

Master’s Thesis 2024 30 ECTS

Faculty of Science and Technology (REALTEK)

Tsetlin machine for classifying

genetic data from sea-floor species

Halvor Hauge Steffenssen

Data science

Preface

I want to thank all the people who have made my years at NMBU the best of my life: my
housemates in ”Gokk,” who make me never want to live alone, and my good friends in Lærken,
who have given me a place I can always return to. You have all made me a different and better
person than I was when I started here at NMBU.

I also want to thank my supervisor, Kristian Hovde Liland, and co-supervisor, Lars-Gustav
Snipen. They both have pushed me to finish this thesis. Their guidance throughout this whole
process has been invaluable.

Lastly, I want to thank my parents, who always believe in me and have my back no matter
what.

2

Abstract

With the amount of genetic data we can extract from nature with modern sequencing technol-
ogy, there is a growing need for tools to help classify and analyze this data. Machine learning
algorithms like Random Forest and Artificial Neural Networks are already in use in this field of
bioinformatics.

Tsetlin Machine is a new type of machine learning that has shown much promise in DNA
classification. It uses binary representation and logic that are close to how a computer operates
to create models. This thesis will try to test the Tsetlin Machine’s ability to classify genetic data.

A database with the DNA of 709 species commonly found in deep-sea sediments that were
picked based on the results of the AQUAeD project. Will be split up into different datasets.
The Tsetlin Machine, together with a random forest model, a Convolutional neural network,
and a model that counts the number of GC bases, gets these datasets and tries to classify dif-
ferent classes on multiple taxonomic ranks. They are then evaluated based on the accuracy of
their classification and the speed of training.

The results show that the Tsetlin Machine has great promise in this field and acquired similar
scores to the Random Forest Classifier and the convolutional Neural Network in accuracy and
speed.

Abstract

Med den voksende mengden av genetisk data vi kan hente ut fra naturen med moderne sekvenser-
ings teknologi, er det en økt nødvendighet fro verktøy som kan hjelpe med klasifisering og analyse
av denne dataen. Maskin lærings algorytmer slik som Random Forest Classifier, og Artificial
Neural network, er allerede i bruk i dette bioinformatikk feltet.

Tsetlin Maskin er en ny type maskinlæring som har vist seg å vere lovende i DNA klassifiserings
feltet. Det bruker biner representasjon og logikk som er nerme slik en datamaskin opererer, for
å lage modeller. Denne oppgaven vil teste Testlin maskinens egenskap til å klassifisere genetisk
data.

En database med 709 arter som er vanlig i dyphavsediment som var valgt basert p̊a resultatene
av AQUAeD prosjektet. vill bli delt opp i forskjellige datasett. Tsetlin Maskinen sammen med
en Random Forest modell , et Convolutional neural nettverk og en modell som teller GC baser,
f̊ar desse datasettene, og prøver å klassifisere forksjellige taxonomiske kategorier. De vil s̊a bli
evaluert basert p̊a nyaktigheten p̊a klassifiseringen, og hurtigheten til treningen.

Resultatene viser at Tsetlin Maskiner har veldig lovende resultater, og oppn̊ar lignende re-
sultater som Random Forest Classifier og Convolutionl Neural Nettverket b̊ade p̊a nyaktighet
og hurtighet.

Contents

1 Introduction 5
1.1 Objectives . 5

2 Theory 6
2.1 Tsetlin machine . 6
2.2 Random forest classifier . 9
2.3 Convolutional Neural network . 11

2.3.1 Perceptron . 11
2.3.2 Activation functions . 12
2.3.3 The convolutional part . 13
2.3.4 Global max pooling . 13
2.3.5 Validation . 13

2.4 Taxonomy . 14

3 Method 15
3.1 The data . 15
3.2 Data encoding . 15

3.2.1 Direct encoding . 15
3.2.2 K-mer encoding . 15

3.3 Where the data comes from . 15
3.4 Pre-processing . 16

3.4.1 Tsetlin Machine . 16
3.4.2 Random Forest Classifier . 16
3.4.3 GC content . 16
3.4.4 Convolutional Neural Network . 16

3.5 Tools used . 17

4 Results 18
4.1 The datasets accuracy . 18

4.1.1 Eukaryote or prokaryote . 19
4.1.2 Archaea or bacteria . 20
4.1.3 Actinomycetota or other phyla . 21
4.1.4 Escherichia Coli or other bacteria . 22
4.1.5 Serratia Marcescens or other bacteria . 23
4.1.6 Methanosarcina Lacustris or other archaea 24

4.2 The datasets runtime . 26
4.2.1 Eukaryote or prokaryote . 26
4.2.2 Archaea or bacteria . 27

1

4.2.3 Actinomycetota or other phyla . 28
4.2.4 Escherichia Coli or other bacteria . 29
4.2.5 Serratia Marcescen or other bacteria . 30
4.2.6 Methanosarcina Lacustris or other archaea 31

4.3 The classifiers on the different data . 34
4.3.1 Tsetlin Machine with k-mer encoding . 34
4.3.2 Tsetlin Machine with direct encoding . 35
4.3.3 Random Forest Classifier . 36
4.3.4 GC Content . 37
4.3.5 Convolutional Neural Network . 38

5 Discussion 39
5.1 The accuracy of the Tsetlin Machine . 39

5.1.1 The direct encoded Tsetlin Machine . 39
5.1.2 Direct coding vs kmer coding . 39

5.2 The speed of the Tsetlin Machine . 39
5.3 Difference between datasets . 40
5.4 Future Work . 40

5.4.1 Real world data . 40
5.4.2 Tsetlin Machine variations . 40
5.4.3 Data encoding . 41

6 Conclusion 42

A Table of Python-packages 45

Page 2 of 46

List of Figures

2.1 A Tsetlin Automaton . 6
2.2 Clauses in a Tsetlin Machine . 7
2.3 Tsetlin Machine learning process flowchart . 8
2.4 Decition tree example . 9
2.5 Decision tree of subset . 10
2.6 A model of a perceptron . 11
2.7 A Multi-Layer Perceptron, with two hidden layers. 12
2.8 Hidden layer activation function . 12
2.9 Output layer activation function . 13
2.10 Taxonomy levels . 14

4.1 Accuracy graph for the eukaryote or prokaryote dataset 19
4.2 Accuracy graph for the archaea or bacteria dataset 20
4.3 Accuracy graph for the Actinomycetota or other phyla dataset 21
4.4 Accuracy graph for the Escherichia Coli or other bacteria dataset 22
4.5 Accuracy graph for the Serratia Marcescens or other bacteria dataset 23
4.6 Accuracy graph for the Methanosarcina Lacustris or other archaea dataset 24
4.7 Time graph for the eukaryote or prokaryote dataset 26
4.8 Time graph for the archaea or bacteria dataset 27
4.9 Time graph for the Actinomycetota or other phyla dataset 28
4.10 Time graph for the Escherichia Coli or other bacteria dataset 29
4.11 Time graph for the Serratia Marcescen or other bacteria dataset 30
4.12 Time graph for the Methanosarcina Lacustris or other archaea dataset 31
4.13 Tsetlin Machine with K-mer encoding accuracy 34
4.14 Tsetlin Machine with direct encoding accuracy 35
4.15 Random Forest Classifier accuracy . 36
4.16 GC Content accuracy . 37
4.17 Convolutional Neural Network accuracy . 38

