

Master’s Thesis 2024 30 ECTS

Faculty of Science and Technology(REALTEK)

Deep learning for Direct DNA

Domain Detection

August Noer Steinset

Data Science

Master’s Thesis

Deep learning for Direct DNA Domain Detection

Written by:

August Noer Steinset

Supervisor:

Krisitan Hovde Liland

Co-supervisor:

Lars-Gustav Snipen

Master of Science
Faculty of Science and Technology

May 15, 2024

Preface

Finalizing this thesis marks the end of my five years at NMBU. It has been five interesting years,
and I am thankful for everything I have learned and all the relationships I have established
during this phase of my life.
For the writing of this thesis, I would like to thank my supervisors, Kristian and Lars. Discussing
the process and results with them has always been engaging, and I have left feeling assured and
inspired for every meeting we have had.
I also want to thank my friends and family for maintaining normalcy in this unique semester.
And a special thanks to Elise, whose unrelenting diligence almost inspired me.

1

Abstract

As more and more genomes are sequences it becomes ever more needed to have access to fast
methods of analyzing them. One such analysis is finding regions of the genome that contain
descriptions of proteins we are familiar with. Pfam is a database containing these descriptions,
and tools like HMMER can match known proteins/protein substructures onto sequences. This
process is slow, and this thesis explores how to speed it up by creating machine-learning models
that filter out the sequences less likely to contain known proteins.
This is done by analyzing large datasets containing hundreds of species sampled by different
means and by employing different target values. Through this valuable insight such as high
GC content negatively impacting model performance and that machine learning models such
as convolutional neural networks can describe specific Pfam patterns close to perfectly, with
accuracies of 99.7% on balanced datasets.
The end result of the thesis is that a filtering mechanism should be possible to create, but it
would require significantly more work to get it working to a degree where it both included the
necessary. Ensuring that enough Pfam entries are represented would be a good starting step.
One of the models this thesis employs is the Tsetlin machine, hoping its unique structure would
make it well suited to such data. The results did, however, not show this to be the case. While
the Tsetlin machine might still be well suited for similar data, some changes would have to be
made to how they were employed in this thesis.

Contents

1 Introduction 5

2 Theory 7
2.1 From DNA to protein . 7

2.1.1 DNA . 7
2.1.2 The Central dogma . 10
2.1.3 Protein Families . 10
2.1.4 Taxonomy . 11

2.2 Pfam and HMMER . 11
2.2.1 Hidden Markov Models . 11
2.2.2 Pfam . 12
2.2.3 HMMER . 12

2.3 Machine Learning Theory . 12
2.3.1 XGBoost . 13
2.3.2 Neural Networks . 13
2.3.3 Tsetlin Machine . 14
2.3.4 Weighted clauses . 17

2.4 Metrics . 17
2.4.1 Accuracy . 18
2.4.2 Precision . 18
2.4.3 Recall . 18
2.4.4 F1 . 18

2.5 Related Work . 18

3 Method 19
3.1 The original data . 19
3.2 Constructing the datasets . 19

3.2.1 The General Dataset . 20
3.2.2 The Order-Based Datasets . 20
3.2.3 The Specific-Pfam Datasets . 20

3.3 Data preprocessing . 21
3.3.1 Limiting the Length . 22
3.3.2 Ballancing the Data . 22
3.3.3 One hot encoding . 22

3.4 Creating Training, Test and Validation Sets . 24
3.5 Creating Models . 24

3.5.1 Tsetlin Machine . 25
3.5.2 Convolutional Tsetlin Machine . 25

1

3.5.3 XGBoost . 25
3.5.4 Dense neural network . 25
3.5.5 Convolutional Neural network . 26

3.6 Code . 27

4 Results 28
4.1 General . 29
4.2 Order . 33

4.2.1 Corynebacteriales and Lactobacillales . 35
4.2.2 Summary Order-based . 38

4.3 Specific Pfam Domains . 39
4.3.1 Distrubution of Pfam domains . 39
4.3.2 One Pfam domain . 40
4.3.3 Multiple Pfam Domains . 42
4.3.4 Pfam 1-20 . 42
4.3.5 Results of epochs for TM . 44
4.3.6 Summary specific Pfam . 44

4.4 Summary results . 44

5 Discussion 46
5.1 Model results analysis . 46

5.1.1 Capturing patterns . 47
5.1.2 Length of sequences . 48
5.1.3 Selecting a Model . 48

5.2 Tsetlin machine results . 48
5.2.1 Number of epochs . 48
5.2.2 Number of clauses . 49
5.2.3 Alternatives to direct amino sequences . 49
5.2.4 Convolutional models . 49

5.3 Creating a better model . 50
5.3.1 Choosing an approach . 50
5.3.2 Challenges . 50
5.3.3 Reevaluating the model . 52

5.4 Reflections on methodology . 53
5.5 Use of AI . 54

6 Conclusion 56

A Table of R-packages, for instance 59

Page 2 of 59

List of Figures

4.1 CNN super Results on General . 30
4.2 Tsetlin Machine Results on General . 30
4.3 CNN super on General . 30
4.4 XGBoost on General . 30
4.5 Probabilitity Distribution for CNN Super on the Gerneral dataset 31
4.6 Probabilitity Distribution for XGBoost on the Gerneral dataset 32
4.7 Accuracies of different models on the order-based datasets 33
4.8 GC Content of Ordered Datasets . 34
4.9 Plot showing the length of LORFs within the Corynebacteriales dataset together

with the portion of results that results in a positive Pfam hit. 35
4.10 Plot showing the length of LORFs within the Lactobacillales dataset together

with the portion of results that results in a positive Pfam hit. 35
4.11 CNN super on Corynebacteriales . 36
4.12 TM on Corynebacteriales . 36
4.13 CNN super on Lactobacillales . 36
4.14 TM on Lactobacillales . 36
4.15 CNN super on Corynebacteriales . 37
4.16 CNN super on Lactobacillales . 37
4.17 The accuracies of different model probabilities as well as the distribution of model

probabilities for CNN Super on the Corynebacteriales dataset 37
4.18 The accuracies of different model probabilities as well as the distribution of model

probabilities for CNN Super on the Lactobacillales dataset 38
4.19 Log transformed counts of the Pfam domains in dataset 39
4.20 CNN super accuracies on the 20 different specific Pfam datasets. Lower bound

at 50% accuracy . 40
4.21 Tsetlin machine accuracies on the 20 different specific Pfam datasets. Lower

bound at 50% accuracy . 40
4.22 CNN super on Pfam 1 . 41
4.23 TM on Pfam 1 . 41
4.24 CNN super on multiple Pfam . 42
4.25 TM on multiple Pfam . 42
4.26 Roc Curve for CNN Super on Pfam 1-20 . 43
4.27 Probability Bins for CNN Super on Pfam 1-20 43

3

List of Tables

2.1 Reading Frames . 8
2.2 Standard Genetic Code Table . 9
2.3 Tsetlin automaton . 14
2.4 Tsetlin automaton with reward . 14
2.5 Tsetlin automaton with reward, changing signs 15
2.6 Type 1 feedback for included literal . 16
2.7 Type 1 feedback for excluded literal . 16
2.8 Type 2 feedback for included literal . 16
2.9 Type 2 feedback for excluded literal . 17

3.1 The sequence ABA . 22
3.2 1D one hot encoding . 23
3.3 2D one hot encoding . 23

4.1 Performance on the General Dataset . 29
4.2 Overview of Pfam entries for Pfam 1-20 . 40
4.3 Performance on the Pfam1 dataset . 41
4.4 Performance of models on the Pfam 1-20 dataset 42
4.5 Performance Metrics by number of Epochs for CTM 44
4.6 Performance Metrics by number of Epochs for TM 44

A.1 R-packages used to construct datasets . 59
A.2 Python packages used for both models and vizualisations 59

4

Chapter 1
Introduction

With the advent of new technologies within DNA sequencing, a vast quantity of genetic data has
become available to us. Only a couple of decades ago, at the tail of the human gene project, the
cost of sequencing a single human genome was estimated to cost 100,000$; today, it is estimated
to cost a percent of that[1]. And if the development of sequencing technologies continues, the
tools and avenues of research that depend on it must strive for the same. With all this new
data, the potential for insight into the fundamentals of life becomes ever closer to being within
man’s grasp.

Metagenomics is a new research area that has become commercially viable thanks to these de-
velopments. By looking at the genetic composition of entire environments, not just individual
organisms, it is possible to obtain the genetic profiles of microbial species never seen. When
one of these environments is sequenced, the result is a large collection of DNA fragments known
as reads. These fragments are then compared to others and, when it makes sense, merged into
larger units known as contigs. These contigs can then possibly be merged into entire genomes
but can also contain interesting information by themselves.

With all this data, comes the desire to set it into systems and gather metadata; to explore how
it relates to already categorized data. Questions such as what organisms it belongs to, if new,
how it is placed within the established taxonomy, and in the case of microorganisms, how it
genetically interacts with other organisms in its environment.

One of these key analyses is trying to understand which sequences contain pieces of genetic
code to be created into protein. To do this the areas of the genome, or contig, that hold the
potential to hold genes are identified as Open Reading Frames(ORFs). This is done by locating
the sequences that signal the termination of protein synthesis and the sequences that signal the
beginning and selecting the area between. Further one might wish to understand what kind of
function the given protein will have in the organism it was created in and what is a better way
than to look at its relatives.

Proteins exist in many forms; in the same way, organisms relate to one another, as do proteins.
Through the process of evolution, proteins have mutated or changed from other factors, again
and again. Ultimately, this results in many variations for proteins that once had a common
origin. This relationship is not limited to the entirety of a protein either, parts of proteins can
be specifically preserved, while the rest varies. When one of these regions is recognized within a
DNA sequence, there is a good chance it is related to other proteins we know the functionality
of, making it possible to infer the new proteins function as well.

5

One way these protein domains have been described is by using profile hidden Markov models.
Stored in databases such as the Pfam database, it has become possible to compare any given
sequence to every one of these patterns using tools like HMMER and find where it matches up.
Unfortunately, this process is quite time-consuming, so reducing the amount of data analyzed
would be preferable. One possible avenue to do this is through employing machine learning
algorithms.

As computational resources continue to become more available, the field of machine learning
has experienced a rise in popularity and applications. One of its most resounding victories in
protein has been solving the problem of protein folding by Google’s DeepMind(link). By cre-
ating models by observing large amounts of data and seeing how it relates to a target variable,
patterns that are not intuitive to the human mind can show themselves and be used to make
predictions on data not yet seen.

Within machine learning, a wide array of tools can handle many challenges, from the simple
linear regression method to the more complex deep learning methods such as convolutional
neural networks. One new tool that aims to provide an alternative to deep learning methods
is the Tsetlin machine. The model has been shown to perform similarly to traditional methods
on well-known datasets such as the MNIST, and with it being based on analyzing binarized
data it might be particularly suited for genetic data. While DNA itself is not binary in nature,
its 4 possible bases make it possible to convert to binary while at the same time not being
particularly sparse.

This study aims to analyze how well modern machine learning methods could learn to recognize
how likely any given sequence of genetic information is to contain any of these recognized protein
families or protein regions. This will be done with the hope it can be used to develop a filter
that can be run on the sequence data before it is fed to tools such as HMMER so that only the
sequences likely to contain some sort of recognized protein structure will be fed to it. A second
aim is to see how well the Tsetlin machine functions compared to the more established machine
learning methods and to see if its unique structure makes it more suited for sequence data.

Page 6 of 59

Chapter 2
Theory

As the main focus of this thesis is evaluating the performances of models and trying to build
a method for identifying ORFs that contain Pfam entries, the theory presented will focus on
building an understanding of what these terms mean.
To do this what constitutes both an ORF and a Pfam entry will be explained, together with an
explanation of how they are found. It will be presented by starting with the DNA and building
towards more complexity. Most information presented should be common knowledge within
their respective fields of biology/machine.
This section will also give an overview of how the machine learning methods employed in the
methodology section, 3, operate. However, it will focus more on presenting an intuition of how
these work, rather than going into the details of their mathematical foundations.

2.1 From DNA to protein

2.1.1 DNA

Deoxyribonucleic acid, often referred to as its short form DNA, is the fundamental building
block of life. It contains the genetic blueprint that instructs the development and functioning
of all living organisms as we know them. Structurally, DNA is composed of two long strands
twisting around one another forming their characteristic double helix structure, first described
by Watson and Crick in their 1953 paper “Molecular Structure of Nucleic Acids: A Structure
for Deoxyribose Nucleic Acid”[2]. A sequence of sugars and phosphate groups constructs the
strands themselves. These stands are connected through a complementary set of nucleotides,
nitrogenous bases connected by hydrogen bonds. Adenine(A) connects with thymine(T) and
Guanine(G) connects with cytosine(C).

DNA’s primary function is to store genetic information so that it can be used by a cell to
produce any protein it might need. As the environment around an organism changes, it, too,
must change. The mechanisms through which an organism can adapt its genetic code to the
environment are many, from the random changes brought by mutations to the exchange of ge-
netic information from similar organisms. The result is that DNA is carried on through time,
but that it also changes. As time has passed, this has resulted in organisms diverging from one
another, forming the plethora of organisms that draw the tree of life together. One of these
divergences is the split between the prokaryotes (bacteria and arcae) and eukaryotes, and this
thesis will focus on the former of the two.

Unlike eukaryotes, prokaryotes do not store their DNA in a protected membrane within their
cell; rather, it floats freely in the cytoplasm, often in a single circular chromosome. This compact

7

chromosome gives the prokaryotes a much larger gene-to-non-gene ratio than their eukaryotic
counterparts, making exploratory research simpler.

The sequence of nucleotides determines the construction of amino acids and, thus, protein.
Three nucleotides in succession, called a codon, correspond to one of twenty amino acids. As
three nucleotides construct a single amino acid, three potential ways exist to read the sequence.
These unique ways are often referred to as their own unique reading frames. The way these
reading frames are found is illustrated in the table below:

A T G C T T A C G T A

M L T

C L R

A Y V

Table 2.1: Reading Frames

From Table 2.1, it is shown that the randomly generated sequence ”ATGCTTACGTA” can
be read in three different. As these sequences are generated from DNA, they have three com-
plementary reading frames that read in reverse order. Each way describes its own sequence
of amino acids and, therefore, different protein structures. A triplet of nucleotides will always
refer to the same amino acid, with only a few exceptions. This is referred to as the standard
genetic code, and the way the nucleotides refer to a select amino acid is covered in the Table 2.2.

