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ABSTRACT

In the dynamic arena of automated image captioning, significant resources, including
energy and manpower, are required to train state-of-the-art models. These models,
though effective, necessitate frequent and costly retraining to maintain or enhance their
performance. Our Motivation in this thesis has been to explore alternative methods that
improve caption accuracy, addressing the unsustainable need for constant retraining.

This study assesses the performance of existing state-of-the-art models like BLIP, and
GPT-2 on two key datasets: COCO and FLICKR. It evaluates their effectiveness in
generating captions and their potential biases across different image types, using metrics
such as BLEU, METEOR, and ROUGE. Our primary goal in this thesis was to
develop innovative approaches that produce captions more akin to human-
generated text, aiming to surpass existing models in quality and efficiency
without the need for retraining. We introduced a technique called ‘Weighted
Summarization,’ combining artificial neural networks with strategic refinements to
leverage the strengths of pre-trained models and set a new benchmark in automated
image captioning.

Our approach achieved scores on the COCO dataset (BLEU: 0.322, METEOR:
0.328, ROUGE-1 f: 0.452, ROUGE-2 f: 0.187, ROUGE-L f: 0.415) and on
the FLICKR dataset (BLEU: 0.181, METEOR: 0.300, ROUGE-1 f: 0.348,
ROUGE-2 f: 0.107, ROUGE-L f: 0.311), demonstrating enhanced performance
over existing models and improved caption quality.

This thesis shares detailed results and discussions about these findings, suggesting a new
method that could make automated captioning more accurate and effective, providing a
robust foundation for future research and development in this field.
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CHAPTER 1

INTRODUCTION

Artificial intelligence continues to transform various technological domains, not-
ably through the integration of computer vision and natural language processing
(NLP). These disciplines converge significantly in the field of image captioning—a
technology designed to interpret visual content and translate it into descriptive
text. This capability closely mimics human visual and cognitive abilities to per-
ceive, understand, and verbalize visual inputs.

Image captioning has evolved significantly over the years from basic associations
of images with tags and labels to the sophisticated task of describing images with
complete, contextually relevant sentences. Early methods often relied on simple
keyword matching or basic object recognition (Blei and Jordan, 2003; Barnard et
al., 2003)[1], [2].

There have been more advancements in this field such as Vinyals et al. (2015)
introduced the idea of using deep learning to generate novel captions that not only
recognize the objects within an image but also understand their interrelations and
the overall scene context [3]. However, these generation-based approaches often
grapple with the linguistic nuances and the challenge of producing contextually
appropriate and syntactically correct sentences[2].

A pivotal shift in the approach to image captioning is highlighted by Hodosh,
Young, and Hockenmaier (2013) who propose framing the task as a ranking prob-
lem rather than a generation task. They argue that by ranking a predefined pool
of accurate and diverse captions according to their relevance to the given images,
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systems can more effectively and efficiently associate images with the most fitting
descriptions. This method not only simplifies the evaluation of captioning systems
by comparing their outputs against a benchmark dataset of image-caption pairs
but also addresses the semantic accuracy of the captions used [2].

Figure 1.1: A sample image from
the COCO dataset showing diverse and
complex scenes. Image credit: COCO
Dataset [4]

.

Figure 1.2: A sample image and cap-
tions from the FLICKR dataset,Image
credit: FLICKR Dataset [5].

Despite the advancements in algorithms and neural network architectures, creat-
ing captions that encapsulate deep semantic meanings of images, capturing their
contextual nuances as well as the interplay of elements within remains a challen-
ging task. This thesis explores several advanced models—such as BLIP, GPT-2,
and Pix2Struct—that are at the forefront of the image captioning domain that
leverages complex neural architectures to enhance the quality and relevance of
generated captions and checks the performance of these models on datasets like
COCO 1.1 and FLICKR 1.2.

This study further examines how integrating techniques using summarization ap-
proaches and assigning weights based on decisions from artificial neural networks
can improve performance metrics and caption quality, aiming to synergistically
combine outputs from various models to refine the overall effectiveness of image
captioning systems. Through the implementation of comprehensive evaluation
metrics like BLEU, ROUGE, and METEOR, this research endeavors to set new
benchmarks in automated captioning technologies, thus improving both the pre-
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cision and contextual alignment of generated text [2], [6]–[8].

1.1 Background

Building upon the initial discussion in the introduction, this section delves into
the historical and technical progression of Image captioning. The journey from
simple rule-based methods to sophisticated artificial intelligence models showcases
a significant evolution in technology. Early systems were limited by their simplistic
algorithms, but the field has dramatically transformed with the introduction of
deep learning techniques.

Convolutional neural networks (CNNs), pivotal for detailed image analysis, and
recurrent neural networks (RNNs), crucial for processing sequences of data, have
significantly boosted the effectiveness of captioning systems [9], [10]. The milestone
study by Vinyals et al. demonstrated the potential of neural networks to match
images with accurate textual descriptions, establishing a new standard for how
machines understand and describe visual content [3].

The availability of extensive datasets such as COCO and FLICKR has fueled ad-
vancements by providing diverse sets of images and captions, essential for training
more advanced captioning algorithms [2], [5], [11]. These improvements have not
only enhanced the precision of object recognition in images but have also deepened
the understanding of the contexts in which these objects appear, facilitating the
generation of more nuanced and contextually rich captions.

Image captioning involves several essential steps:

1. Preprocessing: Images are adjusted in size and quality to facilitate optimal
feature extraction.

2. Feature Extraction: CNNs are employed to detect and encode vital visual
features into a compact form [12].

3. Sequence Modeling: RNNs or newer models like transformers translate
these features into textual descriptions, often utilizing attention mechanisms
to focus adaptively on different parts of the image [13].

4. Postprocessing: The resulting captions are polished to ensure they are
grammatically sound and stylistically coherent.
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The advent of advanced image captioning and object detection technologies has
significantly influenced various real-world applications, ranging from enhancing
accessibility tools for the visually impaired to improving content management on
digital platforms and streamlining indexing in digital archives.

Automatic image captioning has also been advanced by Karpathy and Fei-Fei
(2015), who developed a model that effectively combines convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs) to describe segments of im-
ages. Their approach has significantly contributed to the development of technolo-
gies that assist the visually impaired by providing real-time, descriptive narratives
of visual content, thereby enhancing accessibility [14].

The work by Johnson et al. (2016) on Dense Captioning introduces fully convolu-
tional localization networks that can detect and describe multiple elements within
images. This capability is crucial for the efficient indexing of images in digital
archives, where precise and comprehensive tagging of numerous image features
enhances retrievability and usability. By providing dense, contextual captions
that describe various aspects of images, such technologies facilitate more nuanced
searches and better organization of visual data in archives[15].

This background aims to seamlessly connect the technical advancements with their
practical applications, setting the stage for a detailed exploration of how enhance-
ments in model capabilities could revolutionize automated image captioning.

1.2 Problem Statement

While image captioning has made significant advancements, existing models still
face substantial challenges in generating semantically rich and contextually accur-
ate captions [16]. Despite their proficiency in detecting individual objects, these
systems often struggle to weave these elements into cohesive narratives that ac-
curately reflect human perception [3], [17]. This constraint not only affects their
usefulness in areas like assistive devices for visually impaired individuals and auto-
mated content creation, but it also underscores a significant technological shortfall.
Current models, although sophisticated in object recognition, frequently fall short
when it comes to understanding complex interactions and contextual subtleties
within images [16], [18]. Furthermore, the integration of emotional and them-
atic depth in captions remains a significant hurdle, as these aspects require an
understanding beyond the visual cues presented [19].
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A key issue lies in the resource-intensive nature of training large-scale models,
which involves significant computational costs and manpower [15]. Most state-of-
the-art models rely on extensive retraining over massive datasets, a process that
is not feasible or sustainable, especially when rapid adaptation to new data or
contexts is required. This constant updating not only raises the cost of operations
but also puts a heavy load on computer systems. Additionally, as the complexity of
images increases, there is a growing need for smarter and more sensitive captioning
systems. This highlights the importance of finding more sustainable and efficient
methods. We are challenged to rethink how we’ve been doing things and to come
up with new, innovative solutions. This research seeks to address these challenges
by exploring innovative methods that enhance caption accuracy and depth without
the need for extensive retraining.

The focus is on developing techniques that improve upon traditional metrics like
BLEU, METEOR, and ROUGE [6]–[8], [15], while also pushing the boundaries
of how models understand and interpret complex visual scenes. The ultimate
goal is to achieve a level of image understanding better than the state-of-the-art
models by performing better in the evaluation metrics considered in this thesis
as compared to other models. To achieve this we need to devise an approach,
particularly with Artificial neural networks and weighed-based summarization to
reduce dependency on retraining, lower operational costs, and increase
the efficiency of generating high-quality image captions.

1.3 Research Questions

Based on the unresearched areas of devising approaches that enhance the quality
of captions using modern technologies, the following research question was framed:

”Can we develop a method that does not rely on retraining, operates at
a low cost, and generates captions that are more semantically accurate
than those produced by BLIP and GPT-2?”.

So we explored advanced methodologies in automated image captioning, focusing
on the integration of different models(BLIP, GPT-2) and summarization tech-
niques, as well as evaluating their effectiveness across diverse datasets like COCO
and FLICKR. To answer this, we formalized four major questions.

1. Q1: Are advanced machine learning models like BLIP and GPT-
2 predisposed to generating more accurate and semantically rich
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captions for certain categories of images?

• This question investigates whether state-of-the-art image captioning
models exhibit biases towards specific categories of images such as
”people and daily activities,” ”animals and nature,” ”urban and rural
settings,” ”objects and interiors,” ”vehicles and transportation,” and
”food and beverages.” A classifier will be utilized to categorize data-
set images into these groups, enabling an analysis of the captioning
models’ performance across varied genres to determine any significant
disparities in accuracy and semantic depth.

2. Q2: How do advanced machine learning models like BLIP and
GPT-2 enhance the semantic accuracy and contextual relevance of
image captions across varied datasets?

• This question seeks to evaluate the effectiveness of cutting-edge machine
learning models in generating image captions that are not only accurate
but also contextually appropriate across different types of images. It
aims to understand the strengths and limitations of these models in
handling diverse and complex visual scenes.

3. Q3: Can integrating outputs from multiple captioning models through
advanced summarization techniques and neural networks improve
the semantic depth of generated captions?

• This question explores the potential of novel summarization strategies
that combine outputs from multiple models to produce captions that
better reflect the depth and nuances of the visual content. It also ex-
amines which integration techniques are most effective and under what
conditions.

4. Q4: To what extent do advanced summarization strategies and
ANN findings, aimed at addressing the research questions, surpass
state-of-the-art models in terms of semantic accuracy and evalu-
ation metrics for generated captions?

• This question assesses the impact of novel summarization strategies
and ANN-guided adjustments on the improvement of semantic accuracy
and evaluation metrics for image captions. It seeks to quantify the
degree of enhancement over state-of-the-art models like BLIP and GPT-
2. Furthermore, the question aims to identify which evaluation metrics
indicate the most significant increase and what these findings imply
about how well the suggested method is working to advance the field of
automated picture captioning.
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1.4 Objectives

Our objectives for this research work include evaluating leading models like BLIP
and GPT-2 for their ability to produce semantically rich and contextually detailed
captions on diverse datasets and also evaluating their biases towards certain im-
age categories and finally exploring innovative approaches, such as the integration
of Artificial Neural Networks (ANNs) to determine the weights for effective sum-
marization and to assess their potential in improving performance metrics. These
efforts are intended to refine captioning technologies, ensuring that generated de-
scriptions are both technically sound and practically useful.

1.5 Structure of the Thesis

This thesis is systematically divided into several chapters, each addressing a dif-
ferent aspect of automated image captioning. The Introduction chapter sets the
stage for the research by defining the problem and stating the objectives. The
Literature Review provides an exhaustive survey of the existing models and
methodologies in image captioning. In the Theoretical Framework, the prin-
ciples of artificial neural networks and their application in caption generation,
particularly focusing on models like BLIP, GPT-2, and Pix2Struct, are discussed
along with selection among various summarizers and evaluation metrics for Im-
age captioning. The Methodology chapter details the practical steps involved
in dataset preparation, preprocessing, and constructing an ANN model to pre-
dict an effective caption generation model along with the weighted summarization
approach and post-processing. Also, Bayesian analysis is employed for effective
validation of the results. Results chapter presents the data and findings of the
methodologies applied, while the Discussion critically analyses these results to
the initial research questions and objectives. Finally, the Conclusion summarizes
the key findings and discusses the implications and potential avenues for future
research. For further detail and practical application, all codes and files used in
this research are available in a GitHub repository at this link: GitHub Link with
latest commit 7b0a9a9. Read the readme.md file provided for more info.

In this chapter, we have introduced the concept of image captioning, outlined its
historical development, and highlighted significant prior work in this field. We
have also detailed our motivation, goals, and the research questions that this thesis
aims to address. Moving forward, the next chapter will delve into a comprehensive
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literature review, discussing key methodologies and the evolution of image cap-
tioning and summarization techniques, from foundational approaches to the latest
advances.
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CHAPTER 2

LITERATURE REVIEW

In the Literature Review, we review key methodologies and recent progress in
image captioning and summarization techniques. We begin by examining found-
ational image captioning approaches such as CNNs for feature extraction and
advances to sophisticated models like RNNs, attention-based systems, and various
innovative models. We also cover different summarization strategies, distinguishing
between extractive and abstractive methods, and the recent developments made
for more relevant summarization.

2.1 Image Captioning Techniques

Automated image captioning skillfully combines the fields of computer vision and
natural language processing (NLP), turning visual information into written de-
scriptions. This section examines a spectrum of captioning models, evaluating
traditional frameworks and innovative systems like I-Tuning, ClipCap, Camel,
Oscar, Vivo, and SMALLCAP.

9



2.1.1 CNNs and Feature Extraction

Convolutional Neural Networks (CNNs) have continued to evolve, offering sub-
stantial improvements in the feature extraction phase of image captioning. The
ResNet architecture introduced by He et al. (2016) marked a significant develop-
ment by enabling the training of much deeper networks through residual learning
[20]. This approach helps mitigate the vanishing gradient problem, allowing the
network to learn richer and more sophisticated visual features crucial for detailed
image captioning.

In the domain of image captioning, Vinyals et al. (2017) utilized CNNs to encode
image data into a dense vector representation before passing it to an RNN for
generating descriptive text [21]. Their model demonstrates how deep CNNs can
be effectively paired with sequence models to produce coherent captions that not
only the objects in an image but also the context in which they exist.

Further advancements by Anderson et al. (2018) introduced the concept of bottom-
up and top-down attention mechanisms in CNNs, which allow the model to focus
on salient regions of the image dynamically during the caption generation process
[18]. This method enhances the relevance of the generated captions by linking
specific visual cues to corresponding textual descriptions.

More recently, Cornia et al. (2020) explored how CNNs can be integrated with
graph neural networks to capture relationships between objects in an image, thereby
providing a more structured semantic understanding that benefits caption gener-
ation [22]. Their approach underscores the potential of using CNNs not just for
feature extraction but also for constructing a semantic map of the image, which
significantly aids in the generation of accurate and context-aware captions.

These studies illustrate the progression of CNNs from basic feature extractors to
complex systems capable of providing a deep semantic understanding necessary
for generating meaningful image captions.

2.1.2 RNNs, LSTMs, and Sequential Processing

Recurrent Neural Networks (RNNs) and Long Short-TermMemory networks (LSTMs)
form the backbone of sequential processing in image captioning, enabling models
to handle the temporal dynamics of language. The attention mechanism, as pi-
oneered by Xu et al. (2015), revolutionized this field by allowing models to focus
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adaptively on different parts of an image during the caption generation process
[17]. This approach aligns with techniques used in this study, focusing on how
objects interact within their scenes to generate contextually rich captions.

Building on these foundations, You et al. (2016) introduced a semantic attention
model that combines LSTMs with a dynamic visual attention mechanism to en-
hance the relevance of generated captions by focusing on salient objects and their
attributes [23]. This method emphasizes the importance of not just recognizing
objects but understanding their semantic roles in images.

The Transformer model by Vaswani et al. (2017) further advanced sequential
processing by eliminating recurrent layers and utilizing multi-headed self-attention
to process all words or image regions simultaneously [13]. This architecture has
been adapted for image captioning by Herdade et al. (2019), who introduced
geometric attention mechanisms to maintain spatial relationships between objects
in the captions, thus enhancing the descriptiveness and accuracy of the generated
text [24].

These advancements underscore a significant shift towards more sophisticated
models that not only process visual and linguistic elements effectively but also
contextualize the interactions within the image, a crucial aspect evaluated in this
thesis.

2.1.3 Transformers Based

Attention mechanisms in transformers have significantly advanced the capabilities
of image captioning models by allowing for dynamic allocation of focus on relev-
ant parts of an image. For instance, Li et al. (2019) introduced an area attention
mechanism that broadens the focus beyond single points to larger areas, enhancing
the model’s ability to describe complex scenes [25]. Additionally, a notable ad-
vancement is the attention-aligned Transformer, introduced by Fei (2023), which
addresses the ”deviated focus” problem in existing attention mechanisms. This
model enhances the grounding of correct image regions for word generation by
employing a perturbation-based self-supervised learning approach, which refines
attention distribution without needing manual annotation [26].