3

List of Tables

2.1 Example data . 10
2.2 Subset of example data . 10

4.1 Accuracy table . 25
4.2 Time table for long input lengths . 32
4.3 Time table . 33

A.1 Python packages . 45

4

Chapter 1
Introduction

DNA is the fundamental building blocks of life, with only four bases: adenine (A), cytosine
(C), guanine (G), and thymine (T). It encodes the genetic information for millions of different
species. With modern sequencing machines, we can extract enormous amounts of data from
DNA. This data is usually in the form of reads and short DNA sequences. These reads are
combined into complete genomes using a lot of computational power. Often, if we have a lot
of genetic data, multiple species are involved, and it’s very useful to classify this genetic data
before it’s combined into complete genomes. Machine learning is a natural choice to classify this
genetic data. This thesis will test out a new type of machine learning called Tsetlin Machines
for this task. A Tsetlin Machine uses binary data and logic to classify data in a way that is very
similar to how a computer works. The Tsetlin machine has been shown to be very effective in
Tabular data [1], image data [2], natural language data[3], and has also shown promise on other
DNA-based tasks because of DNA’s ability to be described easily in binary [4]. The Tsetlin
Machine will be compared to other machine learning methods to see if it is as good or better
at classifying genetic data.

1.1 Objectives

This thesis aims to test whether the Tsetlin Machine can reliably classify raw genetic data into
different taxonomic categories. It will be compared to other classification methods to see if it
can outperform them in terms of time taken and accuracy. So, the questions I will try to answer
in the thesis are
1. Is the Tsetlin Machine more accurate than other machine learning methods at classifying
DNA reads and contigs?

2. Can the Tsetlin Machine be trained faster than other machine learning methods?

A Random Forest Classifier and a Convolutional Neural Network will be used for the other
classification methods. Also, as a baseline, a nonmachine learning method that counts the
number of GC base pairs in the DNA and classifies them based on the number, which will be
called the GC counter, will also be used. The DNA data will be separated into classes based
on taxonomy ranks to see if the results differ based on the different ranks.

5

Chapter 2
Theory

This chapter will cover the theory of the different classifiers, starting with the Tsetlin Machine
(TM). The theory on the TM will be based on this article [5], unless another source is specified.
Then, the theory for the Random Forest Classifier (RFC) and the Convolutional Neural Network
(CNN). The chapter will also cover what taxonomy is and how it is used in this thesis.

2.1 Tsetlin machine

The Tsetlin machine (TM) is a new type of machine learning that tries to predict the class of
the data using only binary inputs and very simple logic. Since DNA is very close to binary
in its form and can easily be described in four bits or even two, it’s a good fit for a TM. To
understand a TM, it’s essential to start from the bottom and go up, and the basic building
block of a TM is the Tsetlin Automaton.
A Tsetlin automaton (TA) is a fixed finite state automaton, a mathematical model used to
analyze models with discrete states and the transitions between those states. An example of a
2N-state TA is in Figure 2.1

Figure 2.1: A Tsetlin Automaton, figure taken from [5] with permission.

These automatons are put together into clauses, where multiple automatons work together to
form an output from an input. So, in the example in Figure 2.2, two clauses have the same
inputs. X1, X2 and the negated version of X1 and X2, the negated version is the opposite of
the value, so if X1 is one, then ¬X1 is 0. Each of these individual inputs is called literals. If the
Automatons state is above the threshold, it will be included, if it’s below, it will not. If all the
included TAs has an output of 1, the clause will give the output 1, if it’s not, it will give the
output 0. Each clause also has a polarity, denoted by + or -. The + polarity is used to classify

6

y = 1, and - polarity is used to classify y = 0. The + polarity clauses are summed together
in the next layer, and the -polarity clauses are subtracted. If the total sum is ≥ 0, the total
output for the TM is y = 1. If the sum is < 0, the output of the TM is y = 0. The different
clauses are meant to find different sub-patterns in the input data so it can find the difference
in the input data that is typical for the class y = 1 and the class y = 0.

Figure 2.2: Clauses in a Tsetlin Machine, figure taken from [5] with permission.

When you initialize the TM, the TAs in the clauses are randomized. The training process then
follows the flowchart 2.3

Page 7 of 46

Figure 2.3: Flowchart for the learning process figure taken from [6] with permission.

So when the TM is initialized, it has random clauses that have a chance to update its parameters
every time a training sample runs through it. Either Type I feedback or Type II feedback. Type
I reinforces true positive outputs, while Type II discourages false positive outputs. To discourage
too many clauses from learning the same sub-pattern, a stochastic choosing process limits the
number of clauses that learn the same pattern to T. More precisely, it uses this formula to find
the number of clauses that get updated if y = 1
T−clip(

∑n
2
j=1 C

1
j (X)−

∑n
2
j=1 C

0
j (X),−T,T)

2T
and this if y = 0
T+clip(

∑n
2
j=1 C

1
j (X)−

∑n
2
j=1 C

0
j (X),−T,T)

2T
So say you have a + polarity clause that has four literals x1, x2, ¬x1, and ¬x2, and the input
to the clause is (1,0,0,1), and the clause correctly classified y = 1. Then, the clause would get
type I feedback. So the individual TAs that had a one as input then get type Ia feedback,
the position of the state of the TA will move towards the include part of the automaton with
a probability of s−1

s . If the individual TA had 0 as an input, then it gets type Ib feedback,
and the TA will change towards the exclude part of the TA with a probability of 1

s . The same
feedback will happend for TAs in - polarity clauses that classify y = 0.
If you have a - polarity clause that classifies y = 1, the clause will get type II feedback. So if
the input to the literal was 0, the TA will move towards include with a probability of 1. If the
input to the literal was 1, nothing happens to the TA.
The hyperparameters T and s can be set as anything, but the formulas used for s and T in this

Page 8 of 46

thesis are.

T (C) =
√

C
2 + 2,

and
s(C) = 2.534 ∗ ln(c

3.7579).
Where C is the number of clauses.
These formulas are found to be optimal values for these hyperparameters [7].

2.2 Random forest classifier

To understand Random forest, it helps first to understand decision trees in general. A decision
tree is a classifying method that splits the data until it can classify all the data correctly into
one class in every end node [8]. So, for a simple example, let’s say you want to make a decision
tree that decides whether you have time to eat breakfast.