It is only within the coding regions of the DNA that the concept of a codon holds any real
meaning as the rest of the genetic material never will be read in this way. However, identifying
the sequences, including the reading frame, that will be coding regions, is not straightforward.
Instead of identifying only these, it can be limited to sequences with the potential to be coding
regions instead.

To better describe how to limit the sequences to those that can be coding regions, the spe-
cific codons of AUG, UAA, UGA, and UAG must be described. These codons hold particular
importance as they note the beginning and the end of a gene. AUG is the single sequence
of nucleotides that signals the beginning of the protein-coding part of a gene, while the three
codons of UAA, UGA, and UAG describe the ending. They are, therefore, respectively referred
to as start and stop codons.

To discard the parts of the genome that can not be coding regions, it is divided into multiple
Open Reading Frames(ORF). These are the areas that hold the potential to be coding regions.
The precise definition of an ORF varies between sources, according to work done by Sieber et
al. [3]. Within their article, they argue that the most correct definition would be the area
bounded by two possible stop codons, but they also describe other approaches. As the genetic
structure of prokaryotes is simpler, defining an ORF as the region between a start codon and a
stop codon works just as well. This is also the definition that the R package MicroSeq[4] uses,
which is how ORFs will be found for this thesis.

While not all ORFs end up being coding regions, in fact, most will not; the ones that do will
then be used by the cell to produce protein. The pipeline where DNA eventually results in
protein, with RNA as a middle step, is often referred to as the central dogma of molecular
biology.

Page 8 of 59

Table 2.2: Standard Genetic Code Table

Codon Amino Acid Codon Amino Acid

AAA Lys AAG Lys
AAC Asn AAU Asn
ACA Thr ACG Thr
ACC Thr ACU Thr
AGA Arg AGG Arg
AGC Ser AGU Ser
AUA Ile AUG Met (start)
AUC Ile AUU Ile

CAA Gln CAG Gln
CAC His CAU His
CCA Pro CCG Pro
CCC Pro CCU Pro
CGA Arg CGG Arg
CGC Arg CGU Arg
CUA Leu CUG Leu
CUC Leu CUU Leu

GAA Glu GAG Glu
GAC Asp GAU Asp
GCA Ala GCG Ala
GCC Ala GCU Ala
GGA Gly GGG Gly
GGC Gly GGU Gly
GUA Val GUG Val
GUC Val GUU Val

UAA Stop UAG Stop
UAC Tyr UAU Tyr
UCA Ser UCG Ser
UCC Ser UCU Ser
UGA Stop UGG Trp
UGC Cys UGU Cys
UUA Leu UUG Leu
UUC Phe UUU Phe

Page 9 of 59

2.1.2 The Central dogma

According to M. Cobb [5], the central dogma of molecular biology was first described by Francis
Crick in his 1957 lecture entitled Protein Synthesis. In the article, Cobb claims that Crick’s
definition of it was that ”Once information has got into a protein, it can’t get out again”.
Furthermore, Crick envisioned four movements between DNA, RNA, and Protein that he knew
existed and two theoretically possible movements. The ones he knew existed were:

• From DNA to DNA(replication)

• From DNA to RNA(first part of protein synthesis

• From RNA to Protein(second part of protein synthesis)

• From RNA to RNA(viruses replicating)

In addition, he supposed the following could exist:

• From RNA to DNA(Reverse Transcriptase)

• From DNA to Protein

What was important to Crick was that there would be no movement from protein into DNA,
RNA, or other Protein. According to E. Koonin [6], this has been refuted by the existence of
prions.
Today, the central dogma is still used but refers to two of the original directions Crick thought of.
Firstly, the movement from DNA to RNA, and secondly, the movement from RNA to protein.
These are referred to as transcription and translation, respectively.

Transcription

Transcription is the first part of the process and describes how DNA is copied into its RNA
equivalent. This takes place where the DNA is located, in the nucleoid in the case of prokaryotic
cells. RNA, short for ribonucleic acid, is a molecule much like DNA but has a few structural
differences. It is most often single-stranded, with that strand being built with a different sugar,
ribose. And while it utilizes the nucleotides much the same way DNA does, it binds with
uracil(U) instead of T. While the details vary between organisms, the general explanation is
that the molecule RNA polymerase goes through the relevant parts of the DNA thread and
creates a faithful copy of it in the form of mRNA. This includes the codons that will be read
for protein synthesis and other regulatory sequences that affect the production.

Translation

Translation occurs after transcription and when the mRNA created during transcription is taken
to the ribosome. The ribosome locates the start codon AUG and continues to read the sequences
in triplets. As the ribosome reads the codons, the corresponding amino acids are brought to it
and attached to a polypeptide chain that is gradually built up. When the ribosome encounters a
stop codon, it ends the construction, and the protein described in the DNA is fully constructed.

2.1.3 Protein Families

In the same way that two species can be related to one another, so can the different proteins they
produce. As protein is constructed from a sequence of nucleotides, it changes when evolutionary
forces affect it.

Page 10 of 59

From inserting a sequence, deleting some or changing out one nucleotide for another, the ways
that DNA can change through time are many. With sufficient time, some sequences will be
difficult to identify as having the same origin. Two proteins sharing a common origin means
that it is likely they hold somewhat similar functions within their respective organisms.
The speed at which proteins change differs. Some that hold critical functions for the organism
will remain stable for long periods of time. Maybe even small changes result in the organism’s
early termination long before it can reproduce. Others change quickly because they are located
in regions that experience frequent mutations and do not hold these critical functions.
When presented with new genetic information, numerous analyses should be made. One of them
is identifying the areas that are coding and how these coding regions relate to the organisms we
already know. Many aspects of the novel organism can be inferred by identifying its proteins.

2.1.4 Taxonomy

The field of taxonomy aims to sort species into an established hierarchy of organisms. It is
based on a hierarchical order of categories, called ranks, with each rank pointing to a point of
evolutionary divergence. In this way organisms that are closely related to one another end up
sharing many of the same categorical entries, while two very different ones might differ in all.
While the precise details of ranks can differ depending, among other things, on the desired
resolution these are the most common ones.

• Domain

• Kingdom

• Phylum

• Class

• Order

• Class

• Genus

• Species

2.2 Pfam and HMMER

When presented with an unknown ORF, one area of interest is trying to identify which, if any,
of already known protein families this current ORF could belong to. The most common way
to store these patterns is through hidden Markov models (HMM), and databases such as Pfam
stores these patterns for all the protein families they have identified. Using tools like HMMER,
the unknown ORF is compared to the twenty thousand patterns stored within the database,
and if any of them were to match any of the Pfam entries, the sequence in question has a much
higher probability of containing a protein-coding gene.

2.2.1 Hidden Markov Models

HMMs, which form the mathematical foundation for the models found within the Pfam database,
are statistical models that model the probability of a sequence of events. An HMM is a col-
lection of states and the transitions between them. A state refers to the location within the
sequence, in the case of ORFs it would be the given nucleotide or amino acid. For each state,
there exists a finite number of possibilities to obtain the next element in the sequence; the

Page 11 of 59

probability of transitioning into another state is marked with a probability. Due to this design,
the HMMs excel at explaining the complicated patterns found within sequence data. Random
mutations or other insertions make the sequences in question vary drastically from each other
despite originating from the same sequence originally, so having models that still recognize them
as the same is critical.

2.2.2 Pfam

Pfam was first developed in the mid-1990s but has continuously developed since then. Pfam is
a database that stores p-HMM for both protein families and domains. With its 36th release,
Pfam now stores 20 795 entries and 659 clans. The clans refer to what other sources refer to as
superfamilies, how different families cluster together. Pfam itself is divided into two databases,
Pfam A and Pfam B. Pfam A contains documented entries, while Pfam B is computationally
clustered together. The result is that Pfam B contains many more entries than Pfam A, but
the certainty that its entries relate to parts of the DNA that is expressed is less certain.
According to the Pfam database paper [7], there exists a total of 6 different categories that
Pfam entries are sorted into with Pfam Families and Domains being by far the majority.
As discussed in Section 2.1.3 a family refers to genes, and thus proteins, that are similar enough
that they most likely had a common evolutionary ancestor. These constitute a majority of the
Pfam database, with 11 242 different families having been identified. Domains, on the other
hand, refer to smaller units of the protein. Unlike the families, where only it only makes sense
that one is present, multiple pfam domains might be present in a protein at once. The Pfam
domain number 6406. The other categories are much less represented and represent smaller
regions, such as specific repeats.

2.2.3 HMMER

HMMER is a tool developed by Sean R. Eddy, [8], to both create HMM profiles and use known
profiles, such as those stored in Pfam, to annotate new sequences. The software is detailed in
its extensive user manual, which can be found on the website HMMER.org.
When HMMER is used to annotate a sequence, using the hmmscan command, it compares a
sequence with the p-HMM it has access to. As it was developed in tandem with the Pfam
database, the p-HMM used by the database is perfectly suited for HMMER scans. When it has
identified the similarities between the sequences and the profiles it compares them to, it gives
a detailed result containing, among others, where the Pfam entry was found, what it was, and
how certain it is there. It is these outputs from HMMER that will serve as the basis for the
true values for identifying if a Pfam entry is present anywhere in the given sequence.

2.3 Machine Learning Theory

The field of machine learning is vast and contains many different mathematical and statisti-
cal models used to predict an output from various features. From the simple linear regression
model to artificial neural networks, the range of complexity displayed by the models is large. As
data becomes more and more accessible, machine learning models become an ever more popular
approach to exploring their patterns and extracting valuable information.

Machine learning comes in two variants, supervised and unsupervised. Unsupervised models
try to obtain information from the provided data without needing it to be labeled. A natural
application of unsupervised learning is discovering clusters of similarities within data, such as

Page 12 of 59

dividing up images of animals into approximations of species.

A supervised machine learning model needs a target variable to try to predict. Such supervised
methods will be used in this thesis. By observing the selected target variable and finding out
what other data points correlate with it, it can extract the data patterns that imply the value.
These patterns are then remembered and can be applied to new data where it is unknown. The
exact process of learning varies from model to model.

For this thesis, the machine learning models chosen were XGBoost, Artifical neural networks,
convolutional neural networks, the Tsetlin machine, and the Tsetlin machine with convolutions.
Below a basic overview of each is presented, with a particular focus on the tsetlin machine.

2.3.1 XGBoost

XGBoost, short for eXtreme Gradient Boosting, is an implementation of gradient boosting that
uses a large ensemble of decision trees to make predictions. Developed by Tianqi Chen, its
methodology and applications are detailed in the research paper [9].

The principle behind XGBoost is that it constructs multiple decision trees in sequence, each
trying to correct some of the errors of its predecessor. These trees are then combined into an
enabling model, where each contributes to the final prediction, be it regression or classification,
The decision tree, the building block of the XGBoost model. is a simple sequence of binary
choices. As each choice has choices of its own, it eventually forms a reverse tree, hence its
name. The initial node in a decision tree is referred to as its root, the ones in the middle of its
branches, and the final nodes, those that contain the model’s prediction, are called the leaves.

2.3.2 Neural Networks

Neural networks form a subset of machine learning called Deep learning. The fundamental
building block of the neural network is the artificial neuron, a construct intending to mimic the
function of the human neuron. In its simplest implementation, it looks at an incoming value,
compares it to a threshold, and gives a binary output depending on whether this threshold was
surpassed.

A simple neuron in itself cannot provide much in terms of meaningful analysis, but when put
together and organized into complex structures, they can learn complicated patterns within data
and the on-linear relationships that other machine learning models struggle with. One of the
greatest successes within the realm of neural networks is AlphaFold[10], developed by Google
DeepMind, that were able to predict the 3-dimensional structure of proteins; another is the
transformer architecture[11], also developed by Google, that has given us the Large Language
Model that has brought AI models into everyday conversations.
The basic principle of a neural network is to have a predefined architecture, the way the neurons
are structured, and have them iterate over large datasets. Through a process known as back-
propagation, the model adjusts its weights when it encounters errors and, through iteration, is
able to learn the best possible weights to explain the patterns within the dataset; for supervised
methods, this involves making a prediction for a given feature.

Convolutional neural networks

Convolutional neural networks differ in that they analyze the data as an image or as a sequence.
It does this by looking for specific patterns. Therefore, the convolutional network does not care

Page 13 of 59

where in the data some pattern it learns to identify is located, just that it is located somewhere.
The convolutional network identifies these patterns through the use of filters. A filter refers to a
sub-sequence, or area, that scans over the data and gives a value depending on how the content
in the data matches the values in the filter. With a perfect match, it might output 1, and where
no matches are found, it might output 0. These values can then be used and put into another
neural network or have more convolutional layers added so that more complex patterns can be
identified.
In the case of DNA, this would mean identifying sequences such as triplets of nucleotides that
form amino acids. Through this, it will be able to identify the occurrence of specific amino
acids anywhere within the data. This alone will be meaningless, and not able to predict much,
but by adding another layer of convolutions on top, sequences of amino acids anywhere within
the DNA could provide significant information.

2.3.3 Tsetlin Machine

The Tsetlin Machine is a machine learning model developed by Ole-Christoffer Granmo[12]
with the aim of providing comparable results to the more established deep learning models
while providing a higher degree of interpretability and reduced memory usage.

As the artificial neuron functions as the building block for neural networks, the Tsetlin Automa-
ton is the building block for the Tsetlin Machine. First described by the Soviet mathematician
Michael Lvovitch Tsetlin in 1961, from whom it gets its name, the Tsetlin automaton is a form
of Learning Automata, a mathematical model for making decisions in uncertain environments.
Learning automata tries to find the optimal solution through a structured approach to trial and
error, while trying to minimize the amount of resources used when finding the optimal solution
so that this solution can be exploited. One classic example of the application of such automata
is the multi-armed bandit, where the participant must find out which of the many slot machines
gives the best payout. The balance of how much resources to invest when finding the best slot
machine is one of the key questions to ask in such a system.