Transformers have significantly improved the depth and precision of image caption-
ing by analyzing multiple image parts simultaneously. Carion et al. (2020) presen-
ted DETR, a Transformer-based model that directly predicts bounding boxes and
object classes in a single stage, which has been adapted to improve spatial aware-
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ness in captioning tasks [27]. Moreover, Zhou et al. (2021) introduced a trans-
former model that incorporates cross-modal features to enhance the correlation
between visual elements and textual descriptions, enriching the semantic content
of generated captions [28].

2.1.4 Innovative Models

Recent developments in image captioning have introduced innovative models like
OSCAR and VIVO, which are reshaping traditional approaches by integrating
advanced semantic analysis techniques. OSCAR (Object-Semantic Alignments
and Representations) utilizes object tagging within images to enhance the semantic
richness of the captions. This method leverages pre-trained object detectors to tag
visible objects in the images, which are then used as anchor points for generating
more contextually accurate captions. The incorporation of these object tags into
the language model allows OSCAR to achieve superior performance by grounding
the textual elements more firmly in the visual content [29].

Similarly, the VIVO (Visual Vocabulary Pre-training) model extends the capability
of image captioning systems by embedding richer semantic information during
the training process. VIVO enhances traditional captioning approaches by pre-
training on a large-scale dataset to learn visual-semantic embeddings effectively.
This enables the model to comprehend and articulate complex image contents with
heightened accuracy and nuance, thus approaching a more human-like perception
in generated captions [30].

Also, developments in image captioning have introduced several notable models,
each bringing unique strengths to the table. I-Tuning is an image captioning
approach that fine-tunes pre-existing language models using a smaller dataset
of image-caption pairs. This method leverages the vast knowledge captured by
language models pre-trained on extensive text data, adapting it to the specific
task of image captioning with minimal additional training. I-Tuning utilizes a
frozen language model combined with image inputs to enhance captioning capab-
ilities [31]. On the other hand, CaMEL (Captioning with Meta-Learning) utilizes
meta-learning principles to adapt effectively to the image captioning task. By
applying meta-learning algorithms, CaMEL can quickly learn from a small num-
ber of examples, making it adept at generating captions for new, unseen images
after training on a limited dataset. This approach allows for rapid adaptation
and robust caption generation in diverse scenarios[32][33]. Also, ClipCap com-
bines the capabilities of CLIP (Contrastive Language–Image Pretraining) with
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GPT (Generative Pretrained Transformer) to create captions. CLIP’s strength in
understanding visual concepts combined with GPT’s language generation prowess
allows ClipCap to produce accurate and relevant image captions [34]. Lastly,
SMALLCAP represents an efficient method of generating image captions by us-
ing retrieval augmentation to streamline the process. It focuses on optimizing
cross-attention layers, resulting in a model with fewer parameters yet high cap-
tioning performance [33].

In the field of image captioning, these models are examined for their ability to
produce descriptive and relevant captions using standard evaluation metrics like
BLEU and METEOR. Below is the table 2.1 including the scores for these models

Table 2.1: Comparison of Image Captioning Techniques and Models evaluated on
COCO Dataset

Model BLEU METEOR

CNN-LSTM[35] 0.27 0.23

OSCAR[29] 0.35 0.29

VIVO[30] 0.34 0.28

SMALLCAP[33] 0.37 0.27

I-Tuning Large[33] 0.34 0.29

CaMEL[33] 0.39 0.29

I-Tuning Medium[33] 0.35 0.28

ClipCap[33] 0.33 0.27

I-Tuning Base[33] 0.34 0.28

The exploration of these technologies provides a comprehensive view of the evolu-
tion and current state of automated image captioning.

2.2 Summarization Techniques

Text summarization techniques can be broadly categorized into two main ap-
proaches: extractive summarization and abstractive summarization. Extractive
summarization involves selecting and concatenating the most important sentences
or phrases from the source text to form a summary. In contrast, abstractive sum-
marization aims to generate a concise paraphrase of the original content, often
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producing new sentences that were not in the original text [36], [37].

2.2.1 Extractive Summarization

Extractive summarization identifies key sentences or segments within a text and
combines them to create a summary. This method often uses criteria such as
the location of a sentence within the text, term frequency, and how unique cer-
tain words are across documents to pinpoint important sentences[38]. Erkan and
Radev (2004) for instance, introduced the concept of implementing a graph-based
centrality scoring approach that identifies the most salient sentences to improve
summary coherence [39]. Yasunaga et al. (2017) further introduced a novel graph-
based model that improves sentence selection accuracy by evaluating how sentences
interconnect within the text, thereby enhancing the structural comprehension of
the document [40]. Zhong et al. (2020) have advanced this area by incorporat-
ing machine learning classifiers that assess sentence importance more effectively,
using vast amounts of training data to refine selection accuracy [41]. Narayan et
al. (2018) explored a reinforcement learning approach that optimizes the selec-
tion process by rewarding the system for selecting sentences that contribute most
effectively to a coherent summary [42].

2.2.2 Abstractive Summarization

Abstractive summarization methods synthesize the underlying concepts of texts to
generate concise new formulations that capture the essence of the original content
[38]. This approach has been significantly advanced by deep learning techniques,
particularly with the development of sequence-to-sequence models that use at-
tention mechanisms to focus on relevant text segments. Devlin et al. (2019),
for instance introduced BERT, a transformer-based model that uses bidirectional
training of transformers to generate language understanding that can be fine-tuned
for tasks like summarization [43]. Brown et al. (2020) developed GPT-3, an even
larger transformer model that excels in generating coherent text based on a given
prompt, including summarization tasks [44]. Raffel et al. (2020) introduced the T5
model, which pre-trains on a diverse dataset to handle various NLP tasks, includ-
ing summarization, by converting all text-based language problems into a unified
text-to-text format [45]. Furthermore, Lewis et al. (2020) presented BART, which
fine-tunes the transformer approach by pre-training a denoising autoencoder to re-
construct text, aiding the generation of fluent and accurate summaries [46]. Zhang
et al. (2020) developed PEGASUS, which introduces a novel pre-training objective
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focused on gap sentences, optimizing the model’s ability to predict and generate
relevant content for abstractive summarization [47].

Table 2.2: Comparison of ROUGE-1 and BLEU-1 Scores for some summarization
models. Data credit: [48]

Model ROUGE-1 BLEU-1

Extractive

PositionRank 0.3341 0.2507

LexRank 0.3245 0.2334

TextRank (pyTextRank) 0.3126 0.2310

Abstractive

distilBART-CNN-12-6 0.4292 0.3625

BART-large-CNN 0.4270 0.3156

PEGASUS-CNN dailymail 0.4186 0.3259

In a recent study, Abstractive vs. Extractive Summarization: An Experimental
Review,[48] Giarelis et al. present a comprehensive comparison of extractive and
abstractive summarization techniques using various performance metrics such as
ROUGE and BLEU scores. A snippet of their findings is represented in table 2.2,
showcasing the ROUGE-1 and BLEU-1 scores for selected models, which illustrate
significant differences in performance between extractive and abstractive methods
concluding that abstraction summarization produces better-summarized content
as compared to the extractive summarization.

2.2.3 Hybrid Approaches

Additionally, as natural language processing has advanced, there has been a greater
emphasis placed on hybrid summarizing models, which combine extractive and ab-
stractive methods to maximize the coherence and accuracy of generated summar-
ies. These hybrid approaches begin by utilizing extractive techniques to pinpoint
specific sentences or phrases that are important for comprehending the primary
concepts in a text. The collected content is then paraphrased and reorganized
using an abstractive model in an effort to provide a summary that captures the
main idea of the original text while being clear and succinct.

Hsu et al. (2018), for instance, presented a unified model that makes use of both
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extractive and abstractive elements[49]. In order to penalize misalignment between
sentence-level attention used for extraction and word-level attention required for
abstraction, their model uniquely integrates an inconsistency loss function dur-
ing training. By ensuring that words in less attended phrases are less likely to
be generated, this method helps to keep attention on the most important de-
tails. A solid human evaluation revealed that their system achieved state-of-the-
art ROUGE scores and was the most readable and informative summarization on
the CNN/Daily Mail dataset by training end-to-end with the inconsistency loss
along with original losses of extractive and abstractive models[49].

Similarly, a pointer-generator network that effectively combines extractive features
with abstractive capabilities was created by See et al. [50]. This model incorpor-
ates a pointing mechanism that enables the system to copy words straight from
the source text, combined with a coverage technique to prevent repetition, to ad-
dress frequent problems in abstractive summarization, such as factual errors and
repetitions. As a result, on the CNN/Daily Mail summary test, the robust sum-
marization tool performed at least two ROUGE points better than the abstractive
state-of-the-art[50].

In this chapter, we reviewed established and emerging methodologies in image cap-
tioning and summarization techniques. We explored various models and strategies,
from fundamental architectures to advanced systems, and discussed their effect-
iveness in creating relevant captions. Moving forward, Chapter 3, ’Theoretical
Framework,’ will delve into the specifics of Artificial Neural Networks (ANNs),
from their basic structures to complex configurations, and their application in im-
age captioning, with a focus on modern generation techniques like BLIP, GPT-2,
and Pix2Struct.
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CHAPTER 3

THEORETICAL FRAMEWORK

In the Theoretical Framework, we explore the foundational and advanced aspects
of Artificial Neural Networks (ANNs), discussing their evolution from simple per-
ceptrons to complex multi-layer networks, along with key concepts like activation
functions and optimization techniques and their relevance to tasks such as im-
age captioning. We also examine modern caption generation techniques including
BLIP, GPT-2, and PIX2STRUCT, alongside their implications in generating de-
scriptive text from images. Additionally, we address summarization techniques,
highlighting their importance in captioning, what model we have selected, and on
what basis, concluding with a review of metrics used to assess the effectiveness of
image captioning and summarization methods.

3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the hu-
man brain, widely used in machine learning and artificial intelligence to emulate
complex decision-making processes. These networks are fundamental to modern
AI applications, ranging from image recognition to natural language processing
[51].
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3.1.1 Neural Network Fundamentals and Perceptrons

Neural networks are modeled after the biological neural networks found in animal
brains. The basic unit of a neural network, the neuron, includes dendrites as input
receivers, a cell body, and an axon that transmits signals to other neurons. This
biological inspiration is abstracted in artificial neural networks where neurons are
simulated by nodes in a network, as illustrated in Figure 3.1.

Figure 3.1: Diagram of a biological neuron showing the cell body, dendrites, axon, and
axon terminals.

Each artificial neuron receives input signals and processes them through a weighted
sum which is then passed through an activation function to produce an output.
The perceptron, conceptualized in the 1950s by Frank Rosenblatt, represents the
simplest form of a feedforward neural network, which is fundamentally a single-
layer neural network. Figure 3.2 illustrates a basic perceptron setup.

The perceptron computes its output y using the formula:

y = f

(
n∑

i=1

wixi + b

)
(3.1)

where xi are inputs, wi are the associated weights, b is a bias term, and f is an
activation function. The activation function, often a step function in basic per-
ceptrons, determines the output based on whether the weighted sum reaches a
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Figure 3.2: Illustration of a perceptron showing inputs with weights, the summation
function, and output through a step function.

certain threshold. More advanced neural networks utilize different types of ac-
tivation functions like sigmoid, tanh, or ReLU to introduce non-linearity into the
network, enabling them to learn more complex patterns [51].

The development and evolution of perceptrons have paved the way for more com-
plex architectures such as multi-layer perceptrons (MLPs) and modern deep learn-
ing networks, which consist of multiple layers of neurons and are capable of captur-
ing high-dimensional patterns in data, far surpassing the capabilities of single-layer
perceptrons [52].

3.1.2 From Perceptrons to Multi-Layer Networks

The inherent limitations of single-layer perceptrons, particularly their inability
to solve non-linear problems such as the XOR dilemma highlighted by Minsky
and Papert [53], necessitated the development of more sophisticated architectures.
Multi-layer perceptrons (MLPs) address these challenges by incorporating multiple
layers of neurons, usually composed of an output layer, an input layer, and one or
more hidden layers. This structure allows MLPs to create complex representations
and solve non-linear problems by learning hierarchical features.
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3.1.2.1 Activation Functions

To enable these networks to capture non-linear relationships, MLPs employ non-
linear activation functions. These functions are essential because they give the
network non-linear characteristics, which enable it to recognize complicated data
patterns:

• Sigmoid: σ(x) = 1
1+e−x , which outputs values between 0 and 1, making it

suitable for binary classification tasks [54].

• ReLU: f(x) = max(0, x), known for allowing models to train faster and more
effectively by overcoming problems like the vanishing gradient issue [55].

To complement the basic activation functions, several other types are frequently
employed, each with unique characteristics and applications:

• Tanh (Hyperbolic Tangent): The Tanh function, given by tanh(x) = ex−e−x

ex+e−x ,
outputs values between -1 and 1. This range makes it particularly effective
for tasks where negative values have semantic meaning [56].

• Leaky ReLU: This variant of ReLU is designed to address some of its lim-
itations by allowing a small, non-zero gradient when the input is less than
zero f(x) = max(0.01x, x). This helps maintain the gradient flow during
training, which can prevent the dying ReLU problem [57].

• Softmax: Often used in the final layer of a classifier, the Softmax function
σ(z)i = ezi∑

j e
zj assigns decimal probabilities to each class in a multi-class

problem, ensuring the total sum of these probabilities equals 1 [58].

3.1.2.2 Learning and Optimization

MLPs learn by adjusting the synaptic weights to minimize the error between
the predicted and actual outputs. This learning process typically uses the back-
propagation algorithm, a powerful method for efficiently computing gradients of
the loss function concerning the weights [59]. Combined with optimization tech-
niques such as gradient descent, backpropagation updates weights to minimize the
network’s loss function, effectively training the network to make accurate predic-
tions.
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The cross-entropy loss function, frequently used in binary classification tasks,
quantifies the cost of predicting probabilities divergent from the actual class labels:

L(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (3.2)

This function is particularly effective in scenarios where decisions are categorical,
and it helps in penalizing incorrect classifications more severely [51].

Recent advances in network architecture and learning algorithms have further
evolved MLPs into deeper and more complex networks, capable of tackling a wide
range of challenging tasks across various fields. The introduction of techniques
such as dropout[60], batch normalization[61], and advanced optimizers like Adam
have significantly improved the training dynamics and generalization capabilities
of MLPs [62].

3.1.3 Relevance of ANNs to Image Captioning

Figure 3.3: Redrawn image showing the Neural Image Caption Generator: an end-to-
end neural network combining a vision CNN and a language-generating RNN to produce
sentences from images, based on the description by Vinyals et al. [3].

Artificial Neural Networks (ANNs), particularly Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), are fundamental to the process
of image captioning. CNNs excel in extracting visual features due to their abil-
ity to hierarchically process pixel data, making them ideal for understanding the
structural and textural details of images. This capability allows them to act as
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feature extractors in image captioning systems where the visual context is critical
[12].

On the other hand, RNNs and their advanced variants like LSTMs and GRUs
play a crucial role in forming sequential data processing, making them suitable for
generating textual descriptions based on the features provided by CNNs. Their
ability to maintain internal states aids in handling the sequence of words in cap-
tions, aligning the generated text with the visual content [10], [63].

The integration of RNNs with CNNs in image captioning was popularized by the
architecture presented in ”Show and Tell: A Neural Image Caption Generator” by
Vinyals et al., also seen in figure 3.3, where a CNN encodes an image into a dense
vector, followed by an RNN that decodes it to form a coherent caption [3]. This
model laid the groundwork for further studies in the field, such as the introduction
of attention mechanisms. These mechanisms enable the model to dynamically
concentrate on particular areas of an image while generating captions, thereby
enhancing the relevance and precision of the captions produced.[17].

Further advancements were made with the introduction of transformer-based mod-
els such as BERT and GPT-3, which leverage vast amounts of data and soph-
isticated self-attention mechanisms to generate even more contextually relevant
captions. These models represent a significant shift from traditional RNNs to ar-
chitectures that can process inputs in parallel, enhancing both the efficiency and
effectiveness of caption generation [43], [44].

3.2 Caption Generation Techniques

In this study, we explored the performance of state-of-the-art models for generating
image captions across the COCO and FLICKR8k datasets. We selected models
such as BLIP, GPT-2, and PIX2STRUCT for their innovative approaches to image
captioning.

3.2.1 BLIP

BLIP (Bootstrapped Language Image Pretraining) utilizes advanced machine learn-
ing techniques to integrate visual and textual data, facilitating the creation of
robust image captions. Developed by Salesforce, BLIP leverages transformer ar-
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chitectures to efficiently process complex visual scenes and generate descriptive
text efficiently [64].

Architecture and Functionality: BLIP employs a dual-component setup, in-
corporating a vision encoder for image analysis and a language decoder for caption
generation. It is pre-trained on a vast array of image-text pairs, which enhances
its capability to contextualize and articulate visual inputs effectively [64].

3.2.2 GPT-2

GPT-2, developed by OpenAI, is a large-scale transformer-based model primarily
known for its abilities in natural language understanding and generation [65]. For
image captioning, GPT-2 can be effectively combined with Vision Transformers
(ViT) to generate descriptive captions from images.