Figure 2.4: Decision tree for if you have time to eat breakfast

If the only data points you had were whether it was a weekend and whether you had time
to eat, then this decision tree would correctly classify whether you should eat breakfast every
time. This will not work on bigger datasets, so an RFC takes a big dataset, splits it into smaller
subsets, and makes decision trees based on the subset of the data. So, for example, consider
this made-up data for if a person will go on a run in Table 2.1.

Page 9 of 46

Weather Mood Temperature Time of Day Going For A Run

Sunny Happy Warm Morning Yes
Sunny Happy Warm Afternoon Yes
Rainy Sad Cool Evening No
Sunny Sad Hot Morning No
Cloudy Happy Mild Afternoon Yes
Rainy Happy Cool Evening No
Cloudy Sad Mild Morning Yes
Sunny Happy Hot Afternoon Yes
Rainy Happy Cool Morning No
Cloudy Sad Mild Evening No

Table 2.1: Made up data that shows when a person is going for a run

The RFC picks a random subset of the data, so in this example, it takes the first, third, fourth,
and sixth rows and only includes the first and second columns and, of course, the classifying
column. It then creates a decision tree based on the subset shown in Figure 2.5.

Weather Mood Going For A Run

Sunny Happy Yes
Rainy Sad No
Sunny Sad No
Rainy Happy No

Table 2.2: Subset of made-up data that shows when a person is going for a run

Figure 2.5: Decision tree for the subset

Page 10 of 46

The RFC creates many data subsets, creating many decision trees from the subsets. In general,
the more subsets you split the data into, the more accurate the RFC will be, but it will be
harder to interpret what features the RFC is making its decision based on. When the model is
trained it has all these subsets, with all these decision trees made from them. Then when you
send a new data point through the RFC. The RFC will send the data point through all of its
decision trees and see what they predict the class will be, and then it takes the majority vote
and classifies the new data that way[9].

2.3 Convolutional Neural network

2.3.1 Perceptron

To understand Convolutional Neural Networks (CNN), it’s important to start at the bottom
and work up, so we start with the basic building block of a neural network, the perception.
The perception takes n inputs xn, adds a number to the x called a weight wn, sums up all the
numbers, and checks if they meet a threshold. [10]

Figure 2.6: A model of a perceptron

it’s described by this function O(x) = f (
∑m

i=1 ωixi)
Combining multiple perceptions creates a layer of a perception, and combining these again
creates a multi-layer perception. So, every input goes to every perception in the layer, and the
output goes into another layer, as shown in Figure 2.7. Each of these layers is called a dense
layer, the most basic layer in a Neural network. [11]

Page 11 of 46

Figure 2.7: A Multi-Layer Perceptron, with two hidden layers.

2.3.2 Activation functions

The activation function of a layer decides the output from the nodes in that layer. Different
activation functions are used in different circumstances and network types, as shown in Figure
2.8 and Figure 2.9 [12].

Figure 2.8: Normal Activation functions for hidden layers in different types of neural networks,
Figure inspired by [12]

Page 12 of 46

Figure 2.9: Normal Activation functions for output layers in different types of neural networks,
Figure inspired by [12]

Since the type of network used in this thesis is a Convoluted Neural Network, The activation
function used in the networks hidden layer is the REctified Linear Unit (ReLU). The ReLU
function is described by this function.
ReLU(x) = Max(0, x)
Since the type of classification used in this thesis is a Binary Activation, the activation function
used in the output layer is the Sigmoid function. Which is described by this function
σ(x) = 1

1+e−x

2.3.3 The convolutional part

In a neural network, a convolutional layer consists of filters that slide over the data, multiply
the weights of the filter and the data, and sum the multiplications together. The filters can
find patterns or features in the data. Since multiple filters slide over the same data in the
Convolution layer, the output of this layer becomes higher-dimensional and is called a feature
map. [13]

2.3.4 Global max pooling

A global max pooling layer takes high dimensional data and reduces the dimensionality by taking
the largest value of the feature data. This makes the data keep the features the convolutional
layer sees as the most important, while the rest is not kept. This helps reduce the complexity
of the data while keeping the most important information [14]

2.3.5 Validation

There is no validation data in this thesis. This is because the datasets are very large, and the
effectiveness of the classifiers can be decided without including validation data.

Page 13 of 46

2.4 Taxonomy

Taxonomy is the science of naming, classifying, and describing all species of living organisms.
It tries to classify all living organisms into different ranks based on how closely related they
are genetically. A cat, for example, is part of the same class as humans, the class Mammalian,
but the orders that cats and humans belong to are different. Together with bears, dogs, and
more, cats are part of the Carnivora order. Humans, monkeys, and other apes are part of the
Primate’s order. The taxonomy used in this thesis is based on the NCBI Taxonomy and uses for
prokaryotes seven different classification levels. The different levels of taxonomy used are shown
in Figure 2.10, where all the different levels for the species Serratia Marcescens are shown.

Figure 2.10: The levels of taxonomy used in this thesis. All the levels of the species Serratia
Marcescens

The type of data used in this thesis is pure DNA data in the form of text, which will be called
DNA strings. It is generated from the complete DNA of species that are already sequenced.
Strings from 20 letters long, also called 20 base pairs (bp) long, all the way up to 10,000 letters
long, also called ten kilobase pairs long (kbp). If this were real-world data, it would be based
on reads, which are short DNA strings extracted by many different methods from 100-500 bp
usually, and those would be put together to create contigs, which can be many kbp long [15].
In this thesis, the different inputs to the models will be referred to as DNA stings since they
are not reads and contigs from real-world data.

Page 14 of 46

Chapter 3
Method

This chapter will cover how the data was collected and processed, how each of the classifying
models will be created, and what programs are used to assist in writing this thesis.

3.1 The data

3.2 Data encoding

The encoding of the data input is very important for machine learning methods to work best.
In this thesis, the data for the machine learning models will be encoded in two ways: direct and
K-mer encoding.

3.2.1 Direct encoding

In this context, direct encoding means encoding text data to binary data. So, each letter is
encoded into 4 bits. A is represented by 0001, C is 0010, G is 0100, and T is 1000. This method
will be used by one of the Tsetlin Machines and the Convolutional Neural Network.

3.2.2 K-mer encoding

K-mer encoded data takes the input data and creates each possible K-letter sequence of that
data. So if K is five like in the models in this thesis and DNA can be four different bases, then
it creates 1024 45 = 1024 different 5-mers and counts the number of times each 5-mer is in the
data. This loses the positional information, but it can still keep some of it since if the 5-mer
”AACGA” and ”ACGAC” both are in the data, there is a four-letter overlap, so extracting
positional features from that is possible. The K-mer method will be used by one of the Tsetlin
Machines, and the Random Forest Classifier.