The Tsetlin Automaton is simple in its design. It consists of 2N stages and a reward and penal-
ization mechanism to move between these. If the stage is lesser or equal to N it gives a negative
result and if it is greater, it gives a positive one. When it makes a prediction, either correctly
or not, it will be granted either a reward or penalty, depending on how its guess compares with
the true value. This moves the automata’s pointer in either the positive or negative direction.

O

Table 2.3: Tsetlin automaton

The table 2.3 shows a Tsetlin automaton with its pointer being located on the left side of the
threshold, thus marking it as 0.

O

Table 2.4: Tsetlin automaton with reward

The table 2.4 shows a Tsetlin automaton being granted a reward thus moving the pointer
towards the right. It is still not crossing the threshold, so the pointer still outputs 0.
An additional reward changes the pointer rightwards and over the threshold in 2.5. This au-
tomaton now outputs 1.

Page 14 of 59

1

Table 2.5: Tsetlin automaton with reward, changing signs

The way the Tsetlin machine utilizes these automata is by assigning each variable and its
negated equivalent their own automata. The variables and their counterparts, that contain the
data the Tsetlin machine will utilize, are referred to as literals. The automaton decides which
of the literals are to be included in a larger unit called a clause, with the rest being noted as
excluded. This is decided by making predictions, noting which were right and which were wrong,
and adjusting the automaton based on specific feedback mechanisms. If such an adjustment
pushes the pointer within the Tsetlin automaton over the threshold, it goes from excluded to
included, and if it goes below, the included literal will be excluded.
The clause, that contains only the included literals, represents one pattern that the Tsetlin
Machine tries to recognize. If the pattern described within a clause is fulfilled, i.e. all variables
or their negations that were included being present in the data, the clause will give a 1 as
output, else it will return 0. Half of the clauses in the Tsetlin Machine will have their polarity
reversed, meaning that a 1 as output is changed to 0 and vice versa. This allows for the capture
of different kinds of patterns. The number of clauses included in an instance of the Tsetlin
machine is a hyperparameter that can be tuned to make the model more applicable to the data
at hand.

The types of feedback the Tsetlin machine provides to each individual automaton are called
type 1 and type 2 feedback. It is through these feedback mechanisms it is decided which of the
literals should or should not be included in the individual clauses. Type 1 feedback primarily
aims at reducing the rate of false negatives while Type 2 concerns itself with the false positives.
The balancing act between the two kinds of feedback ensures that the best-suited literals, and
thus patterns, are discovered.

These kinds of feedback are not always given to the different automata but are dealt out by
a probability decided through a function based on the parameter T. For type 1 feedback the
probability of it being given is:

T −max(−T,min(T, fΣ(X)))

2T

while for type 2 it is:
T +max(−T,min(T, fΣ(X)))

2T

With fΣ(X) representing the sum of the clauses, i.e. taking the correct guesses and subtracting
the wrong ones. The effect of this in practice is that if the sum exceeds the threshold T the
respective probabilities the chance for feedback stabilizes at:

T −max(−T,min(T, T + 1))

2T
=

T − T

2T
= 0

and
T +max(−T,min(T, T + 1))

2T
=

2T

2T
= 1

for type 1 and type 2 feedback respectively. When the count of the votes is less than -T, these
results are flipped. Everything in the middle of these T values is a gradual transition from one
state to the other. These reflect the probabilities for feedback when a clause evaluates positive,
for the negative it is the opposite

Page 15 of 59

Type 1 feedback operates by looking at how the output of the literal, 1 or 0, relates to the
output of the clause, also 1 or 0. It then decides, by a set probability, if the automaton assigned
to the literal in question receives a reward or penalty or if it does not experience changes at
all. The probabilities for the different outcomes are different based on whether the literal was
included or not in the clause. For illustrative purposes, these values will be explained as either
large or small, but they are set by the formulas P = 1/s and P = (s − 1)/s, with s being a
tunable hyperparameter. As s is often a large number, 1/s will be small, and (s− 1)/s will be
large; these sizes refer to the probabilities of them occurring, not the size of the reward/penalty.

Table 2.6: Type 1 feedback for included literal
Clause = 1 Clause = 0

Literal = 1 Large reward Small penalty

Literal = 0 Impossible Small penalty

When a literal is included in the clause, it will receive a large reward if both the clause and
literal are simultaneously true. The literal can never be false if the clause is true, as the clause
depends on all included literals being true. If the clause is false, it will receive a small penalty,
regardless of the literal value. If neither a reward nor a penalty were given, nothing would
change.

Table 2.7: Type 1 feedback for excluded literal
Clause = 1 Clause = 0

Literal = 1 Large penalty Small reward

Literal = 0 Small reward Small reward

When a literal is excluded from the clause, but the clause and the literal are both true the
associated automaton will most likely receive a penalty. In all other cases, there will instead be
a small chance of getting a reward. If neither a reward nor a penalty were obtained, nothing
would change.

Type 2 feedback works in the same way, except it does not operate with probabilities the same
way type 1 does. Instead, it either gives a penalty or not.

Table 2.8: Type 2 feedback for included literal
Clause = 1 Clause = 0

literal = 1 Nothing changes Nothing changes

Literal = 0 Impossible Nothing changes

When a literal is included, type 2 feedback never changes any of the automata.
However, it penalizes a literal if it is excluded from a true clause. The effect of this would be
to reinforce further that an excluded literal remains excluded.

Three key hyperparameters present themselves for the practical implementation of the Tsetlin
machines: The number of clauses, s, and T. The number of clauses represents the number of
patterns that the Tsetlin machine is able to describe. Using more clauses adds to the compu-
tational needs while increasing the risk of overfitting. However, many clauses are necessary for
more complex data to capture the many interactions of features within the dataset. s repre-
sents the value used to regulate the feedback mechanisms. Choosing a high s makes the model

Page 16 of 59

Table 2.9: Type 2 feedback for excluded literal
Clause = 1 Clause = 0

literal = 1 Nothing changes Nothing changes

Literal = 0 Penalty Nothing changes

change less from the feedback received resulting in a more stable model that trains slower but
less prone to overfitting. A low s has the opposite effect. T influences how likely an automaton
is to receive the feedback mechanisms as the sum of clause evaluations approaches T, whose
strength is decided by S.

Due to the Tsetlin machine being based on propositional logic, it is easier to understand for
humans. Its collection of AND statements is possible to translate into meaningful information,
unlike the large collections of weights one gets from artificial neural networks. This in part, aims
to solve some of the “black box” issues one encounters from more established models and would
make it possible to utilize AI in areas where this insight would be necessary or interesting. This
insight will be difficult to access in the work done for this thesis, as the features in question are
individual amino acids in long sequences of LORFs.

2.3.4 Weighted clauses

When employing a large number of clauses in a Tsetlin Machine, many of them may turn out
to be similar. Instead of using each clause independently, similar clauses can effectively be
merged through a weighting mechanism. This approach, a primary feature of the weighted
Tsetlin Machine as discussed in the article by K. Darshana Abeyrathna et al. [13], allows for
the assignment of weights to each clause. By doing so, the relative impact of each clause on
the model’s outcome can be quantified, enhancing both the efficiency and interpretability of the
model. This method not only simplifies the model by reducing the number of active clauses but
also focuses the learning process on the most important features.

Convolutional Tsetlin Machines

The convolutional tsetlin machine, as described by Grandmo in the paper [14] is a variation of
the Tsetlin machine that treats each clause as its own convolutional filter.
By using convolutions, the convolutional Tsetlin Machine aims to be able to tackle some of
the same issues that the Convolutional Neural Network is able to. The main advantage of
convolutional models is their ability to find a certain pattern anywhere within the data, thus
allowing the analysis of data that doesn’t have fixed feature positions, such as images and
sequences.
In the convolutional Tsetlin machine, each clause represents a filter; in the case of this thesis, it
would represent a sequence of amino acids. Each clause also contains information in the form
of coordinates so that it is able to identify where such patterns occur in the image/sequence.

2.4 Metrics

To evaluate how well different models predict from data, the field of machine learning employs
different metrics. In this thesis, the metrics of Accuracy, Precision, Recall, and F1 will be
employed.
The formulas presented contain the terms TP,FP,TN, and FN. These refer to:

• True positives, those who were actually true and identified as true.

• False positives, those who were actually false but identified as true.

Page 17 of 59

• True negatives, those who were actually false and identified as false.

• False negatives, those who were actually true but identified as false.

2.4.1 Accuracy

Accuracy refers to the percentage of guesses that were correct. It can be found through the
formula:

TP + TN

TP + FP + TN + FN

Accuracy is, therefore, a good estimate for the general performance of the model but it does not
say anything meaningful about what the model predicted right and what it predicted wrong.
With unbalanced datasets accuracy might especially be a faulty metric as the model could
predict everything to be of the majority output and still get a good result.

2.4.2 Precision

Precision refers to the percentage of the true positives within the predicted positives.

TP

TP + FP

Precision is thus a measure of how well the model excludes false positives from its predicted
positives.

2.4.3 Recall

Recall refers to the percentage of the true positives that were actually labeled as positives.

TP

TP + FN

Recall is, therefore, a metric that tells how well the model is able to identify the positives within
the data.

2.4.4 F1

F1, also known as the F-score, is a metric that combines elements of both precision and recall.

2 ∗ TP
2 ∗ TP + FP + FN

This score then measures the balance of precision and recall, i.e., taking into consideration how
well the true positives are identified and ensuring not too many false negatives are included.
The f1 score is therefore much more suited for unbalanced datasets compared to accuracy as it
is able to

2.5 Related Work

The master thesis written by Yva Jacob Sandvik [15] explores the potential of using machine
learning algorithms to predict whether any given ORF is a coding gene. While this is not an
exact one-to-one match with the discovery of Pfam domains, as will be the goal of this thesis,
several of the methods used within the thesis will be just as applicable.
In the article by Liland et al., [16], this work is continued by trying to use the Tsetlin machine
for the same cause. In the article, it is presented that the Tsetlin machine was able to obtain
better performances when compared to simple neural networks.

Page 18 of 59

Chapter 3
Method

This chapter will explore the methodology used to obtain the results necessary to answer the
research question. The question is whether a machine learning model can be trained to predict
if any Pfam entry is present in DNA sequences and to what degree the Tsetlin machine will be
a good model to predict this. It will go through the process of organizing and processing the
initial data for machine learning applications and how these machine learning applications were
constructed.

3.1 The original data

The data used in this thesis was initially taken from the RefSeq database hosted by the Amer-
ican institution NCBI [17]. For each organism defined within the database, only one assembly
is marked as the reference genome, these are curated to ensure that they maintain a high stan-
dard. Not every reference genome is marked as complete, containing whole nucleotide sequences.
Those were discarded, and in the end, 4273 reference genomes were selected containing a total
of 150 540 245 LORFs

This work was done by my supervisor Lars-Gusav Snipen and he describes the process as the
following:

”From each genome, we extracted all LORFs using functions in the R package microseq. Only
LORFs of length 90 or more were considered, giving protein sequences of more than 30 amino
acids after translation. The amino acid sequences were then run through the HMMER software
(hmmscan command), and using the latest version of the Pfam database. This will then detect
the occurrence of any known sequence pattern described by any of the 20 000 profile hidden
Markov models of the Pfam database. Any LORF containing one or more hits was then marked
as a ”Positive”, i.e., containing a pattern known from Pfam. The negatives were those LORF
without such hits. This job was run on the local High performing Computing Cluster, and took
approximately 1 month to complete.”

3.2 Constructing the datasets

To create models that would try to predict whether a Pfam entry would be detected within a
given amino acid sequence, the data would have to be sampled and converted into a machine
learning-friendly format. This part of the methodology will focus on sampling from the original
data to create multiple new datasets. While a larger quantity of data would be preferable due

19

to more than 20,000 different Pfam entries to recognize, a selection had to be made to make it
computationally feasible to run. The result was the creation of different datasets with the hope
that the multiple viewing angles would provide some valuable insight.
In total, 35 different datasets were constructed using three different approaches. Firstly, a
general dataset that samples as spread out as possible within the original data. Secondly, five
order-based datasets that sample from a specific taxonomic order. Thirdly, 25 datasets that
look for specific Pfam entries.

3.2.1 The General Dataset

The first dataset, the general dataset, is constructed to include as much variance as possible.
By sampling from across the entire width of the taxonomy, with an emphasis on not overrep-
resenting any part, there is a hope of finding out the general performance of the models. The
original thought was to include one organism from each taxonomical class (see link to theory)
in the original data. In total, 98 different classes were represented in the RefSeq genomes. This
was increased to three to make this dataset similar in size to the order-based datasets. As
some organisms are researched much more than others, this sampling based on class would help
combat their overrepresentation. As not all of the taxonomic classes contained three classes,
only 215 different species were selected instead of the 248 if all classes had three representations
in the RefSeq data.

The target variable chosen for this dataset would be a binary value indicating any recognized
Pfam entry for the given sequence. If the HMMER output for the sequence in question contained
either one or multiple Pfam entries, the value would be set to 1; if none were recognized, it
would be set to 0.

3.2.2 The Order-Based Datasets

The order-based datasets try to take a different approach than the general one, and instead of
casting the net wide, they try to narrow the search. By selecting specific taxonomical orders
and only sampling from these, the organisms would be much more related to one another. In
theory, this closer relationship would result in similar Pfam entries appearing throughout the
data. The orders were chosen based on their frequency within the original data. The selected
orders were the following: Bacillales, Corynebacteriales, Burkholderiales, Lactobacillales, and
Enterobacterales.

The order-based dataset’s target value would be the same as the general dataset’s, with 1
representing any detected Pfam entry and 0 representing none.