Architecture and Functionality: GPT-2’s architecture is based on the trans-
former model, which utilizes self-attention mechanisms to process and generate
text based on input sequences. When adapted for image captioning, GPT-2 is
paired with a vision model like ViT, which encodes images into a sequence of
embeddings that GPT-2 can process [66].

3.2.3 Pix2Struct

Pix2Struct introduces a novel pretraining methodology for visual language under-
standing, focusing on the parsing of screenshots. Developed by Kenton Lee et
al., this model leverages an image-encoder-text-decoder architecture to transform
screenshots into detailed textual descriptions, enhancing tasks related to auto-
mated documentation and accessibility [67].

Key Features and Architecture: The architecture employs Vision Trans-
formers (ViT) integrated with modified Transformers for text decoding, adept at
interpreting complex visual and textual elements from web content and translating
them into coherent structured outputs[67].

Functionality and Application: Pretraining involves self-supervised learning
from screenshots and HTML pairs, aiming at capturing web page semantics effi-
ciently. This approach prepares Pix2Struct for applications requiring a nuanced
understanding of visual layouts, which is critical for technologies such as content
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accessibility and automated data extraction. Published in 2022, Pix2Struct marks
a significant advance in pretraining strategies for multimodal AI systems, with
potential applications in various fields requiring robust visual data interpretation
[67].

Despite its innovative approach, Pix2Struct was excluded from further de-
tailed analysis in this study due to its relatively lower performance in
preliminary evaluations compared to other models. The decision to
focus on models that provided more effective captioning in terms of
our evaluation criteria reflects our goal to highlight the most efficient
technologies in this thesis.

3.3 Evaluation metrics for Image captioning

Assessing the quality of machine-generated captions involves several metrics, each
offering unique insights into different aspects of caption quality:

3.3.1 BLEU (Bilingual Evaluation Understudy)

BLEU (Bilingual Evaluation Understudy) is widely used for evaluating the quality
of text that has been machine-translated from one natural language to another.
However, it has also been used in automated image captioning to assess how much
the n-grams in the created captions match with those in a set of reference captions:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(3.3)

where BP represents the brevity penalty to penalize short machine-generated cap-
tions, wn are the weights for each n-gram, and pn is the precision of n-grams. The
brevity penalty and weighting of n-grams aim to balance fluency and adequacy of
the generated text [6]. By default, BLEU@4 is used here, which considers
4-gram precision, and ranges from 0 to 1.
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3.3.2 METEOR (Metric for Evaluation of Translation with
Explicit Ordering)

METEOR (Metric for Evaluation of Translation with Explicit Ordering) seeks to
address some of the BLEU metric’s shortcomings by incorporating synonyms and
stemming, thus providing a more nuanced evaluation of translation or caption
generation:

METEOR =
10

R
· P ·R
αP + (1− α)R

(3.4)

P denotes precision, R recall, and α is a parameter set to balance precision and
recall, typically around 0.9. METEOR correlates better with human judgment by
considering synonymy and paraphrasing, aiming for semantic alignment beyond
exact word matches [8]. By default, Meteor score ranges from 0 to 1.

3.3.3 ROUGE (Recall-Oriented Understudy for Gisting Eval-
uation)

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metrics are essential
for evaluating the quality of text in tasks like summarization or caption genera-
tion by comparing machine-generated text to human-generated reference texts[7].
ROUGE metrics involve:

• Recall (R): This measures the fraction of the reference text’s n-grams that
are also found in the generated text, focusing on content coverage[7].

• Precision (P): This assesses the fraction of the generated text’s n-grams
that are found in the reference texts, reflecting the pertinence of information
provided[7].

• F-measure (F): This is the harmonic mean of precision and recall, balancing
both the completeness and the relevance of the generated text against the
references[7].

Specifically, ROUGE-L uses the longest common subsequence to calculate these
metrics, considering the order of words and providing a comprehensive measure of
quality:

25



ROUGE − L =
(1 + β2) · Plcs ·Rlcs

Rlcs + β2 · Plcs

(3.5)

where Plcs (Precision) and Rlcs (Recall) are based on the longest common sub-
sequence. The parameter β is typically set to prioritize recall over precision,
emphasizing the importance of not missing information over avoiding spurious
information[7].

For this research, we particularly utilize the ROUGE-F score because it provides
a balanced view of both recall and precision, making it ideal for assessing the
overall quality of the generated captions in comparison to the reference captions
[7]. The ROUGE-F score effectively combines the aspects of accuracy
and completeness, which are crucial for evaluating the semantic depth
of automated captions and it ranges from 0 to 1.

ROUGE-1F and ROUGE-2F refer specifically to the F-measure applied to uni-
gram and bigram overlap, respectively. These metrics are calculated as follows:

ROUGE − nF =
(1 + β2) · Pn ·Rn

Rn + β2 · Pn

(3.6)

where Pn and Rn denote the precision and recall of the n-gram (either unigram
for ROUGE-1 or bigram for ROUGE-2). These variations provide insights into
the textual similarity at different levels of granularity[7]. ROUGE-LF further
incorporates these measures to the longest common subsequence.

3.3.4 Cosine Similarity

Cosine Similarity is utilized to gauge the semantic similarity between vectors of two
sentences, providing a measure of how conceptually close the machine-generated
caption is to the reference captions. This measurement assesses the angle between
two vectorized sentences, represented as A and B, with a smaller angle indicating
a higher similarity. This metric is particularly useful in semantic analyses where
the exact choice of words is less critical than the overall conveyed meaning:

cosine similarity(A,B) =
A ·B
∥A∥∥B∥

(3.7)
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Cosine similarity evaluates how closely aligned the semantic contexts of two doc-
ument vectors are, making it invaluable for applications like document retrieval
and text similarity assessment[68]. It ranges from -1 to 1.

Together, these metrics provide a comprehensive toolkit for evaluating the perform-
ance of automated captioning systems, highlighting the field’s ongoing evolution
towards more nuanced and semantically aware evaluation methodologies.

3.4 Summarization Techniques

3.4.1 Importance in Captioning Context

In the realm of automated image captioning, the generation of accurate and con-
textually relevant captions presents a significant challenge, compounded by the
variability and complexity of visual content. Summarization techniques, partic-
ularly those based on advanced neural network models, offer a promising avenue
for refining and enhancing generated captions. By summarizing the captions pro-
duced by different models, it is possible to distill the essence of multiple descriptive
texts into a cohesive, singular narrative as we see further in our study. This pro-
cess not only streamlines the content but also potentially increases the relevance
and accuracy of the final caption, making summarization an invaluable tool in the
captioning context.

3.4.2 Selection and Evaluation of Summarizer Models

The choice of the summarizer is crucial in generating concise and semantically co-
herent captions. To identify the most effective summarizer for our study, we evalu-
ated several state-of-the-art models. Among the evaluated models, DistilBART-
CNN-12-61 emerged as the preferred choice for several reasons:

• High BLEU Score: DistilBART demonstrated a competitive BLEU score,
by indicating a strong alignment with human-written summaries.

• Parameter Efficiency: Despite having a considerable number of para-
meters, DistilBART balances model complexity and summarization quality

1https://huggingface.co/sshleifer/distilbart-cnn-12-6
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effectively.

• Versatility: Originally fine-tuned on a diverse dataset (CNN/Daily Mail),
DistilBART exhibits the versatility necessary for processing captions across
different domains.

This decision underscores our commitment to leveraging advanced NLP techniques
to close the gap between machine-generated text and human-like expressiveness.

DistilBART—a streamlined BART model optimized for the CNN/Daily Mail data-
set—proved to be very successful at summarizing image captions[69].
We also considered other summarization models but they were not as effective as
DistilBART, for more info see comparison table. E.1 in the Appendix. E.

The evaluation of these summarization techniques involved comparing their gener-
ated summaries against original captions from the COCO dataset, utilizing BLEU
scores as a quantitative measure of performance. This comparative analysis high-
lighted the nuanced capabilities of each model, with DistilBART’s summaries
achieving the highest BLEU scores.

3.4.3 Evaluation of Summarization Techniques

Evaluating text summarization extends beyond automated metrics to include qual-
itative assessments that reflect the summary’s utility and readability. While met-
rics such as ROUGE [7], BLEU [6], and METEOR [8] are standard for prelim-
inary assessments, they do not wholly capture the effectiveness of a summary in
conveying the intended message or its linguistic quality. This section discusses
comprehensive methods to evaluate summarization outputs effectively.

Human Judgment: When evaluating the quality of summaries, human reviewers
are essential. They provide insights into:

• Informativeness: Human evaluation provides informativeness and reliab-
ility of summaries.[70].

• Coherence and Fluency: The logical flow and readability of the text,
ensure that the summary is not only concise but also well-structured and
clear [71].
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Consistency and Fidelity:

• Factual Consistency: Evaluators check for factual accuracy, ensuring the
summary does not alter or misrepresent the information presented in the
source document [72].

• Coverage: This measures how well the summary covers key points and
topics from the original text, ensuring that no critical information is omitted
[73].

Hybrid Evaluation Approaches: Combining automated metrics with human
evaluations provides a balanced approach, leveraging the scalability of automated
methods and the nuanced understanding of human reviewers [74]. This method
ensures that the summaries are not only statistically valid but also practically
useful and engaging.

In this chapter, we explored the theoretical aspects of artificial neural networks,
their application in cutting-edge image captioning techniques, along with caption
generation models and various evaluation metrics. Building on this foundation, the
next chapter, ’Methodology’, outlines the practical steps we have taken to enhance
our captioning models and refine our evaluation metrics.
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CHAPTER 4

METHODOLOGY

In the Methodology chapter, we explain in detail the approach employed in the
analysis of our generated caption and evaluation metric improvement in image
captioning. We begin with an overview of the datasets used, namely COCO and
FLICKR8K, explaining their significance and the specifics of data preparation for
each. Then we move further with explaining the overall approach pipeline and
explaining each step procedure in detail that was employed. Lastly, we discuss the
use of Bayesian analysis to compare models namely BLIP and GPT-2, detailing
the calculation of likelihood and posterior probabilities to validate the research
findings.

4.1 Dataset Overview

4.1.1 COCO

The Common Objects in Context (COCO) dataset is a large-scale object detection,
segmentation, and captioning dataset. COCO has several features that distinguish
it from other image datasets. It contains over 330K images, 1.5 million object
instances, and 80 object categories, making it one of the most comprehensive
datasets for computer vision research [11].
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COCO is designed to spur the development of image recognition, segmentation,
and captioning algorithms that are capable of understanding images in the context
of their natural environments. Unlike datasets that focus on object classification,
COCO provides multiple object annotations per image, which include object seg-
mentation, object categorization, and captioning, offering a richer set of data for
training and evaluating AI models [11].

The inclusion of natural language captions for each image also makes COCO
uniquely suited for tasks that bridge computer vision and natural language pro-
cessing, such as image captioning. These captions provide a human-generated
description of the scenes depicted in the images, covering a wide range of objects
and actions [75].

For this thesis, the COCO dataset is used as the primary corpus for training the
ANN and evaluating the image captioning models. The diversity of the dataset,
coupled with its rich annotations, provides an ideal setting for exploring advanced
machine-learning methodologies for generating descriptive text from visual inputs.

COCO Dataset in This Study: Due to constraints on computational resources
and the limited timeframe available for this study, our experiment utilizes a subset
of the COCO 2014 dataset. Specifically, we have selected a set of 1,100 images,
each accompanied by 5 human-generated captions, to evaluate the image caption-
ing models and train the ANN developed for prediction discussed in the coming
sections.

4.1.2 FLICKR8K

In addition to leveraging the comprehensive COCO dataset, our methodology
equally encompasses the FLICKR8k dataset to conduct a parallel analysis. The
FLICKR8k dataset, comprising 8,000 images sourced from FLICKR, each with five
unique English language captions, serves as a critical component of our study [2].
This dataset is especially valued for its focus on everyday scenes and objects, cap-
tured in a variety of settings, offering a complementary perspective to the diverse
imagery found in COCO.

The application of our approach to both the COCO and FLICKR8k datasets
allows for a multifaceted evaluation of our models. This dual-dataset strategy is
designed to uncover common patterns and insights in the evaluation metrics for
transformers, ensuring that our findings are not individual to a single dataset’s
characteristics.
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The methodology applied to the FLICKR dataset mirrors that of the COCO data-
set in terms of feature extraction, and the subsequent training phases and predic-
tion. This parallel processing ensures that any observed performance trends can
be attributed to the models’ capabilities rather than differences in methodology
or dataset handling.

FLICKR8k Dataset in This Study: Similarly, for the FLICKR dataset, we
have applied the same criteria to select an equivalent subset of 1,100 images, each
with its corresponding five captions. This selection ensures that our analysis across
datasets is consistent and comparable, facilitating a direct examination of model
performance and generalization across different data sources.

Note that we also have explored other datasets, but due to their low performance of
generating captions and low scores on evaluation metrics, they were not considered
in further analysis. Refer Appendix. B for more info.

4.2 Overall Approach

The methodology adopted in this study unfolds through a sequence of distinct but
interrelated stages, as visualized in Figure 4.1. Beginning with a comprehensive
dataset preparation, we advance through data preprocessing and feature extrac-
tion before employing an Artificial Neural Network (ANN) to guide our caption
generation strategy.

Figure 4.1: Schematic overview of the methodological framework from dataset handling
to final caption generation.

Subsection 4.2.1 delineates the Data Preparation stage, where the COCO and
FLICKR datasets are curated for processing. In Subsection 4.2.2, we describe the
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Data Preprocessing and Feature Extraction process, leveraging a pre-trained
ResNet-50 model to obtain image features for ANN input.

TheANN Model (Subsection 4.2.2), instrumental in predicting the most effective
captioning model for an image, acts as a decision-making juncture. Depending on
the ANN’s output, either BLIP or GPT2 model’s caption is assigned more weight
in the Weighted Summarization step (Subsection 4.2.4). This innovative ap-
proach intelligently biases the summary towards the model deemed more accurate,
ensuring that the final caption reflects the most pertinent description of the image
content.

Finally, in Subsection 4.2.6, Post-Processing measures are employed to refine
the synthesized captions, enhancing their grammatical correctness and semantic
coherence. The result is a Final Caption that encapsulates the essence of the
visual data in a linguistically polished form.

Each subsection is accompanied by a detailed figure to enhance the reader’s un-
derstanding and provide a visual representation of the complex processes involved.
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4.2.1 Data Preparation

4.2.1.1 COCO Dataset

Figure 4.2: Detailed steps for COCO data preparation. The sample picture and cap-
tions are taken from the COCO dataset1.

The data preparation for the COCO dataset involved a structured approach that
began with the establishment of a dedicated directory, termed ’coco data’. The
COCO API is streamlined to access the dataset’s extensive annotations (Figure
4.2). The process encompassed downloading the dataset and unzipping the train,
test, and validation data and annotation files.

Post-download, the COCO API was leveraged to process the annotations and
retrieve image IDs, and corresponding metadata—essential elements for the sub-
sequent training of our models. This comprehensive preparation equipped the
images ready to be processed for augmentation and further processing.

1https://cocodataset.org/
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4.2.1.2 FLICKR Dataset

The FLICKR dataset preparation required a custom-tailored solution due to the
absence of a dedicated API. A custom dataset class was developed to manage the
images and their associated captions effectively (Figure 4.3). This involved the
extraction of images and captions, establishing a well-organized dataset ready for
further processing.

Figure 4.3: Detailed steps for FLICKR data preparation.The sample picture and cap-
tions are taken from the COCO dataset2.

The subsequent stages entailed applying necessary image transformations to stand-
ardize the data according to the requirements of our image captioning models, thus
ensuring that the dataset was optimally formatted for efficient model processing.

4.2.2 ANN for Transformer Prediction

This section details the construction of an Artificial Neural Network (ANN) model
which predicts the most effective caption generation model for an image, based on
its extracted features. This prediction helps in determining whether BLIP or GPT-
2 would generate a superior caption.
Note that we also explored other machine learning models apart from ANN, more
details are in Appendix. D.

2https://cocodataset.org/
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4.2.2.1 Preprocessing and Feature Extraction with ResNet-50

We begin with the preprocessing and feature extraction phase, where a pre-trained
ResNet-50 model plays a pivotal role. The model is prepared for translating com-
plex image data into a rich feature vector, setting the stage for the subsequent
prediction task. This preprocessing step takes an image as an input and pro-
duces the output as a transformed tensor consisting of image features ready
to be fed as input to the ann explained next.

Figure 4.4: Preprocessing for ANN (Image Augmentation and Resnet-50). The sample
picture is taken from the COCO dataset3.

Figure 4.4 illustrates the initial processing steps performed on the images, such as
resizing and center cropping, followed by normalization which adapts the images
to the requirements of ResNet-50, ensuring optimal feature extraction [20].

