
 

 

Master’s Thesis 2024    30 ECTS 

Faculty of Science and Technology 

 

 

Exploring Breast Cancer  

Diagnosis: A Study of SHAP and 

LIME in XAI-Driven Medical Imaging 

Ulrik Egge Husby 

Data Science 



ii



Acknowledgements

I would like to deeply thank my supervisor Associate Professor in Data Science Fadi Al

Machot at NMBU, for introducing me to this topic, and guiding me throughout my the-

sis. I appreciate the guidance, professional help and valuable insight provided throughout

the thesis. I also want to acknowledge and thank my fellow students who spent the time

together with me, making the writing of this thesis an enjoyable experience. A special

thanks to my good friends Torjus Strandenes Moen and Kim Næss Kynningsrud for pro-

viding great feedback and support while writing my thesis, and for taking time out their

day to read through my thesis.

iii





Abstract

The motivation for this thesis is to enhance the interpretability and explainability of using

Artificial Intelligence (AI) in healthcare, focusing on breast cancer images. Breast cancer

is one of the leading causes of cancer-related deaths among women, making early detec-

tion and accurate diagnosis important to reduce mortality. To increase interpretability,

explainability and trust of AI in healthcare, two Explainable AI (XAI) techniques SHap-

ley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations

(LIME) are explored, and used to explain the underlying model EfficientNetV2B2. By

employing metrics such as Intersect over Union (IoU), Precision, Recall and F1-score, this

thesis evaluated the performance of these techniques in accurately identifying and localizing

tumor regions in breast cancer images.

Through methodological insights, this thesis highlight that both SHAP and LIME

enhanced the transparancy and interpretability of AI models, which is a crucial requirement

in healthcare. They allowed for a detailed breakdown of decisions made by the underlying

model by highlighting important features in images, contributing to a deeper understanding

and trust in AI decisions. However, both techniques faced challenges such as computational

complexity and inconsistency in performance, which limited their practical application.

The results indicated that SHAP generally provided higher precision than LIME, sug-

gesting its useability in applications where reducing false positives is critical, which again

could be useful in early diagnosis when capturing all positives is important. On the other

hand LIME provided higher recall than SHAP, which could be essential in scenarios where

reducing false negatives is vital. Reducing false negatives is essential in medical diagnosis

since this can have fatal consequences for patients if a region is classified as non-cancerous

while in reality it is cancerous.

The thesis underscores the potential of XAI to improve the interpretability and trust

in AI models, especially in healthcare, as well as aiding in early diagnosis, which can

result in higher survival rates when assessing breast cancer. Despite the variability in the

techniques’ performance, the ability of SHAP and LIME to provide visual and intuitive

insights into model decisions marks a significant step towards integrating XAI techniques

in critical healthcare applications. This study contributes to the ongoing focus on the

need for trustable and interpretable AI models, suggesting areas for further research and

development in XAI techniques.
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Chapter 1

Introduction

1.1 Background

In the complex landscape of healthcare, where data and diagnoses have uncertainties, the

consequences of incorrect decisions can lead to detrimental outcomes for patients. Factors

such as variability in patients’ responses to treatments, varying symptoms and the com-

plexity of medical data further complicate decision-making processes. AI has emerged in

medical imaging, and has become an important tool offering the potential to analyze big

datasets and assist in more accurate decisions, however the black-box nature of many AI

models can complicate the logic behind outputs [1]. This is where XAI becomes impor-

tant. XAI provides a method to explain AI decision-making, furthermore aiming to ensure

transparancy, and increase efficiency, interpretability and explainability [2].

In the field of medical diagnosis, achieving accurate and early detection of breast cancer

is critical for effective treatment and improved patient outcomes. Despite advancements in

machine learning and their use in medical imaging tasks, the models often appear as black-

box models, offering little insight into how predictions are made for patients. The lack

of transparancy, explainability and interpretability can present obstacles when applying

these methods in the medical domain [3]. Therefore, this thesis aims to provide insight

into model decisions by leveraging XAI techniques, namely SHAP and LIME, to further

enhance the black-box nature of models made for prediction, as well as aiming to contribute

to more trust in AI systems in the medical domain.

1.1.1 Breast Cancer

Cancer is a huge threat to public health worldwide, being one of the leading causes of

death in many countries [4]. In 2024 in the United States, there was an estimated number

of 2,001,140 new cancer cases in 2024. The estimated number of deaths from cancer was

611,720. [5].

Breast cancer refers to cancerous nodules that origin from breast tissue. Breast cancer

covers 11.7% of all cancer incidences, making it one of the single highest reasons for cancer

mortality worldwide, and is the single leading cause of death among women between the

3



4 CHAPTER 1. INTRODUCTION

ages of 40 and 55 worldwide [6] [7].

Several risk factors are associated with the development of breast cancer, especially

among women. Some risk factors are sex, age, medical history in family, estrogen levels

and life style, which are considered as important factors when determining the risk of

development of breast cancer [8].

In some developed countries, the five-year survival rate for patients with breast cancer

are above 80%, due to advances in early detection and preventative measures. The rate

refers to percentage of people alive after five years after the diagnosis. This underscores

the critical importance of early diagnosis in enhancing survival outcomes [8].

1.1.2 Ultrasound

To detect and combat breast cancer, various screening and imaging techniques are used.

One of the techniques used is ultrasound [9], which is a crucial tool that complements

mammography. While mammography is known for its effectiveness in detecting early-

stage breast cancer, ultrasound plays an important role, especially aiding in scenarios that

need a more comprehensive approach [9].

The role of ultrasound in medical imaging is that it evaluates tumor characteristics like

shape, margins and consistency by using sound waves to create images of tissues inside

breasts. Unlike other methods like X-rays, ultrasound does not use radiation, making it a

safer method, without excessive side effects [10].

1.2 Research Questions

For this thesis the following research questions are to be answered.

RQ1 How effective are XAI techniques like SHAP and LIME in predicting outcomes using

breast cancer data?

RQ2 How does XAI techniques like SHAP and LIME contribute to the prediction perfor-

mance of early diagnosis for breast cancer?

The first research question (RQ1) aims to explore the effectiveness of applying XAI in

medical imaging with breast cancer data. The core of this question is to assess accuracy,

reliability and usability of the output given by SHAP and LIME, which are two distinct

XAI methods used to explain AI model’s decision-making processes. By focusing on breast

cancer data, the question impacts a critical area of healthcare.

Furthermore, the second research question (RQ2) focuses on the specific contribution of

XAI for improving performance of early diagnosis for breast cancer patients. This involves

not only looking at accuracy of predictions, but also interpreting the models, especially

the output provided from the XAI techniques, which can further enhance decision-making,

aiming to lead to earlier detection of breast cancer. This could contribute to more efficient

and successful treatment.
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1.3 My Objectives

This thesis aims to systematically explore the impact and utility of XAI models within the

healthcare domain, focusing on outcome predictions and early diagnosis of breast cancer.

The thesis will conduct a review of current XAI models, SHAP and LIME, especially

highlighting their methodologies, strengths, and limitations. Furthermore, to evaluate the

effectiveness, strengths and limitations, several predefined metrics are leveraged to achieve

numerical results to compare and discuss. Further evaluation and investigation of the role

of XAI, especially in enhancing model prediction performance is needed, assessing their

ability to provide insights to healthcare professionals. Several challenges and limitations

are introduced in later chapters, where identification and discussion of these are included,

focusing on model transparency, interpretability and explainability. This thesis also aims

to explore potential improvements and innovative approaches in XAI, that could enhance

its application in early diagnosis and treatment planning. Finally this thesis aim to provide

guidelines and best practices for integrating XAI models into healthcare settings, to improve

patient outcomes through more accurate and interpretable predictions.

By addressing these objectives, this thesis aims to contribute to the field of healthcare

by enhancing the understanding and application of XAI models for better model decision-

making and patient care.

1.4 Scope and Limitations

While aiming to provide comprehensive insights into the role of XAI in healthcare, this

research is bounded by certain scope and limitations, which are that the research will pri-

marily analyze existing XAI models namely SHAP and LIME that are publicly documented

and recognized within the AI community. The evaluation of XAI models will be based on

their application to breast cancer imaging data. When working with breast cancer data, a

domain where early diagnosis is critical to treatment success, indicating that the focus of

early diagnosis is important. Due to the magnitude of the field, the research will not cover

all existing XAI models, but will select the representative models SHAP and LIME, which

are based on their relevance to the problem at hand which is healthcare and images. The

availability of breast cancer datasets that are both comprehensive and publicly accessible

is limited due to privacy concerns and regulations. This may restrict the depth of empirical

analysis possible. The thesis’ conclusions will be examined upon the quality and diversity

of the dataset used, which might not fully capture the complexity of real-world scenarios.