3.2.3 The Specific-Pfam Datasets

The Specific-Pfam datasets differ the most from the others in that they operate with a different
target variable. Both the general and the order-based datasets employ the presence of any
detected Pfam entry as their target. The specific Pfam datasets instead look for specific Pfam
entries. The entries were chosen by finding the most occurring ones for sequences of lengths
between 100 and 200 amino acids within the original data. Then, by looking at all the. In total,
20 different Pfam entries were chosen, as these were the ones that numbered over 20,000, which
was set as a minimum threshold. These were the following:

PF00583.27, PF12802.9, PF13508.9, PF13673.9, PF01047.24, PF13412.8, PF12840.9, PF13302.9,
PF13463.8, PF01381.24, PF00903.27, PF08281.14, PF00072.26, PF04545.18, PF00440.25,

Page 20 of 59

PF01022.22, PF00293.30, PF13560.8, PF08445.12, PF00578.23

After these were found, 20 different datasets were created named Pfam 1 through Pfam 5. The
first of the found Pfam entries operated as the target variable for Pfam 1 and the twentieth for
Pfam 20. As some sequences contained multiple Pfam entries, these would be included in each
of the datasets they qualified for, meaning that the sequences noting positive hits could have
instances of the same sequence existing in multiple datasets.
The negative values represented where these specific Pfam entries were not present but were
not randomly picked out. Half of the negatives would be made from sequences where no Pfam
entry was detected, and the other half were ones where a Pfam entry was detected, but not one
of those included in the positive hit. These were sampled from another table, and as a result,
none of the 19 other Pfam entries would be included in the negative values for a specific Pfam
dataset. This represents one potential flaw of this approach, as these were the most common
Pfam entries within all the data.
In addition to the 20 datasets looking at individual Pfam entries, five additional ones were
constructed with the precedence of multiple, but still specific, Pfam entries being used as the
target values. These cumulative sets were constructed by combining the individual datasets
representing the desired Pfam entries. With the addition of more Pfam entries, the classification
will have to learn to distinguish between multiple patterns that describe each entry but still
contain less noise in the form of infrequent entries than the general and order-based datasets.
The five cumulative datasets were chosen as the following:

Pfam 1-2, containing both Pfam 1 and Pfam 2(total 2 entries)

Pfam 1-5, containing Pfam 1 through Pfam 5(total 5 entries)

Pfam 1-10, containing Pfam 1 through Pfam 10total 10 entries)

Pfam 1-15, containing Pfam 1 through Pfam 15(total 15 entries)

Pfam 1-20, containing Pfam 1 through Pfam 20(total 20 entries)

These cumulative sets will contain repetitive sequences since some are present in multiple specific
Pfam sets.

3.3 Data preprocessing

With the datasets assembled came the necessary step of preparing them for machine learning.
While different machine learning techniques can utilize different inputs, most requirements are
similar between the models. To the extent that it was feasible, the data was prepared the same
way for all the models, with all models training and evaluating the same data.
The first step was to limit the length of the sequences so that they all had similar dimensions.
Afterward, the data was balanced by selecting an equal number of sequences with positive and
negative hits. This step also involved sampling out a specific number of LORFs so that, to the
degree that it was possible, similar datasets were of the same length. Then came the one-hot
encoding to transform the sequences from letters into binary values. The last step involved
splitting the data into training and testing sets and a validation set.

Page 21 of 59

3.3.1 Limiting the Length

While LORFs have already undergone a selection process regarding length, as the sequences
shorter than thirty amino acids have already been cut off, further cutoffs were deemed necessary.
Initially, the intention was to create different models for various length categories from the
various datasets.
From observing the data, a general pattern revealed itself. Short LORFs rarely contained any
Pfam entries, while the opposite was true in those much longer. Thus, a happy medium between
100 and 200 amino acids was selected. In this region, there was a much more equal distribution
between the sequences that contained Pfam entries and those that did not.
By setting these limits, the number of sequences containing fewer amino acids than the maximum
would allow would be fewer. The result is a model trained and tested on less sparse data than
if the maximum length had been selected higher.
Limiting the max length of the sequences would also have computational advantages. Due to
the one hot encoding, which will be discussed later, the sequence length would be represented
by a series of zeroes and ones, twenty times as long as the sequence was in letters. A max
length that was much higher would, therefore, also result in many more features for the various
machine learning models to have to interpret and thus increase, among other things, the memory
footprint of the models.

3.3.2 Ballancing the Data

The final act of balancing came after the data had been limited in length. While the data was
much more balanced in the selected interval of 100-200 amino acids than among the LORFs in
general, there was still not 50% of each,
While not strictly necessary, as most machine learning methods operate by tracking a loss
function rather than optimizing for pure accuracy, having a balanced dataset would allow the
models to observe more of the possible Pfam entries. With the computational requirements
being the limiting factor rather than the amount of data available
The general and order-based datasets would benefit the most from training and testing on
balanced data because they had to learn to recognize more than 20,000 different Pfam entries.

3.3.3 One hot encoding

With balanced datasets having been assembled, the final part of making them ready for the
models involved transforming them from sequences of characters into binary values. As the
genetic code can describe twenty different amino acids, this is the number of binary values one
would need for each position to represent the sequences in a one-hot encoded format. With a
sequence length of 200, this would mean 4000 features are present in each row of the trainable
data.
An example of how one hot encoding works in practice will be presented below. To make it
more intuitive, the example will be presented with an equivalent of 2 amino acids possible and
a max length of 5.

Table 3.1: The sequence ABA
0 0 A B A

There are two main approaches when one-hot-encoding the sequence shown in Table 3.1. The
one outlined below in Table 3.2 shows how it will be done in a one-dimensional format. Where
the resulting binary translation is a single sequence in itself. By creating two positions for

Page 22 of 59

every position present in the original sequence for a total of 10 possible positions, each of those
represents only the presence of one letter at one specific position.

Table 3.2: 1D one hot encoding
1 2 3 4 5

A B A B A B A B A B

0 0 0 0 1 0 0 1 1 0

Table 3.3 shows how it can be done in a two-dimensional format instead. With two sequences
with the same length as the original. Each position represents the presence of that specific letter
in the original sequence. The result is a matrix with a width the same as the original sequence
but a height determined by the number of unique elements within; for the example sequence
the matrix would be of size 2x5.

Table 3.3: 2D one hot encoding
A

0 0 1 0 1

B

0 0 0 1 0

The one hot encoding employed resulted in a dataset of 3 dimensions, using the format ex-
plained in the 3-dimensional one hot encoding example. This would be used for the models
employing convolutional models. Flattening this data into the 2-dimensional approach was em-
ployed for the rest of the models. Thus, the final dimensions of the one hot encoded data would
be n*200*20 for the 3-dimensional data and n*4000 for the flattened, where n represents the
number of elements in the dataset (which would be between 40 000 and 200 000, depending on
the dataset).

Presented with the choice of padding from either the front or the back, padding from the front
was chosen. This was originally chosen so that a sequence if cut, would contain the region
closest to the stop codon, as this might have a greater chance of containing Pfam domains. As
only sequences less than the maximum threshold none of them were cut. By padding from the
front, the end result is that the sequences become aligned at the end of the sequence.

To reduce the memory requirements of the models by making the data less sparse, one option
considered involved encoding the sequences into 5-bit instead of 20-bit, as the one hot encod-
ing would result in. A 5-bit encoding holds the potential to include 32 different values and
could, therefore, represent the 20 possible kinds of amino acids. The result, however, would
result in an additional layer of interpretation needed for the machine learning models, hav-
ing to recognize that the amino acids were described in sets of 5 and that each position did
not hold any information by itself. Instead, they had to understand the data in these blocks.
Because of this, this approach was discarded, and the original 20-bit implementation was chosen.

One hot encoding assumes that the different values within one location have no clear order be-
tween them. Some amino acids are more like each other than others, partly due to the similar
nucleotide coding described in the amino acids, and do not fully comply with the assumption
one hot encoding makes. The result is the potential of losing some valuable insights into the
data. One considered approach was to train embedding layers instead of employing one hot
encoding. This would be trivial for many models, as a simple line of code would implement the
embedding layers, but for the Tsetlin machine, it would prove more challenging as it requires
binary inputs. The same one-hot encoding was used for all datasets to make the models’ per-

Page 23 of 59

formances more comparable, as comparison was one of the primary goals.

3.4 Creating Training, Test and Validation Sets

With the dataset one hot encoded, it can already be successfully read by any of the models,
with minor tweaks for individual input needs. To ensure that the performance levels observed
matched the actual performance expected on previously not seen data, it was essential to ensure
that there was no data leakage from the data the models were tested on into the ones they were
trained on. A testing set of 20% of the samples was thus extracted from the training set, not
to be touched upon again until the final performance calculations were run.
As multiple of the models trained also wanted a dedicated validation set to avoid overfitting
the models, in essence making the model obtain a better result on the training data than what
would be generalizable outside of them, this was also extracted from the test data at 20%. The
validation models would use this non-Tsetlin set to find out for how long they should continue
to iterate over the training data.
Unfortunately, due to an error in the code, the validation and test sets were mixed up, resulting
in the final distribution for the training, validation, and testing sets being respectively 80%,
16%, and 4%. Having testing sets of this size, 4% of 40 000 in the worst-case scenario, might
lead to the different metrics being less precise.
With datasets numbering in the hundreds of thousands, cross-validation was not chosen. In-
creasing the training time of the models by a factor of 5 was considered impractical, assuming a
5-fold cross-validation was employed when the total running time without it already approached
15 hours.

3.5 Creating Models

With the data finally ready to be analyzed by the machine learning models, a selection of
relevant ones had to be chosen. First was the Tsetlin machine, the main object of interest for
this thesis. Two variations of it were selected: the vanilla classifier and its convolutional version.
The second model chosen was a non-deep learning machine learning model in the form of
XGBoost. XGBoost is a model that tends to perform well on tabular data and often beats
neural networks. It is a very fast model to train and test on and will also provide a good
benchmarking result with which to compare.
Finally, two deep learning approaches were chosen: a neural network consisting of only dense
layers, a dense neural network, and a neural network using convolutional layers, a convolu-
tional neural network. Due to convolutional models performing well on sequence data as shown
with tools such as CNN-MGP [18], a more complex model was also trained to see how much
performance a bit of tweaking could result in.
The metrics chosen to compare the models were the following: accuracy, f1, precision, recall,
training time, and test time. As the data were trained and tested on balanced data, looking at
the accuracy should give a good picture of how well the models perform. The f1, precision, and
recall will provide additional insight into what part of the prediction the model struggled with
most. Finally, the training and testing time should indicate how many resources the various
models used, but it may not be a perfect reflection.
Except for the Tsetlin models, the output of the models was a score between 0 and 1. With
the deep learning models, this resulted from the final activation function being the sigmoid
activation function. This value was binarized around the threshold of 0.5, meaning that any
value equal to or above the threshold would result in a true hit for either the presence of a
specific Pfam entry or a general one, depending on the dataset.

Page 24 of 59

3.5.1 Tsetlin Machine

The Tsetlin machine was implemented using the TMU package developed by Ole-Christoffer
Grandmo and Per-Arne Andersen [19]. Their implementations of the base model were chosen
because they are the most complete ones available. For the specific model chosen, the vanilla
classifier and the coalesced version were considered. From the research paper where it was
introduced [20], it was suggested that the coalesced version worked better for Tsetlin Machines
with the number of clauses set between 50 and 1000. As the number of clauses had to be much
higher, this was not chosen.
The Tsetlin machine was one of the models that used the flattened version of the dataset. And
to ensure that loading all of the data wouldn’t cause memory issues a system of batching the
data and provided it to the algorithm in pieces was implemented.
As for the number of clauses, the amount chosen was 10 000. Through testing, it was found
that results obtained with fewer clauses were significantly worse.
The other tuned hyperparameters would be the values of T and s. The values chosen for these
were based on the results of O. Tarasyuk et al. [21] who found that a reasonable estimate for the
value of these hyperparameters would be sqrt(C2) + 2 for the value of T and 2.534 ∗ log(C

3.7579)
for the value of s.

3.5.2 Convolutional Tsetlin Machine

The convolutional Tsetlin Machine was constructed the same way the standard implementation
was outlined above. Only two differences in the way they were set up differed. Firstly, the
convolutional model utilized the data stored in 3 dimensions instead of the 2d matrix fed into
the standard model. The other difference was using the parameter patch dim, where the filter
size 3x20 was chosen. This filter was designed to recognize specific sequences of three amino
acids. This corresponds to the 3x20 filter used for the convolutional neural network model.

3.5.3 XGBoost

XGBoost was implemented through the XGBoost package for Python [9]. XGBoost requires
the data to be inputted using its own DMatrix structure. The package contains the methods
for this transformation, so this was utilized.
The model used the default parameters for the implementation, except for the training rounds
being set to 1000. Early stopping was implemented with the validation set with patience of 15
rounds, meaning that 15 rounds of no reduction in the loss function would result in the process
ending early.

3.5.4 Dense neural network

The dense neural network was implemented through the Python package TensorFlow using
Keras [22]. It was run with the CPU, meaning no CUDA cores would be utilized in the testing
or training.

Listing 3.1: Neural Network Model in Keras

Define the model
model = Sequent i a l ()
model . add (Dense (128 , a c t i v a t i o n= ' r e l u ' , input shape=(X tra in . shape [1] ,)))
model . add (Dense (64 , a c t i v a t i o n= ' r e l u '))
model . add (Dense (1 , a c t i v a t i o n= ' s igmoid '))

Compile the model

Page 25 of 59

model . compile (opt imize r= 'adam ' , l o s s= ' b ina ry c ro s s en t ropy ' ,
met r i c s =[' accuracy '])

Early s topp ing c a l l b a c k
e a r l y s t opp i ng = EarlyStopping (pat i ence=3, r e s t o r e b e s t w e i g h t s=True)

3.5.5 Convolutional Neural network

The CNN models were built from the same Tensorflow package as the dense neural network
outlined above[22]. It also employed the same optimizer, loss function, and early stopping
implementation.
The convolutional layers employed were one-dimensional (Conv1D).
The main difference between the two models was the complexity of their architecture, with the
second model focusing on trying to reduce the amount of overfitting that would occur when
training the models. The simpler model was made to show what a less complex architecture,
and thus more lightweight, implementation could expect in terms of performance but also to be
a better comparison with the Tsetlin machine having a more comparable level of complexity.

Simple

The simple convolutional used 32 Conv1d filters with a filter size of 3 and fed them into one
dense node with a sigmoid activation function. In practice, this would mean that the model
would look for 32 sequences of three amino acids and observe their pattern within the data.