4.2.2.2 ANN Architecture

The ANN model, depicted in Figure 4.5, is composed of a sequential stack of layers,
including a dense layer with 256 neurons and ReLU activation with a subsequent
dense layer with 128 neurons and ReLU activation followed by another dense layer

3https://cocodataset.org/
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with 64 neurons, also with ReLU activation and a final output layer with a single
neuron employing sigmoid activation for binary classification [51]

Figure 4.5: Architecture of the ANN model showing three sequential dense layers and
a final sigmoid output layer for binary classification

This multi-layered architecture allows the model to learn complex patterns in the
feature data, leading to a binary prediction that signifies the suitability of either
the BLIP or GPT-2 model for generating captions. This step takes the image
features as input(produced from the previous subsection) and produces a label
based on which system’s captions have a higher average cosine similarity
as an output.

4.2.2.3 Label Assignment Based on Cosine Similarity:

Binary labels for training the ANN are determined by comparing the cosine sim-
ilarity between captions generated by BLIP and GPT-2 and the original dataset
captions. A label (1 or 0) is assigned to indicate which model’s caption is se-
mantically closer to the human-authored text, serving as the output for this step.
The TfidfVectorizer from Scikit-learn is used to transform the captions into vec-
torized form, allowing for the computation of cosine similarity. (input: captions
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text, output: cosine similarity scores).

4.2.2.4 Training of ANN

The ANN undergoes a rigorous training process, iterating over several epochs us-
ing a dataset of 1100 image+captions. The data is divided into training (input)
and testing (output) sets to validate the model’s generalizability. Throughout the
training, performance metrics such as loss and accuracy are monitored (input:
feature vectors and labels, output: model performance metrics) to pre-
vent overfitting and measure model accuracy. This trained ANN model underpins
the weighted summarization approach that follows.

4.2.3 Caption Generation

For generating the caption from BLIP, GPT-2, or PIX2STRUCT, a common
pipeline was developed and used. Here is a pseudocode describing it:

Algorithm 4.1 Generate Image Captions Using Pre-trained Models

1: Require: Model checkpoint path, Image path
2: procedure LoadModel(modelCheckpoint)
3: Model ← Load model from modelCheckpoint
4: Tokenizer ← Load tokenizer from modelCheckpoint
5: end procedure
6: procedure GenerateCaption(imagePath)
7: Image ← Load image from imagePath
8: Inputs ← Preprocess image (Image, returnTensors=”pt”, padding=True)
9: Outputs ← Model.generate(Inputs)
10: Caption ← Decode tokens from Outputs
11: return Caption
12: end procedure
13: imagePath← ”path to your image.jpg”
14: caption← GenerateCaption(imagePath)
15: print ”Generated Caption:”, caption

This pseudocode serves as a template for utilizing different models to generate
captions. It encapsulates the essential steps from image loading and processing to
caption generation and decoding. The ”model-checkpoint” should be replaced with
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the specific model’s checkpoint names such as ‘Salesforce/blip-image-captioning-
large‘, ‘nlpconnect/vit-gpt2-image-captioning‘, or any other relevant model iden-
tifier depending on the specific architecture being used.

4.2.4 Weighted Summarization Approach

This section outlines the utilization of an advanced summarization technique that
exploits the ANN model’s predictions to enhance the caption quality based on the
performance of the BLIP and GPT-2 models. This innovative approach dynam-
ically assigns weights to the outputs of these models, reflecting their reliability as
determined by the ANN.

Figure 4.6: Weighted Summarization process combining captions from BLIP and GPT-
2, based on their dynamic weights from the ANN predictions.

As depicted in Figure 4.6, the summarization process involves combining the gen-
erated captions from both BLIP and GPT-2 models. The weight assigned to each
caption is determined by the ANN prediction, where the caption from the more
accurate model is given more significance. The selected caption is then concaten-
ated with a portion of the caption from the other model, resulting in an input that
is rich in information and diversity.
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4.2.4.1 Comprehensive Summarization

The comprehensive summarization strategy is thoroughly crafted to enhance the
summary by giving prominence to the more reliable caption as indicated by the
ANN’s prediction. In practice, this involves an empirical approach to weight-
ing, where the captions generated by GPT, when predicted to be superior, are
given double representation in the input to the summarization process compared
to those from BLIP. The weighted input then undergoes summarization using
the DistilBART model. This process is not arbitrarily determined but rather the
result of an experimental approach that explores various weight configurations to
establish the most effective balance for summarization. Through this, the summar-
ization model is able to amalgamate the captions, preserving the critical details
and generating a unified caption that resonates more closely with the intrinsic
content of the image.

4.2.4.2 Selective Word Integration and Summarization

Conversely, the selective word integration method incorporates a fixed number
of words(taken from the start of the caption) from the less weighted model’s
caption into the entire caption from the more heavily weighted model. The integra-
tion level is varied to determine the most effective combination that still preserves
valuable context. This concatenated text is then summarized by DistilBART to
produce a caption that synergizes the strengths of both BLIP and GPT-2 models.

This weighted summarization approach, underpinned by empirical analysis and
ANN predictions, provides a nuanced method to synthesize captions that are not
only descriptive but also contextually rich and coherent.

4.2.5 Evaluation of Summarization Techniques

For both approaches, the summarized captions were compared with the original
dataset captions using cosine similarity to evaluate semantic alignment. The sum-
marized caption exhibiting the highest cosine similarity with any of the original
captions was documented, alongside the corresponding original caption and the
computed similarity score, into a JSON file. This file served as the foundation for
calculating average BLEU, METEOR, and ROUGE scores, facilitating a compre-
hensive evaluation of the summarized captions’ quality and their alignment with
human-generated annotations.
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4.2.5.1 Adapted Summarization Approach based on Datasets

Building upon the foundational work of developing an ANN model to predict
the more effective caption generator, different summarization techniques were ex-
plored to further enhance caption quality. The ANN model’s primary function is
to predict which caption generator, BLIP or GPT-2, is more likely to produce a
superior caption for a given image. This prediction informs the dynamic selection
of summarization techniques, which were empirically tested to identify the method
yielding the highest quality outcomes. For the COCO dataset, the optimal
strategy involved merging the complete caption from the model pre-
ferred by the ANN with a carefully chosen trio of keywords from the
other model’s caption. This choice was not arbitrary; it emerged from
methodical testing with different keyword counts to determine which
combination enriched the captions most effectively(see Section. 5.4 for
more info). In contrast, for the FLICKR dataset, weaving five keywords
from the less preferred model into the complete caption from the more
capable model proved to be the best course of action. This too was an
empirical decision, honed by observing the influence various keyword
numbers had on the summarization quality(see Section. 5.4 for more
info). Integrating five keywords struck the right chord between a de-
tailed and targeted analysis, consistently leading to the most advantage-
ous results in terms of precision and relevance. These insights underscore
the importance of dataset-specific strategies in achieving semantic richness and
cohesiveness in the generated captions.

4.2.6 Post-Processing for Semantic and Grammatical Re-
finement

Once captions have been generated and weighted through the summarization pro-
cess informed by the ANN model’s predictions, we engage in a step-by-step post-
processing stage. This stage refines the captions to enhance their semantic coher-
ence and grammatical integrity, as shown in Figure 4.7.

This essential phase ensures that the final, polished caption resonates with the
semantic intent of the original annotations while adhering to high linguistic stand-
ards.
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Figure 4.7: Post-processing steps consisting of Grammer check and Sentence Trimming

4.2.6.1 Procedure for Sentence Refinement

As depicted in Figure 4.7, the post-processing workflow encompasses a series of
pivotal actions to refine each summarized caption:

1. Grammar and Spelling Corrections: To ensure that the generated cap-
tions are free of grammatical errors and typos, we employ the language_tool_python
library. This powerful proofreading tool checks each caption for spelling and
grammatical inaccuracies, offering suggestions for corrections to create pol-
ished and error-free sentences.

Algorithm 4.2 Correct spelling and grammar in a caption

1: procedure CorrectSpellingAndGrammar(sentence)
2: Input: sentence
3: Output: Corrected sentence
4: tool← language tool python.LanguageToolPublicAPI(′en− US ′)
5: matches← tool.check(sentence) ▷ Identify spelling and grammar issues
6: corrected sentence← language tool python.utils.correct(sentence,matches)

▷ Apply corrections based on identified issues
7: return corrected sentence
8: end procedure

This function is a critical part of the post-processing pipeline, as it helps
to enhance the readability and credibility of the captions by correcting any
language errors. [76]
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2. Sentence Trimming and Cleaning: Further refinement involves pruning
unnecessary conjunctions, excising repetitive elements, and clarifying am-
biguous phrases, thereby bolstering readability and conciseness [77].This pro-
cess involves using the Python re library for regular expressions to identify
and modify specific patterns that enhance semantic clarity.

Algorithm 4.3 Trim and clean sentences in a caption for readability

1: procedure RemovePattern(sentence)
2: pattern← r”\s+is\s+a\s+\w+”
3: modified sentence← Substitute(pattern,′′ , sentence)
4: return modified sentence
5: end procedure
6: procedure RemoveTrailingPhrases(sentence)
7: Define a set of patterns for common trailing phrases
8: for each pattern in the set do
9: sentence← Substitute(pattern,′′ , sentence)
10: end for
11: return sentence
12: end procedure
13: procedure RemoveRepeatingParts(sentence)
14: Extract and process words in the sentence to eliminate repetitions
15: return The processed sentence without repetitions
16: end procedure

4.3 Summarization Scenarios

In addition to the above methods and steps discussed, we also tried an altern-
ative method of summarization technique that was later excluded because
our weighted summarization combined with ann gave better results.
However, the result and insights of these scenarios were utilized for the Bayesian
analysis(discussed next) which played a pivotal role in refining methodology and
validating the strengths and weaknesses of the state-of-the-art models utilized.
Hence it is important to discuss this.

Scenario 1: Comprehensive Summarization (see Fig. 4.8) begins with cap-
tions generated by BLIP (Sentence A) and GPT-2 (Sentence B), which are input
into an abstraction-based summarizer like DistilBART[69]. This process yields a
new summarized caption known as ”Summarized Combined Caption,” which may
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Figure 4.8: Flowchart for Scenario 1: Comprehensive Summarization.

include Sentences C, D, and E. These sentences are not simply combinations of
Sentences A and B but may contain new elements or phrasings introduced by the
summarizer. In this scenario, the whole summarized combined caption is com-
pared to the original captions. This comprehensive summarization aims to align
the machine-generated captions with human-generated annotations and is eval-
uated for semantic accuracy and linguistic quality using BLEU, METEOR, and
ROUGE scores.

Figure 4.9: Flowchart for Scenario 2: Segment-Based Analysis.

Scenario 2: Segment-Based Analysis (see Fig. 4.9) builds upon the initial
summarization by introducing a more granular, segment-based analysis. This ap-
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proach further dissects the summarized captions into individual segments (Sen-
tences C, D, and E) to enhance alignment with specific parts of the original
human-generated captions. Each segment is then separately compared with the
corresponding original captions, and the alignment is quantitatively evaluated us-
ing BLEU, METEOR, and ROUGE scores for each segment. This detailed com-
parison allows for a more nuanced understanding of how well each part of the
machine-generated summary captures the nuances of human language. These in-
dividual scores are then further averaged to get a single score for an image.

In the coming sections of the next chapters 5.3 and 6.2, we will see in detail how
these scenarios help in our analysis and address the research question in the thesis.

4.4 Bayesian Analysis for Model Comparison

Bayesian analysis provides a powerful framework for evaluating different models,
such as BLIP and GPT-2, by examining how well their generated image captions
align with captions created by humans and also further validating the superior
performance of one transformer over another showcased on the dataset tested.
This approach uses a combination of priors, likelihoods, and posterior probabilities
to quantitatively determine which model produces superior results.

The performance of the BLIP and GPT-2 models was assessed using the Bayesian
framework, which starts with priors based on the training data. These priors
represent our starting assumption about the effectiveness of each model before
any test data are observed.

Key Terms:

• Prior Probability (Prior): Represents our initial belief about the prob-
ability of a hypothesis before observing any evidence. It is denoted as P (H),
where H represents a hypothesis about a model’s performance.

P (H)

The concept of prior probability was formally introduced by Reverend Thomas
Bayes and is foundational in Bayesian statistics [78].

• Likelihood: Measures how probable the observed data is, given a particular
hypothesis or model. This is represented as P (D|H), whereD is the observed
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data.

P (D|H)

The likelihood function plays a crucial role in statistical inference and was
extensively developed by Sir Ronald A. Fisher [79].

• Marginal Likelihood (Evidence): Represents the probability of observing
the data under all possible hypotheses, serving as a normalization constant.
It is calculated using the following equation:

P (D) =
∑
H

P (D|H)P (H)

This concept was further explored by Harold Jeffreys, who introduced the
idea of using it as a tool for model comparison [80].

• Posterior Probability (Posterior): The probability of a hypothesis given
the observed data. It updates our knowledge after taking the evidence into
account and is calculated using Bayes’ Theorem:

P (H|D) =
P (D|H)P (H)

P (D)

An essential step in Bayesian inference is updating our prior beliefs in light
of new information, which is made possible by the Bayes Theorem. [78].

4.4.1 Calculation of Likelihood and Posterior Probabilities

Likelihood calculations were performed using the BLEU score to measure how
closely the machine-generated captions resemble those in the test dataset. The
BLEU score is a well-established metric in natural language processing that quan-
tifies the linguistic quality and relevance of the captions [6].

Calculation of Priors: Priors for both GPT-2 and BLIP were calculated based
on the average cosine similarity across the training dataset. This statistical founda-
tion supports our initial assumptions about each model’s caption generation capab-
ilities. We employed the TfidfVectorizer for vectorization and cosine similarity
from the scikit-learn library to compute these similarities.
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Algorithm 4.4 Calculate Priors

Require: data
1: data train, data test← SplitData(data, 0.8)
2: better count← {′blip′ : 0,′ gpt2′ : 0}
3: for item ∈ data train do
4: original captions← CombineCaptions(item[′original coco captions′])
5: generated captions← item[′generated captions′]
6: cos similarities← ComputeCosineSimilarities(generated captions, )
7: original captions
8: better model←MaxKey(cos similarities)
9: better count[better model] += 1
10: end for
11: prior gpt← better count[′gpt2′]

Sum(better count)

12: prior blip← better count[′blip′]
Sum(better count)

13:

14: return prior gpt, prior blip

Calculation of Posterior Probabilities: The posterior probabilities are cal-
culated by integrating the computed priors with the likelihoods derived from the
BLEU scores on the test data. This process offers a detailed quantitative analysis
of the effectiveness of each model in generating image captions.
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Algorithm 4.5 Calculate Posterior Probabilities

Require: data test, prior gpt, prior blip
1: bleu scores← {′blip′ : [],′ gpt2′ : []}
2: for item ∈ data test do
3: original caps← item[′original coco captions′]
4: for model ∈ [′gpt2′,′ blip′] do
5: bleu score← CalcBLEU(original caps, item[′generated captions′][model])
6: bleu scores[model].Append(bleu score)
7: end for
8: end for
9: likelihood gpt← Average(bleu scores[′gpt2′])
10: likelihood blip← Average(bleu scores[′blip′])
11: marg lik ← likelihood gpt× prior gpt+ likelihood blip× prior blip
12: posterior gpt← likelihood gpt×prior gpt

marg lik

13: posterior blip← likelihood blip×prior blip
marg lik

14:

15: return posterior gpt, posterior blip

Implementation Details: We implemented the Bayesian analysis using Python,
leveraging the NLTK library for text processing and Scikit-learn for computing co-
sine similarities and BLEU scores. The dataset was split into 80% training and 20%
testing. Based on our assumption the BLEU score, chosen as the likeli-
hood measure, indicates model alignment with original captions, serving
as a probabilistic measure of performance. Similarly, Cosine similarity
establishes priors, providing a baseline for each model’s caption genera-
tion capabilities before testing, thereby anchoring the Bayesian analysis
with quantifiable pre-test expectations.

In this chapter, we carefully outlined the approach and procedures utilized in our
study, starting with the selection and preparation of datasets. We detailed each
step of our analytical pipeline, from the initial data handling to the sophisticated
methodologies applied. Building on this groundwork, the next chapter ’Results,’
will present the findings from our methodology. We will analyze the performance
of our image captioning models across different datasets and evaluate how en-
hancements in summarization techniques with ANN have improved the caption’s
semantic accuracy and contextual relevance.
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CHAPTER 5

RESULTS

In the Result chapter, we delve into the findings from the methodology section
steps that we employed previously along with addressing the research questions
and framing our thesis objectives posed in this study. We start with analyzing
the performance of BLIP and GPT-2 along image categories, then evaluating their
performance on the datasets used, and exploring how their integration through
sophisticated summarization techniques with the use of ANN can enhance the
semantic accuracy and contextual relevance of generated image captions across
these diverse datasets.

5.1 Performance Across Image Categories in Data-

set

Before we dive deep into the results of the evaluation metrics of the state-of-the-
art models on datasets used, and discuss various techniques involving ANN and
weighted summarization to increase semantic accuracy, it is necessary to evaluate
the biases of these models towards different categories. Understanding these biases
is crucial in ensuring that the comparative analysis of the models is fair and takes
into account the inherent strengths and weaknesses of each model’s performance
across various contexts. This consideration is foundational to addressing the first
research question:Q1 and establishes a baseline for a fair comparison.
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We utilized the BART classifier, specifically the ”facebook/bart-large-mnli” model[81],
to categorize each image into predefined categories. This classification enabled
a targeted analysis of the average cosine similarity for the captions gener-
ated by the BLIP and GPT-2 models across distinct categories. The cosine
similarity, in this context, functions as a reliable measure of how closely the
machine-generated captions align semantically with the human-created counter-
parts. Again, TfidfVectorizer from Scikit-learn is employed for this similarity
calculation.