To further evaluate the XAI techniques a longer scope of study and collaboration with

healthcare professionals is needed, which might be beyond the scope of this thesis. The

rapidly evolving nature of XAI and machine learning technologies means that some aspects

of the research may become outdated. Therefore continuous updates is needed to maintain

relevance. Despite this scope and limitations, this thesis aims to provide insights into the

potential of XAI in enhancing healthcare outcomes through more accurate predictions and

diagnoses. By acknowledging these boundaries, the thesis seeks to contribute to the field



6 CHAPTER 1. INTRODUCTION

of the integration of AI in healthcare.



Chapter 2

Literature Review

In this chapter, a literature review of existing techniques used in various fields are reviewed,

exploring their metrics, results and discussion of the techniques. This chapter aims to

introduce existing research in the field of XAI.

2.1 Model-Agnostic Explanation Methods

Various approaches to XAI have been explored in recent literature. The study in [11]

presents a comprehensive methodology to evaluate the explainability of AI models using

the Kernel SHAP approach, demonstrating its effectiveness in approximating Shapley val-

ues for individual predictions across a multitude of features. The method deconstructs a

prediction into an additive feature attribution model, providing explanations for model pre-

dictions that are both interpretable and reflective of the model’s decision-making process.

Furthermore, the authors acknowledge potential issues with feature dependence, where

traditional Shapley value computations may include non-representative data instances,

resulting in false explanations. They enlighten the need for future research to refine the es-

timation of model output expectations, particularly in scenarios where feature dependence

is present [11].

The study [12] utilizes the Kernel SHAP method to optimize a network anomaly detec-

tion model, showcasing a feature selection technique that leverages SHAP values. Kernel

SHAP shows strength when working with unsupervised learning models, where class labels

are absent. Using the CICIDS2017 dataset, the demonstration of Kernel SHAP’s ability

to quantify feature importance was shown. Through application of Kernel SHAP, the re-

searchers were able to construct an optimized model with accuracy and F1-score of 0.90

and 0.76 respectively. The use of Kernel SHAP offers a robust framework for interpretabil-

ity that can augment the explanation, and further strengthen the trustworthiness of AI

systems, especially in critical applications.

However it is made clear that the Kernel SHAP technique is not devoid of challenges.

The method’s computational complexity stands out as a limitation, with the potential

to require hours of processing time for high-dimensional datasets. This imposes practical

7
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constraints on the method’s applicability in real-time or large-scale scenarios. Additionally,

the selection of an appropriate background set is crucial for the accurate computation of

SHAP values, yet selecting such a set from comprehensive datasets remains a complex task

that can significantly impact the results [12].

Furthermore, the study [13] uses Kernel SHAP to enhance the interpretability of im-

plemented models, which was trained on information from ultrasound images and numbers

from 952 breast cancer lesions. The study implemented several models where they found

that the XGBoost model performed the best of all models tested, across a variety of metrics

such as Accuracy, Sensitivity, Specificity and F1-score. The XGBoost model achieved an

Accuracy of 0.846, Sensitivity of 0.870, Specificity of 0.862 and F1-score of 0.826 [13]. By

leveraging SHAP they found specific features (ultrasound signs) that showed the greatest

impact on the model’s decision-making process, aiming to strengthen the trust for clini-

cians.

2.2 Ontologies and Decision Trees

The study conducted in [14] discovers the possibility to enhance the human understand-

ability of post-hoc explanations by using ontologies, this is performed by using the form of

decisison trees.

Ontologies In the context of AI, the paper [14] refers to an ontology like a detailed map

of a particular subject area. It describes things that exist in the domain and how they are

related to each other.

In the paper [14], the authors use a technique called TREPAN_RELOADED, which is an

approach that extracts surrogate decision trees from black-box models.

Surrogate Decision Trees is a tool that acts as a stand-in for a more complex AI

model, in the paper’s case the black-box [14]. Since the black-box is difficult to under-

stand, the essence of utilizing ontologies to create these decision trees is to capture the

steps and decisions of the black-box model, making it more transparent, accessible and

understandable, especially for humans.

The study experiment with human subjects, which demonstrated that decision trees

augmented by ontologies were not only more understandable compared to their neural net-

work counterparts, but also did not sacrifice the accuracy of the original models. Subjects

interacting with these trees provided more accurate responses, quicker, and reported higher

confidence in their understanding of AI decisions [14].

2.3 Local Surrogate Model and Model Distillation

Similar to Kernel SHAP, LIME offers another method for making complex models more

understandable. LIME provides clear insights into why models make certain decisions, one
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instance at a time. It simplifies the model’s decision-making process by creating a model

that is easier to understand, nearby the data point in question [15] [16]. Although this

method has its complications, it helps to clarify how different features impact individual

predictions. This clarity is important for making high-stakes decisions more transparent

when using AI. LIME’s usefulness has been shown across different machine learning al-

gorithms, highlighting its adaptability and its role in building trust in AI by making its

decisions less of a mystery. The paper [15] also explores how LIME works in practice, look-

ing at its effectiveness from the perspective of both experienced, and new users. It points

out LIME’s advantage in providing detailed local explanations and recognizes the issues

with understanding the overall model and the amount of time it takes to apply LIME. The

final assessment of LIME shows its important place in the area of XAI, taking into account

how user-friendly it is, and the importance of focusing on the user when such tools are put

into use [15].

Using these techniques in real-life applications can be crucial, especially in domains like

healthcare. In the following research paper by [17], a proposed method that combines trans-

fer learning with the XAI technique LIME to enhance interpretability and transparancy of

AI systems in healthcare is discussed. The model used is a CNN-based model which was

pretrained, VGG16, to classify chronic wounds. The researchers found that the said model

achieved a Precision of 95%, recall of 94% and F1-score of 94% [17].

Similarly, another study was conducted by [18] where detection of brain tumor was the

target. A VGG16 model combined with the XAI technique LIME was utilized for the task.

The model achieved an accuracy of 97%.

Furthermore, a paper by [19], uses LIME to segment out important features of lungs

of COVID-19 patients, aiming to provide insight to researchers when applying XAI in

medical imaging. The underlying model’s are VGG16 and MobileNetV2. The VGG16

achieved an accuracy of 98.5% when trained on a dataset containing X-ray scans of 400

images. Furthermore, the MobileNetV2 model received an accuracy of 98.5% when trained

on the same X-ray dataset. The authors also tested the MobileNetV2 against a CT-scan

dataset with 400 images and also a dataset of Mixed-data containing 2591 images, achieving

an accuracy of 94% and 95% respectively.

In the paper [20], LightBTSeg is introduced, which is a knowledge distillation approach,

essentially meaning that the original model (often called the ”teacher”) transfer knowledge

to another simpler model (often called ”student”). The purpose of this is to reduce com-

putational cost of the teacher model while still possessing the learned information that the

teacher model has learned. This approach is used to reduce the complexity of the original

model, making it more transparent and less complex. They use this approach to segment

benign and malignant breast cancer tumors using breast cancer imaging dataset [21]. They

achieve promising results, where the student model recieved a Precision of 0.8509, a Recall

of 0.8623, a mIoU of 0.7778 and an Accuracy of 0.9526 [20].
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2.4 Other approaches

Further analysis of XAI driven tools in healthcare is done by [22], where XAI techniques are

leveraged to analyze breast cancer data and provide visual interpretations that enhance

model decisions and clinical significance. The paper emphasizes the importance of XAI

in medical applications, strengthening the decision-making process by understanding it,

which is crucial for acceptance and trust within the medical domain. The paper also

discusses the limitations of AI in the medical domain, due to their black-box nature, which

results in difficult to interpret decision-making processes of these models. Therefore, the

study highlights the need of explainable models to gain trust and confidence by medical

professionals. The result of the XAI technique showed sensitivity ranging from 83 to 87%,

and specificity ranging from 81 to 88% [22].

Furthermore, in [23], an EfficientNet model was used to classify breast cancer, several

XAI techniques were also used to explore visualization. They state that the XAI techniques

employed can produce confusing results, where weights had been interchanged. They also

leveraged a method that involves perturbing images, and discovered that the method strug-

gled with noisy images, which can lead to poor interpretations. The need for enhancements

through XAI to improve model robustness by understanding the underlying model better is

important. The paper also mentions that visualizations that highlight areas of interest can

help understanding the model’s decision making process and further improve the overall

model.