Listing 3.2: CNN simple with 1D Convolutions in Keras

Define the model
model = Sequent i a l ()
model . add (Conv1D(32 , 3 , a c t i v a t i o n= ' r e l u ' ,

input shape=(X tra in . shape [1] , 2 0)))
model . add (Flat ten ())
model . add (Dense (1 , a c t i v a t i o n= ' s igmoid '))

Compile the model
model . compile (opt imize r= 'adam ' ,

l o s s= ' b ina ry c ro s s en t ropy ' ,
met r i c s =[' accuracy '])

Early s topp ing c a l l b a c k
e a r l y s t opp i ng = EarlyStopping (pat i ence=3, r e s t o r e b e s t w e i g h t s=True)

Super

The more complex model still used the same filter size but used 64 filters instead. It also layered
multiple convolutional layers upon one another to capture longer patterns. Other features, such
as dropout and regularization, were added to combat overfitting.

Listing 3.3: CNN super with 1D Convolutions in Keras

Define the model
model = Sequent i a l ()

Page 26 of 59

Convo lu t iona l l a y e r wi th L2 r e g u l a r i z a t i o n
model . add (Conv1D(64 , 3 , a c t i v a t i o n= ' r e l u ' , input shape =(200 , 20) ,
k e r n e l r e g u l a r i z e r=l 2 (0 . 0 1)))
model . add (BatchNormal izat ion ())
model . add (MaxPooling1D (2))

Second convo l u t i ona l l a y e r
model . add (Conv1D(128 , 3 , a c t i v a t i o n= ' r e l u ' , k e r n e l r e g u l a r i z e r=l 2 (0 . 0 1)))
model . add (BatchNormal izat ion ())
model . add (MaxPooling1D (2))

Third convo l u t i ona l l a y e r
model . add (Conv1D(256 , 3 , a c t i v a t i o n= ' r e l u ' , k e r n e l r e g u l a r i z e r=l 2 (0 . 0 1)))
model . add (BatchNormal izat ion ())
model . add (MaxPooling1D (2))

Fla t t en and Dense l a y e r s wi th dropout and L2 r e g u l a r i z a t i o n
model . add (Flat ten ())
model . add (Dense (256 , a c t i v a t i o n= ' r e l u ' , k e r n e l r e g u l a r i z e r=l 2 (0 . 0 1)))
model . add (Dropout (0 . 5)) # Increased dropout to prevent o v e r f i t t i n g
model . add (Dense (1 , a c t i v a t i o n= ' s igmoid '))

Compile the model
model . compile (opt imize r=Adam(l e a r n i n g r a t e =0.0001) , l o s s= ' b ina ry c ro s s en t ropy ' , met r i c s =[' accuracy '])

e a r l y s t opp i ng = EarlyStopping (pat i ence =15, r e s t o r e b e s t w e i g h t s=True)

3.6 Code

The code for this project was developed in Python and R and executed using a Bash script.
The code can be accessed at the GitHub (https://github.com/Pinglepi/Master). The datasets
were generated using RStudio, which looks at the raw data outlined in this chapter’s first part.
These datasets have been stored locally along with their respective target values and some
accompanying metadata, such as GC content and length of sequence.
To manage memory efficiently, the Bash script was designed to iterate through each dataset
individually since loading them simultaneously in a single Python script would lead to memory
issues. Each model was trained using the same split for training, testing, and validation, ensuring
a fair comparison between the models.
When a model was finished training, it would be tested on the test set, and the results would
be saved in a CSV file. A file for the prediction results was saved with the actual values of
the target value, the predicted values, and the models relevant to the probability values. In
addition, the metrics of accuracy, f1, precision, recall, training time, and testing time were
saved in a separate file. These were run through with the visualize python file to produce the
illustrations in the result sections.

Page 27 of 59

Chapter 4
Results

This section details the performance of six distinct machine learning models applied to 31
datasets containing LORFs linked to Pfam domains. Results are detailed through comparisons
of models, showcasing metrics such as accuracy, precision, and recall. Given the dual objectives
of this thesis, which focus on evaluating the Tsetlin machine relative to other models and as-
sessing the predictive power of machine learning models trying to identify Pfam domains, this
section primarily examines the best-performing model alongside the Tsetlin machine.
Multiple datasets were employed in this analysis, including a general dataset that samples
LORFs from as diverse a set of organisms as possible. Five datasets were specifically sampled
based on a more taxonomy, and 20 focused on individual Pfam domains. Additionally, five
cumulative datasets were analyzed to explore the effects of targeting multiple Pfam domains
and how additions impacted performance. The machine learning models employed in this study
are:

• Tsetlin machine

• Convolutional Tsetlin machine

• XGBoost

• Dense Neural Network

• Convolutional Neural Network(Simple)

• Convolutional Neural Network(Super)

Refer to the ’Models’ section in the Methodology chapter for a more detailed description of how
these models were constructed.

28

4.1 General

The general dataset consisted of 200 000 LORFS sampled from 3 species, if possible, for each
taxonomic class represented in the original data. As there were 98 classes represented in the
data, this would result in sampling for a total of 248 different organisms; as there were some
underrepresented classes, only 215 were selected. Of these sampled LORFs, half represented
LORFs where a Pfam domain was detected, and the other half where a Pfam domain was not.
For more information on how the general dataset was created, look at subsection 3.2.1, where
this was described in more detail.

Table 4.1: Performance on the General Dataset

Model Accuracy F1 Precision Recall Training Time(s) Testing Time(s)

TM 0.704 0.715 0.690 0.741 370.675 3.973
TM conv 0.576 0.512 0.604 0.445 270.199 11.691
DNN 0.766 0.741 0.831 0.668 24.937 0.207
XGBoost 0.709 0.702 0.719 0.687 8.452 0.010
CNN simple 0.755 0.744 0.780 0.710 64.206 0.199
CNN super 0.772 0.730 0.897 0.616 918.068 0.518

Looking at the performance of the models on the general dataset, the models appear to perform
in 3 distinct tiers of performance, if one primarily looks at accuracy.
First off, there are the neural network models, consisting of the dense neural networks and the
two convolutional. These all achieved similar levels of performance with accuracies and f1 scores
within 2% points of each other. While having similar scores, their distribution of correct guesses
varied.
The convolutional neural network had two different models, one named simple and one as super.
While the super network had the highest accuracy, the simple one had the highest f1. The reason
for this is that the accuracy of the complex CNN was achieved by its higher precision, i.e., having
fewer false positives, which was much higher than the other models. However, when it came
to recall, the complex CNN scored among the worst, suggesting the model was too strict when
identifying Pfam domains. Therefore, the simple CNN achieved a better f1 score, a better
compromise between precision and recall.
The dense neural network achieved a performance that lies between the two convolutional
networks, but the differences are so small then becomes so small that any comparison becomes
close to meaningless. Simply supplying a new random seed could change the order of these.
Secondly there’s the tier of XGBoost and the Tsetlin Machine(TM). These models obtained
accuracies of around 70%. While similar in performance, these models had very different values
regarding training and testing time. XGBosst was the fastest model trained, needing only 8
seconds, while the TM needed 371 seconds.
Interestingly the Tsetlin machine was able to obtain the highest recall score of any model, but
its precision score was lacking. This suggests the model was a bit overzealous when trying to
identify the presence of Pfam domains within the sequences.
Lastly comes the TM with convolutions, performing by far the worst of any model. With
an accuracy just above 50%, it is barely better at identifying Pfam-containing sequences than
randomly guessing.
The TM with convolution’s inability to settle on a stable model was not shown in the results
but was identified during training. For each epoch trained, the result was seemingly random,
sometimes achieving slightly subpar performances whilst others were close to random guessing.

Page 29 of 59

Figure 4.1: CNN super Results on General Figure 4.2: Tsetlin Machine Results on General

From looking at the confusion matrices, the results discussed under the general dataset table
4.1 are visualized. The results from the CNN super 4.1 show a model that underestimates the
number of true labels within the dataset but guesses correctly often when it predicts 1. On the
other hand, the TM matrix 4.2 shows a model that misses more but has a more even spread
between false positives and false negatives.

Figure 4.3: CNN super on General Figure 4.4: XGBoost on General

Comparing the roc curve for CNN with the one of XGBoost, a model performed in a tier below
shows the model’s differences in ensuring predictions separate between true and false positives.
In particular, CNN 4.3 shows the ability to predict 60% of the true positives with ease but
that it struggles much more with the remaining 40, having to include a large number of false
positives to catch the true ones.
XGBoost, on the other hand, has a much more even distribution of predictions it struggles with,
seemingly only being able to identify 30% with the same certainty as the complex CNN model.

Page 30 of 59

However, it does catch up, so when including 40% false positives, the models perform about
equally.

Figure 4.5: Probabilitity Distribution for CNN Super on the Gerneral dataset

The CNN model shown in Figure 4.5 shows a distribution of accuracies that one would expect.
The probabilities are the output from the machine learning algorithms that gives a percentage
for how likely it deems the sequence in question to contain a Pfam entry. It is the most accurate
when making certain predictions, i.e. those from 0-10% a and 90-100%, while the probabilities
around 50% trends towards 50%. For this plot and those similar, the cutoff for accuracy is set
at 50%, as the results above these would be below random guessing, which would not make sense.

As for the most common probabilities obtained from the CNN, it seems the positive tends to-
wards the 90-100 percentile while the negative guesses are a bit more uncertain obtaining a peak
in the 20-30th percentile. This correlates well with the results from the Roc curve in Figure
4.3, which showed that 60% or so of the sequences were trivial to identify.

Page 31 of 59

Figure 4.6: Probabilitity Distribution for XGBoost on the Gerneral dataset

The results for the XGBoost, shown in Figure 4.4, displayed a similar distribution when it came
to accuracies to the CNN model but showed a significant difference regarding the distributions
of the probabilities themselves. These seemed to peak in the middle, around 50%, and some-
thing resembling a normal distribution.

Page 32 of 59

4.2 Order

For the order-based datasets 200, 000 LORFs were sampled, when possible, for each of the 5
chosen taxonomic orders of species. 100 000 of these were those that identified a Pfam domain
within the sequence indicated by having a target value of 1 and the rest being marked with 0.
The five chosen orders were Bacillales, Corynebacteriales, Burkholderiales, Lactobacillales, and
Enterobacterales. The number of species analyzed were respectively 248, 229, 221, 191, and
192.

Figure 4.7: Accuracies of different models on the order-based datasets

The orders did not show a significantly higher performance compared to the general set despite
the more closely related samples that were used to construct the datasets.
Interestingly the performance between the datasets varied quite a bit between each order, sug-
gesting that some orders were more difficult to create good models for than others.
The general ordering of the models was similar across the orders, with the exception of the dense
neural network being the best at predicting within the Lactobacillales order. Lactobacillales
was also the order where the most accurate classification levels were possible.

Page 33 of 59

Figure 4.8: GC Content of Ordered Datasets

Figure 4.8 shows the GC content of the five different ordered datasets. Overlapping it with the
previous figure 4.7 shows a potential pattern where the datasets with higher GC are also more
difficult to use for prediction. Ordering the datasets by accuracy generates the same sequence
of datasets as ordering them by GC content.

Page 34 of 59

4.2.1 Corynebacteriales and Lactobacillales

Selecting the datasets with both the highest and lowest GC content, as noted in fig 4.8, might
result in some interesting insights into how this affects model prediction power.
In addition to representing the outer bounds of GC content, the datasets show a similar pattern
when it comes to performance following the accuracy metric. Lactobacillales shows the highest
accuracy, whilst Corynebacteriales show the second worst. This is shown in figure 4.7

Sequence lengths

Before looking at the performance metrics in more detail, a short showcase of the lengths of
sequences found within each dataset, as well as the ratio of positive Pfam hits will be shown.

Figure 4.9: Plot showing the length of LORFs within the Corynebacteriales dataset together
with the portion of results that results in a positive Pfam hit.

Figure 4.10: Plot showing the length of LORFs within the Lactobacillales dataset together with
the portion of results that results in a positive Pfam hit.

The figures 4.9 and 4.10 show that the distributions between the lengths of the LORFs within
the dataset differ significantly. In particular, while sequences of lengths between 0 and 100

Page 35 of 59

constitute the clear majority for both datasets, in Lactobacillales, very few exist outside of this
range.

Performance

Figure 4.11: CNN super on Corynebacteriales Figure 4.12: TM on Corynebacteriales

The same trend that was observed on the general set 4.1 continues on the ordered ones. The
tuned CNNmodel 4.11 predicts with higher accuracy, meaning a higher percentage of predictions
are correct than the TM model 4.12. However, this is carried by the CNN’s ability to recognize
the false negatives as the TM better differentiates between true and false positives.

Figure 4.13: CNN super on Lactobacillales Figure 4.14: TM on Lactobacillales

Interestingly, both models show an even increase in performance when compared with the
Corynebacteriales matrices, with the number of false negatives and false positives being about.

Page 36 of 59

It also becomes apparent that Lactobacillales contain fewer samples than Corynebacteriales as
the sums of the rows of the confusion matrices differ between the datasets.

Figure 4.15: CNN super on Corynebacteriales Figure 4.16: CNN super on Lactobacillales

The differences in ease of prediction become even more apparent when looking at the roc curves.
Within the order of Corynebacteriales 4.15, already from the point of including around 50% of
the true positives, any increase would come at the cost of a large increase in false negatives.
This does not occur within Lactobacilalles before around 85% of the true positives are present,
as shown in 4.16.

Figure 4.17: The accuracies of different model probabilities as well as the distribution of model
probabilities for CNN Super on the Corynebacteriales dataset

Page 37 of 59

Figure 4.18: The accuracies of different model probabilities as well as the distribution of model
probabilities for CNN Super on the Lactobacillales dataset

It seems that one of the main differences between the probability distributions shown in Figure
4.17 and Figure 4.18 is that the model for Lactobacillales is much more often certain of LORFs
not containing any pfam entries. Interestingly the curve for Corynebactillales mirrored the one
found for the general dataset, while the Lactobacillales one differed.

4.2.2 Summary Order-based

The order-based datasets showed that the prediction power varied greatly depending on what
taxonomical branches were studied. Some datasets created models that performed better than
the general dataset, and others performed worse.