Figure 5.1: Category Distribution: COCO (1100 images)

The chart above 5.1 presents a comparative analysis of the average cosine sim-
ilarity scores achieved by the BLIP and GPT-2 models across various image cat-
egories in the COCO dataset. While both models show competitive performance
across categories such as ”food and beverages”, ”vehicles and transportation”, ”ob-
jects and interiors”, and ”animals and nature”, distinct variances emerge in cat-
egories ”urban and rural settings” and ”people and daily activities”. Here, GPT-2
outperforms BLIP with notably higher scores, recording a cosine similarity of
0.290 in ”urban and rural settings” and 0.258 in ”people and daily activities”,
compared to BLIP’s 0.119 and 0.181 respectively.
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These results are further confirmed and validated in the weighted summarization
approach 5.4. Specifically, in scenarios where GPT-2 was assigned more weight,
our approach to evaluation led to the highest evaluation metrics. This reinforces
the strategy of adapting model weights based on categorical performance to en-
hance the overall semantic alignment and accuracy of the generated captions, thus
confirming the effectiveness of GPT-2 in processing more complex or dynamic
scenes within the COCO dataset which is further validated and discussed at 6.3.1.

Figure 5.2: Category Distribution: FLICKR (1100 images)

Similarly, the chart depicted in 5.2 displays the average cosine similarity scores
for the BLIP and GPT-2 models across various image categories within the Flickr
dataset. This comparison reveals that BLIP consistently outperforms GPT-2
across all categories. Specifically, BLIP achieves its highest scores in ”animals
and nature”, ”objects and interiors”, and ”people and daily activities”, with cosine
similarities of 0.215, 0.203, and 0.182 respectively. Conversely, GPT-2’s best
performance is observed in the ”animals and nature” category, albeit with a lower
cosine similarity of 0.182. Even in GPT-2’s strongest category, BLIP maintains
a higher score of 0.215.
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These insights answer to our first research question Q1. as ”Yes,models
like BLIP and GPT-2 are certainly biased towards certain image cat-
egories of datasets” These insights are again further confirmed and validated
for our weighted summarization strategy, discussed in 5.4. When applying more
weight to BLIP’s in flickr dataset, our methodology yielded better alignment and
higher evaluation metrics. This approach has allowed us to fine-tune the semantic
accuracy of the generated captions, aligning with our objective to enhance the
overall quality of automated captioning, as elaborated further in 6.3.2.

Exclusion of PIX2STRUCT for this Analysis: Since PIX2STRUCT showed
a very low similarity score, it was not feasible to include this in our categorical
analysis. Hence, we excluded the results for PIX2STRUCT here.

5.2 Performance on Datasets

This section investigates the performance of advanced machine learning models,
specifically BLIP, GPT-2, and PIX2STRUCT, on the COCO and FLICKR data-
sets to establish a benchmark for semantic accuracy and contextual relevance in im-
age captions. The COCO dataset, known for its diversity and complexity, provides
a comprehensive platform for testing the capability of these models to generate con-
textually relevant captions across a wide array of images. Similarly, the FLICKR
dataset, with its unique everyday scenes, offers a distinct challenge, allowing us to
evaluate model adaptability and performance in more casual, real-world settings.

By establishing these benchmarks, the study aims to identify the strengths and lim-
itations of each model, thereby setting a foundation upon which our approaches
with ANN and weighted summarization techniques can be applied. This initial
analysis is crucial as it provides a baseline against which the improvements intro-
duced by integrating multiple model outputs can be measured. The results from
these evaluations not only address the second research question Q2 regarding
the enhancement of semantic accuracy and contextual relevance by current mod-
els but also set the stage for exploring innovative integration and summarization
techniques that will potentially elevate the quality of generated captions.
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5.2.1 COCO

For our analysis, each model(BLIP, GPT2, and PIX2STRUCT) generated one
caption for each of the 1,100 images in the dataset. These generated captions were
then compared against the five original human-annotated captions accompanying
each image to compute the evaluation metrics.

5.2.1.1 BLIP Generated Captions

Table 5.1: Average evaluation scores for BLIP generated captions on the COCO data-
set(1100 images).

Metric BLEU METEOR ROUGE-1 f ROUGE-2 f ROUGE-l f

Average
Scores

0.305 0.302 0.401 0.163 0.369

Table 5.1 shows BLIP’s good performance with a bleu, meteor, rouge-1 f, rouge-2
f, and rouge-l f score of 0.305,0.302,0.401,0.163 and 0.369 respectively, with
a single generated caption for each image being compared against five original
captions and slightly better performance in rouge-2f as compared to GPT-2.

5.2.1.2 GPT-2 Generated Captions

Table 5.2: Average evaluation scores for GPT-2 generated captions on the COCO
dataset(1100 images).

Metric BLEU METEOR ROUGE-1 f ROUGE-2 f ROUGE-l f

Average
Scores

0.317 0.327 0.404 0.158 0.369

As Table 5.2 indicates, GPT-2 marginally outperforms BLIP in bleu and met-
eor scores of 0.317 and 0.327 respectively, suggesting a slightly better grasp
of language intricacies. This model also paves the way for integrating advanced
techniques to refine the generated captions.
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5.2.1.3 PIX2STRUCT Generated Captions

Table 5.3: Average evaluation scores for PIX2STRUCT generated captions on the
COCO dataset(1100 images).

Metric BLEU METEOR ROUGE-1 f ROUGE-2 f ROUGE-l f

Average
Scores

0.054 0.165 0.227 0.029 0.206

Table 5.3 demonstrates that PIX2STRUCT lags behind its counterparts with lower
scores in bleu, meteor scores of 0.054,0.165 and rouge-1 f, rouge-2 f, rouge-l f
scores of 0.227,0.029 and 0.206 respectively highlighting its current limitations
in addressing the intricacies of the COCO dataset and underscoring the need for
enhanced approaches.

5.2.2 FLICKR

Similar to COCO, for the FLICKR dataset each model(BLIP, GPT2, and PIX2STRUCT)
generated one caption for each of the 1,100 images in the dataset. These generated
captions were then compared against the five original human-annotated captions
accompanying each image to compute the evaluation metrics.

5.2.2.1 BLIP Generated Captions

Table 5.4: Average evaluation scores for BLIP generated captions on the Flickr data-
set(1100 images).

Metric BLEU METEOR ROUGE-1 f ROUGE-2 f ROUGE-l f

Average
Scores

0.177 0.292 0.321 0.097 0.282

The BLIP model achieved a BLEU score of 0.177, a METEOR score of 0.292,
and a ROUGE-1 f, ROUGE-2 f, and ROUGE-l f score of 0.321, 0.097 and 0.282
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respectively on the Flickr dataset 5.4. While the BLEU score suggests room for
improvement, the high METEOR and ROUGE-1 f, ROUGE-2 f, and ROUGE-
L f scores indicate BLIP’s strong ability to create captions with high semantic
relevance.

5.2.2.2 GPT-2 Generated Captions

Table 5.5: Average evaluation scores for GPT-2 generated captions on the Flickr data-
set(1100 images).

Metric BLEU METEOR ROUGE-1 f ROUGE-2 f ROUGE-l f

Average
Scores

0.149 0.231 0.286 0.076 0.263

GPT-2’s scores on Flickr, detailed in Table 5.5, reveal a BLEU score of 0.149
and a METEOR score of 0.231, and a ROUGE-1 f, ROUGE-2 f, and ROUGE-l
f score of 0.286, 0.076 and 0.263 respectively, which are somewhat lower than
BLIP’s, indicating a potential difficulty of GPT-2 in adapting its language model
to the diverse imagery and casual context of the Flickr dataset. Also, GPT-2’s
lower performance on Flickr compared to COCO suggests possible limitations in
handling less structured visual data, prompting further investigation into how
model training and summarization techniques can be optimized for such scenarios.

5.2.2.3 PIX2STRUCT Generated Captions

Table 5.6: Average evaluation scores for PIX2STRUCT generated captions on the
Flickr dataset. (1100 images)

Metric BLEU METEOR ROUGE-1 f ROUGE-2 f ROUGE-l f

Average
Scores

0.042 0.154 0.215 0.027 0.198

PIX2STRUCT’s scores, as seen in Table 5.6, were considerably lower across all
metrics, highlighting the model’s limitations in effectively capturing the essence of
Flickr’s image content.
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Exclusion of PIX2STRUCT from Further Analysis: Despite PIX2STRUCT’s
innovative approach to image captioning, its performance on both the COCO and
Flickr datasets was significantly lower than that of BLIP and GPT-2. Given its
lower BLEU, METEOR, and ROUGE scores, PIX2STRUCT was excluded from
further analysis to focus on enhancing the performance of the more promising mod-
els. This decision was made to ensure that subsequent steps in the research, in-
cluding summarization and model comparison analyses, were based on the highest
quality input data, thereby avoiding the potential negative impact of including
lower-performing models on overall results.

5.3 Bayesian Analysis Results

This section extends the evaluation of machine learning models BLIP and GPT-2
through Bayesian analysis, offering a probabilistic understanding of their perform-
ance on the COCO and FLICKR datasets. This statistical method complements
the findings from the previous section, confirming the models’ effectiveness with
a focus on semantic accuracy and contextual relevance, directly addressing the
research questions Q1 and Q2 posed.

Both the datasets are analyzed in two scenarios, as described already in Sec. 4.3
Scenario 1 which refers to the comprehensive summarization in which the DistilBART
model was employed to summarize captions generated by BLIP and GPT-2 mod-
els. On the other hand Scenario 2 involves segment-based summarization, which
is splitting summarized captions into segments for individual comparison against
original dataset annotations. In both scenarios, summaries were compared against
original COCO and FLICKR dataset annotations using BLEU, METEOR, and
ROUGE scores, to assess semantic alignment, and the best caption with the highest
similarity was stored for further use in Bayesian analysis.

5.3.1 COCO Dataset Analysis

The results highlight GPT-2’s slightly better performance with higher posterior
probabilities of 0.5672 and 0.5458 in the two scenarios, compared to BLIP’s
0.4328 and 0.4542. This confirms GPT-2’s capability to generate more semantic-
ally rich captions, which aligns with its superior BLEU and METEOR scores of
0.317 and 0.327 respectively as compared to BLIP’s BLEU and METEOR scores
of 0.305 and 0.302 respectively which can be seen from the previous section. The
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Table 5.7: Bayesian Analysis Results on COCO Dataset(1100 images)

Parameter Scenario 1 Scenario 2

Prior for GPT-2 0.5482 0.5608

Prior for BLIP 0.4518 0.4392

Likelihood for GPT-2 0.3202 0.3054

Likelihood for BLIP 0.2964 0.3245

Marginal Likelihood 0.3095 0.3138

Posterior for GPT-2 0.5672 0.5458

Posterior for BLIP 0.4328 0.4542

marginal and likelihood values further substantiate their alignment with the com-
plex visual and textual requirements of the COCO dataset.

5.3.2 Flickr Dataset Analysis

Table 5.8: Bayesian Analysis Results on FLICKR Dataset(1100 images)

Parameter Scenario 1 Scenario 2

Prior for GPT-2 0.3136 0.3068

Prior for BLIP 0.6864 0.6932

Likelihood for GPT-2 0.1555 0.1538

Likelihood for BLIP 0.1772 0.1826

Marginal Likelihood 0.1704 0.1737

Posterior for GPT-2 0.2862 0.2715

Posterior for BLIP 0.7138 0.7285

BLIP’s performance on the Flickr dataset, with posterior probabilities of 0.7138
and 0.7285, significantly surpasses GPT-2’s 0.2862 and 0.2715. This valid-
ates the earlier evaluation results where BLIP achieved higher BLEU, METEOR,
ROUGE-1 f, ROUGE-2 f, and ROUGE-l f scores of 0.177, 0.292, 0.321, 0.097
and 0.282 respectively which can be seen from the previous section. These met-
rics underscore BLIP’s better adaptability to the casual and diverse imagery of
the Flickr dataset compared to GPT-2’s scores of 0.149 in BLEU, 0.231 in MET-
EOR, 0.286 in ROUGE-1 f, 0.076 in ROUGE-2 f and 0.263 in ROUGE-l f.
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The likelihood and marginal likelihood numbers support BLIP’s stronger semantic
alignment with the human-like understanding required for the Flickr dataset’s
captions.

The Bayesian analysis, combined with the detailed summarization scenarios, con-
clusively demonstrates how advanced machine learning models like BLIP and
GPT-2 enhance semantic accuracy and contextual relevance across varied data-
sets, directly addressing the second research question Q2. Additionally, this
analysis confirms the effectiveness of using advanced summarization strategies that
combine outputs from various models(discussed next), thereby enhancing the
richness and depth of the generated captions, which addresses the third research
question Q3. Overall, the Bayesian approach not only validates the effectiveness
of the implemented summarization techniques but also reinforces their role in ad-
vancing the field of automated image captioning, pointing to significant avenues
for future enhancements.

5.4 Results for Weighted Summarization Approaches

Following the analysis of BLIP, GPT-2, and PIX2STRUCT on the COCO and
FLICKR datasets, and validating these findings with Bayesian analysis, we now ex-
plore the impact of advanced summarization techniques aimed at enhancing these
initial results. This section examines how weighted summarization approaches can
further improve the performance of image captioning models, thereby increasing
the semantic alignment with the original human-generated captions. The weighted
summarization process involves adjusting the input based on weights assigned to
the outputs from different models, informed by an Artificial Neural Network (ANN)
that predicts the most effective model for each image. This predictive approach
establishes a solid foundation for determining which model’s output should be
given higher/lower weight. This section describes the different results of the ex-
perimental approach that explores various weight configurations to establish the
most effective balance for summarization.
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5.4.1 COCO Dataset

5.4.1.1 Weighted Caption Integration

This approach involves adjusting the input to the summarization process based on
the assigned weights to BLIP and GPT-generated captions on the COCO Dataset.
Heavier captions are fed twice as much as less heavy ones.

Table 5.9: Average evaluation metrics for weighted caption integration on COCO
dataset (1100 images)

Model
Weighing

BLEU METEOR ROUGE-1
F

ROUGE-2
F

ROUGE-
L F

BLIP heav-
ier

0.266 0.314 0.422 0.160 0.383

GPT-2
heavier

0.270 0.320 0.426 0.164 0.386

The table 5.9 reveals a slight advantage in all metrics for GPT-2 heavier integ-
ration, with Average BLEU 0.270, METEOR 0.320, ROUGE-1 F 0.426,
ROUGE-2 F 0.164, and ROUGE-L F 0.386 being marginally higher than
BLIP heavier, suggesting GPT-2’s refined capability in generating syntactically
and semantically richer captions.

5.4.1.2 Selective Word Integration

This method includes a fixed number of words(taken from starting of the caption)
from the less weighted model’s caption combined with the entire caption from the
more heavily weighted model.

As seen from Table. 5.10 , incorporating 3 words from BLIP’s captions yields
the highest Average BLEU 0.278, METEOR 0.313 and ROUGE-1 F 0.425,
indicating an optimal blend of additional context without overshadowing the main
caption’s semantic integrity.

In contrast, GPT-2’s captions demonstrate a consistent increase in semantic align-
ment as more words are included, peaking with 5 words, with Average BLEU
0.271, which can be seen from Table. 5.11 demonstrating better narrative flow
and coherence in the extended context.
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Table 5.10: Average evaluation metrics for selective word integration from BLIP on
COCO dataset (1100 images)

Words
from
BLIP

BLEU METEOR ROUGE-1
F

ROUGE-2
F

ROUGE-
L F

2 words 0.264 0.298 0.422 0.159 0.390

3 words 0.278 0.313 0.425 0.161 0.388

4 words 0.275 0.311 0.421 0.161 0.384

5 words 0.276 0.317 0.425 0.161 0.388

Table 5.11: Average evaluation metrics for selective word integration from GPT-2 on
COCO dataset (1100 images)

Words
from
GPT-2

BLEU METEOR ROUGE-1
F

ROUGE-2
F

ROUGE-
L F

2 words 0.222 0.316 0.428 0.156 0.396

3 words 0.270 0.295 0.427 0.162 0.392

4 words 0.268 0.297 0.425 0.161 0.389

5 words 0.271 0.306 0.428 0.163 0.392

5.4.2 Flickr Dataset

5.4.2.1 Weighted Caption Integration

Similar to COCO, This approach involves adjusting the input to the summarization
process based on the assigned weights to BLIP and GPT-generated captions on
the Flickr Dataset. Heavier caption are fed twice as much as less heavy one.

