001)182, it was

expected to provide state-of-the-art imputations, but in many cases, a simple multivariate imputer

such as kNN provided better imputations. Arguments can be made in favour of why MICE did

not perform so well. For example by investigating the correlation matrix in Figure 4.2, notice how,

after removing the variables nodes4, time and status which were not included in the imputations,

nodes and differ had the highest absolute correlation of 0.15, which was very weak. It is also

reasonable to say that there may have been insufficient covariates in the dataset. More covariates

give more information for MICE to infer information from. Paired with little correlations, not much

information was available to MICE to use for imputations. To complicate matters even more, the

variables perfor, adhere and extent were all imbalanced, which challenged the imputations. The

variations in all the figures highlight the importance of repeated simulations. In addition, we

showed the disparity between the direct and indirect evaluations. As the accuracy (direct) was

little affected by increasing the proportions of missingness, both the bias (indirect) and concordance

(indirect) were negatively affected by the increase in missingness.

6.2 Experimental Setup: Survival Analysis (GEP NEN)

We separate the survival analysis discussion into two subsections, where we will discuss the most

interesting results presented in Section 5.2. The first concerns the approaches for handling missing

values and the other for the models and interpretation. For the first part, we consider the best

approach that maximizes the test concordance.

6.2.1 Data Registration and Privacy

The medical domain differs from others, with strict rules for privacy and anonymity. This makes

storing and handling data more difficult. We will, in addition, briefly discuss the problem of

variation in covariates.

Doctors often detail medical data about patients on paper forms. Different doctors might

register information on these forms differently, and sometimes mistakes can occur because they

manually write down patient information. Thus, there is a higher chance of making a human

error. The data from all these forms would have to be manually entered into a computer system

like Excel for further analysis. If the forms are not registered correctly, this can affect patient
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care and the study outcomes for which they are being used. For instance, incorrect data can

lead to a misunderstanding of how effective a treatment is. In the GEP NEN dataset, it was

identified that the albumin variable had values for two patients that were incorrectly documented

as a consequence of converting from analogue to digital. This issue is further discussed in Section

6.2.8, which discusses the potential for data registration errors in patient information.

A limitation of the survival analysis of the GEP NEN dataset was the variation in the predicted

survival times. One source of this variation was potential inconsistencies in when the covariates

were registered from the time of diagnosis. For example, it was plausible that some patients had

taken blood tests on the same day that they were diagnosed, whereas others may have waited a

week or two. It was also highly unlikely that imaging (CT/MR) and blood tests were taken on

the same day. Other examples are patients diagnosed at external hospitals, who may experience

delays before being referred to Oslo University Hospital, where further testing happened. Such

delays can span several weeks. These different gaps introduce inconsistencies in the data between

patients and act as an additional source of unexplainable variation, causing discrepancies in the

predicted survival times, making it challenging to calculate overall survival (OS) accurately. To

address this issue, we propose that a solution is to downscale the target variable, making it less

fine-grained at the cost of covering this unexplained variance. For example, instead of looking at

overall survival in days, one could encode the target variable, overall survival (OS), by months.

This approach was implemented by Jenul et al. (2023)65.

6.2.2 Sample Size

After preprocessing, the GEP NEN dataset ended up with 99 samples with 50 features. This rela-

tively small dataset size may present challenges, such as limiting the statistical power of analysis,

potentially leading to less reliable conclusions. Smaller datasets can make it harder to trust the

study’s results because there are not enough data points to ensure they are accurate.33 This made

it difficult to determine whether the results would be generalizable to all the patients in the dataset.

So, it is important to be careful when interpreting the results and consider whether they apply to

a larger patient group. Another argument for having more samples is to prevent overfitting. The

analysis of missing values presented in Section 6.2.3 provided empirical evidence that overfitting

was a consequence of loss of sample size.

6.2.3 The Missing Values

The main interest was to investigate whether imputing rather than removing the missing samples

and variables was beneficial. We also discuss single versus multiple imputations.

Most conclusions from the experimental setup of missing values and literature were consistent

with findings in the GEP NEN dataset. Tables 5.8, 5.9 and 5.10 show that no imputation was the

poorest choice out of all strategies. Applying CCA instead of imputing resulted in approximately

a 3-4% loss of test concordance for all survival analysis models. The expected concordance of

imputations compared to CCA all showed significant differences using the t-tests. The results

from the experimental setup of missing values from Section 5.1 highlighted that overfitting was

present due to the reduction of sample size when only samples were removed. This indicates that

the poor performance was likely a result of both loss of information from removing columns and

overfitting from reducing the samples. Two of the variables that were removed was Number of

Courses and NSE, which showed high feature importance in Figure 5.10. Recall from Section

4.4.5 that the strategy for generating the dataset without imputation was done by tuning the

proportion of missingness required for removing columns and then removing the samples. After

this, the dataset that yielded the highest test concordance was picked. This was done for each

model. Thus, the CCA strategy favored the best combination of variables and samples to remove.

This shows that the loss of columns was more beneficial for gaining a higher validation concordance

as opposed to the loss of samples. It is also important to note that the original dataset had very
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few samples, so it was not unexpected that performance decreased when discarding information.

While we are not able to measure the bias of the coefficients because we do not have the ground

truth ones, it is reasonable to assume that CCA introduced some bias.