3.3 Where the data comes from

The data is from a collection of DNA sequences picked from species common in sea sediments.
The species was picked based on the results of the AQUAeD project, which found species we
can say with assurance are pretty common in sea sediments. These species’ genetic data and
taxonomy were then found with the help of the RefSeq database and the NCBI Taxonomy
database. The genetic data of 709 common species found in the sea bed will be used to create
DNA strings of different lengths. The models can be trained to classify from all different
taxonomic ranks. The data is in Fasta files.

15

3.4 Pre-processing

The 709 Fasta files will be divided into six different pairs of classes: into the empires: eu-
karyotes and prokaryotes. Into two different domains: archaea and bacteria. Differentiating
the phylum Actinomycetota from the other phyla, differentiating the species Escherichia coli
from other bacteria, differentiating the species Serratia Marcescens from the other bacteria, and
differentiating the species Methanosarcina Lacustris from the other archaea.
500 DNA strings with the lengths 20, 100, 500, 1000, and 2000 base pairs will be made for each
class and sent into the different classifier pipelines.

3.4.1 Tsetlin Machine

There will be two Tsetlin Machine (TM) pipelines, one that encodes the data directly and one
that generates K-mers. In the TM pipeline that encodes the data directly, the data will be sent
through a function, which creates a binary version of the data where A is represented by 0001,
C is 0010, G is 0100, and T is 1000. In the other pipeline, the data will be sent through a sci-kit
vectorizer, which vectorizes the input data into characters and creates a vocabulary with all
the different k-mers in the input string. It then will check if every k-mer is in the input strings
and has a one if it is there and a 0 if not. This will not count the number of times it’s there,
but only if it’s there. Now, in binary, the list will be a data type the TM understands. The
data from both pipelines will then be split into test and training data with an 80/20 split. The
training data will then be sent through the TM to train it. When trained, it will get the test
data and classify it. The results from the TM will then be checked against the real data, and
create an accuracy score.
The TM will be trained with different amounts of clauses and with the hyperparameters:

T (C) =
√

C
2 + 2,

and
s(C) = 2.534ln(c

3.7579).
Where C is the number of clauses [7], different numbers of clauses will be tested to find a good
balance between the accuracy score and the time it takes for the test data to run. The accuracy
will by far be the most important factor.

3.4.2 Random Forest Classifier

In the Random Forest Classifier, the data will be sent through a sci-kit vectorizer like one of
the TM pipelines. Unlike the TM, it counts the number of times each of these K-mers shows
up in each input and makes a sparse matrix of the features in each input. It then splits up the
data into training and testing with an 80/20 split, trains the RFC with the train data, predicts
with the testing data, checks the predicted value compared to the actual value, and creates an
accuracy score.

3.4.3 GC content

In the GC content classifier, the code counts the number of G and C input lists, and if it’s over
50%, it classifies it into one class, and if it’s under 50 %, it’s in the other. It then checks the
guessed class compared to the actual class and creates an accuracy score.

3.4.4 Convolutional Neural Network

The Convolutional Neural Network will have a one-dimensional convolutional layer that gives
the model 128 filters, a kernel size of 7, and the ReLU (Rectified Linear Unit) activation function.
This will create a high-dimensional feature map. Then, a global max pooling layer will reduce

Page 16 of 46

dimensionality to help the network find the most essential features. Then, a dense layer with a
dimension size of 64 and another ReLU activation function. Lastly, a dense layer with dimension
one and a sigmoid activation function will classify the input. The hyperparameters of this model
are found mainly through trial and error. Then, the model is trained and tested, and it will
return its guesses for the test data, which will be checked against the actual classes and will
give the model’s accuracy.

3.5 Tools used

The AI ”Chat-GPT” has been used to help with coding and debugging the code and to create
multiple tables in this thesis. It has been used in accordance with the ”Guidelines for the use of
artificial intelligence at REALTEK.” The program Grammarly, which helps with spelling and
grammar has also been used.

Page 17 of 46

Chapter 4
Results

This chapter will go through the accuracy and speed of all the models and compare the different
models and datasets. The datasets are mostly the same, but what is being classified differs.
The datasets will be named based on what they are classifying. The chapter will begin by
gooing through the accuracy the models had on all the datasets, then the time it took to train
the models on the different datasets. Lastly, it will go through each dataset and compare the
different model’s accuracy.

4.1 The datasets accuracy

These graphs show the different classifiers running five times on each input length and the clas-
sifier’s average accuracy. Figure 4.1 tries to predict whether the input is of the class prokaryote
or eukaryote.

18

4.1.1 Eukaryote or prokaryote

Figure 4.1: The accuracy of 5 different classifiers, with different input lengths, that try to
predict if the given sequence is a prokaryote or a eukaryote.

Figure 4.1 shows the models need at least 100-500 bp before the accuracy is acceptable. The
TM with K-mer encoding, the CNN, and the RFC are doing the best here. This is true for
almost all the datasets.

Page 19 of 46

Figure 4.2 Uses only the prokaryote data and tries to predict if the input is of the class archaea
or bacteria.

4.1.2 Archaea or bacteria

Figure 4.2: The accuracy of 5 different classifiers, with different input lengths, that try to
predict if the given sequence is an archaea or a bacteria.

In Figure 4.2, the CG counter is doing very well, it’s clear that this is the biggest difference in
CG content between the classes.

Page 20 of 46

Figure 4.3 Uses only the prokaryote data and tries to predict if the input is of the phylum
Actinomycetota or any other phyla.

4.1.3 Actinomycetota or other phyla

Figure 4.3: The accuracy of 5 different classifiers, with different input lengths, that try to
predict if the given sequence is an Actinomycetota or any other phyla.

for Figure 4.3 The CNN is worse than the earlier datasets. Stagnating a little after an input
length of 100 bp. The TM with K-mer encoding and the RFC look more similar to the other
datasets.

Page 21 of 46

Figure 4.4 Uses only the bacteria data and tries to predict if the input is of the class Escherichia
Coli or any otherspecies of bacteria.

4.1.4 Escherichia Coli or other bacteria

Figure 4.4: The accuracy of 5 different classifiers, with different input lengths, that try to
predict if the given sequence is of the class Escherichia Coli or any other species of bacteria.

In Figure 4.4, the CNN is a bit worse than the TM with K-mer encoding and the RFC. Pre-
forming worse on 1000 bp than 100 and 500 bp.

Page 22 of 46

Figure 4.5 Uses only the bacteria data and tries to predict the classes Serratia Marcescens or
any other species of bacteria.

4.1.5 Serratia Marcescens or other bacteria

Figure 4.5: The accuracy of 5 different classifiers, with different input lengths, that try to
predict whether the given sequence is the Serratia Marcescens or any other species of bacteria.

In Figure 4.5, the CNN is almost the same level as the TM with K-mer encoding and the RFC.

Page 23 of 46

Figure 4.6 Uses only the archaea data and tries to predict the classes Methanosarcina lacustris
or any other species of arcaea.