The GPT-2 heavier integration on Flickr shows a modest improvement across all
metrics, Table. 5.12 with Average BLEU 0.149, METEOR 0.305, ROUGE-1
F 0.365, ROUGE-2 F 0.105, and ROUGE-L F 0.330, indicating a better fit
for the casual imagery in the Flickr dataset compared to BLIP.
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Table 5.12: Average evaluation metrics for weighted caption integration on Flickr
dataset (1100 images)

Model
Weighing

BLEU METEOR ROUGE-1
F

ROUGE-2
F

ROUGE-
L F

BLIP heav-
ier

0.146 0.281 0.348 0.098 0.316

GPT-2
heavier

0.149 0.305 0.365 0.105 0.330

5.4.2.2 Selective Word Integration

This method includes a fixed number of words from the less weighted model’s
caption combined with the entire caption from the more heavily weighted model.

Table 5.13: Average evaluation metrics for selective word integration from BLIP on
FLICKR dataset (1100 images)

Words
from
BLIP

BLEU METEOR ROUGE-1
F

ROUGE-2
F

ROUGE-
L F

2 words 0.117 0.232 0.310 0.076 0.284

3 words 0.123 0.233 0.322 0.080 0.296

4 words 0.130 0.244 0.343 0.087 0.314

5 words 0.129 0.244 0.344 0.088 0.314

From Table. 5.13, including 4 words from BLIP optimizes the contextual rich-
ness, achieving Average BLEU 0.130, METEOR 0.244, ROUGE-1 F 0.343,
ROUGE-2 F 0.087, and ROUGE-L F 0.314.

From Table. 5.14, including 5 words from GPT-2 offers the best balance, yielding
Average BLEU 0.175 which is highest across all cases, METEOR 0.298,
ROUGE-1 F 0.328, ROUGE-2 F 0.099, and ROUGE-L F 0.288, demon-
strating a slightly better understanding of the image content compared to BLIP
in the selective word integration scenario.

The weighted summarization techniques applied to the COCO and FLICKR data-
sets enhance semantic accuracy and contextual relevance, directly addressing and
answering our third research question Q3. By comparing Table. 5.2 and
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Table 5.14: Average evaluation metrics for selective word integration from GPT-2 on
FLICKR dataset (1100 images)

Words
from
GPT-2

BLEU METEOR ROUGE-1
F

ROUGE-2
F

ROUGE-
L F

2 words 0.172 0.296 0.324 0.096 0.285

3 words 0.173 0.296 0.326 0.098 0.287

4 words 0.174 0.297 0.329 0.100 0.290

5 words 0.175 0.298 0.328 0.099 0.288

Table. 5.9 for COCO, Table. 5.4 and Table. 5.14 for FLICKR, we see that these
techniques not only improved BLEU, METEOR, and ROUGE scores but also
demonstrated the effectiveness of integrating multiple model outputs to deepen
the semantic richness of captions. This approach highlights the potential for ad-
vanced summarization to produce captions that better reflect human-like under-
standing, suggesting that current evaluation metrics may need refinement to fully
capture these improvements. Overall, these findings confirm that strategic model
integration can significantly advance the field of automated image captioning.

5.5 Results using the ANN Model

The ANN model was trained to predict which caption generator would produce a
caption more closely aligned with the human-annotated captions in the dataset.
This prediction informed a dynamic summarization strategy that adjusted the
emphasis on captions generated by the two models. The performance of the ANN
model was evaluated separately for the COCO and Flickr datasets.

5.5.1 Results on COCO Dataset

To better illustrate the process, let’s visit a specific example from our experiment
results on the COCO dataset. As the figure 5.3 shows once the image is prepro-
cessed and fed to ann, the ann predicts and gives weights to the generated captions
from blip which is ’a bike leaning on a pole’ and from GPT-2 ’a dog standing

1https://cocodataset.org/
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Figure 5.3: Overall Process flow example: COCO(sample image taken from the COCO
dataset1used.)

on a leash next to a bike’. These captions now undergo weighted summariza-
tion in which fully generated caption, in this case from GPT-2, and few-words(in
this case first 3 words) from BLIP generated caption are combined resulting in the
summarized caption ’a dog standing on a leash next to a bike leaning. a
dog’, since the caption is not very meaningful, we post-process it and get the final
caption as ’A dog standing on a leash next to a bike leaning’ which when
compared to the original caption produces a BLEU, METEOR, ROUGE-1 f,
ROUGE-2 f and ROUGE-l f scores of 0.669,0.807,0.800,0.600 and 0.800
respectively. This process goes on iterating over all the 1100 images considered
in the COCO dataset and the resulting average scores of evaluation metrics are
presented.

For the COCO dataset, the ANN model achieved a test accuracy of 73.39%,
demonstrating its capability to effectively predict the superior caption generator
based on image features. For more details on the learning curve over
epochs, refer to appendix:C.1.

The table 5.15 illustrates a notable enhancement in the quality of the captions,
as evidenced by the improved scores across all evaluation metrics. Without ANN
the highest average scores achieved on COCO were from GPT-2:BLEU 0.317,
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Table 5.15: Improvement in Evaluation Metrics with ANN-Based Weighted Summar-
ization for COCO Dataset(1100 images)

Metric Average Score

BLEU 0.322

METEOR 0.328

ROUGE-1 F 0.452

ROUGE-2 F 0.187

ROUGE-L F 0.415

METEOR 0.327 and ROUGE-1 f, ROUGE-2 f, ROUGE-l f scores of
0.404,0.158 and 0.369 respectively, with ANN the performance is indeed im-
proved with scores of Average BLEU 0.322, METEOR 0.328 and ROUGE-1
f, ROUGE-2 f and ROUGE-l f scores of 0.452,0.187 and 0.415 respect-
ively. This proves the effectiveness of the ANN model in guiding a more aligned
summarization strategy which increases the values of all the metrics considered in
this study.

5.5.2 Results on FLICKR Dataset

Similarly for the FLICKR dataset, let’s have a look at an example from our ex-
periment results as shown in Figure 5.4. Once a preprocessed image is ready, the
ANN assigns weights to the generated captions: BLIP’s ’there is a man and a
woman that are wearing mickey mouse ears’ and GPT-2’s ’a man and wo-
man standing next to each other’. The weighted summarization merges the
complete BLIP caption repeated twice with GPT-2 caption repeated only once(in
this case), forming the summarized caption ’There is a man and a woman
that are wearing mickey mouse ears. a man and woman standing next
to each other. The caption, albeit somewhat redundant, is post-processed to en-
hance coherence, finally rendering the caption as ’There is a man and woman
that are wearing mickey mouse ears standing next to each other.’. Com-
pared to the dataset’s original annotations, this final caption achieves a BLEU
score of 0.280, a METEOR score of 0.560, ROUGE scores of 0.483 for
ROUGE-1 f, 0.222 for ROUGE-2 f, and 0.414 for ROUGE-L f. The same

2https://www.kaggle.com/datasets/adityajn105/flickr8k

64



Figure 5.4: Overall Process flow example: FLICKR(sample image taken from Flickr
dataset2used.)

process is iterated similarly to over 1100 images in the Flickr dataset and the
average evaluation metrics are presented.

For the Flickr dataset, the ANN model showcased a test accuracy of 60.91%,
indicating its efficiency in predicting the better caption generator for images unique
to this dataset. For more details on the learning curve over epochs, refer
to appendix:C.2.

Similarly, the Flickr dataset experienced an improvement in caption quality and
all of the evaluation metrics considered, after applying the ANN-based weighted-
summarization technique 5.16. Without ANN the average highest scores achieved
on FLICKR were from BLIP:BLEU 0.177, METEOR 0.292 and ROUGE-1 f,
ROUGE-2 f and ROUGE-l f scores of 0.321,0.097 and 0.282 respectively,
with ANN the performance is indeed improved with Average scores of BLEU
0.181, METEOR 0.300 and ROUGE-1 f, ROUGE-2 f and ROUGE-l f
scores of 0.348,0.107 and 0.311 respectively. This further validates the adapt-
ability and potential of the proposed method across different datasets.

As already seen how the integration of outputs from multiple models with neural
networks, as evidenced by the increased scores, supports the enhancement of se-
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Table 5.16: Improvement in Evaluation Metrics with ANN-Based Weighted Summar-
ization for FLICKR Dataset(1100 images)

Metric Average Score

BLEU 0.181

METEOR 0.300

ROUGE-1 F 0.348

ROUGE-2 F 0.107

ROUGE-L F 0.311

mantic depth in captions, which answers our third research question Q3 as
”Yes, it does improve the semantic depth of generated captions.” Ad-
ditionally, the results from the ANN model significantly bolster semantic accuracy
and contextual relevance across various datasets, affirming its effectiveness in en-
hancing key NLP metrics and performing better than the state-of-the-art
models like BLIP, GPT-2 and PIX2STRUCT, addressing the first part of
the fourth research question Q4. It leverages the strengths of different mod-
els to produce more nuanced captions that are contextually appropriate. Overall,
this analysis underscores the effectiveness of ANN models in guiding summariz-
ation strategies, demonstrating how such techniques can bridge the gap between
automated systems and human-like captioning capabilities.

This chapter presents the results of our creative approaches, including how the
performance of GPT-2 and BLIP across datasets was evaluated using a variety
of metrics, as well as the effects of advanced summarization strategies and the
incorporation of Artificial Neural Networks (ANNs) on the contextual relevance
and semantic accuracy of the generated captions. We go into more detail about
how to evaluate these data in the upcoming chapter and go over how each finding
relates to the initial research questions and thesis objectives..
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CHAPTER 6

DISCUSSION

In the Discussion Chapter, we discuss in detail the results and findings from the
previous chapter with a focus on evaluation metrics, what the higher/lower metrics
with comparison signify and indicate for a model or an approach, and how they
answer our research question and thesis objectives. We start by discussing the per-
formance of BLIP and GPT-2 on the COCO and FLICKR dataset, then we move
on to discussing the summarization scenarios that assisted in the confirmation of
our Bayesian analysis, further discussing the results from weighted summarization
and finalizing the discussion with the overall results from the ANN integration to
our approach and the state-of-the-art models performance on datasets.

6.1 Performance on Image Categories and Data-

sets

Let’s start the discussion with answering and discussing our first research ques-
tion Q1: Are advanced machine learning models like BLIP and GPT-2
predisposed to generating more accurate and semantically rich captions
for certain categories of images? The evidence from our evaluations across two
distinct datasets, COCO and FLICKR, as seen from 5.1 affirms this, highlighting
significant biases in how each model performs depending on the image category. In
the COCO dataset, GPT-2 exhibited a strong preference for ”urban and rural set-
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tings” with a cosine similarity score of 0.290, significantly outperforming BLIP’s
0.119 in the same category. Additionally, GPT-2 also led in ”people and daily
activities” with a score of 0.258, compared to BLIP’s 0.181. Conversely, BLIP
performed more consistently across categories in the FLICKR dataset, notably
outperforming GPT-2 in all categories, with its highest scores in ”animals
and nature” (0.215) and ”objects and interiors” (0.203). This distinct variances
in model performance suggest that GPT-2 may be more adept at processing
complex, dynamic scenes, as evidenced by its higher scores in urban
settings and active human scenes in the COCO dataset. In contrast,
BLIP shows a robust capability across a broader range of image types,
particularly excelling in more static and natural scenes, as seen in the
FLICKR dataset. These insights confirm that while both models are capable of
producing high-quality captions, their effectiveness can vary dramatically with the
image content. This understanding is crucial for deploying these models in real-
world applications, where choosing the right model for a specific type of image can
greatly enhance the accuracy and relevance of the generated captions.

Moving forward, the evaluation of BLIP, GPT-2, and PIX2STRUCT on the
COCO and FLICKR datasets provides a comprehensive look at their capabilit-
ies to address the second research question Q2: How do advanced machine
learning models like BLIP and GPT-2 enhance the semantic accuracy
and contextual relevance of the image captions across varied datasets?,
which probes the enhancement of semantic accuracy and contextual relevance
across varied image datasets. Table 5.1 shows BLIP’s solid performance with
a BLEU score of 0.305, a METEOR score of 0.302, and a ROUGE-1 f, ROUGE-
2 f, and ROUGE-l f score of 0.401, 0.163 and 0.369 respectively, indicating
its capability to produce relevant and detailed captions that resonate with hu-
man annotations. This performance sets the stage for applying advanced weighted
summarization techniques aimed at further enhancing caption quality. Conversely,
as detailed in Table 5.2, GPT-2 exhibits slightly superior BLEU and METEOR
scores of 0.317 and 0.327, underscoring its ability to capture the semantic essence
of the images more effectively, which hints at its robust capability to translate
visual content into semantically rich text. However, PIX2STRUCT lagged signi-
ficantly behind in both datasets, especially evident from its lower scores, which
highlight its challenges in translating complex visual scenes into coherent textual
descriptions. On the FLICKR dataset, known for its casual and less structured
visual content, both BLIP and GPT-2 showed a dip in performance, necessitating
a higher level of abstraction and contextual interpretation. Despite this, BLIP
maintained relatively stable METEOR scores, as shown in Table 5.4, with scores
of 0.292, emphasizing its robustness in varied contexts. GPT-2, however, experi-
enced a decrease in performance as compared to BLIP which is evidenced in Table
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5.5, with a BLEU score of 0.149, a METEOR score of 0.231 and a ROUGE-1
f, ROUGE-2 f, and ROUGE-l f score of 0.286, 0.076 and 0.263 respectively,
indicating potential difficulties in adapting its model to the diverse imagery of the
FLICKR dataset. These observations across datasets underline the strengths and
limitations of each model, offering insights into how they meet the challenges posed
by different visual contents and setting a foundation for further advancements in
image captioning technology.

6.2 Evaluation and Discussion of Summarization

Scenarios

Now let’s assesses the impact of summarization techniques on the alignment of gen-
erated captions with human-generated annotations across two detailed scenarios.
As already discussed in Sec. 4.3 about Scenario 1:Comprehensive Summarization
and Scenario 2: Segment-based analysis, further following along these individual
assessments, an intercomparison identifies the captions that best align with ori-
ginal annotations, which are then evaluated using average BLEU, METEOR, and
ROUGE scores to assess their linguistic quality and semantic accuracy. This meth-
odical approach not only advances caption precision but also integrates findings
from the previous chapter on the efficacy of weighted summarization techniques.

Table 6.1: Evaluation of Summarization Scenarios on COCO Dataset.(1100 images)

Metric(Average Scores) Scenario 1 Scenario 2 Intercomparison

BLEU 0.243 0.231 0.281

METEOR 0.334 0.336 0.309

ROUGE-1 f 0.427 0.404 0.439

ROUGE-2 f 0.169 0.157 0.171

ROUGE-L f 0.386 0.361 0.401

In the summarization scenarios evaluated on the COCO dataset (Table. 6.1),
Scenario 1 demonstrated a slight edge over Scenario 2 in terms of average
BLEU, ROUGE-1 f, ROUGE-2 f and ROUGE-l f scores, of 0.243, 0.427,
0.169 and 0.386 respectively. This suggests that Scenario 1’s comprehensive
approach, utilizing the DistilBART model, is more proficient in capturing detailed
narrative structures. Conversely, Scenario 2, which employs segment-based sum-
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marization, shows very slight edge with METEOR score of 0.336 against Scen-
ario 1’s 0.334.

The Intercomparison phase, aiming to select the best captions based on the
highest cosine similarity with original annotations, consistently showed superior
results across BLEU and ROUGE scores. Improvements in BLEU score to 0.281
along with ROUGE-1 f, ROUGE-2 f and ROUGE-l f score to 0.439,0.171
and 0.401 respectively showcasing a superior grasp of both the syntactic and
narrative elements of the captions compared to the initial scenarios.

Table 6.2: Evaluation of Summarization Scenarios on FLICKR Dataset.(1100 images)

Metric(Average Scores) Scenario 1 Scenario 2 Intercomparison

BLEU 0.152 0.156 0.158

METEOR 0.298 0.287 0.289

ROUGE-1 f 0.326 0.323 0.324

ROUGE-2 f 0.094 0.094 0.094

ROUGE-L f 0.285 0.282 0.282

In the summarization evaluations on the FLICKR dataset, the results showcased
some nuanced differences between the two scenarios. Scenario 1 scored more as
compared to Scenario 2 in METEOR, ROUGE-1 f and ROUGE-l f scores
with a recorded 0.298, 0.326 and 0.285 compared to 0.287, 0.323 and 0.282
respectively in Scenario 2. This indicates that Scenario 1, which involves com-
prehensive summarization using the DistilBART model, might be slightly better
at maintaining semantic integrity with the original annotations.

However, Scenario 2, focusing on segment-based summarization, recorded a slightly
higher BLEU score of 0.156 against 0.152 in Scenario 1, suggesting it could be
slightly more effective at capturing syntactic structures relevant to the evaluated
captions.

The Intercomparison results, which aggregate the best outcomes from both scen-
arios based on their alignment with original human annotations, indicate a general
improvement across all metrics. Notably, BLEU increased to 0.158, showing that
while both scenarios contribute uniquely to caption quality, the selection of optim-
ally aligned captions enhances overall performance, aligning closely with human
perceptions of relevance and coherence.

In this study, the detailed exploration of scenarios 1 and 2 becomes a solid based
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for answering and exploring the answers to third research question Q3 regard-
ing the integration of outputs from multiple captioning models. These scenarios
demonstrate that advanced summarization techniques, specifically the compre-
hensive and segment-based approaches, can indeed enhance the semantic depth of
generated captions.