The neural network models displayed a similar level of accuracy relative to one another across
all the different datasets with XGBoost and the Tsetlin Machine following after. The convolu-
tional Tsetlin machine were at the level of randomly guessing for a few of the datasets.

Page 38 of 59

4.3 Specific Pfam Domains

This section will show the results from the models trained on the Specific Pfam datasets. The
structure of these datasets is described in greater detail in the methodology chapter 3

To recap, there exist 20 different Pfam datasets and 5 cumulative sets. These twenty datasets
each use the presence of a unique Pfam domain as its target variable. As the Pfam domain
names are somewhat cumbersome, the datasets have instead been given numbers with names
ranging from Pfam 1 to Pfam 20. the cumulative sets show intervals instead of integers, e.g.,
Pfam 1-5.

4.3.1 Distrubution of Pfam domains

Figure 4.19: Log transformed counts of the Pfam domains in dataset

From the HMMER search on the RefSeq dataset, limited to those between 100 and 200 se-
quences, all found Pfam families and domains were identified. In Figure 4.19, their distribution
was visualized. 14462 different entries were identified, but their prevalence varied widely. The
most common Pfam entry, PF00583.27, was identified in 60 502 LORFs, while about half of the
recognized domains were found in the single digits.

For the 20 most common ones Table 4.2 shows what kind of entry they are as well as the clan
they belong to. The information was found for each of them through the UniProts webpage [23].

Shown in Table 4.2, the selected Pfam entries contained some variation but some Clans were
much more represented than others. Particularly Acetyltrans and HTH clans seemed to be
common.

Page 39 of 59

Table 4.2: Overview of Pfam entries for Pfam 1-20
Pfam ID Pfam Type Clan

PF00583.27 Family Acetyltrans
PF12802.9 Family HTH
PF13508.9 Domain Acetyltrans
PF13673.9 Domain Acetyltrans
PF01047.24 Domain HTH
PF13412.8 Domain HTH
PF12840.9 Domain HTH
PF13302.9 Domain Acetyltrans
PF13463.8 Domain HTH
PF01381.24 Domain HTH
PF00903.27 Domain Glyoxalase
PF08281.14 Domain HTH
PF00072.26 Domain CheY
PF04545.18 Domain HTH
PF00440.25 Domain HTH
PF01022.22 Domain HTH
PF00293.30 Domain NUDIX
PF13560.8 Domain HTH
PF08445.12 Family Acetyltrans
PF00578.23 Domain Thioredoxin

4.3.2 One Pfam domain

Figure 4.20: CNN super accuracies on the 20
different specific Pfam datasets. Lower bound
at 50% accuracy

Figure 4.21: Tsetlin machine accuracies on
the 20 different specific Pfam datasets. Lower
bound at 50% accuracy

From the tables 4.20 and 4.21, it becomes obvious that the identification of specific Pfam do-
mains is something the Tsetlin machine struggles with, especially compared to the tuned CNN,
which excels.

The tuned CNN is able to identify all the selected 20 Pfam domains nearly perfectly, with
most datasets only having a few misclassified sequences. Only a few datasets show models with
performance outside the 99% accuracy range, and these are all still in the high 90s.

In comparison, the TM shows more varied performance with accuracies ranging from mid-60s
to low 90s. Interestingly the accuracy in detecting the Pfam domain numbered 20 is lower than
the TM obtained with the general model.

Page 40 of 59

Pfam 1

The Pfam 1 dataset contained 40 000 entries sampled from the entirety of the original RefSeq
data. Half of these entries represented sequences where the Pfam family PF00583 was located.
The other half was constructed from 50% LORFs not containing any Pfam entry and 50%
LORFs containing some kind of Pfam entry that is not the target.

Table 4.3: Performance on the Pfam1 dataset

Model Accuracy F1 Precision Recall Training Time(s) Testing Time(s)

TM 0.876 0.882 0.841 0.927 68.564 0.751
TM conv 0.556 0.692 0.530 0.998 52.798 2.068
DNN 0.929 0.929 0.923 0.935 6.040 0.081
XGBoost 0.925 0.925 0.924 0.926 4.340 0.004
CNN simple 0.962 0.962 0.957 0.968 31.448 0.077
CNN super 0.997 0.997 1.000 0.994 873.357 0.194

While the tuned CNN has had by far the largest training time in all the datasets, the Specific
Pfam datasets, such as Pfam 1, have it even higher. With training times, 3 orders of magnitude
are longer than the fastest models. While not observable in the data itself, this was because
the model had continuous improvements, so the model didn’t stop training until it had finished
the maximum of 100 epochs.

Figure 4.22: CNN super on Pfam 1 Figure 4.23: TM on Pfam 1

Page 41 of 59

4.3.3 Multiple Pfam Domains

Figure 4.24: CNN super on multiple Pfam Figure 4.25: TM on multiple Pfam

When adding additional Pfam domains to the datasets, so that multiple Pfam domains decide
the target variable, the gap between the performance of the two models continues to widen. As
shown in the figure 4.24 the CNN contains similar results for everything between 1 and 20 Pfam
domains present. The TM, as shown in figure 4.25, however, shows a declining performance
with the additional added domains.

4.3.4 Pfam 1-20

To take a closer look at the results of where the performance of the Tsetlin machine and the
other models are the widest, the tabular data for the dataset containing 20 Pfam domains as
positive targets will be presented.

Table 4.4: Performance of models on the Pfam 1-20 dataset

Model Accuracy F1 Precision Recall Training Time(s) Testing Time(s)

TM 0.743 0.758 0.716 0.806 368.099 4.079
TM conv 0.507 0.669 0.504 0.998 266.088 10.007
DNN 0.882 0.885 0.866 0.904 26.125 0.207
XGBoost 0.856 0.857 0.852 0.862 30.955 0.013
CNN simple 0.890 0.891 0.880 0.903 205.262 0.210
CNN super 0.982 0.982 0.980 0.984 4521.854 0.508

Combining all of the 20 detected Pfam domains resulted in a worse performance overall for all
datasets compared to when just trying to single out one. The tuned CNN experienced a less
significant decrease than the other models in that it retained an accuracy in the high 90s, with
an accuracy of 98.

The other, non-Tsetlin, models achieved accuracy in the mid to high 80s, a significant reduction
compared to their results in Table 4.3 for one Pfam domain.

Page 42 of 59

Figure 4.26: Roc Curve for CNN Super on Pfam 1-20

While it is a bit difficult to see from the resolution in figure 4.26, not many false positives would
have to be included for close to every true positive to be included.

Figure 4.27: Probability Bins for CNN Super on Pfam 1-20

When it comes to the distribution of the predicted probabilities, the tuned CNN seemed to
make certain predictions with almost all of the predictions being in the 0-10% and 90-100%.

Page 43 of 59

4.3.5 Results of epochs for TM

As presented in the methodology section 3, the TM was only run using 1 epoch. A secondary
script was run to see how epochs affected the 2 models. These are their results for the Pfam
1-20 dataset.

Table 4.5: Performance Metrics by number of Epochs for CTM

Epoch F1 Score Accuracy

1 0.10 0.52
2 0.43 0.58
5 0.70 0.60
10 0.70 0.59
15 0.69 0.64
20 0.08 0.51

The Convolutional Tsetlin Machine never seemed to stabilize around any value, with the ob-
tained accuracies and f1 scores fluctuating between epochs.

Table 4.6: Performance Metrics by number of Epochs for TM

Epoch F1 Score Accuracy

1 0.75 0.76
2 0.77 0.77
5 0.77 0.77
10 0.76 0.76
15 0.76 0.76
20 0.78 0.77

The standard Tsetlin machine however seemed to see a slight gain from running multiple epochs.

4.3.6 Summary specific Pfam

Convolutional models excelled at detecting specific Pfam domains/families, with the tuned
model in particular reaching near-perfect results. When increasing the variation of the data by
inserting more Pfam entries to the target variable, the performance went down, with the tuned
CNN showing the least reduction.

It was also shown that the TM might have reached better performance if it was given more
epochs for each iteration. However, this did not seem to be the case for the convolutional model.

4.4 Summary results

Having looked at the different datasets has resulted in some insight into how the selected ma-
chine learning models operate on sequence data.

In general, when the accuracies of the models are concerned, the neural networks perform the
best on all variants of the data. For the datasets that look for the presence of any Pfam domain,

Page 44 of 59

the general dataset, and the order-based ones, there is no clear ranking between which one per-
forms the best, with both the simple CNN, the more complex CNN, and the DNN performing
at similar levels. However, the complex CNN models achieved significantly better results in
detecting specific Pfam domains than any other models.

This higher performance came at a higher computational cost, with the tuned CNN model, in
particular, showing by far the highest training time across all the datasets. The Tsetlin ma-
chines followed after, even when using CUDA cores something the other models did not. Then
came the other neural networks, but by far, the fasting training came from the XGBoost models.

The interesting takeaway from observing results from the order-based datasets is that there are
significant differences in the difficulty of prediction power based on where the data is gathered
from in the tree of life. One seemingly correlating variable is the GC content of genomes.

When it comes to accuracies the Tsetlin machine was outcompeted by simple neural networks
in every tested scenario.

Page 45 of 59

Chapter 5
Discussion

In this chapter, I will go back to the research question initially presented in the introduction of
this thesis and try to answer the two main questions: Would it be possible to create a machine-
learning model that can calculate the probability of including a Pfam domain within any given
LORF? And would the Tsetlin machine(TM) be a good fit for creating such a model?
With the results presented in chapter 4, both of these questions should be answerable to a
degree. To do this, I will first go through the results, trying to see if there is a pattern in
how the models predict on the different datasets, and further discuss how the various models
performed. From this, I will decide what models will be carried forward.
Second, I will go through the performance of the Tsetlin machine in more detail, trying to
understand why it performed as it did and what could be done to make it better for the
datasets at hand. This discussion will end with a decision on the degree to which the Tsetlin
machine is a good choice when predicting LORF content from amino acid sequences.
Thirdly, I will propose a way to build a model to detect the presence of any Pfam domain. To
create this final proposal, I will go through some potential approaches and discuss the advantages
and disadvantages of doing it one way or another.
Finally, I will discuss a set of ideas I find worthy of discussion but that doesn’t necessarily fit
into the overall structure of this discussion section. This will include some reflections on how
this project was carried out, as well as some potential explorations of both the data and the
models that could lead to some new valuable insights that I didn’t have the opportunity to
implement. I will also briefly discuss the use of AI in writing this thesis.

5.1 Model results analysis

The results presented in the result chapter 4 presented multiple models for various datasets,
with performances that varied significantly between model and dataset. These differences in
performance will provide the foundation for the analysis in both deciding what base model is
the most suited for creating the desired filtering software and what such software would have
to consider to be able to predict with a high degree of precision and recall.
The balance of recall and precision stands out as the most important of the metrics when cre-
ating such a filtering mechanism. A high precision would represent the strength of the filtering
itself, with a high Precision noting that the filtering could remove the sequences not containing
any Pfam entries.

While high precision is desirable, a high recall is essential as msising potential hits due to
overzealous filtering would be unfortunate. The primary way to think of model performance is
to ensure as high recall as possible, ensuring that few, preferably close to none, of the potential
positive hits are missed while aiming for as high precision as possible as a secondary goal. It is

46

worth noting, however, that the importance of these metrics by themselves does not necessarily
mean that just looking them up in the results tables, such as the one for the general dataset as
presented in Table 4.1, answers what model is the most suited. For most models, the output
of running the model on any given data is a number between 0 and 1; this value must be bi-
narized to make a prediction. In all tables presented in this thesis, this threshold has been set
to 0.5. This is, however, not a must; this value can be set as anything, and changing this num-
ber is one of the primary ways one can manipulate the relationship between precision and recall.

This balance is better explored through plots such as the roc curve; see 4.3 for an example. The
roc curves show the relationship between precision and recall. A way to think of it is that the
upper X-axis represents the model having a high recall, and the leftmost Y-axis does the same
for precision. Therefore, The ideal case is positioned in the upper left corner of the diagram in
the data presented in this thesis. This is only seen when looking at datasets containing specific
Pfam entries.

One of the interesting questions is how the models can predict the presence of these Pfam
entries; what does it look for? In the case of the specific Pfam entries explored in the results
from the datasets named Pfam 1 through Pfam 20 in this thesis, the answer seems obvious in
that it tries to learn the pattern associated with the entry in question. The question becomes
more challenging to answer when looking at the more broad predictions needed in the other
types of datasets, the general and order-based ones.

5.1.1 Capturing patterns

Analyzing the Roc curves presented for both the CNN model and the XGBoost model, see
Figure 4.3 and Figure 4.4 respectively, shows one intriguing difference between the two. The
convolutional model can capture up to 60% of the possible true positives while introducing close
to no false negatives. In contrast, the XGBoost model plot shows a much more symmetrical
result. As the Tsetlin machine produces binary results, no easy method was found to create a
comparable illustration for this model.
It should be noted that this pattern of the model being able to easily predict around 60% of the
positives occurs for all neural network models and is therefore not limited to the CNN model as
it is also present in the DNN. The percentage of the easily predictable sequences varies between
datasets, as seen in the cases of the models constructed on the Lacobacillales and Corynebac-
teriales datasets, see Figures 4.15 and 4.16. A natural question to ask is what exactly it is that
these models are detecting that makes classification so obvious for them?

Due to the nature of machine learning models, especially neural networks, this isn’t easy to
answer in retrospect. No picture intuitive to the human mind is painted in the many weights
that make up a neural network. We can, however, speculate. One potential explanation is how
many instances of each Pfam domain were present in the data the model was trained on. Since
the general dataset was constructed by randomly selecting 100,000 LORFs that contained any
Pfam entry from the around 250 selected species, the chance of describing all the Pfam entries
equally would be close to 0.

Some Pfam entries were vastly more present in the representative data, and why no analysis was
made specifically on the species selected for the general dataset. The number of specific Pfam
entries was noted for all species in the selected RefSeq genomes, limited to ORFs of lengths
between 100 and 200 amino acids. In fact, only around 15 000 of the 21 000 Pfam entries were
present in the data at all, as shown in Figure 4.19, while most of the ones represented were done
so in the single digits. This might lead to the most common entries being vastly overrepresented
with the ones of low frequency being labeled as noise. Unfortunately, with how the datasets

Page 47 of 59

were constructed it was impossible to find this out by running additional tests. If the specific
Pfam entry had been noted for each sequence, it would be interesting to select the ones that
were uncommon and see how well the model predicted them.