In the study [24], the authors points out the importance of XAI in medial decision

making, by building trust and clarity between AI and clinical users. The study focuses

on breast cancer data, and by leveraging XAI, namely SHAP, the study is able to extract

detailed visualizations that help determine the important features for the model’s predic-

tion, highlighting the need for clinical acceptance from domain experts to make decisions

based on the offered transparency. The underlying model’s XGBoost, Logistic Regression,

Random Forest and SVM are evaluated using Precision, Recall and Accuracy. The study

found the model with highest accuracy was XGBoost, achieving an accuracy of 85%. The

paper also comments on the challenges of applied methods, where medical professionals

may not be familiar with the model used. In addition, the paper also comments on how

XAI techniques can be leveraged to better patient outcomes, through early detection based

on model insights produced by XAI techniques.

Lastly, in the study [25], the authors use Gradient-weighted Class Activation Mapping

(Grad-CAM) as XAI technique for improving explainability and interpretability of a pre-

trained convnet model when identifying presense of metastases in lymph nodes. Grad-CAM

is a type of saliency map based technique using class activation maps, that highlights regions

of the image that are most influential to the model’s prediction. The dataset used for this

paper is a dataset of histopatholocical images of lymph nodes containing 220,000 training

images and 57000 evaluation images. The model achieved an accuracy of 96.7%. By

applying Grad-CAM, the authors found that they gained insights into the models decision
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making process, which helped identifying features which were important for classification.

The authors highlight the need and importance of XAI in medical imaging, as well as the

potential trust model’s recieves when combined with XAI.
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Chapter 3

Theoretical Background

3.1 Breast Cancer and Medical Imaging

Breast cancer is a disease indicated by when cells within the breast begin to grow uncontrol-

lably, leading to the formation of tumors [26]. These tumors can be benign or malignant,

with the latter posing a significant threat as they have the ability to invade surrounding

tissues and spread to other parts of the body [27].

Breast cancer is considered a significant health concern globally, being the leading cause

of cancer deaths among women in the world [28]. According to World Health Organization

(WHO), in 2022, approximately 2.3 million women were diagnosed with breast cancer, and

there were 670,000 deaths from breast cancer globally [29].

Breast cancer is detected through various methods of medical imaging, and the need

for sufficient and accurate equipment and methods is vital [30]. Many types of cancer are

detected at an advanced stage, with poor prognosis and options for treatment.

In breast cancer one refers to cancerous nodules, which are small, solid mass of tis-

sue that have different shape, size and can be either malignant (cancerous), or benign

(non-cancerous) [31] [32]. The ability to detect cancerous nodules early is important for

improving prognosis and treatment options in stages where the cancer has not yet de-

veloped to become advanced. However, the vision of early detection comes with a lot of

challenges, such as finding existence of early cancer, and determination of who is at risk of

developing cancer through genetics or demographic information [27] [30].

There are a lot of medical imaging techniques used in cancer imaging, each with specific

uses [33]. The various techniques are dependent on a lot of factors such as malignancy, size

of cancer, or where it is located in the body. Methods like Magnetic Resonance Imaging

(MRI), mammography, ultrasound and Computed Tomography (CT) scans are common

methods used for breast cancer imaging [34].

Ultrasound imaging is an important breast cancer imaging technique due to its ability to

provide extensive analysis and diagnosis of breast cancer [34] [35]. The benefit of ultrasound

over other techniques is the safety in examining dense breast tissues in situations where

mammography might not capture everything. Ultrasound uses high-frequency sound waves

13
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to create images of breasts, which is done without any radiation that could potentially

harm the body. Ultrasound also benefits from being a cheaper and faster alternative than

mammography [36].

3.1.1 Lesions

Lesions are defined as areas of abnormal tissue that have been identified by medical imaging

or physical examination [37] [38]. Lesions often vary in their nature being either benign

or malignant. Identification and detection of lesions play a critical role in early detection

and diagnosis of breast cancer. Lesions serve as indicators for potential malignancy, and

the patients needs for further investigation through additional imaging.

Detection of lesions can be challenging due to the variability in its nature, appearance,

size and location [38]. These challenges can potentially complicate the diagnostic process

and could potentially affect the accuracy of breast cancer diagnosis. Detection of lesions is

typically done by various medical imaging strategies mentioned in 3.1.

3.1.2 Malignancy

Malignancy refers to the presence of cancerous or malignant cells that have the ability to

grow rapidly and uncontrollably, and spread to other parts of the body [39]. The degree of

malignancy is used as a measurement of how cancerous the lesions are, where a low degree

of malignancy means the cancer cells can look and behave like normal cells, and with a

high degree of malignancy, the cancer cells are usually more aggressive, look abnormal and

have the ability to grow rapidly or spread quicker. Early diagnosis is therefore important

in early stages of malignancy, due to being able to combat the illness before it reaches too

high of a malignancy degree [35].

Breast cancer staging is a process that determines to which extent cancer has spread in

the body [40]. This is assessed using a system called TNM, where T stands for Tumor size,

N is the involvement of nearby lymph Nodes, and M is the presence of Metastasis. Stages

range from early stage (I) to advanced stage (IV), with each stage having its own impli-

cations for prognosis and treatment planning. Staging aims to help medical professionals

tailor the treatment strategies to the patient’s needs and situation, as well as ensuring

effectiveness within the existing methods while minimizing side effects [41].

The degree of malignancy, along with other information and tools such as biological

and molecular markers, and cancer staging, helps decide what treatment decisions is made

[42]. Early-stage, low-malignancy tumors may be treated with surgery followed by radia-

tion, possibly avoiding chemotherapy. High-grade tumors may require a more aggressive

approach, including chemotherapy, targeted therapy, and more extensive surgery [42].

3.2 Deep Learning

Deep learning is based on a layered structure of algorithms to process data, enabling models

to learn and make complex decisions from large datasets by feature extraction and pattern
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identification [43].

The development of more complex neural networks, such as the multilayer Perceptron

and backpropagation introduced by D. E Rumelhart et al. in 1986 [44], marked a significant

advance in machine learning. Adding multiple layers to machine learning models was

introduced to solve more complex problems where the input potentially could consist of

images or speech, where each layer would serve its purpose to perform specific types of

transformations on the input data such as feature extraction and decomposition [45].

The general architecture of a neural network usually consists of an input layer, one or

more hidden layers, and an output layer [45]. The input layer is fed the input data, the

hidden layers process and transform this data by extracting complex representations of it.

Non-linear activation functions, which is explained in 3.2.1, are often used in these layers

due to their ability to introduce non-linearity and maintain gradient flow during training,

which allows the model to be able to learn more complex representations of the data, and

learn efficiently. The output layer produces the final predictions or classifications.

In Figure 3.1, a simple multilayer Perceptron is visualized. The multilayer Perceptron

has fully connected layers, which means that every neuron is connected to its input neurons

[45] [44].

Figure 3.1: Mutlilayer Perceptron, consisting of an Input Layer, one Hidden Layer and
an Output Layer, the arrows indicate the fully connected layers, where each neuron is
connected to each neuron in the next layer

When data is passed through these layers, the network identifies important features,

making it strong and efficient at recognizing for example patterns [45]. The process, often

referred to as feature extraction, makes the network being able to learn complex represen-

tations in the data, not only simple shapes but also complex patterns.

One key feature of deep learning, and what makes it different from other machine

learning methods, is the depth of its layers, meaning how many numbers of layers in a

neural network, allowing efficient learning throughout its training process. Early layers

tend to focus on simple patterns, such as edges and shapes, while deeper layers in the

network focus on more complex structures, such as the presence of objects. This is referred

to as a hierarchical learning process [46] [45].
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Neural networks come in different variations and complexities to serve the purpose

of different problems, and there is a wide range of possibilities when it comes to the

network architecture, as the depth of the neurons and skip connections [47]. This allows

for great versatility when working with various problems where the complexity of the task

at hand may vary. With more complex models or problems comes the need for heavier

computational resources. A critical aspect of more complex models is the potential of

overcomplicating the model making it generalize poorly to unseen data, called overfitting.

On the other hand is underfitting, which is a phenomena when a model is too simple to

learn the underlying pattern of the data [45].

Many deep learning architectures are referred to as black-box models where the mod-

els internals are either hidden or unknown to the observer, or even if known, cannot be

understood by humans [48]. Such black-box models can pose ethical and practical dilem-

mas when used in specific scenarios, especially in critical sectors like healthcare, where

decision-making processes can affect patient outcomes. The inability to fully understand

or interpret how these models arrive at their conclusions complicates efforts to ensure fair-

ness, accountability, and transparency. In healthcare, where decisions can directly influence

patient health, diagnosis, and treatment options, the need for methods like XAI becomes

important. Addressing these challenges involves developing models that not only perform

with high accuracy but also being interpretable and transparent in their decision-making

processes. This ensures that in vital areas like healthcare, it could aid professionals to trust

and effectively integrate AI tools into their decision-making framework, enhancing patient

care while upholding medical standards [49].