Despite the success of these approaches in enhancing caption alignment with
human-generated annotations and increasing performance metrics, this strategy
was not directly incorporated into the final approach. Instead, the
insights gained from comparing Bayesian metrics such as likelihood
and posterior probabilities were instrumental in refining the overall ap-
proach by validating the performance of BLIP and GPT-2 on datasets
as seen from table 5.7 and 5.8. The final methodology incorporated an ANN-
driven model combined with weighted summarization, optimized based on the
findings from these analytical scenarios. This highlights the adaptive nature of
research in automated image captioning, where findings from one phase of experi-
mentation inform the strategic decisions in subsequent developments, ensuring the
adoption of the most effective captioning techniques.

6.3 Comparative Insights from Weighted Sum-

marization and Bayesian Analysis

In the last section, we discussed how the two scenarios helped to contribute to the
final approach adopted. Now we discuss how weighted summarization techniques
have yielded distinct outcomes for BLIP and GPT-2 on the datasets used and how
they addressed our second and third research questions.

6.3.1 COCO Dataset: The Advantage of GPT-2

For the COCO dataset, the weighted summarization approach highlighted GPT-
2’s enhanced performance when assigned more weight, reflecting its capability
to generate contextually relevant and semantically rich captions for the dataset’s
diverse and complex images. According to the table, when GPT-2 was weighted
more heavily, it showed a slight advantage across all metrics, achieving a BLEU
score of 0.270, METEOR score of 0.320, ROUGE-1 F score of 0.426,
ROUGE-2 F score of 0.164, and ROUGE-L F score of 0.386 as shown in
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Table 5.9. These results surpass those observed when BLIP was given more weight,
underscoring GPT-2’s refined ability to handle syntactic complexity and semantic
depth effectively.

The selective word integration method, where a few words from BLIP were com-
bined with captions from the more heavily weighted GPT-2, found that incorpor-
ating 3 words from BLIP resulted in the highest scores, with a BLEU of 0.278
referring from Table 5.10 as compared to all the tables 5.9,5.10 and 5.11, once
again proving GPT-2 effectiveness over BLIP. Additionally, the Bayesian analysis,
focusing on prior, likelihood, and posterior probabilities, reinforced GPT-2’s su-
perior performance, confirming its higher likelihood of producing better quality
captions as evidenced by its performance metrics, as shown in Table 5.7.

6.3.2 Flickr Dataset: The Superiority of BLIP

Conversely, the Flickr dataset revealed BLIP’s strengths when it was assigned more
weight in the summarization process. This outcome highlights BLIP’s capability
to produce more descriptive and accurate captions for Flickr’s everyday scenes and
activities. The difference in performance between the two datasets illustrates the
variability in model effectiveness based on the content and context of the data-
set being analyzed. Bayesian analysis for the Flickr dataset similarly supported
BLIP’s superior performance, aligning with the empirical data from the weighted
summarization approach.

In the context of the Flickr dataset, interestingly with comprehensive weight-
ing, GPT-2’s performance when given more weight had a modest improvement
in performance with BLEU, METEOR, ROUGE-1 F, ROUGE-2 F, and
ROUGE-L F scores of 0.149, 0.305, 0.365, 0.105, and 0.330 respectively, as
shown in Table 5.12.

In the selective word integration, conversely, integrating 5 words from GPT-2 res-
ulted in the highest BLEU score of 0.175 and ROUGE-1 F score of 0.328
as seen from Table 5.14 as compared across all the tables 5.12, 5.13 and 5.14
demonstrating a refined grasp of image content nuances. The Bayesian analysis
supported BLIP’s superior performance in generating captions that align closely
with human annotations, reinforcing the empirical data from the weighted sum-
marization approach as shown in Table 5.8.
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6.4 Performance of the ANN Model

The preceding section demonstrated how experimenting with varying weights guided
the selection of optimal weights for our datasets. As we progress to the concluding
discussion, we focus on analyzing the metric scores obtained from implementing
our final approach, which integrates ANN predictions with the weighted summar-
ization of the generated captions.

Employing the ANN model marked a substantial enhancement in per-
formance compared to the state-of-the-art use of BLIP, GPT-2, and
PIX2STRUCT models on both the COCO and FLICKR datasets. The
tables below compare evaluation metrics to underscore the improved efficacy of
the ANN models, highlighting the ANN model’s superior performance.

Table 6.3: Average Scores of Evaluation Metrics for Different Models on COCO Data-
set(1100 images)

Model BLEU METEOR ROUGE-1 f ROUGE-2 f ROUGE-l f

BLIP 0.305 0.302 0.401 0.163 0.369

GPT-2 0.317 0.327 0.404 0.158 0.369

PIX2STRUCT 0.054 0.165 0.227 0.029 0.206

ANN
Model+Weighted
Summariza-
tion

0.322 0.328 0.452 0.187 0.415

For the COCO dataset, our integrated approach using the ANNmodel and weighted
summarization demonstrates significant performance enhancements over tradi-
tional models. In the provided table, the ANNmodel with weighted summarization
shows superior results: a BLEU score of 0.322, improving by 1.6% over GPT-2’s
0.317; a METEOR score of 0.328, marginally higher by 0.3% than GPT-2’s
0.327; a ROUGE-1 f score of 0.452, marking an 11.9% increase from GPT-2’s
0.404; a ROUGE-2 f score of 0.187, up by 14.7% from BLIP’s 0.163; and
a ROUGE-l f score of 0.415, a substantial 12.5% improvement from 0.369.
These results also illustrated in the above column chart 6.1, validate the ANN
model combined with weighted summarization as a potent enhancement to auto-
mated image captioning.

73



Figure 6.1: COCO: Column chart showing performance comparison of models across
metrics (1100 images)

Table 6.4: Average Scores of Evaluation Metrics for Different Models on FLICKR
Dataset(1100 images)

Model BLEU METEOR ROUGE-1 f ROUGE-2 f ROUGE-l f

BLIP 0.177 0.292 0.321 0.097 0.282

GPT-2 0.149 0.231 0.286 0.076 0.263

PIX2STRUCT 0.042 0.154 0.215 0.027 0.198

ANN
Model+Weighted
Summariza-
tion

0.181 0.300 0.348 0.107 0.311

For the Flickr dataset, the combined approach of the ANN model and weighted
summarization outperforms established models, highlighting its efficacy in hand-
ling diverse image contexts. The ANN model with weighted summarization scores
highest across all metrics: BLEU score at 0.181, showing a 2.3% increase over
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BLIP’s 0.177; METEOR score of 0.300, significantly higher by 2.7% than
BLIP’s 0.292; ROUGE-1 f score of 0.348, marking an 8.4% improvement from
BLIP’s 0.321; ROUGE-2 f score of 0.107, which is 10.3% higher than BLIP’s
0.097; and ROUGE-l f score of 0.311, up by 10.3% from BLIP’s 0.282. These
substantial performance enhancements are visually represented in the column chart
6.2, effectively showcasing the advanced capabilities of our ANN-driven summar-
ization method.

Figure 6.2: FLICKR: Column chart showing performance comparison of models across
metrics (1100 images)

These tables elucidate that the ANN model not only enhances the
BLEU, METEOR, and ROUGE scores significantly but also presents
a new benchmark in the domain of automated image captioning. This
achievement underscores the ANN model’s capacity to predict the most suitable
caption generator, resulting in captions that are more aligned with human annota-
tions and thus, more natural and contextually accurate.

Having thoroughly examined the results and their implications in this chapter, we
now move to the next chapter, ’Conclusion.’ This final chapter synthesizes the key
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findings of the thesis, outlines the limitations encountered during our research, and
suggests directions for future work.
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CHAPTER 7

CONCLUSION

7.1 Conclusion

This research embarked on an ambitious journey to explore and enhance auto-
mated image captioning through methodical experiments across the COCO and
FLICKR datasets. By harnessing the capabilities of advanced machine learning
models such as BLIP, GPT-2, and PIX2STRUCT, along with innovative summar-
ization techniques, this study aimed to narrow the gap between machine-generated
captions and human-level annotations.

Our research successfully addressed all posed research questions Q1, Q2, Q3
and Q4 through thorough experimentation, analysis, and discussion, affirmatively
responding to the initial problem statement. We began by exploring the evolution
of image captioning techniques and assessed how state-of-the-art models like BLIP
and GPT-2 could significantly contribute to our research. Also, the evaluation of
state-of-the-art models on diverse image categories validates the approach of using
a weighted summarization strategy based on the model’s performance across dif-
ferent categories. The integration of an ANN model with weighted summarization
proved crucial, optimizing caption generation by leveraging the strengths of the
most effective model for each specific context.

Through the analysis of different datasets, it was observed that GPT-2 gener-
ally performed better on the COCO dataset while BLIP showed stronger results
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on FLICKR. This led to tailored weight assignments in our summarization pro-
cess—favoring GPT-2 for COCO and BLIP for FLICKR. When trained on image
features, the ANN was able to accurately predict the most suitable caption gener-
ator, which, when combined with our weighted summarization approach, resulted
in superior evaluation metrics compared to those achieved by the state-of-the-art
models.

A significant takeaway from our research is the demonstration that high-quality
image captioning can be achieved without the need of retraining. Despite using
only 1100 images, our approach yielded better evaluation metrics, such as MET-
EOR score of 0.328 on the COCO dataset, than those obtained by models that
requires extensive training on vast datasets which can be seen from the table 2.1
achieving a maximum METEOR score of 0.29 by OSCAR, I-Tuning Large
and CaMEL. This finding underscores the efficiency of our method which requires
only a pre-trained ANN model and its potential to reduce the computational costs
associated with advanced image captioning technologies.

Interestingly, when calculated, the total number of parameters for our ap-
proach—which includes transformers (BLIP, GPT-2), a summarizer (DistilBART),
and an ANN model—amounts to approximately 791 million. In comparison,
a recent study by Ramos et al. reported that the highest performing model,
LEMON, utilizes 675 million parameters but achieves a lower METEOR
score of 0.308[33] compared to ours 0.328. It is important to note that
within our model, the majority of parameters are frozen: 247 million for BLIP,
239 million for GPT-2, and 305 million for DistilBART. The ANN model, cru-
cial for optimizing our captioning process, requires only 0.3 million trainable
parameters, significantly fewer than SMALLCAP’s 7 million trainable paramet-
ers and a total of 218 million parameters, which includes the frozen CLIP encoder
and GPT-2 decoder as described by Ramos et al.[33] (more details for comparison
are provided in Appendix. E.2.) This highlights that while our approach util-
izes a higher total number of parameters, the portion that requires active training
and thus computational resources during operation is substantially lower. Ad-
ditionally, our approach is computationally efficient because it requires very low
trainable parameters. The time required to generate captions from an image is
6.87 seconds for BLIP and 3.84 seconds for GPT-2, while the summar-
ization process takes 13.36 seconds. Thus, the total time for generating and
summarizing captions is approximately 24.07 seconds. While this may seem sig-
nificant, it is important to consider that in many applications of image captioning,
real-time processing is not a critical requirement. For example, data ware-
houses analyze archived images to extract detailed insights for decision-making
and historical data analysis. Social media platforms periodically process images
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to ensure content compliance, focusing on accuracy over speed. In e-commerce,
detailed captions enhance product image searchability and user experience. Edu-
cational content creators and museums use images to enhance learning materials
and document artifacts, respectively, where detailed and accurate descriptions are
essential. Given these contexts, the extended processing time is a reasonable
trade-off for the enhanced quality and depth of information provided,
underscoring the suitability of our method where precision and fac-
tual accuracy are prioritized over immediacy. Therefore, despite the higher
number of total parameters, our method’s ability to achieve better quality captions
with minimal active learning justifies the additional computational investment, es-
pecially for applications where caption quality is critical. This configuration not
only underscores the efficiency of our approach—which does not require retraining
and primarily utilizes a pre-trained ANN model—but also demonstrates signific-
ant potential to reduce the computational costs associated with advanced image
captioning technologies.

Finally, addressing our second part of the last research question Q4., for COCO
dataset we notice that the ROUGE-1 f score improved significantly to 0.452,
an 11.9% increase from GPT-2’s 0.404, while the ROUGE-2 f score rose to
0.187, up by 14.7% from BLIP’s 0.163, and the ROUGE-L f score improved
by 12.5% to 0.415 from 0.369. These advancements, visually underscored in the
column chart 6.1, particularly, point to our approach’s enhanced ability to capture
not just the keywords but the overall structure and fluency of the human reference
captions. This indicates that our model excels in maintaining narrative continuity
and detail, which are crucial for producing contextually rich and coherent captions.
The pronounced improvements in ROUGE metrics suggest that our methodology
is particularly effective in enhancing the comprehensiveness and detail-oriented
aspects of caption generation, which are vital for applications requiring high fidelity
to the original content’s context and subtleties.

Similarly,for the FLICKR dataset,the ROUGE-1 f score sees a notable 8.4%
improvement to 0.348 from BLIP’s 0.321, the ROUGE-2 f score rises by 10.3%
to 0.107 from 0.097, and the ROUGE-L f score enhances by 10.3% to 0.311
from 0.282. These marked improvements in performance metrics are visually
delineated in the column chart 6.2, distinctly highlighting the proficiency of our
ANN-driven weighted summarization strategy in producing captions that more
accurately reflect the nuances and context of the original imagery.

In conclusion, this study not only enhances the understanding and application of
image captioning techniques but also sets the stage for future research to further
refine and innovate in this rapidly evolving field.
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7.2 Contributions of the Research

This thesis has made several significant contributions to the field of automated
image captioning:

• Evaluation Across Categories and Datasets: Provided a comprehensive
comparison of the performance of BLIP, GPT-2 models across the COCO and
FLICKR datasets and image categories, offering insights into their strengths
and limitations in various contexts along with their performance on different
image categories.

• Summarization Strategies: Explored two novel summarization scenarios,
contributing to the understanding of how different approaches to summariz-
ation can enhance the quality and relevance of generated captions.

• Weighted Summarization: Introduced and evaluated the effectiveness of
weighted summarization techniques, demonstrating their potential to lever-
age the comparative advantages of different models based on dataset-specific
characteristics.

• Innovative Use of ANN Models: Pioneered the use of ANN models to
predict the most effective caption generator for a given image, setting a new
benchmark in the quality of automated image captioning.

• Foundation for Future Research: Established a methodological frame-
work and baseline that can inform and inspire future research in the domain,
particularly in advancing captioning techniques and model optimization.

7.3 Limitations and Future Work

We have framed the Limitations and Future work based on the results and ground-
work done in this thesis discussed more in the Appendix. F.

7.3.1 Limitations

This research encountered several limitations that should be considered when in-
terpreting the findings:
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• Dataset Scope: While the COCO and FLICKR datasets provide a wide
range of visual content, they do not encompass all possible domains or types
of images, potentially limiting the generalizability of the results.

• Computational Resources: Limited computational power restricted the
research to a subset of 1100 images from the datasets, which may affect the
robustness and scalability of the proposed methods.

7.3.2 Future Work

Future research can be expanded in several directions:

• Extending Dataset Coverage: Testing the proposed methods on a broader
array of datasets, including those that cover more specialized or niche con-
tent, to enhance the versatility and applicability of captioning models.

• Scaling Computational Resources: Leveraging more powerful compu-
tational resources to apply the developed techniques to the entirety of the
COCO and FLICKR datasets, thereby validating and potentially enhancing
the robustness of the findings.

• Advanced Model Development: Further refining and optimizing ANN
models and summarization techniques to improve accuracy, context-awareness,
and semantic richness of the generated captions.

• Exploring New Summarization Techniques: Investigating additional
summarization strategies like including POS(Part-of-speech tagging) instead
of just taking some words from the start of the caption that could offer further
improvements in caption quality, particularly in challenging or ambiguous
visual contexts.

• Contributing to Academic Discourse: Publishing a research paper based
on the methods and findings of this thesis, contributing valuable insights and
methodologies to the field of automated image captioning.
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APPENDIX A

PYTHON MODULES

Table A.1: Overview of Python modules and packages utilized in this thesis, along
with their functions:

Module/Package Purpose

collections Introduces specialized container data types that serve as
alternatives to Python’s standard built-in containers.

evaluate Deliver a comprehensive suite of evaluation metrics
tailored for appraising the performance of machine learn-
ing models.

evaluate A Hugging Face library for model evaluation and compar-
ison.

huggingface/evaluate Supports the assessment of machine learning models
through a diverse array of benchmarks and dataset eval-
uations.

huggingface/transformers Offers a large collection of pre-trained models using the
transformer architecture, ideal for various natural lan-
guage processing (NLP) tasks.

io Provide access to the Python interfaces for managing
streams.

language tool python A grammar and style checker.

matplotlib A plotting library for NumPy.

Continued on next page
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Table A.1 – Continued from previous page

Module/Package Purpose

nltk A framework on which Python programs can be developed
to handle data in human languages.

numpy supports a variety of mathematical functions to be applied
to big, multidimensional arrays and matrices.

os Gives users a portable method to access operating system-
dependent features.

pandas Provides structured data operations in Python by acting
as a potent toolkit for data analysis and manipulation.