4.1.6 Methanosarcina Lacustris or other archaea

Figure 4.6: The accuracy of 5 different classifiers, with different input lengths, that try to
predict whether the given sequence is the Maethaosarcina or any other species of archaea.

In Figure 4.6, the spread of all the classifiers is largest, and also the best classifier, the RFC, is
the only one reaching an accuracy of over 0.9 on 2000 bp.

Page 24 of 46

Table 4.1 shows The time it took for five different classifiers, with different input lengths, to try
to predict if the given sequence is a prokaryote or a eukaryote. This is the data that is used in
Figure 4.1.

X Length Classifier Average Accuracy

20

Tsetlin Classifier k-mer 0.708333
Tsetlin Classifier direct 0.663333
Random Forest Classifier 0.756667
GC Content 0.713000
CNN Classifier 0.806667

100

Tsetlin Classifier k-mer 0.911667
Tsetlin Classifier direct 0.728333
Random Forest Classifier 0.876667
GC Content 0.760000
CNN Classifier 0.881667

500

Tsetlin Classifier k-mer 0.966667
Tsetlin Classifier direct 0.773333
Random Forest Classifier 0.968333
GC Content 0.831000
CNN Classifier 0.950000

1000

Tsetlin Classifier k-mer 0.988333
Tsetlin Classifier direct 0.771667
Random Forest Classifier 0.990000
GC Content 0.870000
CNN Classifier 0.981667

2000

Tsetlin Classifier k-mer 0.991667
Tsetlin Classifier direct 0.785000
Random Forest Classifier 1.000000
GC Content 0.881000
CNN Classifier 0.988333

Table 4.1: Accuracy of different classifiers for various X Length values.

Page 25 of 46

4.2 The datasets runtime

These graphs show the different classifiers running five times on each input length and show the
classifier’s average runtime.
Figure 4.7 uses all the data and tries to predict the classes prokaryote or eukaryote.

4.2.1 Eukaryote or prokaryote

Figure 4.7: The time it took for five different classifiers, with different input lengths, to try to
predict if the given sequence is a prokaryote or a eukaryote.

In Figure 4.7, the TM with direct encoding goes up faster than the other classifiers. It will not
be included in the other graphs.

Page 26 of 46

Figure 4.8 Uses only the prokaryote data and tries to predict if the input is of the class archaea
or bacteria. It excludes the ”Tsetlin Classifier direct” since that makes it harder to see the
other data.

4.2.2 Archaea or bacteria

Figure 4.8: The time it took for four different classifiers, with different input lengths, to predict
whether the given sequence is an archaea or a bacteria.

Page 27 of 46

Figure 4.9 Uses only the prokaryote data and tries to predict if the input is of the class Actino-
mycetota or another phyla. It excludes the ”Tsetlin Classifier direct” since that makes it harder
to see the other data.

4.2.3 Actinomycetota or other phyla

Figure 4.9: The time it took for four different classifiers, with different input lengths, to try to
predict if the given sequence is an Actinomycetota or another phylum.

Page 28 of 46

Figure 4.10 Uses only the bacteria data and tries to predict if the input is of the class Escherichia
Coli or any other species of bacteria. It excludes the ”Tsetlin Classifier direct” since that makes
it harder to see the other data.

4.2.4 Escherichia Coli or other bacteria

Figure 4.10: The time it took for four different classifiers, with different input lengths, to try to
predict if the given sequence is the species Escherichia Coli or if it’s any other speciesof bacteria.

Page 29 of 46

Figure 4.11 Uses only the bacteria data and tries to predict the classes Serratia Marcescens or
any other bacteria. It excludes the ”Tsetlin Classifier direct” since that makes it harder to see
the other data.

4.2.5 Serratia Marcescen or other bacteria

Figure 4.11: The time it took for four different classifiers, with different input lengths, to predict
if the given sequence is the species Serratia Marcescens or any other species of bacteria.

Page 30 of 46

Figure 4.12 Uses only the archaea data and tries to predict the classes Methanosarcina Lacustris
or other species of archaea. It excludes the ”Tsetlin Classifier direct” since that makes it harder
to see the other data.

4.2.6 Methanosarcina Lacustris or other archaea

Figure 4.12: The time it took for four different classifiers, with different input lengths, to predict
if the given sequence is the species Methanosarcina Lacustris or other archaea.

In all the figures in this section, the time the TM with K-mer encoding uses starts high and
drops down. The Tm with K-mer encoding also seems to increase slower than the CNN, which
becomes more apparent in Table 4.2, where the classifiers, except the Tsetlin Classifier with
direct encoding, are trained with very long input lengths. To see if the trends are different
higher up. Even though the accuracy doesn’t change much. The table shows the classifiers
trying to classify if the input is eukaryotes or prokaryotes with high input lengths.

Page 31 of 46

X Length Classifier Average Time (s)

2000 Tsetlin Classifier k-mer 8.726889
Random Forest Classifier 1.213532
CNN Classifier 9.199748

4000 Tsetlin Classifier k-mer 9.469364
Random Forest Classifier 1.816308
CNN Classifier 10.960591

8000 Tsetlin Classifier k-mer 9.652495
Random Forest Classifier 2.484141
CNN Classifier 18.081925

16000 Tsetlin Classifier k-mer 14.728810
Random Forest Classifier 3.142332
CNN Classifier 29.668247

Table 4.2: Average time taken by different classifiers for various X Length values.

Table 4.3 shows The time it took for five different classifiers, with different input lengths, to try
to predict if the given sequence is a prokaryote or a eukaryote. This is the data that is used in
Figure 4.7.

Page 32 of 46

X Length Classifier Average Time (s)

20

Tsetlin Classifier k-mer 18.114743
Tsetlin Classifier direct 6.932466
Random Forest Classifier 0.285667
GC Content 0.002370
CNN Classifier 2.697376

100

Tsetlin Classifier k-mer 7.764133
Tsetlin Classifier direct 12.210904
Random Forest Classifier 0.377048
GC Content 0.012759
CNN Classifier 1.767590

500

Tsetlin Classifier k-mer 6.469070
Tsetlin Classifier direct 27.027963
Random Forest Classifier 0.664114
GC Content 0.046691
CNN Classifier 2.004546

1000

Tsetlin Classifier k-mer 6.486216
Tsetlin Classifier direct 49.093130
Random Forest Classifier 0.887088
GC Content 0.123626
CNN Classifier 3.327825

2000

Tsetlin Classifier k-mer 8.307784
Tsetlin Classifier direct 98.785298
Random Forest Classifier 0.809729
GC Content 0.157267
CNN Classifier 4.356232

Table 4.3: Average time taken by different classifiers for various X Length values.

Page 33 of 46

4.3 The classifiers on the different data

The graphs in this section show how one classifier performed on all the different datasets. All
the classifiers in this section have a 1000-input length and are run five times.