For imputations, kNN performed slightly better than MICE when attempting to use the model-

based imputation (only generating one imputed dataset) as seen in Table 5.9 and the multiple in

Table 5.10; however, the differences were not significant. One would have expected MICE to benefit

more, given all the variables available to use for imputations.18 However, MICE has an important

limitation: the assumption that data follows the MAR mechanism as mentioned in Section 3.6.3.8

We uncovered in Section 4.1.2 that only 4 of the 25 variables with missingness respected the

MAR mechanism, and all others were under MCAR. In addition, MICE benefited from using the

complete dataset for imputations, whereas kNN imputation was done within the RSKF. While the

hyperparameters and parameters for MICE followed the recommendations of Buuren (2018)18, we

suggest that maybe some alternative approaches could have been made. For instance, PMM was

used as the imputation function for all numerical variables. However, there may have been an

improvement in performance by using Bayesian linear regression.

We propose two reasons why kNN performed well. The first is that variables with low influx

and outflux were omitted in the first place, which, as discussed in Section 3.6.2, contribute to more

accurate distances. The second relates to the sparsity problem raised in Section 3.9. This is only an

issue for numerical variables because they are susceptible to high cardinality compared to categor-

ical variables.180 Thus, numerical variables are likely to be scattered and yield non-representative

tuple neighbors used in computing the average. Most of the variables in the GEP NEN dataset

were categorical, and thus, the sparsity problem was less persistent. The few numerical variables

present were much more prone to this problem, especially when considering the small sample size.

We suggest that the choice of imputation method should be decided depending on the applica-

tion. For the GEP NEN dataset, kNN and MICE performed approximately the same, with kNN

being slightly better. The benefit of kNN was that it is simple to use and only returns a single

dataset. It was easier to work with a single dataset rather than multiple, especially when consider-

ing computational time. However, multiple imputations had the added benefit of quantifying the

variation of the imputations; it was possible to look at accompanying distributions, which was not

possible with kNN. Consider, for instance, investigating the imputations of samples for a specific

variable after applying MICE. The distributions of the imputations of this variable will provide

information on the agreement between the imputd datasets. If there is an agreement in the imputa-

tions for all the samples, it may not be that harmful for the variable to be exposed to missingness.

On the contrary, if there is disagreement, it can be a helpful indicator of preventing missingness

in that variable for future data collection. This can also be incorporated into machine learning

by providing distributions over predictions of samples. This was shown under Survival Curves in

Section 5.2.4. Note that because this process is sample-wise, it is unsuitable for large-scale datasets

and is most likely not beneficial. We found that this is an effective strategy in small-scale datasets,

like the GEP NEN, where specific patients are of interest.

6.2.4 Data Preprocessing

As mentioned in the material part (Section 4.1.2) of this thesis, the GEP NEN dataset consisted of

two studies, forming three datasets: a new study, an old study, and a combination of both studies.

The combined one had a larger sample size than the new and old but with fewer features. The

validation C-index for the survival analysis models was higher for the new study dataset compared

to the combined one. The underlying reason for this observation was that the combined dataset

only included features shared by both the new and old study, thus excluding important features

unique to the new study.

A major work for the thesis was on data preparation (Section 4.4.2). One instance was on how

to handle categorical values such as ’Unknown’ and ’Not Done’. We decided, in agreement with
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expert knowledge, to treat these as missing data to simplify our analysis, reducing the complexity

and the number of categories in features containing these values. This method made it easier

to apply statistical models, but it risked losing potentially valuable information and introducing

biases. Mirkes et al. (2016)97 point out these concerns, especially in cases with ’Unknown’ results,

emphasizing the need to carefully consider how to classify such cases as missing data. Another

approach we considered was grouping ”Not Done” and ”Unknown” into a single category. However,

this would be unsuitable as each variable provides distinct information, and thus, it made little

sense to treat them as the same.

In the preparation phase, due to time constraints, we had to decide how many features to

exclude based on their missing values exceeding a certain percentage threshold. As outlined in

the methodology section 4.4.2, we evaluated the features by comparing their influx and outflux

to this threshold. As illustrated in Figure 4.9, we categorized the features into three groups. We

initially retained the two groups with the highest and middle outflux and discarded the group

with the lowest. Subsequently, we also removed the middle group for comparison. We observed

no differences in performance, whether we removed just the lowest group or both the lowest and

middle groups. However, eliminating only the lowest group retained more features for further

analysis in our dataset. We initially tried to preserve more variables by allowing more missingness,

though this caused MICE to give warnings that some predictors ended up as constant during

imputations. This is because when MICE was imputing, only the complete part of the variable of

interest was used.18 Thus, if covariates were imbalanced, it was likely that some category levels

would be omitted.

Figure 4.4 shows the PCA plot of the numerical variables of the patients. We measured the

models’ performance after removing the samples farthest from the cluster, even though they did

not strictly appear as outliers. This was done by omitting samples outside of the interquartile

range of 1.5. This only affected three samples. While we did not present figures or tables for this,

the performance decreased. Thus, we decided to stay with all the samples. It was not aurprise, as

none of the samples stood out as obvious outliers.

Encoding and Imputation Challenges

One-hot encoding is a common method for encoding nominal features. However, it becomes im-

practical with variables of many levels. It also comes with the problem of providing an additional

column containing missing values (NAs) for all categories containing missing values that would

have to be removed. However, this solution had the negative effect of removing potentially valu-

able information that could have been retained through imputation.