3.2.1 Convolutional Neural Network (CNN)

Feature extraction is fundamental for machine learning algorithms [50]. Convolutional

Neural Network (CNN) is designed to learn features automatically from raw data that are

most useful for the particular task at hand, often used in image recognition and computer

vision [45]. The development of CNNs was advanced by Yann LeCun when the creation of

the LeNet-5 architecture took place, which is one of the first applications of CNN [50].

CNN are often referred to as feature extractors. The early layers of the CNN extract

low-level features such as basic shapes and edges. As it works its way through the layers,

the deeper one progresses through the network, the more complex and high-level features

are extracted. CNNs construct a feature hierarchy, meaning it combines the low-level

features to form high-level features such as objects like buildings or humans [50] [45].

A typical CNN consist of unique layers being convolutional layers and subsampling

layers [45]. The convolutional layer consist of convolutional operations, which is a core idea

of CNNs. The convolutional operation is the technique of sliding a filter over the input

data, then computing the dot products. This creates a feature map of the convolutions,

which are done to downsample images focusing on the relevant features. The formula for

convolution in 2D is given by Equation 3.1.
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Y = X ∗ W → Y [i, j] =

+∞∑
k2=−∞

+∞∑
k1=−∞

X[i− k1, j − k2]W [k1, k2] (3.1)

where Y = X ∗ W is the 2D convolution between the input X and filter W [45]. The

subsampling layers consist of pooling techniques, usually max- or mean-pooling [45]. The

pooling layer’s task is to perform the operation of the n1, n2 array of pixels denoted as

Pn1×n2 . The aim of the subsampling layer is to decrease the size of features, resulting in

higher computational efficiency and potentially reducing the risk of overfitting. In Figure

3.2 an example of a 3x3 max pooling is displayed.

Figure 3.2: Example of a single 3x3 max pooling operation, the highlighted yellow number
indicate the number that was chosen after performing the max pooling operation

Dense Layers, also known as fully connected layers are essential to CNNs, primarily

used for classification after feature extraction from previous convolutional and pooling

layers [45]. In dense layers each neuron receives input from all neurons from the previous

layer, which is why it is also called a fully connected layer. Due to their fully connected

nature, dense layers are prone to overfitting, especially when working with large inputs. To

lower the risk of overfitting and reduce complexity of a model, L2 regularization is often

applied [45]. L2 Regularization shown in Equation 3.2, works by adding a penalty term to

the cost function that is proportional to the sum of the squares of the weights wj . This

essentially motivates the weights to stay small by penalizing large weights. This leads to a

simpler model, and prevents overfitting.

L2 : ∥w∥2 =
∑
j

w2
j (3.2)

The dense layers utilize activation functions to introduce non-linearity to the system

[45]. Three common activation functions are displayed; Rectified Linear Unit (ReLU),

Logistic (sigmoid) and Hyperbolic tangent (tanh) respectively. The ReLU function, all

values below 0 is set to 0 and all values above 0 remains unchanged, given by Equation 3.3,

where z is the input to the activation function, and ϕ(z) is the activation function ReLU

[45].

ϕ(z) = max(0, z) (3.3)
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The sigmoid activation function in Equation 3.4 outputs values between 0 and 1 where

ϕ(x) is the sigmoid activation function, and x is the input to the activation function [45].

ϕ(x) =
1

1 + e−x
(3.4)

The Hyperbolic Tangent Function (tanh) in Equation 3.5 outputs values between -1 and

1, it is used for large negative or positive values, where tanh(x) is the activation function

and x is the input to the activation function [45].

tanh(x) =
ex − e−x

ex + e−x
(3.5)

3.2.2 EfficientNetV2

Transfer learning is a powerful technique in deep learning where a model developed for a

certain task is reused as the backbone for a model on a another task. This type of technique

differs from traditional machine learning pipelines, where training and testing data have

the same input feature space and data distribution. In transfer learning, the backbone

of the model is already made. This approach is especially beneficial in scenarios where

there is little labeled data, or where training from scratch is computationally expensive.

It also potentially provides efficiency over traditional machine learning methods due to its

pre-trained nature [51] [52].

EfficientNetV2 utilizes transfer learning and builds on advancement in convolutional

neural networks designed for both improved training speed and enhanced parameter effi-

ciency. EfficientNetV2 models were developed using a training-aware neural architecture

search and scaling approach, focusing on the optimization of both training speed and pa-

rameter efficiency. This essentially means that the development of this model focused on

both maximizing accuracy or minimizing error and optimization of the training speed and

efficiency [53].

EfficientNetV2 aims to improve EfficientNet by scaling up the network’s depth, width

and resolution based on fixed scaling coefficients [53]. By focusing on reduced training

time, EfficientNetV2 adjusts these coefficients to achieve better balance between accuracy

and efficiency. EfficientNetV2 utilizes a progressive training approach where it starts off

by training on small images, and images are increased in size the further down the training

process it goes. Early stages is therefore sped up by training on smaller images [53].

3.3 Explainable AI

XAI aims to convert the black-box nature of machine learning algorithms into a transparent

system [2]. XAI aims to make the machine learning models able to explain their predic-

tions by leveraging techniques like post-hoc interpretability such as feature importance and

SHAP values, or visualization techniques provided by LIME, where visualization of changes

in input affects the models output or highlights of parts of images that are significant for
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predictions [54] [16].

Explainable AI can be seen as an advanced topic due to its non-existent universal

definition of interpretability [55]. Because of this, a uniform definition of interpretability

and explainability will be used throughout the thesis.

3.3.1 Interpretability vs. Explainability

The terms interpretability and explainability are often used vaguely missing a uniform

agreement of the terms in the literature surrounding artificial intelligence, while they cover

unique concepts within the domain of XAI. Understanding the differences between them

is crucial for the development and evaluation of XAI systems, as it directly impacts how

humans can interact with and trust AI outputs [56] [57].

Interpretability involves the degree to which a human can comprehend the cause-and-

effect within a system. In the context of machine learning, this means understanding how

the model’s input variables relate to its predictions or decisions. An interpretable model

allows users to predict the model’s outcome with reasonable accuracy, given a set of inputs.

For simple models such as linear regression or decision trees, interpretability can often be

simple due to their straightforward and logical structure [58].

Explainability goes a step further by providing the reasons behind specific decisions or

predictions. It involves generating human-understandable explanations for the operations

and results of complex models. XAI seeks to explain the model’s decision-making process,

translating it into a form that is understandable by the users. These explanations may

include the identification of key features that influence the output or provide insights into

the model’s inner workings [59] [58].

3.3.2 SHAP

SHAP is an XAI technique that uses concepts from game theory to assign each feature in

a model importance, based on the contribution of the feature on a prediction [54]. The

method calculates how much each feature contributes to the prediction of an instance,

which essentially means that SHAP’s framework uses local explainability, and for simple

models, is based on the idea that the original model provides the best explanation for the

model itself [54]. For more complex models, like deep learning models, the model itself

is too complex, and a simpler version to gather its explanations is needed. The simpler

model is an approximation of the original model and is represented by an additive feature

attribution model given by Equation 3.6.

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (3.6)

Here, f is the original model we aim to explain and g(z′) is the simpler explanation

model of f(z), ϕ0 is the base value that would be predicted if all features were missing.
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ϕi is the SHAP value for each feature. z′i are the binary variables indicating either the

presence defined as 1 or absence defined as 0 of the ith feature. M is the total number

of simplified input features. This is meant to give a measure of each prediction and their

contribution to each individual feature [54].

To compute SHAP values, three properties, derived from game theory must be fulfilled

[54]. The objective of these properties is to allocate the prediction outcome fairly among

the features based on their individual contributions.

The first property given by Equation 3.7 is the property of local accuracy. This

property aims to ensure the explanation model is accurate locally [54].

f(x) = g(x′) = ϕ0 +
M∑
i=1

ϕix
′
i (3.7)

Local accuracy in Equation 3.7, essentially means that the sum of all SHAP values

from the explanation model g(x′) for input x′, exactly match the sum of the SHAP values

from the original model f(x) for input x, where x′ is the simplification of the input x. ϕi

is the SHAP values for feature i, and ϕ0 is the base SHAP value. M is the total number

of simplified input features [54].

The second property is missingness, given by Equation 3.8 [54].

x′i = 0 =⇒ ϕi = 0 (3.8)

The property of missingness in Equation 3.8, states that if a feature x′i is missing from

the input, then that feature should not contribute to the model’s prediction for that specific

input. The SHAP values ϕi for the specific feature x′i should therefore be equal to 0 [54].