4.3.1 Tsetlin Machine with k-mer encoding

Figure 4.13 shows the Testlin machine with k-mer encoding on all the datasets, with the average,
max, and min accuracy.

Figure 4.13: The average, max, and minimal accuracy of the Tsetlin Classifier with K-mer
encoding, with input length of 1000, on the six different datasets

In Figure 4.13, The Tm is not quite as good at classifying the phyla from each other and even
worse at classifying the species Methanosarcina Lacustris from the other archaea.

Page 34 of 46

4.3.2 Tsetlin Machine with direct encoding

Figure 4.14 shows the Testlin machine with direct encoding on all the datasets, with the average,
max, and min accuracy.

Figure 4.14: The average, max, and minimal accuracy of the Tsetlin Classifier with direct
encoding, with input length of 1000, on the six different datasets

In Figure 4.14, the TM is okay at classifying the archaea or bacteria. It isn’t good at classifying
the other datasets.

Page 35 of 46

4.3.3 Random Forest Classifier

Figure 4.15 shows the Random Forest Classifier on all the datasets with the average, max, and
min accuracy.

Figure 4.15: The average, max, and minimal accuracy of the Random Forest Classifier, with
input length of 1000, on the six different datasets

Figure 4.15 shows that the RFC is consistent in all the datasets, only struggling to classify the
Methanosarcina Lacustris from the other archaea.

Page 36 of 46

4.3.4 GC Content

Figure 4.16 shows the GC counter on all the datasets, with the average, max, and min accuracy.
Since this method has no randomness, there is no difference between the min and the max.

Figure 4.16: The average, max, and minimal accuracy of the GC content classifier, with input
length of 1000, on the six different datasets

Figure 4.16 shows that only the datasets eukaryote or prokaryote and archaea or bacteria reach
accuracy numbers over 0.85, and the closest is less than 0.7.

Page 37 of 46

4.3.5 Convolutional Neural Network

Figure 4.15 shows the Convolutional Neural Network classifier on all the datasets, with the
average, max, and min accuracy.

Figure 4.17: The average, max, and minimal accuracy of the Convolutional Neural Network
classifier, with input length of 1000, on the six different datasets

Figure 4.17 shows that the CNN varies quite a bit between datasets, struggling to classify some
of the datasets correctly. It also has a big variance in classifying Escheria Coli from the other
bacteria.

Page 38 of 46

Chapter 5
Discussion

In this section, this thesis’s findings will be discussed based on the results in the previous
chapter, using the questions asked in chapter one as groundwork.

5.1 The accuracy of the Tsetlin Machine

The accuracy results for the TM classifiers are very promising, at least the K-mer encoded one.
It is very similar to Random Forest Classifier on all the datasets and beets the Convolutional
Neural Network on multiple datasets. It seems to need more data than the Random Forest
Classifier and the Convolutional Neural Network to get good results, but on 100 base pair
input, it is about the same as the CNN and the RFC.

5.1.1 The direct encoded Tsetlin Machine

On the other hand, the directly encoded TM is not doing as well. It has way worse results
than the other three machine learning methods, even worse than the GC counter on multiple
datasets.

5.1.2 Direct coding vs kmer coding

The TM with direct coding is way worse at finding patterns in the data, rarely getting better
than the GC content classifier. It seems this way of encoding the data makes it very hard for
the TM to recognize features in the data. This is likely since the kmer way of encoding the data,
the identical K-mers stay in the same place, so if the data is [0,0,1,0,0.......,0], the 3rd 1 means
the same kmer in all the inputs, so if that specific kmer is a good indicator of it belonging to
one particular class, that is a pattern the TM can easily make out, and finding relationships
between the K-mers would also not be challenging. However, that would be far harder in the
direct coding example. In the direct coding example, it would have to make a clause that can
recognize multiple letters next to each other to identify one important kmer, and that does
not take into account the relations between the K-mers. It doesn’t even know when one letter
begins, so that is also something it has to learn, that every 4 data inputs equate to one letter.
The TM with direct encoding can probably only make out some straightforward patterns, such
as the amount of GC in the input or something similar.

5.2 The speed of the Tsetlin Machine

The direct encoded TM is way worse than all the other methods, and there is probably more
than one reason for this. One reason is that the input to the TM becomes larger the larger the

39

input is because the input is just letters in binary form. Its input is based on the length of the
DNA string, so let’s call that L, then the size of the input will be (1000,4L̇) Where 1000 is the
number of different inputs, which is the same always, and 4L̇ is four times the length L of the
DNA string, since it is 4 bits in binary per letter. While on the k-mer encoded, the size of the
input stays constant at (1000, 1024) where 1000 is again the number of inputs, and 1024 is the
possible number of five letter combinations of the four different DNA bases 45 = 1024 before it
is split into testing and training data.
If we only compare the k-mer encoded Tsetlim machine to the other methods, it’s much closer.
For some reason, it takes much longer for an input length of 20 than the other, it is not clear
why this is. The model is not quite as fast as the Random Forest Classifier and, of course,
not as fast as the GC counter, but the longer the input length, the more it overtakes the CNN
classifier on speed on higher input lengths. The TM is faster than the CNN.
This is all run locally on the CPU of a personal computer, so the result may have changed if it
had been run on a GPU that could potentially parallelize the training process. Especially on
the Convolutional Neural Network, there is a lot of literature on the increased speed of using
a GPU over a CPU on neural networks[16][17]. Some work is being done on exploring the
parallelization of the TM as well [18], but it hasn’t been implemented yet. The focus has been
on the time taken to train and classify this data instead of only the time taken to predict the
classes based on the trained model. It would be interesting to have the models only timed on
the prediction part after training and see if there is a big difference in the models.

5.3 Difference between datasets

It’s also interesting how different datasets affect the accuracy. The three best classifiers, the
K-mer encoded TM, the RFC, and the CNN, were around the same on The datasets: ”eukary-
ote or prokaryote”, ”archaea or bacteria”, or Serratia or other bacteria”, but the CNN was
significantly worse on ”Actinomycetota or other phyla”, ”Escherichia Coli or other bacteria”
and ”Methanosarcina Lacustris or other archaea”. It’s also interesting that it’s easier for the
TM and RFC to classify some specific species from the others, but struggling classifying the
one phylum from the others, likely this is a case of ”overfitting” the one species, while it being
harder to find features from all the species of a phylum.

5.4 Future Work

5.4.1 Real world data

One big thing that can be done to test out the TM further is to work on real-world data. The
data used in this thesis is ”perfect” generated reads and contigs. It would be interesting to see
if the accuracy would be significantly worse. It could also be interesting to check on more types
of data. This data is from the seabed. It would be interesting to see if data collected from
somewhere else would generate different results or if it would be similar.