Instead, we chose target encoding (Section 2.5.1). This strategy preserved the original dimen-

sions of the categorical variables by converting categories into the average of the target variable.

This integrated information from the target variable into the encoded nominal variables, enhanc-

ing the model’s ability to capture more nuanced representations of the categorical data. In this

experiment, we observed improved model performance using target encoding compared to one-hot

encoding. As discussed in Section 3.7, using target encoding on nominal variables allowed the com-

putation of sensible distances and effective imputations. This was particularly crucial for imputing

the missing values in the dataset when using kNN imputations.

A different challenge was the question of how much information to provide to the imputers. It

could potentially be more beneficial for the imputers to have access to the whole dataset, generating

higher-quality imputations at the cost of data leakage. In addition to this, including the target

variable would be an option. These strategies may be suitable if the objective is to maximize the

quality of the imputations and not be concerned with data leakage for the survival analysis models.

However, imputations may overfit in the same manner as machine learning models, and thus, being

able to validate the imputations may be preferred.
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6.2.5 Performance Between the Different Models

Various visualization plots can help understand and interpret the efficacy of the different sur-

vival models: Coxnet, Cox PH, RSF, and CGB. This provides a deeper insight into the model’s

performance, feature importance, and prediction.

The four survival models we evaluated all have advantages and disadvantages based on the kind

of data they are exposed to. The high dimensionality of large datasets with many features can

challenge the Cox PH model by increasing computational time and may potentially overfit.26,46

Conversely, the small dimensional size of the GEP NEN dataset may explain the strong performance

of the Cox PH model, as illustrated in Table 5.5. Despite its simplicity, the Cox PH model

performed as well as they other more complex survival models. In the Cox PH survival model,

higher alpha values (Figure 5.5) suggest a complex underlying structure in the GEP NEN dataset,

potentially leading to overfitting if regularization is too weak. In Tables 5.4 and 5.5, we notice

a marginal performance difference between Coxnet and Cox PH models. Specifically, the Coxnet

model (alpha: 3, L1 ratio: 0.01) achieved a performance of 79.0%, while the Cox PH model (alpha:

200) achieved 78.8%. Further, the highest C-index test scores of these models were 79.6 % and 78.9

%, respectively, underscoring the minimal gap that suggests regularization has a limited impact

on reducing overfitting. The similar performance of the Cox PH model to other survival models

suggests that feature selection was not essential for optimal performance for the C-index test.

This could be attributed to the preprocessing steps that likely eliminated features that might have

negatively impacted the model’s performance.

If we now look at the RSF that also used feature selection described in Section 2.3.3, it becomes

evident that regardless of the hyperparameters, the top 10 models overfitted. It may not have

been sufficient information to generalize well. This limitation is also reported by Katzmann et al.

(2020)71 and Qiu et al. (2020)123, whereas the latter also reported that Cox PH outperformed

RSF. This may happen since RSF uses bootstrap with replacement60,61, which does not extend

the variety of data when the original sample size is limited. Additionally, survival trees within

the RSF make splits. With small sample data, these splits lead to even smaller subsamples,

making calculations and predictions highly specific to small subsets rather than offering robust

generalization for unseen data.88 Similar to RSF, CGB is another ensemble model. According

to Table 5.7, the C-index scores on the test folds for CGB reveal marginal differences between

the RSF and CGB models, ranging from 0.777 to 0.789. These minor variations suggest that the

performance of both models are nearly equivalent. However, the CGB model overfitted less than

RSF from Table 5.6.

As described in Section 2.3.4, CGB is a sequential model that uses the Cox PH model as a

loss function and least squares as a base learner.91 In CGB, each base learner aims to minimize

these residuals iteratively, which is crucial for effectively utilizing the limited data in small datasets.

Each stage of CGB corrects the residuals left by the previous one, refining the model´s performance

incrementally. This sequential learning corrects previous errors, naturally regularizing the process

to prevent overfitting the training data. Additionally, since the optimal combination for CGB

model had a subsample hyperparameter of less than 1 (SGB), it strategically reduces model variance

and may decrease bias (Section 2.3.4).36 This method effectively improves model robustness and

generalizability, improving the performance of CGB models.

Brier Score

The C-index for the test folds suggested marginal differences across all models, with Coxnet,

Cox PH, and CGB demonstrating less overfitting. Additionally, RSF and CGB exhibited greater

stability in IBS, showing minimal variation compared to Coxnet and Cox PH. Despite Coxnet’s

strong C-index performance, its IBS comparison suggests potential inconsistency in predictive

reliability across survival times (Figure 5.11). One issue with CGB is its computational complexity

in terms of memory and runtime.134
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Survival Curves

As shown in Figures 5.12 and 5.13, the CGB performed better than Coxnet when the observed

time was short. Seow et al. (2024)143 also report that Component-wise regression as base learner

outperforms other models for short survival time. They used the same models Coxnet, Cox PH,

RSF and CGB, in addition to others.

From the performance metrics evaluated across all survival models, Coxnet and CGB stood

out as the top performers, achieving the highest C-index scores with minimal overfitting. Figure

5.12 compares these two survival models using their survival curves by RSKF, and Figure 5.13

compares the same models using the same hyperparameters by multiple imputations.