The third and last property is consistency. The property of consistency is used to

compare how different models behave when excluding a feature. Consistency states that if

it makes a bigger difference when removing a feature from one model f ’s predictions than

the other model g’s predictions, then the respective SHAP value for the model f should

be greater or equal to the SHAP value for the model g. This ensures consistency in SHAP

values with respect to features in different models [54].

The classic SHAP value calculations are given by Equation 3.9.

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
(
fS∪{i}(xS∪{i})− fS(xS)

)
(3.9)

SHAP values are calculated from a model by evaluation of how the prediction changes

when a feature i is added or removed to the subset S. S represents the subset of all features

F when excluding feature i. The difference in prediction is given by fS∪{i}(xS∪{i})−fS(xS),
where xS is the input values for the subset of features S. The ! symbol represents the

factorial operation, used to calculate number of permutations, F represents the set of all

features in the model [54].
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3.3.3 LIME

LIME is an XAI technique introduced in [16]. LIME is used in machine learning to provide

explanations for the predictions made by complex machine learning models, particularly

black-box models. LIME focuses on providing local interpretability, aiming to explain the

prediction of a model for a specific instance or data point [16]. LIME is model-agnostic,

which means it can be applied to explain the predictions of any machine learning model,

regardless of its complexity or type. LIME achieves this by approximating the behavior

of the black-box model locally with a simple, interpretable model, such as a linear regres-

sion model. LIME constructs a dataset for training the simple model by changing input

features and watching the resulting variations in the predictions of the black-box model.

The resulting explanations highlight the importance of specific features and their contri-

butions to the prediction, making it easier for humans to understand why the model made

a particular decision. LIME is a valuable tool for improving the transparency and trust-

worthiness of machine learning models, making complex black-box models more adaptable

and understandable for humans [16].

For instance, consider an input x and a model f , LIME generates a new dataset of n

perturbed samples around x and obtains predictions for these samples using the model f

[16]. After fitting on the perturbed samples, it weighs these based on their closeness to x

and fits a simpler, interpretable model to these samples. The coefficients of this new model,

g, serve as the explanations for the prediction at x. The formula is shown in Equation 3.10.

argming∈G L(f, g, πx) + Ω(g) (3.10)

where L is the loss function that explains how well the local explanation model g

approximates the predictions of the full model, f , in the locality defined by πx. πx is a

similarity measure that weighs the slightly perturbed samples according to their closeness

to the prediction instance x. Ω(g) is a complexity measure of the explanation model g,

aiming to encourage simpler models for easier interpretation by humans. The optimization

seeks to find g, which often is a linear model, such that it both accurately approximates f

around x and remains interpretable [16].

3.4 Evaluation Metrics

In this section the various evaluation metrics considered in this thesis will be described.

TP, FP, TN, FN are acronyms for True Positives, False Positives, True Negatives and False

Negatives respectively.

TP, TN, FP and FN are calculated by an analysis of images processed using XAI

techniques. The process applies these techniques to each image to identify features which

are considered regions of pixels that significantly influence the model’s prediction.

These values are then converted to a binary format suitable for calculation, where a

fixed threshold value is specified. Scores exceeding this threshold are classified as 1, and



22 CHAPTER 3. THEORETICAL BACKGROUND

scores below are classified as 0. Furthermore, the actual mask of the image, which holds

information about the true area of interest, is binarized similarly to the XAI output array.

Areas within the mask are marked as 1, and areas outside are marked as 0. TP, TN, FP

and FN are then calculated as follows:

• TP: The sum of instances where both the actual mask and the predicted mask cor-

rectly identify an area of interest (both are 1).

• TN: The sum of instances where both the actual mask and the predicted mask cor-

rectly identify an area as not of interest (both are 0).

• FP: The sum of instances where the predicted mask incorrectly identifies an area as

of interest while the actual mask does not (predicted is 1, actual is 0).

• FN: The sum of instances where the predicted mask fails to identify an area of interest

that the actual mask does (predicted is 0, actual is 1).

3.4.1 Accuracy

Accuracy represents the proportion of predictions that the model correctly predicts out of

all the predictions it makes, given in Equation 3.11 [60].

Accuracy =
TP + TN

TP + TN + FN + FP
(3.11)

3.4.2 Precision, Recall and F1-score

For evaluation of the XAI techniques leveraged in this thesis, four metrics will be consid-

ered. These are F1-score, Precision, Recall and IoU respectively.

Precision =
TP

TP + FP
(3.12)

Recall =
TP

TP + FN
(3.13)

F1 =
2× Precision× Recall

Precision + Recall
(3.14)

Precision, given by Equation 3.12 aims to capture how precise the XAI output is.

It measures the models ability to accurately predict relevant areas within the image. It

measures the proportion of the predicted area of pixels which falls inside the correct mask

[60].

Recall, given by Equation 3.13 aims to provide a measurement of the XAI output’s

effectiveness in capturing the total significant area given by the mask. It evaluates to what

extent the predicted mask by the XAI technique targets the correct relevant area of pixels

defined by the ground truth mask [60].
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F1 Score, given by Equation 3.14 is used as a balanced mean of both Precision and

Recall. This metric provides a balanced measure that both uses the precision of identified

features and the model’s ability to capture relevant areas of features [60].

3.4.3 Intersection over Union

Intersection over Union (IoU) is a metric that calculates the Intersection of the Union

which calculates the rate of overlap between two areas [61] [62]. It is used in this thesis to

measure the area of overlap of the XAI techniques output and the correct mask provided.

IoU provides a measure of overlap that can consistently be applied across different images

and XAI output, helping evaluate the analysis of XAI’s effectiveness and correctness.

Furthermore, a strong feature of IoU is its simplicity and robustness, making it easily

adaptable to a variety of XAI techniques, regardless of the underlying model complexity.

The formula for IoU is given by Equation 3.15 [62].

IoU =
Area of Intersection

Area of Union
(3.15)

where Area of Intersection is the overlapping area between the ground truth and the

predicted area, and Area of Union is the total area of both ground truth and prediction

minus the Area of Intersection in Equation 3.15.

In this chapter a comprehensive overview of the theoretical background was presented,

setting the stage for the analysis conducted in the thesis. The upcoming chapter will

provide methodology, which demonstrates how the theoretical framework helped analytical

processes done in this thesis.
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Chapter 4

Methodology

This chapter outlines the methodology employed in this study, focusing on investigating

if XAI can be efficiently leveraged for enhancing predictions in medical imaging. The

design was chosen due to its ability to provide insights into the decision-making process

of AI models, enabling an evaluation of their reliability and accuracy. This approach

aligns closely with the study’s objectives to enhance interpretability and explainability in

black-box models working with imaging data.

The study was conducted using real healthcare data, targeting a population of medical

images from patients with cancerous and non cancerous nodules in breasts [21].

4.1 Data Management

4.1.1 Data Collection and Description

Data collection was carried out through direct acquisition from the publicly available

dataset acquired from medical imaging equipment, utilizing images in PNG format [21].

The dataset used for this thesis was the Breast Ultrasound Images dataset [21], which

consisted of 2D ultrasound scan images for breast cancer diagnosis, as well as Positron

Emission Tomography (PET) masks for identifying the location of the tumor, done by pro-

fessionals. The samples are classified as one of three classes: normal, benign and malignant

cases. Table 4.1 showcase the image distribution among the three classes. The dataset

consisted of 780 images with an average size of 500 x 500 pixels from a total of 600 female

patients between the ages 25 and 75 years old. A total of 437 images are classified as be-

nign, 210 images are classified as malignant and 133 is classified as normal. A benign case

and its respective mask is shown in Figure 4.1, as well as an malignant and its respective

mask is shown in Figure 4.2 [21].

4.1.2 Data Preparation

Various methods for preparing the data for training is explained in this chapter. To feed

the data into the model, a uniform shape of (224, 224, 3) were needed for correct input

shape for the chosen model. Since the images in the Breast Ultrasound Images dataset has

25
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Table 4.1: Distribution of number of images by case, Breast Ultrasound Images dataset

Case Number of Images

Benign 437
Malignant 210
Normal 133

Total 780

(a) Original Image of a Benign Case. (b) Masked Image Showing Affected Benign
Areas highlighted in white

Figure 4.1: Comparison of a benign case with and without a diagnostic mask. Figure (a)
shows the original medical imaging of a Benign case, while Figure (b) demonstrates the
mask applied to the same image to highlight the affected areas in white

(a) Original Image of a Malignant Case. (b) Masked Image Showing Affected Malignant
Areas highlighted in white

Figure 4.2: Comparison of a benign case with and without a diagnostic mask. Figure (a)
shows the original medical imaging of a malignant case, while Figure (b) demonstrates the
mask applied to the same image to highlight the affected areas in white

varying sizes, the images were resized to the respective shape to ensure consistency in the

results and input throughout the workflow.
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Data Augmentation Data augmentation techniques were used to expand the datasets

size and variability, including horizontal flipping, vertical flipping, rotation, width and

height shifting, and zooming. A set of specific augmentation strategies was implemented

to minority classes being Malignant and Normal, to address class imbalance. These tech-

niques ensured a more robust model, that generalized better with unseen data. The data

augmentation was carried out through the use of ImageDataGenerator from Tensor-

Flow’s Keras [63] [64].