5.4.2 Tsetlin Machine variations

This thesis uses the vanilla TM, there is many different variants of the TM, the Convolutional
Tsetlin machine [2], to simulate how the Convolutional Neural Network work, and the Coalessed
Tsetlin Machine [19] to name a few. It’s also possible to further play with the hyperparameters
of the TM, for example, using weighted clauses [20] to decrease the number of needed clauses
or drop clauses [21].

Page 40 of 46

5.4.3 Data encoding

Playing more around with the encoding of data could also be something that can be worked
on. There exist some variants of K-mer with gaps that can use larger K values without larger
datasets [22]. It would be interesting to see if the TM could find features even easier from the
data with different encoding.

Page 41 of 46

Chapter 6
Conclusion

This thesis aims to evaluate the Tsetlin Machine’s capabilities at taxonomically classifying pure
genetic data and see if it compares to other standard methods in accuracy and speed. It has
been compared to two other machine learning models, a Random Forest Classifier (RFC) and
a convolutional Neural Network (CNN). It has also been compared with a baseline method of
counting the amount of C and G in the DNA sequences. The input sequences given to the
Tsetlin Machine (TM) have been encoded in two different ways: direct encoding and K-mer
encoding. Different classes of taxonomic rank were tried on all the classifiers. All the models
were compared using the same datasets, and the same classes.
The results for the accuracy of the TM with K-mer encoding are promising, reaching impressive
results for relatively short input lengths. It is comparable to the RFC on every dataset, even
beating it in some instances, and consistently better than the CNN.
The results on the time the TM with K-mer encoding took are quite a bit worse than the
Random Forest Classifier. For short input lengths, it was also slower than the Convolutional
Neural Network. On longer input lengths, it did catch up to the CNN and ended up being faster
to train at input lengths over 2000. The directly encoded Tsetlin Machine does not produce
promising results. It is less accurate and far slower than all the other machine learning models.
In multiple instances, it performs worse than even the GC counter.
This is very promising for the TM with K-mer encoding, and shows that it has great potential
in dealing with DNA classification tasks.

42

Bibliography

[1] Adrian Wheeldon et al. “Learning automata based energy-efficient AI hardware design
for IoT applications”. In: Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences 378.2182 (Sept. 2020). Publisher: Royal Society,
p. 20190593. doi: 10.1098/rsta.2019.0593. url: https://royalsocietypublishing.
org/doi/full/10.1098/rsta.2019.0593 (visited on 05/13/2024).

[2] Ole-Christoffer Granmo et al. The Convolutional Tsetlin Machine. arXiv:1905.09688 [cs,
stat]. Dec. 2019. doi: 10.48550/arXiv.1905.09688. url: http://arxiv.org/abs/
1905.09688 (visited on 05/13/2024).

[3] Geir Thore Berge et al. Using the Tsetlin Machine to Learn Human-Interpretable Rules
for High-Accuracy Text Categorization with Medical Applications. arXiv:1809.04547 [cs,
stat]. Sept. 2018. doi: 10.48550/arXiv.1809.04547. url: http://arxiv.org/abs/
1809.04547 (visited on 05/13/2024).

[4] Kristian Hovde Liland et al. “Tsetlin Machine in DNA sequence classification : Application
to prokaryote gene prediction / A match made in silico”. In: 2023 International Symposium
on the Tsetlin Machine (ISTM). Aug. 2023, pp. 1–7. doi: 10.1109/ISTM58889.2023.
10454960. url: https://ieeexplore.ieee.org/abstract/document/10454960 (visited
on 04/22/2024).

[5] Ole-Christoffer Granmo. “The Tsetlin Machine – A Game Theoretic Bandit Driven Ap-
proach to Optimal Pattern Recognition with Propositional Logic”. en. In: ().

[6] K. Darshana Abeyrathna et al. A Scheme for Continuous Input to the Tsetlin Machine
with Applications to Forecasting Disease Outbreaks. en. arXiv:1905.04199 [cs]. June 2019.
url: http://arxiv.org/abs/1905.04199 (visited on 01/15/2024).

[7] Olga Tarasyuk et al. “Systematic Search for Optimal Hyper-parameters of the Tsetlin
Machine on MNIST Dataset”. In: 2023 International Symposium on the Tsetlin Machine
(ISTM). Aug. 2023, pp. 1–8. doi: 10.1109/ISTM58889.2023.10454969. url: https:
//ieeexplore.ieee.org/document/10454969 (visited on 04/22/2024).

[8] Barry de Ville. “Decision trees”. en. In: WIREs Computational Statistics 5.6 (2013).
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.1278, pp. 448–455. issn: 1939-
0068. doi: 10.1002/wics.1278. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/wics.1278 (visited on 05/13/2024).

[9] Leo Breiman. “Random Forests”. en. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32.
issn: 1573-0565. doi: 10.1023/A:1010933404324. url: https://doi.org/10.1023/A:
1010933404324 (visited on 05/13/2024).

[10] SAGAR SHARMA.What the Hell is Perceptron? en. Oct. 2019. url: https://towardsdatascience.
com/what-the-hell-is-perceptron-626217814f53 (visited on 05/13/2024).

43

https://doi.org/10.1098/rsta.2019.0593
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2019.0593
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2019.0593
https://doi.org/10.48550/arXiv.1905.09688
http://arxiv.org/abs/1905.09688
http://arxiv.org/abs/1905.09688
https://doi.org/10.48550/arXiv.1809.04547
http://arxiv.org/abs/1809.04547
http://arxiv.org/abs/1809.04547
https://doi.org/10.1109/ISTM58889.2023.10454960
https://doi.org/10.1109/ISTM58889.2023.10454960
https://ieeexplore.ieee.org/abstract/document/10454960
http://arxiv.org/abs/1905.04199
https://doi.org/10.1109/ISTM58889.2023.10454969
https://ieeexplore.ieee.org/document/10454969
https://ieeexplore.ieee.org/document/10454969
https://doi.org/10.1002/wics.1278
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1278
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1278
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

[11] FRANCKE PEIXOTO. A Simple overview of Multilayer Perceptron(MLP). en. Dec.
2020. url: https://www.analyticsvidhya.com/blog/2020/12/mlp-multilayer-
perceptron-simple-overview/ (visited on 05/13/2024).

[12] Jason Brownlee. How to Choose an Activation Function for Deep Learning. en-US. Jan.
2021. url: https://machinelearningmastery.com/choose-an-activation-function-
for-deep-learning/ (visited on 05/03/2024).

[13] Frederik vom Lehn. Understanding the Convolutional Filter Operation in CNN’s. en. Nov.
2023. url: https://medium.com/advanced-deep-learning/cnn-operation-with-
2- kernels- resulting- in- 2- feature- mapsunderstanding- the- convolutional-

filter-c4aad26cf32 (visited on 05/13/2024).