5.1.2 Length of sequences

One of the limitations of this thesis was that only sequences of lengths between 100 and 200
amino acids were utilized, and the rest were discarded. This limitation was implemented for
multiple reasons, described in its own subchapter in the methodology 3.3.1.
Disregarding the issue of memory management, the primary reason for the limitations, selecting
a specific region allowed the possibility of analyzing the specific region in much greater detail
as the datasets would have to be of a similiar size anyway.
Preliminary results showed that the different lengths of the sequences changed the difficulty the
models had in predicting correctly, with short sequences being much more difficult to predict
than long ones.

GC content

As shown in the figures 4.9 and 4.10, the GC content of the species impacted the distributions
of lengths of ORFs found an order. It also changed how difficult they were to predict, with
high GC content being more difficult to predict. This might have to do with GC-rich genomes
having relatively fewer LORFs as they contain less AT, which make up most of the stop codons.
An analysis wasn’t done to see if this was the case in this thesis, but it might be worth looking
into further.

5.1.3 Selecting a Model

While most neural networks seemed to perform similarly in both the general and the order-
based datasets, the CNN super model had a significant lead in the specific Pfam datasets as
seen in Section 4.3. It seems that adding additional layers to the convolutions helped the model
to be able to detect specific patterns, though as many layers as were added might have been a
bit excessive.

5.2 Tsetlin machine results

Through all the iterations of the TM trained on the different datasets, none performed better
than the other models, with the Tsetlin machine always showing performance, measured by
accuracy, below the others.
While the overall accuracies of the Tsetlin model were often lower than the others, its recall was,
for the most part, competitive and, in the case of the general data set, actually superior. Still,
its poor Precision made its total performance worse, as other models could achieve a similar
recall with an accompanying reduction in their precision.

5.2.1 Number of epochs

The Tsetlin machine utilized in this thesis had one major disadvantage emposed on it by how
it was run. It always only ran using one epoch.
This was partly because of the time it required. Even using a GPU, unlike the other models, the
Tsetlin machine used significantly more time for training and testing than the other models.
With the exception of the Convolutional networks, these could use 100 epochs as they saw
continuous improvements. As a total of 186 models were trained, increasing the amount of time
spent training the models significantly became difficult to accept.

Page 48 of 59

Another problem was how using multiple TM within a single script was difficult. When more
than 1 TM was implemented in a single script it frequently triggered illegal memory access error
messages. This made implementing any sort of early stopping mechanism a difficult endeavor,
as storing the previous epochs’ weight had to be done another way.
The TM also didn’t have a dedicated validation set to ensure that it would not overfit to training
data. As it only ran for one epoch, this would not have had any effect, but if more epochs were
implemented, some sort of early stopping would put the model on a more even playing field.

5.2.2 Number of clauses

For both implementations of the Tsetlin machine, the number of clauses chosen was 10 000.
To what degree these 10 000 clauses could properly represent the 14 000 different Pfam entries
found in the dataset, can be argued. However, with the datasets being as skewed as they were,
this should not have affected it too much.

5.2.3 Alternatives to direct amino sequences

It might be that the Tsetlin machine struggled more with running through the amino acid
encoded. From the work done by Liland et. al. [16], the Tsetlin machine showed better results
than a multi-layer perceptron when trying to locate genes in a nucleotide sequence. Changing
from amino acids to nucleotides might show several advantages.
First of all, it would yield a much less sparse dataset, and since the Tsetlin machine contains
so many clauses, each of which contains automata of an equal amount to the features of the
dataset, it might be more efficient when it comes to using computational resources.
Alternatively, one could experiment with feeding the model different variations of k-mer to see
if any other gave results. The suggested 1-mer(nucleotides) and 3-mer(amino acids) might not
be the best solutions, even though they both seem likely to be good choices.

5.2.4 Convolutional models

The performance of the Convolutional Tsetlin Machine was unimpressive in all tested datasets.
One of its main problems was that it never truly stabilized, and running multiple epochs seem-
ingly resulted in a new randomized output each time instead of showing gradual improvement.
This might have been related to the way the filter dimensions were constructed. A filter size of
3x20 was chosen as this would best match the filter used in the convolutional neural network
models. This might, however, have been a somewhat wrong way to think about it. These models
would work differently as the TM would, in practice, identify 10 000 different combinations of
amino acids, with only 4000 possible variations in the genetic code itself given 20 amino acids,
these would also be accompanied by some information on where in the sequence it is it might
struggle to compare with the CNN.
The CNN, the simple model especially, on the other hand, learns to recognize 32 sequences of
three amino acids anywhere within the provided LORF and denotes their positions within it.
A dense layer then looks at this data and makes a prediction of where these 32 sequences were
found.
While the intention was that these approaches should be somewhat similar, it might be that
the fundamental differences between the models made these similar hyperparameters have dras-
tically different implications when it comes to the actual workings of the models. The results
might have been model structures that favored the neural network over the Tsetlin machine.
The possibility that a more carefully structured Tsetlin machine, especially regarding the filter
size, might have made the Tsetlin machine more competitive.
It might be that the chosen values for the number of clauses, s, and T should have been chosen
through a more thorough search instead of opting for the estimates obtained from Olga Tarasyuk

Page 49 of 59

et al. [21]. These hyperparameters should have been easy to optimize better in a structured
format such as a grid search.

5.3 Creating a better model

With the results analyzed, one of this study’s key areas of interest remains: how would one
create a model that can filter out LORFs that do not contain known Pfam entries? The model
suggested will be referred to as the combined model in the following discussion.

5.3.1 Choosing an approach

Through the model result analysis and by looking at the performance metrics presented in the
results chapter, I hope I have fully explained why choosing a Convolutional neural network
would be the best possible choice to go further to create a working filtering mechanism for
LORFs of the models tested in this thesis.
Ideally, such a model would be created using a sampling method as used in the general dataset
and trained in a similar way, as having a single model that could model everything would be both
computationally faster and easier to implement. Unfortunately, the performance of the general
model, i.e., the model trained on the general dataset, is seemingly a bit lacking considering it
contained such a large amount of false negatives. And from the ROC curve presented in Figure
4.3 there didn’t seem to be a way to decrease this without limiting the filtering power.
As such, the results from the specific Pfam datasets will be used to see if any greater model can
be created by using their great performances.

5.3.2 Challenges

Number of models

One problem with creating a universal model using the methodology that lies behind the models
trained on the specific Pfam database is that it would need many models. With over 20 000
Pfam entries there would need to be an equal number of models. When operating on large
datasets, such as the proposed usage of metagenomic data, this would result in interference
times that would be undesirable for running a filtering mechanism.
Pfam 1, results of which are shown in Table 4.3, showed that the CNN super needed 0.194
seconds for evaluating 1 600 LORFs. The timeframe to compare it to will be the month the
HMMER software used to process all 150540245 LORFs that exist in the reference data.

Dividing the interference time with the number of LORFS to multiply them with the total
number of Pfam entries should give an approximate amount of time the combined model would
use for a given sequence.

0.194× 20795

1600
= 2.521

This implies the models would require about 2 and a half seconds to process a single sequence.
Multiplying this again with the number of sequences in the original data would result in:

2.521× 150, 540, 245 ≈ 379, 571, 232.87 seconds

This would be equal to:

Page 50 of 59

Minutes :
379, 571, 232.87

60
= 6, 326, 187.21

Hours :
6, 326, 187.21

60
= 105, 436.45

Days :
105, 436.45

24
= 4, 393.19

Years :
4, 393.19

365.25
= 12.03

Needless to say, running a program for 12 years in the hope of making a filtering mechanism to
speed up a process that took 1 month would be meaningless.

This makes the assumption that every LORF will be padded up to 200 or limited to that length.
But still, for illustrative purposes it was shown that such a model would be undesirable.

One solution to this problem is grouping certain Pfam entries together, as was done with the
cumulative datasets within the Specific-Pfam datasets. Randomly grouping the results together
showed a slight decrease in performance, and it is likely that the downward trend would con-
tinue if more Pfam entries were added. With accuracies being reduced to 98.2%, as shown in
Table 4.4, creating 1 000, models like this would result in a large number of false positives being
added, as every model would add a few.

While not explored in this thesis it might be worth looking at grouping the Pfam entries by
clan. Clans describe larger patterns within LORFs, even further back in evolutionary history.
This would still result in many models, but hopefully, this could be a way to group together
multiple Pfam entries without sacrificing too much performance.

Unequal frequency of Pfam entries

As the distribution of Pfam entries varies significantly, not all Pfam entries are well represented
in the data. Around 6000 of the described Pfam entries are not present in the RefSeq data,
given the limitations of being between 100 and 200 sequences, and thousands more are only
represented in the single digits. One solution to this is augmenting the data with synthetic
data. As the Pfam families and domains are described using p-HMMs, using these p-HMMs to
construct random sequences that comply with the given pattern could potentially be used. One
would have to consider that Pfam domains often only describe a small section of the sequence
however, with many sequences containing multiple Pfam domains. The rest of the sequence
would also have to be constructed in a realistic way so that true hits would be predictable from
training on the simulated data.

Hopefully, the need for this might be mitigated somewhat by sampling for lengths outside of
the range of 100 to 200 amino acids. Some Pfam entries might not be represented in this range
simply because they are longer or similar to this range. If the model is longer, it will not fit
into the LORF, and if it is of equal range, there will be little space for variations or inserted
sequences. Regardless, even if entries are added from other categories of length, some action
would have to be taken to ensure even rare Pfam entries are represented.

Length and GC

From the results of the order-based datasets and the provided analysis presented in 5.1.2, either
GC, length, or both will have to be taken into consideration.

Page 51 of 59

It might be a good idea to develop different models for sequences of different GC content. If
it shows that a model trained only on high GC sequences performs better than one trained for
all sequences then adding an additional model or two wouldn’t be especially computationally
taxing. It would increase training time significantly but interference would remain similar as
the sequences would only be sent to the model appropriate for their GC content.

The models analyzed were only trained and tested on LORFs of lengths between 100 and 200,
leaving a gap in the knowledge of how well the models function on other lengths. As the model
in question is a CNN, it is expected to search through the whole LORF for a specific sequence
of amino acids, and it will require that a large section of the LORF is visible to the CNN.
Padding all models up to a large max size would be impractical, as it would increase both the
computational cost and could also impact performance negatively. By adding much padding
the models could become sensitive to the length of LORFs to a greater idea, as LORF length
and how common Pfam entries are closely correlated, see Figure 4.9 and 4.10. One potential
solution is to add train multiple models for different model lengths and send LORF of a certain
length to its appropriate model.

If both Length and GC were taken into consideration it might lead to problems. If both length
and GC were divided into three, this would result in nine different models. This could represent
a significant amount of training needed.

5.3.3 Reevaluating the model

Given their great performance, using the models trained for the specific Pfam entries seemed
lucrative. However, running 20 000 models would not make sense, given the time it would take.
If natural groupings of Pfam entries, such as by clan, could lead to large groups still achieving
good performance this could be a possibility. if 20 000 models could shrunken down to around
659, the number of Pfam clans, then, by using the same math as the time calculations above
the model would need:

Changing from approximately 20 000 models to 659 gives the following.

0.194× 659

1600
≈ 0.0799

Multiplying the above result by 150, 540, 245, we get:

0.0799× 150, 540, 245 ≈ 12, 028, 730.10 seconds

Converting from seconds into more intuitive time units gives the following:

Minutes :
12, 028, 730.10

60
= 200, 478.84

Hours :
200, 478.84

60
= 3, 341.31

Days :
3, 341.31

24
= 139.22

While 139 days would be better than 12 years for searching through every Pfam entry, the result
would still be unusable. As such, the idea of using the models trained on specific Pfam models
should be discarded, and therefore, the focus should go back to the general models. Calculating

Page 52 of 59

the time needed for just the general model to run through all the data gives an estimate of:

Time needed per sequence:

0.518

8000
≈ 6.475× 10−5

The time needed for all data:

6.475× 10−5 × 150, 540, 245 ≈ 9, 747.48 seconds

To a more intuitive time format:

Minutes :
9, 747.48

60
= 162.46

Hours :
162.46

60
= 2.71

or close to three hours. This is a time that makes much more sense for such a tool. Especially
given the potential markup by using a GPU, which, according to Buber and Diri[24], could give
about speed ups of about 500%.
However, as discussed earlier, this model might just capture the most common Pfam entries, as
suggested for how easily it predicts 60% or so of the data but struggles with the rest. Hopefully,
this could be remedied by creating a better dataset by sampling wider regarding width and
creating some artificial entries for the less represented entries. It might also be necessary to
add some sort of correction regarding either GC content or length, as the order-based datasets
showed that this could result in some troubles.

Such a model would look a lot like the models developed for the cumulative specific Pfam
datasets but with many more well-represented Pfam entries. 20 000 was the number chosen for
each Pfam in the cumulative test, but this could probably be reduced significantly. The models
did, however, show a decrease in performance for each Pfam entry added, but this might be
counteracted somewhat by adding more filters to the model, allowing it to detect more kinds
of patterns. This might be preferable to adding more layers, as was done in the tuned CNN
model, as so many sequences of amino acids had to be excluded given that only 64 out of a
possible 20 ∗ 20 ∗ 20 = 8000 possible triplets of sequences were included.

5.4 Reflections on methodology

The focus of this thesis became trying to create many models for many datasets, so not enough
effort was put into optimizing the models. No models were optimized through methods such
as grid searches or similar, and the architectures of the neural networks were not built up by
iterating over variations to choose the best; instead, they were chosen somewhat randomly.

This also means that there is a large probability that better results would be obtainable by
most models. While I maintain that the largest area of improvement is the construction of a
better dataset to train on, it should not be forgotten that several percentage points of gain for
metrics such as accuracy might be available, even from slight tuning.