Data Splitting The data was split into masks and images, which were later used for

quantifying the performance, explainability and interpretability of our XAI techniques.

The images were further split into training and testing subsets, where 75% were used for

training, and 25% for testing. The splitting was performed by using the traintestsplit

function from the sklearn module of the scikit-learn library [65]. This ensured a sufficient

amount of data for both training and evaluation of model performance.

Class Weight Calculation Since the dataset used contained class imbalances, class

weights were introduced to count for class imbalances in the dataset. This ensured the

model’s performance did not bias towards the majority class being Benign case. To compute

this the compute class weight function from sklearn to generate balanced class weights

was used [65]. This process was applied before model training.

4.1.3 Ethical Considerations

Ethical considerations were an important topic when working with medical imaging data.

Recognizing the sensitive nature of medical data, the needed measures were taken to uphold

ethical standards, ensuring respect, privacy, and protection for all individuals whose data

were involved.

The potential impact of this thesis’ research was considered, focusing on contributing

positively to the field of medical imaging. The study aims to improve patient outcomes

and support clinical decision-making, while also raising awareness of ethical implications

of AI in healthcare.

4.2 Model Development

In this chapter the development of the deep learning model used for experiments in the

thesis is showcased through a detailed description of the workflow of developing the model.

4.2.1 Model Workflow

A transfer learning approach of a CNN based model EfficientNetV2B2 was implemented

for image classification of ultrasound medical images [53]. The motivation for the choice

of this specific model was that it offers efficient training, while also maintaining optimal

performance [53]. The model workflow displayed in Figure 4.3 shows the architecture of
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Figure 4.3: Model workflow, Preprocessed Data is the starting point where the original
dataset was preprocessed, Train Test Split involved splitting data into Train and Test set
of 75% and 25% respectively. Pre Trained Model; initialize pre-trained EfficientNetV2B2
using transfer learning. Model Training, train model on test data. Evaluation and Tuning;
Evaluation of parameters to optimize performance. Prediction; make predictions on test
data.

building the model. The first step in model development was splitting the preprocessed

data which were resized to the uniform shape of 224×224×3, where the ultrasound images

were loaded as well as their corresponding masks belonging to the three unique categories

benign, malignant and normal. To further split the data into train and test sets as described

in Chapter 4.1.2, the data was extracted to a full dataset by combining all three classes into

one dataset in Figure 4.3. Preprocessing also involved augmenting images, as described

in Chapter 4.1.2, as well as calculating class weights for minority classes as discussed in

Chapter 4.1.2. Now the data was ready for model deployment. The next part was where

the pre-trained Model was initialized using transfer learning, the EfficientNetV2B2 model

was employed, which was pre-trained on ImageNet. This was followed by Model Training

in Figure 4.3, both described in chapter 4.2.2. The next step of the model workflow is

the Evaluation and Tuning where the model’s metrics described in Chapter 4.2.2, were

evaluated. Finally after these steps, model prediction was done shown as Prediction in

Figure 4.3.
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4.2.2 Implementation details

The model architecture leveraged both the robustness of the pre-trained EfficientNetV2B2

[53] architecture, which was pretrained on ImageNet by setting weights=imagenet, pro-

viding a robust architecture for image classification tasks [66], and custom layers described.

The model was used without its top layers to allow construction of custom layers to improve

model generalization. The input shape was set to 224 × 224 × 3 to match the dimension

requirement for the EfficientNetV2 model [53] [67].

The custom top layers included the additional pooling layer, GlobalAveragePool-

ing2D, used to reduce dimensionality as well as minimizing the risk of overfitting. Dense

layers were also added for penalizing large weights. These were added with both ReLU

activation function and L2 regularization respectively. Dropout layers were also introduced

with rates of 0.5 and 0.2 respectively to further help minimize the risk of overfitting. The

hyperparameters 0.5 and 0.2 were chosen due to these provided the highest metrics when

trying different hyperparameters.

The final layer was a dense layer with three output units to match our classification

task. The final dense layer used the ’softmax’ activation function to generate a probability

distribution among the three classes.

The model was compiled with the Adam optimizer, which contributes to efficient

convergence [68], with a learning rate of 0.001. 0.001 was at default. The model training

was done with the sparsecategoricalcrossentropy loss function, which is suitable for multi-

class classification [64] [63].

Software and Libraries Used For the model and XAI development, Google’s Colab-

oratory platform, Google Colab was used. Google Colab provides a cloud-based environ-

ment, with powerful GPUs for efficient training of complex models. Google Colabs Pro

version was leveraged to access more powerful hardware for extensive training and model

development, especially the High-RAM feature. All development was done using Python

3.10.12.

In Python, several libraries were used to develop the experiments. The library NumPy

version 1.25.2 was used to perform operations and transformation of arrays [69]. Tensorflow

version 2.15.0 was used to build and train the model [63]. Keras version 2.15.0 was key

to implement the model, as well as transform and augment data [64]. Scikit-learn was

leveraged to evaluate model and other machine learning utilities [65]. SHAP version 0.45.0

[54] and LIME version 0.2.0.1 [16] were used to implement the XAI techniques.

Model Evaluation Metrics Consistent evaluation of model performance was important

during development. For the model development the following metrics were used to ensure

consistency between results. These were; Accuracy, Precision , Recall and F1-score [60].

These scores were calculated using the classification report from sklearn [65].
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4.3 Explainable AI (XAI) Techniques

In this chapter, the XAI techniques SHAP and LIME, their implementation details and

workflow is outlined. These techniques were chosen to answer the research questions due

to a wide variety of previous literature covering their applications in the domain of XAI as

discussed in Chapter 2.

4.3.1 XAI Evaluation Metrics

For the evaluation of the respective XAI output, four evaluation metrics were used to

measure the XAI output. These were Precision, Recall, F1-score, and IoU. The components

TP, TN, FP and FN of Precision and Recall for the XAI evaluation were calculated as shown

in Algorithm 1.

Algorithm 1 Calculate TP, TN, FP, FN for XAI evaluation Precison and Recall

1: function CalculateTPTNFPFN(actualMask, predictedMask)
2: TP ← Sum((actualMask = 1) ∧ (predictedMask = 1))
3: TN ← Sum((actualMask = 0) ∧ (predictedMask = 0))
4: FP ← Sum((actualMask = 0) ∧ (predictedMask = 1))
5: FN ← Sum((actualMask = 1) ∧ (predictedMask = 0))
6: return {TP, TN,FP, FN}

The components of IoU being Area of Intersection was calculated as the overlapping

area between the ground truth mask and the predicted area by the XAI output. The other

part of IoU being Area of Union was calculated by the total are of both ground truth

mask and the predicted area from XAI output minus the Area of Intersection. These two

components were then divided as shown in Equation 3.15.

4.3.2 SHAP Implementation

The first proposed explainability technique was SHAP. SHAP uses Shapley Values to cal-

culate feature importance [54]. For images, a feature is considered as a pixel, or group of

pixels. The SHAP values for a model predicting on image data, is given as a measurement

of the impact of including or excluding a specific region of the image in its predictions.