The Appendix Figure B.3 demonstrates that Coxnet’s survival curves exhibit greater similarity

compared to CGB. This difference becomes clearer in Figure B.2, where the survival curves are

noticeably more similar for the Coxnet model (alpha: 1000, L1 ratio: 0.0001) than for the Coxnet

model (alpha: 3, L1 ratio: 0.01). This might be linked to the higher alpha values, which, by

shrinking the coefficient weights toward zero, align the model more closely with the baseline hazard.

The survival curves resemble an exponential function, which is a reasonable approximation because

patients are expected to die early for this cancer. It may suggest that the simpler survival functions

in Figures 5.12 and 5.13 represented the C-index for Coxnet well, and as there was little variation

in the curves, IBS was less suitable, seen for the L1 Ratio 0.0001 in Figure 5.9. A noteworthy

observation was that as the IBS improved, there was an increase in the variability of the survival

curves. This is clearly demonstrated in Appendix B, Figure B.2. Here, we compare the Coxnet

model with the highest test C-index to the Coxnet model chosen earlier (Section 5.2.1) (alpha: 3,

L1 Ratio: 0.01), which shows improved IBS.

This shows that reflecting on the metrics used to evaluate predictive performance in CGB and

Coxnet is important, and one could also reason that choice of metric depends on the application.

Consider the case where predicting the order of events is more important than the event duration.

Suppose two patients are at high risk of experiencing an event and both require immediate medical

attention, where the medical staff is shorthanded. By predicting that one of them experiences the

event before the other, it allows healthcare providers to prioritize the interventions. In this case,

the C-index is a more suitable metric compared to IBS.

For multiple imputations in Figure 5.13, it was clear that imputations influenced CGB more

than Coxnet. This relates back to the proposition that Coxnet might have leaned towards the

baseline hazard and not put much emphasis on the covariates. Thus, the quality of the imputations

may not be as important for Coxnet as it was for CGB. Note that no information was provided on

what variables were imputed or not. For patient 9007, which had accurate survival curves for both

kNN and MICE, it may be that the imputations were suitable for that patient or that they had no

missing values in the first place. Alternately, the fact that they died early may be an important

factor for the models. This would be potential for future analysis. A quick note regarding the

survival curves for multiple imputations was that they did not consider the variation when shuffling

the covariates like the survival curves with RSKF. Adding this extra source of variation could

provide an additional figure where both the variation from imputations and covariates are present.

6.2.6 Evaluation Using Cross-Validation

Since we worked with a small dataset, the possibilities for evaluating the models were limited. It is

crucial to use a robust method for model evaluation when optimizing hyperparameters. To address

this, we used repeated stratified K-fold cross-validation (RSKF)64,76,125 described in Section 2.4.1.

This technique was chosen for two primary reasons: Firstly, it reduces the variance in model

evaluation by repeating the cross-validation process multiple times. Each repetition can yield

slightly different results due to the random shuffling in creating the folds. Averaging the results

of these repetitions provides a more consistent estimate of the model’s performance. Secondly,

RSKF effectively manages imbalanced data, a challenge our dataset faces due to the unbalanced
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distribution of censored data. Additionally, RSKF helps prevent overfitting by creating multiple

splits. In this approach, the model is repeatedly trained and tested on different subsets of data,

which enhances its ability to generalize well to new unseen data. In machine learning, using an

additional validation set is common practice.175 However, due to the limited size of our dataset,

the subset for the validation set would be quite small. This could lead to challenges, particularly

with imbalanced features in the validation subset. RSKF also provide information on how much

variation is introduced by alternating the samples used in the folds.

6.2.7 Features Coefficients for Different Alphas

The variables Absolute Neutrophil Count and Chemotherapy Type had their coefficients alternate

in direction as the regularization strength increased. From a logical point of view, it makes no sense

for a variable to have both a negative and positive impact on the hazard. From the permutation

feature importance in Figure 5.15, we can see that they were ranked 9th and 16th in importance,

which suggests that both features were relatively important for the model. This change in direction

may suggest that the variables were not stable as they were sensitive to the regularization strength.

This also highlights the difference between the statistical approach of comparing weights and the

machine learning approach by comparing permutation importance.

6.2.8 Permutation Features Importance

In Figure 5.10, the CGB model consistently assigned higher importance to variables compared to

the other survival analysis models. This is most noticeable for the top four important features.

These indicate that the CGB was more sensitive to these features being permuted and relied

more on them for predictions than the other models. One reason for this heightened sensitivity

could be, as described in Section 2.3.4, that CGB uses gradient boosting56,35, which builds models

sequentially and corrects the mistakes of previous models. As a result, CGB may accentuate the

influence of features that provide the strongest signals for correcting errors, leading to these higher-

importance values. Consequently, CGB might focus more on the features that are best at fixing

mistakes, which explains why these features have higher importance values. It also was supported

by the survival curve Figures 5.12 and 5.13 where it is shown that CGB was more affected by the

varying the variables in RSKF. This also applied to MICE, where imputations on CGB had more

influence on the variation in survival curves compared to Coxnet.

As reported in Jenul et al. (2023)65, the features WHO Perf Stat, Ki-67, and Albumin were

identified as both the most stable and predictive. These were also some of the top contenders in

Figure 5.10. As reported in Sorbye et al. (2013)151 LDH is the most important negative feature

in a multivariate Cox analysis. However, Figure 5.10 reveals that LDH is ranked as the 14th

most important feature across survival models. Specifically, LDH was found to be most important

for RSF and least for Coxnet, Cox PH, and CGB. Additionally, the average permutation feature

importance for Coxnet (Figure 5.15) shows LDH at rank 19. This ranking clearly differs from the

findings of Sorbye et al. (2013), where LDH was identified as an important feature. Our findings

highlighted that there was a large variation in the feature importance between the different models.