This might be especially relevant since the same hyperparameters were run on all the datasets,
even though what might be necessary to capture the difference between specific Pfam patterns
and the general case of any Pfam entry being present. Or that the sequences with high GC

Page 53 of 59

content might contain repeated segments that a specialized approach might be able to handle
better.

Better training, testing, and validation splits should be used when creating and evaluating the
models. Only setting 4% of the LORFs in the dataset as testing data might have influenced
all the metrics negatively regarding their accuracies. A suggestion would be to use a split of
70/15/15, ensuring that most of the data would be used for training and that a significant
number of sequences would also be used for testing and validation.

Using DNA directly instead of going through amino acids, could also improve, among others,
the computational speed of the models. while nucleotides would need three entries for everyone
in the amino acid chains; since only 4 nucleotides exist compared to the 20 amino acids, it
could be represented much sparser. If using a convolutional model in this way, a stride of three
should probably be implemented to avoid using different reading frames than the ORF itself
would suggest. Alternatively, some sort of embedding layer should be used to better represent
the non-independent relationships between the different amino acids.

One of the most interesting tests that I didn’t have the opportunity to run would be to see
how the general model operated on datasets with specifically labeled Pfam data. To see if the
general models were able to detect uncommon Pfam entries, even though its training data was
as skewed as it was.

It might also result in a more precise model if the Pfam entries were limited to just families. As
it is now, it tries to learn if any given sequence maps onto a larger pattern observed in proteins
with the same evolutionary origin and identifies smaller units within the DNA. Constructing
many different models proved to be consuming given many Pfam entries. If these were limited
to the broader categories of family or domain instead of the general entry, it might be found
that different models work better for one type than the other.

While it would require a non-trivial amount of effort, the results indicate that creating a filtering
mechanism would not be impossible as detecting Pfam entries in Lorfs seem to be something
machine learning models are able to do.

5.5 Use of AI

Artificial intelligence tools were an important part of the process of writing this master thesis.
The AI tools used in specifics were Grammarly, Chatgpt, and Github Copilot.

While no part of this thesis was written by an AI, the AI tool Grammarly was used to correct
spelling mistakes and improve sentence structures. In addition, OpenAis chatGPT was used
to provide feedback on some paragraphs, and some of the suggested improvements were imple-
mented. These often involved making more precise statements and reducing the words used to
talk around topics.

While AI was used to help in the writing process, it was during the coding that it provided
the most support. Gitbubs copilot has become an integrated process in how I code, by making
quick sketches of how I image specific functions and methods to use. Indirectly, it has also made
me better at documenting my code, even if that documentation is often worded as instructions.

ChatGPT was also helpful with the coding, particularly when trying to write R code to process

Page 54 of 59

the LORFs and HMMER outputs into proper datasets, as this is a language I am less familiar
with. It also served as a sparring partner when considering new approaches to handle the
numerous issues that appeared throughout the process. One such example was how running
multiple datasets in sequence caused the computer to run out of memory and thus crash; asking
how I could automate the process using a bash script provided me some rough outlines that I
then improved on to make a working script for the software. At some point, I also experimented
with using Pytorch for the models, as this worked better for my computer setup regarding GPU;
ChatGPT was able to ”translate” the models from tensorflow to Pytorch. This implementation
was not used, however, but similar ones were.

Page 55 of 59

Chapter 6
Conclusion

Throughout this thesis, the results of 6 different models trained for each of the 31 created
datasets, have been presented and analyzed. The main differences between these datasets have
been how their content has been sampled from a much greater dataset and what is set as
their precise target value. The datasets include the general dataset that samples as wide as
possible regarding taxonomy, the order-based models that sampled from specific portions of the
taxonomy and the specific Pfam datasets that sampled from the whole dataset used using the
presence of specific Pfam entries as target variables.
The result showed variation between the different models, from which some key insights could be
gathered. Firstly, the neural network models could identify specific Pfam entries in sequences
with high accuracy. These performances were then reduced for each additional Pfam entry
added. The general dataset, containing a much larger number of Pfam entries, performed
significantly worse. The general set models were, however, able to easily identify around 60%
of the entries, with one provided assumption being that this could be because only some Pfam
entries saw significant representation.
It was therefore suggested that a new model should be created that used a better sampling
of Pfam entries instead of reaching for a wide taxonomy. What accuracy levels such a model
would reach is unknown, but it could be better. As the multi-layered CNN model performed the
best on the cumulative dataset, it would be a good point to start from when creating a better
model. Exploring the potential of using other encoding formats, such as nucleotides instead of
amino acids, as well as fine-tuning the model in regards to hyperparameters, are also suggested
as potential regions of improvement.
The performance is as good as it was suggested that creating a tool that would be able to filter
out ORFs not likely to contain Pfam hits is a genuine possibility, even when no such tool was
created from the models created in this thesis.
While the Tsetlin machine has earlier shown promise when detecting genes from DNA sequences,
the results found in the work presented in this thesis do not show the same for Pfam entries
in amino acid sequences. The TM underperformed compared to all other models tested on all
datasets. While this doesn’t show that the Tsetlin machine is unsuited for analyzing amino acid
sequences in regards to identifying Pfam entries, it suggests that if it isn’t unsuited, a different
approach has to be chosen.

56

Bibliography

[1] NHGRI. The Cost of Sequencing a Human Genome. 2021. url: https://www.genome.
gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost.

[2] J. D. WATSON and F. H. CRICK. “Molecular structure of Nucleic Acids: A structure for
deoxyribose nucleic acid”. In: Nature 171.4356 (Apr. 1953), pp. 737–738. doi: 10.1038/
171737a0.

[3] Patricia Sieber, Matthias Platzer, and Stefan Schuster. “The definition of open reading
frame revisited”. In: Trends in Genetics 34.3 (Mar. 2018), pp. 167–170. doi: 10.1016/j.
tig.2017.12.009.

[4] Lars Snipen and Kristian Hovde Liland. The Cost of Sequencing a Human Genome. 2023.
url: https://cran.r-project.org/web/packages/microseq/microseq.pdf.

[5] Matthew Cobb. “60 years ago, Francis Crick changed the logic of biology”. In: PLOS
Biology 15 (Sept. 2017), e2003243. doi: 10.1371/journal.pbio.2003243.

[6] Eugene Koonin. “Does the central dogma still stand?” In: Biology direct 7 (Aug. 2012),
p. 27. doi: 10.1186/1745-6150-7-27.

[7] Jaina Mistry et al. “Pfam: The Protein Families Database in 2021”. In: Nucleic Acids
Research 49.D1 (Oct. 2020). doi: 10.1093/nar/gkaa913.

[8] Sean R. Eddy. “Accelerated profile HMM searches”. In: PLoS Computational Biology 7.10
(Oct. 2011). doi: 10.1371/journal.pcbi.1002195.

[9] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16. ACM, Aug. 2016. doi: 10.1145/2939672.2939785. url:
http://dx.doi.org/10.1145/2939672.2939785.

[10] John M. Jumper et al. “Highly accurate protein structure prediction with AlphaFold”.
In: Nature 596 (2021), pp. 583–589.

[11] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL].

[12] Ole-Christoffer Granmo. The Tsetlin Machine – A Game Theoretic Bandit Driven Ap-
proach to Optimal Pattern Recognition with Propositional Logic. 2021. arXiv: 1804.01508
[cs.AI].

[13] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “Extending the
Tsetlin Machine With Integer-Weighted Clauses for Increased Interpretability”. In: IEEE
Access 9 (2021), pp. 8233–8248. doi: 10.1109/ACCESS.2021.3049569.

[14] Ole-Christoffer Granmo et al. The Convolutional Tsetlin Machine. 2019. arXiv: 1905.
09688 [cs.LG].

[15] Yva Jacob Sandvik. “Evaluation of machine learning approaches for prediction of protein
coding genes in prokaryotic DNA sequences”. In: (2022).

57

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1016/j.tig.2017.12.009
https://doi.org/10.1016/j.tig.2017.12.009
https://cran.r-project.org/web/packages/microseq/microseq.pdf
https://doi.org/10.1371/journal.pbio.2003243
https://doi.org/10.1186/1745-6150-7-27
https://doi.org/10.1093/nar/gkaa913
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.01508
https://arxiv.org/abs/1804.01508
https://doi.org/10.1109/ACCESS.2021.3049569
https://arxiv.org/abs/1905.09688
https://arxiv.org/abs/1905.09688

[16] Kristian Hovde Liland et al. “Tsetlin Machine in DNA sequence classification : Application
to prokaryote gene prediction / A match made in silico”. In: 2023 International Symposium
on the Tsetlin Machine (ISTM). 2023, pp. 1–7. doi: 10.1109/ISTM58889.2023.10454960.

[17] Nuala A. O’Leary et al. “Reference sequence (RefSeq) database at NCBI: current status,
taxonomic expansion, and functional annotation”. In: Nucleic Acids Research 44.D1 (Nov.
2015), pp. D733–D745. issn: 0305-1048. doi: 10.1093/nar/gkv1189. eprint: https:
//academic.oup.com/nar/article-pdf/44/D1/D733/9482930/gkv1189.pdf. url:
https://doi.org/10.1093/nar/gkv1189.

[18] Amani A. Al-Ajlan and Achraf El Allali. “CNN-MGP: Convolutional Neural Networks
for Metagenomics Gene Prediction”. In: Interdisciplinary Sciences, Computational Life
Sciences 11 (2018), pp. 628–635. url: https://api.semanticscholar.org/CorpusID:
56895112.

[19] Ole-Christoffer Grandmo and Per-Arne Andersen. Tsetlin Machine Unified (TMU) - One
Codebase to Rule Them All]. 2024. url: https://cran.r-project.org/web/packages/
microseq/microseq.pdf.

[20] Sondre Glimsdal and Ole-Christoffer Granmo. Coalesced Multi-Output Tsetlin Machines
with Clause Sharing. 2021. arXiv: 2108.07594 [cs.AI].

[21] Olga Tarasyuk et al. “Systematic Search for Optimal Hyper-parameters of the Tsetlin
Machine on MNIST Dataset”. In: 2023 International Symposium on the Tsetlin Machine
(ISTM). 2023, pp. 1–8. doi: 10.1109/ISTM58889.2023.10454969.

[22] François Chollet et al. Keras. https://keras.io. 2015.

[23] The UniProt Consortium. “UniProt: the Universal Protein Knowledgebase in 2023”. In:
Nucleic Acids Research 51.D1 (Nov. 2022), pp. D523–D531. issn: 0305-1048. doi: 10.
1093/nar/gkac1052. eprint: https://academic.oup.com/nar/article-pdf/51/D1/
D523/48441158/gkac1052.pdf. url: https://doi.org/10.1093/nar/gkac1052.

[24] Ebubekir BUBER and Banu DIRI. “Performance Analysis and CPU vs GPU Comparison
for Deep Learning”. In: 2018 6th International Conference on Control Engineering &
Information Technology (CEIT). 2018, pp. 1–6. doi: 10.1109/CEIT.2018.8751930.

Page 58 of 59

https://doi.org/10.1109/ISTM58889.2023.10454960
https://doi.org/10.1093/nar/gkv1189
https://academic.oup.com/nar/article-pdf/44/D1/D733/9482930/gkv1189.pdf
https://academic.oup.com/nar/article-pdf/44/D1/D733/9482930/gkv1189.pdf
https://doi.org/10.1093/nar/gkv1189
https://api.semanticscholar.org/CorpusID:56895112
https://api.semanticscholar.org/CorpusID:56895112
https://cran.r-project.org/web/packages/microseq/microseq.pdf
https://cran.r-project.org/web/packages/microseq/microseq.pdf
https://arxiv.org/abs/2108.07594
https://doi.org/10.1109/ISTM58889.2023.10454969
https://keras.io
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/nar/gkac1052
https://academic.oup.com/nar/article-pdf/51/D1/D523/48441158/gkac1052.pdf
https://academic.oup.com/nar/article-pdf/51/D1/D523/48441158/gkac1052.pdf
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1109/CEIT.2018.8751930

Appendix A
Table of R-packages, for instance

R-package name Version Purpose of use

Dplyr 1.1.4 Manipulate dataframes

Microseq 2.1.6 Read Fasta files

Micropan 2.1 Read HMMER outputs

Table A.1: R-packages used to construct datasets

Python-package
name

Version Purpose of use

Pandas 2.2.0 Handling the dataframes

Numpy 1.26.4 Manipulating arrays

Scikit-learn 1.4.0 Metrics and confusion matrix

Matplotlib 3.8.4 Plotting

Seaborn 0.13.2 Plotting

XGBoost 2.0.3 Implementing XGBoost model

Tensorflow 2.15.0.post1Implementing neural networks

TMU 0.8.2 Implementing Tsetlin machines

Table A.2: Python packages used for both models and vizualisations

59

	Introduction
	Theory
	From DNA to protein
	DNA
	The Central dogma
	Protein Families
	Taxonomy

	Pfam and HMMER
	Hidden Markov Models
	Pfam
	HMMER

	Machine Learning Theory
	XGBoost
	Neural Networks
	Tsetlin Machine
	Weighted clauses

	Metrics
	Accuracy
	Precision
	Recall
	F1

	Related Work

	Method
	The original data
	Constructing the datasets
	The General Dataset
	The Order-Based Datasets
	The Specific-Pfam Datasets

	Data preprocessing
	Limiting the Length
	Ballancing the Data
	One hot encoding

	Creating Training, Test and Validation Sets
	Creating Models
	Tsetlin Machine
	Convolutional Tsetlin Machine
	XGBoost
	Dense neural network
	Convolutional Neural network

	Code

	Results
	General
	Order
	Corynebacteriales and Lactobacillales
	Summary Order-based

	Specific Pfam Domains
	Distrubution of Pfam domains
	One Pfam domain
	Multiple Pfam Domains
	Pfam 1-20
	Results of epochs for TM
	Summary specific Pfam

	Summary results

	Discussion
	Model results analysis
	Capturing patterns
	Length of sequences
	Selecting a Model

	Tsetlin machine results
	Number of epochs
	Number of clauses
	Alternatives to direct amino sequences
	Convolutional models

	Creating a better model
	Choosing an approach
	Challenges
	Reevaluating the model

	Reflections on methodology
	Use of AI

	Conclusion
	Table of R-packages, for instance