The workflow for the SHAP implementation is given by Figure 4.4. A subset of 128

total images of benign and malignant cases were used to calculate the SHAP values, 128

images were chosen due to the complexity of time when calculating SHAP values. To

calculate the SHAP values, a SHAP explainer was initlialized using a predefined model

EfficientNetV2B2, as well as a masker to apply blur effects on the images. The masker

aims to help manage how features in input data were hidden or altered when computing

SHAP values. The masker used in this experiment was ”blur(32,32)”. This essentially

blurs the image, providing a balance between detailed information and maintaining visual

features for meaningful predictions. The input is prepared in uniform shape to match

underlying models input shape, and a test set of 128 images of malignant and benign
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Figure 4.4: SHAP workflow, Input Data; initial dataset used for SHAP calculations. Ini-
tialize SHAP Explainer with Masker; Set up the SHAP explainer to gather explanations.
Run SHAP for Each Instance in Input Data; Apply the SHAP explainer to each instance
in the input data to compute respective SHAP values, which quantify the impact of each
feature on the prediction. Threshold Top 20% SHAP values to get the most meaningful
features. Binarize SHAP Values for Region Of Interest; Convert the SHAP values to binary
format to gain presence of significant features to further analyse with metrics.

cases was chosen. For each image, the respective SHAP values were calculated using the

initialized SHAP explainer. To focus on the most influential regions, a threshold of the

highest 20% SHAP values were set for binarization; the highest 20% were set to 1 and the

rest were set to 0. This was done to select the most influential regions of pixels positively

to contributing to the correct classification of the model and to calculate the metrics to

evaluate its performance in Figure 4.4. The threshold of 20% was empirically chosen after

testing with various thresholds. This threshold provided the best explanation without

including unnecessary noise.

4.3.3 LIME Implementation

The second proposed explainability technique was LIME [16]. LIME focuses on approxi-

mating the model locally around the prediction by creating a surrogate model to approxi-

mate the behavior of the original model near the instance being explained. This technique

uses interpretable models to explain individual predictions [16].

The workflow for LIME implementation is illustrated by Figure 4.5. The first step in

the LIME workflow was Data Preperation in Figure 4.5, which was crucial for matching

the requirements such as shape of the underlying model. The same set of images were

chosen for LIME as for SHAP, where a total of 128 images of malignant and benign cases

were considered, this were chosen due to the limitation considering complexity of time as

well as limitation of available data.

The second step in the workflow was initializing an explainer. The explainer initialized

was the LimeImageExplainer [16], using the predefined model EfficientNetV2B2 as the
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Figure 4.5: LIME Workflow, Breast Cancer Dataset; This is the input data, Data Preper-
ation; In this step the data is processed to match requirements of underlying model being
224x224x3 . Initializing LIME Explainer; LIME Explainer is used to generate interpretable
explanations from underlying model. Segment Images Into Features; Segmented by LIME
to understand each effect of the segmentations on the prediction. Local Model Training;
Training the simple interpretable model from LIME on new dataset. Predictions With the
Model; Local model makes predictions on the perturbed data to provide insights into how
different features contribute to prediction. Explanation Generation; Based on local model’s
predictions, explanations that detail each feature’s contribution to the final prediction is
generated.

underlying classifier from which predictions are explained. A perturbation method was

employed by LIME’s built in explaininstance method, which segmented the image into

features and systematically created a new dataset of perturbed images. The new dataset

was then used to train a local model around the prediction being explained and observe the

variations in its predictions for each instance. It helped quantify the impact of each feature

on the model’s prediction. This helped LIME to calculate how each feature contribute to

the final decision, producing an interpretable model that locally approximated the behavior

of the underlying classifier model.

For each image the top 10 highlighted regions chosen by LIME for being influential in

the models underlying predictions, specified by calling toplabels=10. This was chosen after

testing various thresholds, where it was found that 10 was the ideal number for gathering

the most influential regions that influenced the models prediction, without including too

much noise which made the explanations too vague.

These highlighted regions were saved as masks to further analyze LIME’s output com-

pared to the original mask when calculating the evaluation metrics.



Chapter 5

Results

This chapter presents results of the analysis done by leveraging the XAI techniques SHAP

and LIME. The findings presented in this chapter shows the possibilities of using XAI tech-

niques like SHAP and LIME for improving the broader understanding and explanation in

complex deep learning models. By analyzing the performance metrics IoU, Precision, Re-

call and F1-score, this study demonstrates how XAI techniques can be efficiently leveraged

to uncover decision-making processes of complex deep learning models. These insights

contribute to uncovering black-box models, aiming to make them more transparent and

able to explain their decisions, which is particularly important in critical domains such as

healthcare.

5.1 Model Evaluation and Performance

This chapter provides insight on the models results, as well as the data used for training

and testing.

Table 5.1: Detailed Classification Performance Metrics for EfficientNetV2B2 Model on
Breast Cancer Imaging Dataset, with Three Classes Benign, Malignant and Normal, dis-
playing Precision, Recall, F1-score for all three classes and Macro and Weighted Average
of these.

Class Precision Recall F1-Score Support
0 0.90 0.93 0.92 112
1 0.89 0.80 0.85 51
2 0.82 0.88 0.85 32
Accuracy 0.89 195
Macro Avg 0.87 0.87 0.87 195
Weighted Avg 0.89 0.89 0.89 195

Table 5.1 shows the classification scores of the model. The model received a high

predictive accuracy on the test set of 0.89 shown as Weighted Avg in the Table 5.1, which

consisted of 195 unique patients. This indicated that the model correctly predicts the

correct class in 89% of cases across an unbalanced dataset.

33
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Predicted Labels

0 1 2

Benign 104 4 4 0

Malignant 8 41 2 1

Normal 3 1 28 2

Table 5.2: Confusion Matrix of the EfficientNetV2B2 Model Classification on Breast Cancer
Dataset, detailing the correct and false predictions for each class Benign, Malignant and
Normal.

The classification scores shown in Table [5.1] shows the precision, recall and F1-score

for each class. Class 0, which was patients classified as benign, received precision of 0.90,

recall of 0.93 and F1-score of 0.92. Class 1, being patients classified as malignant, shows

a precision of 0.89, recall of 0.80 and an F1-score of 0.85. Class 2, which was the patients

classified as normal, received a precision of 0.82, a recall of 0.88 and an F1-score of 0.85.

The weighted average of precision, recall and F1-score is 0.89 for all three metrics.

In Table 5.1 Support is mentioned, which refers to the number of samples in the specified

class in the dataset, this was to provide insight into the dataset’s distribution among classes.

In Figure [5.2] the various predictions among classes is displayed. It is observed that the test

set is unbalanced, and has the majority of patients in class 0 with 104 correct predictions

in class 0, 41 correct predictions out of 51 for class 1 and 28 out of 32 correct predictions

for class 2.

5.2 Explainable AI (XAI) Evaluation

In this chapter the output and performance metrics from both XAI techniques, SHAP and

LIME, is displayed. Tables 5.3 and 5.5 summarize the evaluation metrics for SHAP and

LIME respectively. These tables provide mean, median, and standard deviation values

for the following metrics: IoU, Precision, Recall, and F1-Score. Table 5.4 and Table 5.6

presents the best performance metrics for one sample for each technique.

5.2.1 SHAP Analysis

The SHAP evaluation metrics are displayed in Table 5.3, which offer insights in reliabil-

ity of the explanation outputs. The average IoU of 0.14 indicated a poor overlap between

the model’s prediction and the actual ground truth. An average of 14% indicated that

the model might look at some parts of the actual mask, but not the full region of pixels.

Average Precision at 0.60 indicated that 60% of the area the model classified as important

falls under the correct mask. This indicates that the model was able to capture the correct

region of pixels in the image and classify it as an important feature 60% of the time. A low
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Table 5.3: SHAP Evaluation Metrics for the EfficientNetV2B2 model on Breast Cancer
Images. The Table Includes Metrics IoU, Precision, Recall, and F1-score, where all met-
rics’ Average, Median, and Standard Deviation is displayed except for the F1-score which
displays only the Average.

Metric IOU PRECISION RECALL
F1-SCORE
(Average)

SHAP

Average 0.14 0.60 0.20 0.30

Median 0.12 0.58 0.15

Standard deviation 0.12 0.30 0.19

Table 5.4: The top SHAP Evaluation Metric for the EfficientNetV2B2 model on Breast
Cancer Images. The Table Includes Metrics IoU, Precision, Recall and F1-score.

Metric IOU PRECISION RECALL

SHAP

Top 1 evaluation metrics 0.43 1.0 0.89

average Recall at 0.20 is shown for SHAP, which indicated that the model often included

areas as important features which did not fall under the ground truth mask provided. An

average F1 score of 0.30 suggested that SHAP often missed important areas of pixels.

Standard deviation values for each metric is displayed in Table 5.3 to demonstrate the

variation observed by the explanation technique. It was observed a relatively high standard

deviation among the predictions, meaning that the different metrics varied depending on

the relative image. For IoU, the average standard deviation was 0.12, which means that

the predicted values and the ground truth overlap were inconsistent. In Precision an

average standard deviation of 0.30 was observed. This highlights potential fluctuations in

some cases regarding the XAI techniques’ ability to identify areas that were correct when

compared to the ground truth mask (True Positives).

Recall’s standard deviation was 0.19, which showcased a relatively lower variability in

Recall compared to Precision.