During this experiment, it was noted that Albumin ranked among the top 15 most impor-

tant features on average, had negative importance in the Coxnet model, unlike the other survival

models. Upon analyzing the feature’s distribution, it was discovered that incorrect values from

two patients influenced the models. This was particularly evident in the Coxnet model, which

performed approximately 1% better after correcting these errors.

The permutation feature importance and feature coefficient weights, as shown in Figures 5.15

and 5.16, illustrate the differences between the machine learning approach and the statistical

approach. The three most important features of the Coxnet model, as shown in Figure 5.15 was

Number of Courses, Ki-67, and NSE. These was also the features with the largest coefficients in

Figure 5.16. Additionally, the features are approximately in a similar order of importance in both
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Figures 5.15 and 5.16. This shows that there are minimal differences between the importance of

features of the two approaches and indicates that the model was stable.
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7 Conclusion

By reviewing the literature, conducting a robust experiment on the colon dataset, and analyz-

ing the GEP NEN dataset, we have highlighted the importance of imputing missing data rather

than discarding information in variables and samples. Removing variables led to loss of informa-

tion and potentially reduced information for models, and loss of samples tends to make models

prone to overfitting. In addition, we have discussed the missingness mechanisms and various im-

putation strategies. The violation of the MAR assumption for MICE had a negative effect on

imputations. We found that kNN provided promising imputations under variables respecting the

MCAR mechanism. We also briefly discussed the use cases of single versus multiple imputations;

single imputation was useful when the uncertainty of imputations was not of interest, whereas

multiple provided the option of assessing sample-by-sample uncertainty and agreement between

imputations.

Assuming kNN imputation as the optimal single imputer, we explored various survival analysis

models, including Coxnet, Cox PH, RSF, and CGB. Both Coxnet and Cox PH, alongside CGB,

performed highest for the C-index and lowest for IBS, whereas RSF seemed to overfit too much.

By comparing Coxnet and CGB, we found that CGB gave more variation across all survival curves

as opposed to the Coxnet model. That implies that CGB was more honest with its predictive

uncertainty when there was a large deviation between the survival curves. The Coxnet model´s
survival curves closely resembled an exponential function, especially at higher regularization alpha

values and lower regularization L1 ratio. This suggests that an approximation of exponential

survival function may be suitable, which is anticipated as patients are expected to die early for

this cancer. This could also be why the IBS score had little variation, and maybe the C-index

was too optimistic. The choice of survival model, CGB, obtained a high C-index but also got the

lowest Brier score compared to the other models, showing that CGB was the most optimal model

for this dataset, even if it was more complex. Finally, features such as Number of Courses, Ki-67,

and NSE were identified as having the most average importance across the four survival models.

Additionally, features WHO Perf Stat, Ki-67, and Albumin were identified as equally important,

consistent with the results reported by Jenul et al.(2023)65.
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8 Future work

Missing values

If time were not a bottleneck, we would have included and evaluated additional imputation strate-

gies in the experimental setup with the colon dataset and potentially applied them to the GEP

NEN dataset. In particular, it would have been interesting to dive deeper into local imputation

strategies that modify kNN, especially considering how well kNN performed. Zhang et al. (2019)

proposed a similar idea, where local regression models were applied to each complete tuple to-

gether with their closest neighbors, where imputations are given as the pooled predictions of each

model.180 This combats both the sparsity and heterogeneity issue presented in Section 3.9. Their

implementation was done in Java, and it would be a major work converting to Python.181 Explor-

ing Bayesian imputations would be of interest. Imputations could be adjusted to be more accurate

by including prior information based on expert knowledge. As a final point for imputations, it

would have been interesting to investigate multiple imputations where all possible information is

provided, such as the survival times or the cumulative hazard, as suggested by Buuren (2018).18

Survival analysis

Imputation strategies were paramount for the thesis. It would have been interesting to investigate

the imputations on a sample-by-sample basis to reveal the strengths and weaknesses of the impu-

tations. For example, some patients may be easier to impute, whereas others may be challenging.

By collaboration with expert knowledge, it could also be possible to evaluate if the imputations

were valid.

We have also determined that the number of samples was crucial for model performance. Con-

sequently, utilizing the combined dataset to further improve the models can be future work. It

would be interesting to not only analyze the shared features between the old and new studies within

this dataset but also to utilize the unique features specific to each study. This approach would

incorporate features that, for example, contain missing values from the first part of the dataset,

corresponding to the old study, alongside features from the last part, indicative of the new study.

Investigating the efficacy of imputation on this combined dataset, followed by model fitting, could

provide insights into whether such strategies improve performance.