PIL (Pillow) Adds image processing capabilities to your Python inter-
preter.

pickle Carries out binary protocols to serialize and decode Py-
thon object structures.

pycocoevalcap A GitHub repository containing Python tools for caption
evaluation, particularly for the COCO dataset.

pycocotools Official COCO dataset utility tools.

skimage A collection of algorithms for image processing in Python.

sklearn (scikit-learn) Machine learning in Python.

torch A fast and highly flexible deep learning research platform.

torchvision A collection of widely used model architectures, datasets,
and standard image transformations for computer vision.

transformers Cutting-edge Natural Language Processing with Tensor-
Flow 2.0 and PyTorch.

tqdm A fast, extensible progress bar for loops and or code
blocks.

urllib A package for opening and reading URLs.

zipfile Allows the creation, reading, writing, appending, and list-
ing of ZIP files.
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APPENDIX B

ADDITIONAL DATASETS CONSIDERED

Although we did explore other datasets for our study, their poor performance in
preliminary evaluations led us to omit them from our primary analysis.

B.1 Diffusion Database

The image-caption pairs in the Diffusion Database come from a variety of internet
sources and are frequently less structured and more diversified, which presents
more difficulties for caption generation[82].
Hugging Face: https://huggingface.co/datasets/poloclub/diffusiondb was
the access point for this dataset. Table B.1 summarizes the various models’ per-
formance on this dataset.

Table B.1: Performance of BLIP, GPT-2, and PIX2STRUCT on the Diffusion Database

Model BLEU METEOR ROUGE-1 F ROUGE-2 F ROUGE-L F

BLIP 0.003 0.043 0.127 0.018 0.101

Pix2Struct 0.002 0.037 0.089 0.003 0.083

GPT-2 0.001 0.034 0.101 0.010 0.095
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B.2 Google Conceptual Dataset

The Google Conceptual Captions dataset is made up of image-caption pairings
that are taken from internet photos linked with alt-text descriptions. Its purpose
is to help train algorithms for image caption generation[83].
Similarly, Hugging face https://huggingface.co/datasets/conceptual captions
was the access point to this dataset. Table B.2 summarizes the performance of
different models on this dataset.

Table B.2: Performance of BLIP, GPT-2, and PIX2STRUCT on the Google Conceptual
Dataset

Model BLEU METEOR ROUGE-1 F ROUGE-2 F ROUGE-L F

BLIP 0.087 0.238 0.284 0.122 0.217

GPT-2 0.009 0.074 0.148 0.013 0.096

Pix2Struct 0.003 0.038 0.077 0.000 0.077

As seen from the above two tables, none of the models produce well-generated
captions that are semantically aligned with the original captions which is reflected
in the very low metrics scores.
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APPENDIX C

ANN TRAINING GRAPH ON DATASETS

C.1 COCO Dataset

Figure C.1: COCO: Training Loss and Accuracy per Epoch (1100 images)
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The training curve for the ANN model, trained on the COCO dataset, demon-
strates the model’s significant progress over 20 epochs. This model employs
ResNet-extracted image features to assign binary labels—1 or 0—based on whether
BLIP or GPT-2 models’ captions exhibit higher cosine similarity with the original
captions associated with each image.

The training initiated with a loss of 0.7552 and an accuracy of 56.65%, indicating
the beginning phase of learning. Notable progress is evident by the second epoch,
with the loss decreasing to 0.5358 and accuracy improving to 70.99%. By the third
epoch, the accuracy further increases to 75.80%, with a loss of 0.4849, showcasing
the model’s rapid adaptation to the features.

A consistent improvement is observed in the training trajectory, with the model
reaching a significant accuracy of 95.87% by the tenth epoch. Despite a slight
fluctuation in the subsequent epochs, where accuracy briefly dips to 93.12% in the
eleventh epoch, it quickly recovers, reaching a peak accuracy of 98.89% by the
eighteenth epoch. This fluctuation may reflect the model’s response to the more
complex or diverse data within the training set.

Throughout the final stages, the model fine-tunes and stabilizes, achieving an
impressive accuracy of 99.31% by the twentieth epoch. However, during post-
training validation, the model exhibits a loss of 1.1811 with an accuracy of 73.39%
on unseen data, suggesting potential overfitting to the training data. While the
model shows high performance on the training set, its performance on new, unseen
images is significantly lower, indicating a need for further refinement to enhance
its generalization capabilities across diverse image contexts.
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C.2 FLICKR Dataset

Figure C.2: FLICKR: Training Loss and Accuracy per Epoch (1100 images)

For FLICKR, the training began with an initial loss of 0.7847 and an accuracy
of 62.16%, showing the model’s initial phase of adapting to the feature set. As
training progressed, significant improvements were seen by the second epoch with
a reduction in loss to 0.5681 and an increase in accuracy to 71.59%. By the fifth
epoch, the model achieved an accuracy of 86.93%, with a further reduced loss of
0.3019, indicating strong learning dynamics.

The model demonstrated substantial gains in learning efficiency, with accuracy
reaching 97.27% by the eighth epoch and peaking at 100% by the eighteenth
epoch. This peak suggests optimal internal model adjustments and learning of
the dataset’s nuances. However, a notable challenge is observed in the stability of
the learning curve; the model experienced a significant drop in accuracy to 87.27%
during the fourteenth epoch, possibly due to overfitting or an anomalous batch of
data.

Stabilization and fine-tuning continued towards the latter epochs, with the model
consistently maintaining a perfect accuracy of 100% from the eighteenth to the
twentieth epoch. Despite these high training accuracies, the model’s performance
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on the validation set, as indicated by a final test loss of 1.7454 and an accuracy
of 60.91%, suggests that the model might be overfitting the training data and not
generalizing well to new, unseen images from the Flickr dataset. This highlights
the potential need for additional regularization techniques or training data diversi-
fication to enhance the model’s ability to generalize more effectively across various
real-world scenarios.
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APPENDIX D

EXPLORATION OF ADDITIONAL MACHINE

LEARNING MODELS

In addition to ANN, we also investigated alternate approaches and other ensemble
methods to help with the decision-making process for weights assigned to cap-
tions created by various models, such as BLIP and GPT-2, and to optimize the
automated captioning process.

D.1 Random Forest Model

We looked at the Random Forest model because it was reliable and could handle
complex patterns without a lot of parameters adjusting[84]. The hyperparameters
were set to employ 100 trees, and the model was trained using an 80-20 train-test
split. On the test set with an 80-20 train-test split, the Random Forest model
yielded an accuracy of 68.8% as seen from Figure. D.1.

The training accuracy initially improves sharply with the number of trees, indic-
ating that the model quickly captures the variance in the training data and then
attains 100% accuracy indicating overfitting with the test accuracy coming out to
be 68%.
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Figure D.1: Training and Test accuracy of the Random Forest model (COCO data-
set,1100 images).

D.2 Support Vector Machine (SVM)

Figure D.2: SVM Training and Validation Accuracy (COCO dataset,1100 images).
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The SVM’s efficiency in high-dimensional spaces—a common scenario for feature
sets obtained from text and image processing tasks—was also taken into consider-
ation[85]. Because SVMs are sensitive to the scale of input characteristics, feature
scaling was essential. The linear kernel in the original SVM model has C = 1.0.
On the test set, the first SVM model’s accuracy was 67.8%. Figure D.2 shows the
SVM’s performance with a variable regularization parameter C. The training ac-
curacy greatly increases as C rises, indicating that the model gets more adaptable
and adept at capturing the training data. However, at increased complexity, the
validation accuracy peaks, which may suggest that the model has limited general-
ization power beyond the training set.

To refine the SVM’s performance, a grid search was implemented to explore a
range of parameters systematically. The grid search explored combinations of C,
γ, and kernels. The parameter grid was defined as:

param_grid = {
'C': [0.1, 1, 10],
'gamma': [1, 0.1, 0.01],
'kernel': ['rbf', 'poly', 'sigmoid']

}

It was determined that C = 10, γ = 0.01, and kernel=’rbf’ were the optimal
values. With these parameters, 68.35% test accuracy was attained.

The Artificial Neural Network (ANN) model was selected as the main
model for continued development in our approach, despite Random
Forest and SVM’s respectable results. Outperforming the other models, the
ANN had the maximum accuracy of 73.3% on the COCO dataset(Appendix. C).
Because neural networks can collect complex information in images through lay-
ers that may be customized, they are especially well-suited for image captioning.
Additionally, the same analytical methodology used for the COCO dataset was
applied to the FLICKR dataset to provide a thorough and impartial assessment.
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APPENDIX E

SUMMARIZATION MODELS AND PARAMETERS

COMPARISON

E.1 Comparison of Summarization Models

The following table provides a detailed comparison of summarization models based
on their total parameters, trainable parameters, and BLEU scores. This compar-
ison was crucial in selecting the most suitable model for our research.

Table E.1: Comparison of Summarization models considered in this thesis

Model Total Params Trainable Params BLEU Score

DistilBART-CNN-12-6 [69] 305,510,400 305,510,400 0.277

Callidior/Bert2Bert [86] 247,363,386 247,363,386 0.007

Einmalumdiewelt/T5-Base
GNAD [87]

222,882,048 222,882,048 0.132

Google/BigBird-Pegasus
[88]

576,891,904 576,891,904 0.121

VietAI/VIT5 [89] 791,276,544 791,276,544 0.243

As we can see from the above Table. E.1, Distilabart performs the best with 0.277
bleu score.
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E.2 Comparison of Model Parameters

This table provides a detailed comparison of the total number of parameters used
in our approach with those used in various models reported by Ramos et al.[33]

Table E.2: Detailed comparison of the total number of parameters and METEOR
scores in our approach versus those in models studied by Ramos et al., Data taken
from:[33]

Model Number of Parameters (Millions) METEOR Score

ANN+BLIP+GPT-
2+Summarizer

791 32.8

LEMONHuge[33] 675 30.8

SimVLMHuge[33] 632 33.7

OSCARLarge[33] 338 30.7

I-TuningLarge[33] 95 29.3

CaMEL[33] 76 29.4

I-TuningMedium[33] 44 28.8

ClipCap[33] 43 27.5

I-TuningBase[33] 14 28.3

SMALLCAP[33] 7 27.9

SMALLCAP(d=16, Large)[33] 47 28.3

SMALLCAP(d=16, Med)[33] 22 28.1

SMALLCAP(d=8, Base)[33] 3.6 27.8

SMALLCAP(d=4, Base)[33] 1.8 27.4

Our model generates captions of superior quality even with a higher computa-
tional demand thanks to its high METEOR score, which is achieved despite the
larger number of parameters. This thorough analysis demonstrates the efficacy
and efficiency of our approach, especially in situations when caption quality takes
precedence over computing cost.
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APPENDIX F

CAPTIONS WITH LOWEST SCORE

Here we see some of the generated captions in this thesis work with one of the
lowest average BLEU, METEOR, and ROUGE scores. These examples illustrate
the limitations of the current approach and suggest directions for future work.

Table F.1: Analysis of Final captions with their evaluation scores and discussions for
the COCO and FLICKR datasets.

Section Content

COCO Dataset

Example 1:

Generated Caption (BLIP) A woman and a baby in a kitchen

Generated Caption
(GPT-2)

A woman and a baby are in a kitchen

Final Caption A woman

Scores BLEU: 0.0013, METEOR: 0.0645, ROUGE-1 f: 0.25,
ROUGE-2 f: 0.125, ROUGE-L f: 0.25

Continued on next page
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Table F.1 – continued from previous page

Section Content

Discussion The analysis for the Final caption suggests that the
post-processing can sometimes overly simplify
generated captions making it too short to
handle details, indicating a need to develop
parameters that decide the levels of pruning or
post-processing on generated captions.

Example 2:

Generated Caption (BLIP) A dog is standing next to a car

Generated Caption
(GPT-2)

A car with a surfboard and a dog on the back of it

Final Caption A dog with a surfboard

Scores BLEU: 0.0722, METEOR: 0.0949, ROUGE-1 f: 0.3,
ROUGE-2 f: 0.0, ROUGE-L f: 0.2

Discussion The Final caption failed to capture keywords and does
not accurately reflect the context or the idea of the
image, suggesting the need for more
experimentation on different weighted
summarization methods that better grasp the
subject matter.

FLICKR Dataset

Example 3:

Generated Caption (BLIP) There is a plane that is flying over a rock formation

Generated Caption
(GPT-2)

A rock wall with a bird perched on top of it

Final Caption Plane is flying over a rock formation with a rock wall
with a plane.

Scores BLEU: 0.0382, METEOR: 0.0575, ROUGE-1 f: 0.0,
ROUGE-2 f: 0.0, ROUGE-L f: 0.0

Continued on next page
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Table F.1 – continued from previous page

Section Content

Discussion Here the final caption, in contrast to the second
example, has succeeded in capturing essential word
details but is not being able to frame it correctly. This
suggests an improvement with the way ANN
predictions lead to weight assignment for
summarization. Hence, it calls for extensive
training of ANN over a fairly large dataset that
comprises varied types of scenes and categories.

Example 4:

Generated Caption (BLIP) There are two women standing on the sidewalk talking
to each other

Generated Caption
(GPT-2)

Two women walking down a sidewalk with luggage

Final Caption Two women walking down a sidewalk with luggage
there are two women standing

Scores BLEU: 0.0383, METEOR: 0.0711, ROUGE-1 f: 0.1333,
ROUGE-2 f: 0.0, ROUGE-L f: 0.0667

Discussion In this example, we see that the Final caption has
fairly captured all the details required but still lacks
proper grammar understanding, suggesting the need
for using a more robust grammar checking and
language framing library or tuning the already
used library/package according to specific needs
implemented in the post-processing.
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APPENDIX G

RESOURCES AND MODELS USED

Table G.1: List of tools and resources used in this thesis

Resource Type Links

Caption Generators BLIP Image Captioning Large, ViT-GPT2 Image
Captioning, Pix2Struct TextCaps Base

Datasets COCO: Dataset Link

Flickr8K: Dataset Link

Summarizers Primary: DistilBART

Others(for comparison): BERT2BERT, T5 Base
GNAD, Meta-Llama-3-8B, ViT5 Large, Fine-
tuned BART

Zero Shot Classific-
ation(classifying im-
age into categories)

BART Large MNLI
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https://huggingface.co/Salesforce/blip-image-captioning-large
https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
https://huggingface.co/google/pix2struct-textcaps-base
https://cocodataset.org/#download
https://www.kaggle.com/datasets/adityajn105/flickr8k
https://huggingface.co/sshleifer/distilbart-cnn-12-6
https://huggingface.co/Callidior/bert2bert-base-arxiv-titlegen
https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD
https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/VietAI/vit5-large-vietnews-summarization
https://huggingface.co/kabita-choudhary/finetuned-bart-for-conversation-summary
https://huggingface.co/kabita-choudhary/finetuned-bart-for-conversation-summary
https://huggingface.co/facebook/bart-large-mnli


Compliance with REALTEK AI Usage Guidelines

In accordance with the guidelines provided by the Faculty of Science and Tech-
nology (REALTEK) for the use of artificial intelligence (AI) in academic work,
I hereby affirm my awareness and adherence to these principles throughout the
preparation of this document.

Declaration of AI Usage

AI tools have been employed in the following mentioned aspects of this work,
strictly following REALTEK’s guidelines to ensure academic integrity and reliab-
ility:

• Enhancing LaTeX Documentation: AI was utilized to generate ideas
for improved LaTeX syntaxes, facilitating the creation of better table struc-
tures and overall page layouts, ensuring that the document adheres to high
standards of academic presentation and readability.

• Code Debugging Assistance: AI was instrumental in debugging complex
code snippets that were initially challenging. It provided suggestions and
solutions that were not readily available on the web.
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APPENDIX H

COPYRIGHT FOR USED DATASETS

H.1 COCO Dataset

The COCO (Common Objects in Context) dataset is provided under theCreative
Commons Attribution 4.0 License, which requires users to credit the dataset
when results derived from it are published. Complete license details can be found
at the provided link.

Available at: https://cocodataset.org/#download
License details: https://creativecommons.org/licenses/by/4.0/legalcode

H.2 FLICKR Dataset

The FLICKR8k dataset is covered by the Creative Commons CC0 1.0 Uni-
versal (Public Domain Dedication) license, permitting unrestricted use. More
details on the licensing can be found on the Creative Commons website.

Available at: https://www.kaggle.com/datasets/adityajn105/flickr8k/data
License details: https://creativecommons.org/publicdomain/zero/1.0/
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https://cocodataset.org/#download
https://creativecommons.org/licenses/by/4.0/legalcode
https://www.kaggle.com/datasets/adityajn105/flickr8k/data
https://creativecommons.org/publicdomain/zero/1.0/


H.3 Diffusion DB Dataset

Similar to the FLICKR dataset, the Diffusion DB dataset is covered by the Creat-
ive Commons CC0 1.0 Universal (Public Domain Dedication) license,
which allows for unrestricted use.

Available at: https://huggingface.co/datasets/poloclub/diffusiondb
License details: https://creativecommons.org/publicdomain/zero/1.0/

H.4 Google Conceptual Captions Dataset

It is free and open source to utilize the Google Conceptual Captions dataset
for academic and research purposes.

Available at: https://ai.google.com/research/ConceptualCaptions/
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https://huggingface.co/datasets/poloclub/diffusiondb
https://creativecommons.org/publicdomain/zero/1.0/
https://ai.google.com/research/ConceptualCaptions/
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