[14] machine-learning-articles/what-are-max-pooling-average-pooling-global-max-pooling-and-global-
average-pooling.md at main · christianversloot/machine-learning-articles. en. url: https:
//github.com/christianversloot/machine-learning-articles/blob/main/what-

are-max-pooling-average-pooling-global-max-pooling-and-global-average-

pooling.md (visited on 05/13/2024).

[15] Terminology. en. url: https://bioinformaticsworkbook.org/introduction/dataTerminology.
html (visited on 05/13/2024).

[16] Intisar Alkaabwi. “Comparison Between CPU and GPU for Parallel Implementation for
a Neural Network Model Using Tensorflow and a Big Dataset”. en. In: ().

[17] Dipesh Gyawali. Comparative Analysis of CPU and GPU Profiling for Deep Learning
Models. en. arXiv:2309.02521 [cs]. Dec. 2023. url: http://arxiv.org/abs/2309.02521
(visited on 05/13/2024).

[18] Anders Refsdal Olsen. “A Scalable Architecture for Parallel Execution of the Tsetlin
Machine”. eng. Accepted: 2019-09-25T12:40:07Z Publication Title: 89 p. MA thesis. Uni-
versitetet i Agder ; University of Agder, 2019. url: https://uia.brage.unit.no/uia-
xmlui/handle/11250/2618755 (visited on 05/13/2024).

[19] Sondre Glimsdal and Ole-Christoffer Granmo. Coalesced Multi-Output Tsetlin Machines
with Clause Sharing. en. arXiv:2108.07594 [cs]. Aug. 2021. url: http://arxiv.org/abs/
2108.07594 (visited on 05/13/2024).

[20] Adrian Phoulady et al. The Weighted Tsetlin Machine: Compressed Representations with
Weighted Clauses. arXiv:1911.12607 [cs, stat]. Jan. 2020. doi: 10.48550/arXiv.1911.
12607. url: http://arxiv.org/abs/1911.12607 (visited on 05/14/2024).

[21] Jivitesh Sharma et al. Drop Clause: Enhancing Performance, Interpretability and Robust-
ness of the Tsetlin Machine. arXiv:2105.14506 [cs]. Jan. 2022. doi: 10.48550/arXiv.
2105.14506. url: http://arxiv.org/abs/2105.14506 (visited on 05/14/2024).

[22] Rong Wang, Yong Xu, and Bin Liu. “Recombination spot identification Based on gapped
k-mers”. en. In: Scientific Reports 6.1 (Mar. 2016). Publisher: Nature Publishing Group,
p. 23934. issn: 2045-2322. doi: 10.1038/srep23934. url: https://www.nature.com/
articles/srep23934 (visited on 05/13/2024).

Page 44 of 46

https://www.analyticsvidhya.com/blog/2020/12/mlp-multilayer-perceptron-simple-overview/
https://www.analyticsvidhya.com/blog/2020/12/mlp-multilayer-perceptron-simple-overview/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://medium.com/advanced-deep-learning/cnn-operation-with-2-kernels-resulting-in-2-feature-mapsunderstanding-the-convolutional-filter-c4aad26cf32
https://medium.com/advanced-deep-learning/cnn-operation-with-2-kernels-resulting-in-2-feature-mapsunderstanding-the-convolutional-filter-c4aad26cf32
https://medium.com/advanced-deep-learning/cnn-operation-with-2-kernels-resulting-in-2-feature-mapsunderstanding-the-convolutional-filter-c4aad26cf32
https://github.com/christianversloot/machine-learning-articles/blob/main/what-are-max-pooling-average-pooling-global-max-pooling-and-global-average-pooling.md
https://github.com/christianversloot/machine-learning-articles/blob/main/what-are-max-pooling-average-pooling-global-max-pooling-and-global-average-pooling.md
https://github.com/christianversloot/machine-learning-articles/blob/main/what-are-max-pooling-average-pooling-global-max-pooling-and-global-average-pooling.md
https://github.com/christianversloot/machine-learning-articles/blob/main/what-are-max-pooling-average-pooling-global-max-pooling-and-global-average-pooling.md
https://bioinformaticsworkbook.org/introduction/dataTerminology.html
https://bioinformaticsworkbook.org/introduction/dataTerminology.html
http://arxiv.org/abs/2309.02521
https://uia.brage.unit.no/uia-xmlui/handle/11250/2618755
https://uia.brage.unit.no/uia-xmlui/handle/11250/2618755
http://arxiv.org/abs/2108.07594
http://arxiv.org/abs/2108.07594
https://doi.org/10.48550/arXiv.1911.12607
https://doi.org/10.48550/arXiv.1911.12607
http://arxiv.org/abs/1911.12607
https://doi.org/10.48550/arXiv.2105.14506
https://doi.org/10.48550/arXiv.2105.14506
http://arxiv.org/abs/2105.14506
https://doi.org/10.1038/srep23934
https://www.nature.com/articles/srep23934
https://www.nature.com/articles/srep23934

Appendix A
Table of Python-packages

Python name Version Purpose of use

”numpy” 1.19.5 To calculate statistics

”Pandas” 1.1.5 To manipulate data frames

”tensorflow” 2.6.2 To create the Convolutional neural network

”scikit-learn” 0.24.2 To help preprocess data and create the Random
forest model

”seaborn” 0.11.2 Plotting

”matplotlib” 3.3.4 Plotting

”Bio” 1.5.2 Open fasta files

Table A.1: The Python packages that are used to create the code and their respective uses.

The code I have used in this thesis can be fount at this link:Github Repository

45

	Introduction
	Objectives

	Theory
	Tsetlin machine
	Random forest classifier
	Convolutional Neural network
	Perceptron
	Activation functions
	The convolutional part
	Global max pooling
	Validation

	Taxonomy

	Method
	The data
	Data encoding
	Direct encoding
	K-mer encoding

	Where the data comes from
	Pre-processing
	Tsetlin Machine
	Random Forest Classifier
	GC content
	Convolutional Neural Network

	Tools used

	Results
	The datasets accuracy
	Eukaryote or prokaryote
	Archaea or bacteria
	Actinomycetota or other phyla
	Escherichia Coli or other bacteria
	Serratia Marcescens or other bacteria
	Methanosarcina Lacustris or other archaea

	The datasets runtime
	Eukaryote or prokaryote
	Archaea or bacteria
	Actinomycetota or other phyla
	Escherichia Coli or other bacteria
	Serratia Marcescen or other bacteria
	Methanosarcina Lacustris or other archaea

	The classifiers on the different data
	Tsetlin Machine with k-mer encoding
	Tsetlin Machine with direct encoding
	Random Forest Classifier
	GC Content
	Convolutional Neural Network

	Discussion
	The accuracy of the Tsetlin Machine
	The direct encoded Tsetlin Machine
	Direct coding vs kmer coding

	The speed of the Tsetlin Machine
	Difference between datasets
	Future Work
	Real world data
	Tsetlin Machine variations
	Data encoding

	Conclusion
	Table of Python-packages