Finally, given the variability in overall survival (OS) times, one potential approach is to encode

OS in months, as suggested by Jenul et al. (2023)65, or alternatively, in weeks. This adjustment

offers an interesting opportunity to observe whether the survival models leads to any improvements

in performance.
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Appendix A

A Experimental Setup: Missing Values

A.1 MCAR

A.1.1 Bias

Figure A.1: Bias of coefficients from a Cox PH model of the variables as a function of the proportion
of missing values after applying mode imputation on simulated missingness (MCAR) in the colon
dataset, where missingness was simulated 50 times. The whitest colour implies no bias, while blue
and red lean towards negative and positive bias, respectively.
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A.1.2 Concordance

Figure A.2: Train and test concordance as a function of the proportion of missing values after
applying mode imputation on simulated missingness (MCAR) in the colon dataset, where missing-
ness was simulated 50 times. The standard deviations (shaded area) and averages (solid line) are
shown.
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A.2 MAR

A.2.1 Accuracy

Figure A.3: Train accuracy as a function of the proportion of missing values after applying kNN
imputation on simulated missingness (MAR) in the colon dataset, where missingness was simulated
50 times. The standard deviations (shaded area) and averages (solid line) are shown.
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Figure A.4: Train accuracy as a function of the proportion of missing values after applying MICE
imputation on simulated missingness (MAR) in the colon dataset, where missingness was simulated
50 times. The standard deviations (shaded area) and averages (solid line) are shown.
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A.2.2 Bias

Figure A.5: Bias of coefficients from a Cox PH model of the variables as a function of the proportion
of missing values after applying CCA on simulated missingness (MAR) in the colon dataset, where
missingness was simulated 50 times. The whitest colour implies no bias, while blue and red lean
towards negative and positive bias, respectively.
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Figure A.6: Bias of coefficients from a Cox PH model of the variables as a function of the proportion
of missing values after applying kNN imputation on simulated missingness (MAR) in the colon
dataset, where missingness was simulated 50 times. The whitest colour implies no bias, while blue
and red lean towards negative and positive bias, respectively.
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Figure A.7: Bias of coefficients from a Cox PH model of the variables as a function of the proportion
of missing values after applying MICE imputation on simulated missingness (MAR) in the colon
dataset, where missingness was simulated 50 times. The whitest colour implies no bias, while blue
and red lean towards negative and positive bias, respectively.
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A.2.3 Concordance

Figure A.8: Train concordance as a function of the proportion of missing values after applying
CCA on simulated missingness (MAR) in the colon dataset, where missingness was simulated 50
times. The standard deviations (shaded area) and averages (solid line) are shown.

130



Figure A.9: Train concordance as a function of the proportion of missing values after applying
kNN imputation on simulated missingness (MAR) in the colon dataset, where missingness was
simulated 50 times. The standard deviations (shaded area) and averages (solid line) are shown.
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Figure A.10: Train concordance as a function of the proportion of missing values after applying
MICE imputation on simulated missingness (MAR) in the colon dataset, where missingness was
simulated 50 times. The standard deviations (shaded area) and averages (solid line) are shown.
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Appendix B

B Survival Curves

B.1 Compare Survival Curves Between Coxnet and CGB with the High-

est Test C-index

Figure B.1: Survival curves for different patients between the highest C-index model for Coxnet and
CGB with kNN imputations. Survival curves for all patients who experienced an event for Coxnet
and CGB models with kNN imputations. The different curves are given by repeated stratified
k-fold. The blue curve is the average estimated survival curve and the shaded area (Std Dev)
is the standard deviation. The red line indicates when the event of interest occurred (observed
survival time) and the green line marks the model’s prediction for when the event was expected to
happen (expected survival time). Coxnet (alpha: 1000, L1 ratio: 0.0001), CGB (n estimator: 10,
learning rate: 0.6, subsample: 0.6).
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B.2 Compare Survival Curves Between the Coxnet Model (alpha: 1000,

L1 ratio: 0.0001) with Coxnet Model (alpha: 3, L1 ratio: 0.01)

Figure B.2: Survival curves for Coxnet model with the highest C-index model and the model
that were selected (Section 5.2.2) with kNN imputations. Survival curves for all patients who
experienced an event for Coxnet and CGB models with kNN imputations. The different curves are
given by repeated stratified k-fold. The blue curve is the average estimated survival curve and the
shaded area (Std Dev) is the standard deviation. The red line indicates when the event of interest
occurred (observed survival time) and the green line marks the model’s prediction for when the
event was expected to happen (expected survival time). Coxnet (alpha: 1000, L1 ratio: 0.0001),
Coxnet (alpha: 3, L1 ratio: 0.01).
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B.3 Compare Survival Curves Between Coxnet and CGB Model for All

Patients.

Figure B.3: Survival curves for all patients for Coxnet and CGB models with kNN imputations.
Survival curves for all patients who experienced an event for Coxnet and CGB models with kNN
imputations. The different curves are given by repeated stratified k-fold. The blue curve is the
average estimated survival curve and the shaded area (Std Dev) is the standard deviation. The
red line indicates when the event of interest occurred (observed survival time) and the green line
marks the model’s prediction for when the event was expected to happen (expected survival time).
Coxnet (alpha: 3, L1 ratio: 0.01), CGB (n estimator: 10, learning rate: 0.6, subsample: 0.6).
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Appendix C

C Coxnet Model Performance Across Hyperparameters

C.1 Coxnet Model Performance For L1 Ratio of 0.2

Table C.1: Coxnet models for different alpha values with a fixed L1 Ratio of 0.2. This table
presents the results of Coxnet models, detailing the C-index for both test and train set, and the
IBS for test data across a range of alpha values. The table illustrates how performance metrics
vary with different regularization strengths for alpha.

Alpha L1 Ratio C-index test C-index train IBS test

1000 0.2 0.500 0.500 0.161

700 0.2 0.500 0.500 0.161

500 0.2 0.500 0.500 0.161

200 0.2 0.500 0.500 0.161

100 0.2 0.500 0.500 0.161

70 0.2 0.500 0.500 0.161

50 0.2 0.500 0.500 0.161

20 0.2 0.500 0.500 0.161

10 0.2 0.500 0.500 0.161

5 0.2 0.500 0.500 0.161

3 0.2 0.500 0.500 0.161

1 0.2 0.784 0.813 0.129

0.5 0.2 0.786 0.834 0.115

0.1 0.2 0.764 0.875 0.114

0.05 0.2 0.753 0.883 0.122

0.01 0.2 0.718 0.889 0.148

0.005 0.2 0.710 0.889 0.161

0.001 0.2 0.700 0.889 0.173

0.0005 0.2 0.695 0.889 0.174

0.0001 0.2 0.694 0.889 0.177

0 0.2 0.693 0.889 0.177
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C.2 Coxnet Model Performance For L1 Ratio of 0.3

Table C.2: Coxnet models for different alpha values with a fixed L1 Ratio of 0.3. This table
presents the results of Coxnet models, detailing the C-index for both test and train set, and the
IBS for test data across a range of alpha values. The table illustrates how performance metrics
vary with different regularization strengths for alpha.

Alpha L1 Ratio C-index test C-index train IBS test

1000 0.3 0.500 0.500 0.161

700 0.3 0.500 0.500 0.161

200 0.3 0.500 0.500 0.161

100 0.3 0.500 0.500 0.161

70 0.3 0.500 0.500 0.161

50 0.3 0.500 0.500 0.161

20 0.3 0.500 0.500 0.161

10 0.3 0.500 0.500 0.161

5 0.3 0.500 0.500 0.161

3 0.3 0.500 0.500 0.161

1 0.3 0.770 0.793 0.142

0.5 0.3 0.783 0.825 0.118

0.1 0.3 0.766 0.869 0.115

0.05 0.3 0.754 0.881 0.120

0.01 0.3 0.718 0.889 0.147

0.005 0.3 0.710 0.889 0.161

0.001 0.3 0.700 0.889 0.173

0.0005 0.3 0.695 0.889 0.174

0.0001 0.3 0.693 0.888 0.177

0 0.3 0.693 0.889 0.177
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C.3 Coxnet Model Performance For L1 Ratio of 0.4

Table C.3: Coxnet models for different alpha values with a fixed L1 Ratio of 0.4. This table
presents the results of Coxnet models, detailing the C-index for both test and train set, and the
IBS for test data across a range of alpha values. The table illustrates how performance metrics
vary with different regularization strengths for alpha.

Alpha L1 Ratio C-index test C-index train IBS test

1000 0.4 0.500 0.500 0.161

700 0.4 0.500 0.500 0.161

200 0.4 0.500 0.500 0.161

100 0.4 0.500 0.500 0.161

70 0.4 0.500 0.500 0.161

50 0.4 0.500 0.500 0.161

20 0.4 0.500 0.500 0.161

10 0.4 0.500 0.500 0.161

5 0.4 0.500 0.500 0.161

3 0.4 0.500 0.500 0.161

1 0.4 0.685 0.717 0.158

0.5 0.4 0.782 0.812 0.123

0.1 0.4 0.769 0.864 0.115

0.050 0.4 0.754 0.879 0.119

0.010 0.4 0.720 0.889 0.148

0.005 0.4 0.710 0.889 0.160

0.001 0.4 0.699 0.888 0.172

0.0005 0.4 0.695 0.889 0.174

0.0001 0.4 0.693 0.889 0.177

0 0.4 0.693 0.889 0.177
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C.4 Coxnet Model Performance For L1 Ratio of 0.5

Table C.4: Coxnet models for different alpha values with a fixed L1 Ratio of 0.5. This table
presents the results of Coxnet models, detailing the C-index for both test and train set, and the
IBS for test data across a range of alpha values. The table illustrates how performance metrics
vary with different regularization strengths for alpha.

Alpha L1 Ratio C-index test C-index train IBS test

1000 0.5 0.500 0.500 0.161

700 0.5 0.500 0.500 0.161

200 0.5 0.500 0.500 0.161

100 0.5 0.500 0.500 0.161

70 0.5 0.500 0.500 0.161

50 0.5 0.500 0.500 0.161

20 0.5 0.500 0.500 0.161

10 0.5 0.500 0.500 0.161

5 0.5 0.500 0.500 0.161

3 0.5 0.500 0.500 0.161

1 0.5 0.521 0.543 0.161

0.5 0.5 0.776 0.803 0.130

0.1 0.5 0.773 0.859 0.115

0.05 0.5 0.760 0.877 0.118

0.01 0.5 0.721 0.889 0.148

0.005 0.5 0.710 0.889 0.160

0.001 0.5 0.699 0.888 0.173

0.0005 0.5 0.696 0.888 0.174

0.0001 0.5 0.693 0.888 0.177

0 0.500 0.693 0.888 0.177
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C.5 Coxnet Model Performance For L1 Ratio of 0.6

Table C.5: Coxnet models for different alpha values with a fixed L1 Ratio of 0.6. This table
presents the results of Coxnet models, detailing the C-index for both test and train set, and the
IBS for test data across a range of alpha values. The table illustrates how performance metrics
vary with different regularization strengths for alpha.

Alpha L1 Ratio C-index test C-index train IBS test

1000 0.6 0.500 0.500 0.161

700 0.6 0.500 0.500 0.161

200 0.6 0.500 0.500 0.161

100 0.6 0.500 0.500 0.161

70 0.6 0.500 0.500 0.161

50 0.6 0.500 0.500 0.161

20 0.6 0.500 0.500 0.161

10 0.6 0.500 0.500 0.161

5 0.6 0.500 0.500 0.161

3 0.6 0.500 0.500 0.161

1 0.6 0.500 0.791 0.161

0.5 0.6 0.767 0.791 0.138

0.1 0.6 0.777 0.855 0.115

0.05 0.6 0.760 0.874 0.118

0.01 0.6 0.723 0.889 0.147

0.005 0.6 0.710 0.889 0.159

0.001 0.6 0.699 0.888 0.172

0.0005 0.6 0.696 0.888 0.174

0.0001 0.6 0.693 0.888 0.177

0 0.6 0.693 0.888 0.177
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C.6 Coxnet Model Performance For L1 Ratio of 0.7

Table C.6: Coxnet models for different alpha values with a fixed L1 Ratio of 0.7. This table
presents the results of Coxnet models, detailing the C-index for both test and train set, and the
IBS for test data across a range of alpha values. The table illustrates how performance metrics
vary with different regularization strengths for alpha.

Alpha L1 Ratio C-index test C-index train IBS test

1000 0.7 0.500 0.500 0.161

700 0.7 0.500 0.500 0.161

500 0.7 0.500 0.500 0.161

200 0.7 0.500 0.500 0.161

100 0.7 0.500 0.500 0.161

70 0.7 0.500 0.500 0.161

50 0.7 0.500 0.500 0.161

20 0.7 0.500 0.500 0.161

10 0.7 0.500 0.500 0.161

5 0.7 0.500 0.500 0.161

3 0.7 0.500 0.500 0.161

1 0.7 0.500 0.500 0.161

0.5 0.7 0.739 0.765 0.148

0.1 0.7 0.778 0.850 0.115

0.05 0.7 0.762 0.871 0.118

0.01 0.7 0.723 0.889 0.146

0.005 0.7 0.710 0.889 0.159

0.001 0.7 0.699 0.884 0.172

0.0005 0.7 0.696 0.888 0.174

0.0001 0.7 0.693 0.888 0.177

0 0.7 0.693 0.888 0.177
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C.7 Coxnet Model Performance For L1 Ratio of 0.8

Table C.7: Coxnet models for different alpha values with a fixed L1 Ratio of 0.8. This table
presents the results of Coxnet models, detailing the C-index for both test and train set, and the
IBS for test data across a range of alpha values. The table illustrates how performance metrics
vary with different regularization strengths for alpha.

Alpha L1 Ratio C-index test C-index train IBS test

1000 0.8 0.500 0.500 0.161

700 0.8 0.500 0.500 0.161

500 0.8 0.500 0.500 0.161

200 0.8 0.500 0.500 0.161

100 0.8 0.500 0.500 0.161

70 0.8 0.500 0.500 0.161

50 0.8 0.500 0.500 0.161

20 0.8 0.500 0.500 0.161

10 0.8 0.500 0.500 0.161

5 0.8 0.500 0.500 0.161

3 0.8 0.500 0.500 0.161

1 0.8 0.500 0.500 0.161

0.5 0.8 0.682 0.715 0.156

0.1 0.8 0.777 0.846 0.115

0.05 0.8 0.762 0.868 0.119

0.01 0.8 0.724 0.889 0.145

0.005 0.8 0.710 0.889 0.159

0.001 0.8 0.698 0.888 0.172

0.0005 0.8 0.696 0.888 0.174

0.0001 0.8 0.693 0.888 0.176

0 0.8 0.693 0.889 0.177
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C.8 Coxnet Model Performance For L1 Ratio of 0.9

Table C.8: Coxnet models for different alpha values with a fixed L1 Ratio of 0.9. This table
presents the results of Coxnet models, detailing the C-index for both test and train set, and the
IBS for test data across a range of alpha values. The table illustrates how performance metrics
vary with different regularization strengths for alpha.

Alpha L1 Ratio C-index test C-index train IBS test

1000 0.9 0.500 0.500 0.161

700 0.9 0.500 0.500 0.161

200 0.9 0.500 0.500 0.161

100 0.9 0.500 0.500 0.161

70 0.9 0.500 0.500 0.161

50 0.9 0.500 0.500 0.161

20 0.9 0.500 0.500 0.161

10 0.9 0.500 0.500 0.161

5 0.9 0.500 0.500 0.161

3 0.9 0.500 0.500 0.161

1 0.9 0.500 0.500 0.161

0.5 0.9 0.594 0.626 0.160

0.1 0.9 0.775 0.843 0.115

0.05 0.9 0.765 0.866 0.119

0.01 0.9 0.723 0.889 0.145

0.005 0.9 0.712 0.888 0.159

0.001 0.9 0.698 0.888 0.172

0.0005 0.9 0.695 0.889 0.174

0.0001 0.9 0.693 0.889 0.177

0 0.9 0.693 0.889 0.177

Appendix D

D Code

Relevant code can be found at: https://github.com/erlendrisvik/Master-Thesis-2024/.
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