A high standard deviation indicated that the performance might be influenced by differ-

ent factors like image quality or presence of similar characteristics in benign and malignant

cases.

In Table 5.4, the best performance metrics for SHAP are displayed for a single image.

These are meant to display the positive possibilities for SHAP in healthcare imaging. The

best IoU of the test set was observed at 0.43, this indicated a moderate overlap between

the predicted and ground truth mask, meaning that 43% of the predicted important region

of pixels were within the ground truth mask. Essentially this means that 43% of the region

predicted by model and SHAP was considered significant for making a decision where the

decision accurately aligned with the ground truth mask.

A Precisison of 1.00 is displayed for the best prediction in Table 5.4, this indicated

that the whole predicted area by SHAP was considered significant when compared to



36 CHAPTER 5. RESULTS

the ground truth mask. There were no false positives in the SHAP output, showcasing

a 100% predicted area of pixel, which was inside the ground truth mask, with no areas

of significance falling outside the ground truth. This described the techniques ability to

capture essential information about the actual mask under optimal conditions.

A Recall of 0.89 is observed for the top best prediction, this showcased the SHAP

techniques ability to capture the majority of critical areas.

This was indicating that SHAP under optimal conditions are able to achieve an near

optimal balance between Recall and Precision, focusing on avoiding false positives, and

capturing significant true regions especially important in critical domains such as healthcare

for accurate diagnosis classification.

Figure 5.1: On the left, the Actual mask (ground truth) is displayed in yellow. On the
right, the SHAP predicted mask is displayed in white. This displays a correct classification
of class 0 (benign) and its corresponding predicted mask for class 0 (benign)

In Figures 5.2 and 5.4 the output of the SHAP technique is visualized. Here the

corresponding SHAP values is shown on a scale, where the blue color represents negative

contribution to the corresponding prediction, the color red represents positive contribution

to the corresponding prediction. The leftmost image is the actual raw image that the

explanation instance is based of, as well as the different classes (0, 1 and 2). The outputs

displays the positive and negative contribution to the corresponding prediction highlighted

in red and blue respectively, given in SHAP values. For the unique classes one can see

what areas the model highlights to contribute to the model’s decision making process for

the unique classes respectively.

In Figures 5.1 and 5.3 the ground truth region displayed in yellow is compared to the

regions of interest given by the SHAP displayed in white over a fixed threshold of top 20%

SHAP values.

In figure 5.2 the model correctly classified the patient as class 0 (benign). Figure 5.2
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Figure 5.2: Output of the SHAP technique, where class 0, 1 and 2 is displayed and its
corresponding SHAP values, Red SHAP values highlight positive contribution to the re-
spective class, blue values corresponds to negative contribution to the corresponding class.
This instance is classified correctly by the underlying model.

displays the predicted mask from SHAP against the actual mask of the patient. In contrast,

in Figures 5.3 and 5.4, a scenario where the model failed to correctly classify the patient,

predicting the patient as class 2 (normal), when the correct class was 0 (benign) is shown.

This misclassification highlighted the challenges in applying SHAP for complex models

where features may lead to explainability errors. Figure 5.3 displays the actual mask of

the misclassified instance and the SHAP output. From figure 5.3 it was observed that the

technique highlights insignificant regions as significant.

5.2.2 LIME Analysis

Table 5.5: LIME Evaluation Metrics for the EfficientNetV2B2 model on Breast Cancer
Images. The Table Includes Metrics IoU, Precision, Recall, and F1-score, where all metrics’
Average, Median, and Standard Deviation is displayed on the left except for F1-score which
displays only the Average.

Metric IOU PRECISION RECALL
F1-SCORE
(Average)

LIME

Average 0.11 0.16 0.31 0.21

Median 0.09 0.13 0.21

Standard deviation 0.11 0.17 0.28

In this chapter, exploration of the performance metrics of the LIME technique was

done, as summarized in Table 5.5.

The LIME evaluation metrics shown in Table 5.5, shows an average IoU of 0.11. This

indicated a relatively poor overlap between the regions of interest by the LIME technique

compared to the ground truth mask. This means that 11% of the area the model believed
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Figure 5.3: On the left, the Actual mask (ground truth) is displayed in yellow. On the
right, the SHAP predicted mask is displayed in white. This displays a wrong classification
of class 0 (Benign) and its corresponding predicted mask for class 2 (Normal)

was relevant overlap with the actual ground truth. The technique did not classify the

majority of actual areas of interest as significant.

The average Precision is observed at 0.16, indicating a significant amount of false pos-

itives, where the technique only captured 16% of the ground truth displayed by correct

mask. This means that the technique was classifying regions not belonging to the ground

truth as important for model decision.

The Recall’s average value is 0.31, which means that the technique captured 31% of the

actual significant regions. The relatively low Recall means that there is a high number of

false negatives, meaning that the technique classified important regions as not important

for its decision making process.

An average F1 score of 0.21 is displayed in Table 5.5. This underscores the overall

effectiveness of LIME, showcasing poor performance on the full test set.

Standard deviation was included in Table 5.5 to provide a measurement of how much

the metrics changed over the entire test set. This metric helped indicate to what extent

the technique fluctuates around the mean value. A standard deviation of 0.11 is shown for

IoU, indicating a moderate fluctuation of IoU score over the test set. This means that the

overall consistency of IoU was somewhat vague, which means that the overlapping areas

between the LIME output and ground truth varied depending on the respective image.

The standard deviation for Precision is observed at 0.17 with an median of 0.13. This

displays a relatively high standard deviation compared to median and average indicating

variability in the technique and model’s ability to identify true positives, leading to varying

predictions.The average standard deviation for recall is observed at 0.28 with a median of

0.21, which displays poor overall performance of the models ability to capture all relevant
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Figure 5.4: Output of the SHAP technique, where class 0, 1 and 2 is displayed and its corre-
sponding SHAP values, Red SHAP values highlight positive contribution to the respective
class, blue values corresponds too negative contribution to the corresponding class. This
instance is classified wrong by the underlying model.

regions of interest when compared to the ground truth, due to the high standard deviation.

It had potential to discover the relevant regions of interests under optimal conditions for

certain images.

The top performance metrics for LIME is displayed in Table 5.6, where an IoU of 0.43

is showcased. This displays the technique’s ability to capture relevant areas compared to

ground truth, where the model captured 43% of overlapping areas between LIME output

and actual mask.

Table 5.6: The top LIME Evaluation Metric for the EfficientNetV2B2 model on Breast
Cancer Images. The Table Includes Metrics IoU, Precision, Recall and F1-score

Metric IOU PRECISION RECALL

LIME

Top 1 evaluation metrics 0.46 0.75 1.0

A precision of 0.75 for the top output in Table 5.6 indicate that 75% of the region of

significance for the model’s decision-making process were inside the area marked by the

ground truth mask, meaning that there were some false positives in the LIME output for

the top output.

A recall of 1.0 is displayed for the top LIME output. This displays that there were no

false negatives in the LIME output, indicating that the technique was able to identify all

areas of interest determined by the ground truth mask.

In Figure 5.5a and 5.6a LIME output is displayed of two randomly chosen patients.

The regions highlighted in yellow is where the technique show where it based the decision-

making process of the model’s predictions of off. The yellow region which was the LIME

output is displayed on top of the actual raw image of the lesion, displaying which parts

of the image the technique highlighted. Figures 5.5b and 5.6b displays the same marked

regions, including both the actual mask and the areas of interest marked by the LIME

technique. Where the marked yellow region is the ground truth and the red regions are
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(a) LIME output region of interest, highlighted
with yellow, with Breast Lesion in the

background.

(b) LIME output highlighted with the colour red
displayed with actual mask highlighted in yellow

Figure 5.5: LIME output with both original image (a) and actual mask (b)

(a) LIME output region of interest, highlighted
with yellow, with Breast Lesion in the

background.

(b) LIME output highlighted with the colour red
displayed with actual mask highlighted in yellow

Figure 5.6: LIME output with both original image (a) and actual mask (b)

the output from the LIME technique.



Chapter 6

Discussion

In this chapter, results obtained from the analysis are discussed and interpreted in the

context of the research questions and the thesis’ objectives. Key findings are discussed

with respect to their implications.

6.1 Analysis of Findings

In this chapter the following XAI techniques SHAP and LIME results was discussed and

compared. The discussion focused on the performance metrics of SHAP and LIME in the

medical domain, highlighting the implications of their difference in performance across the

metrics. It was observed that SHAP performed better overall than LIME on breast cancer

data. SHAP is based on Shapley values from game theory, which assures that the contribu-

tion of each feature was fairly allocated. By considering all combination of features SHAP

ensured that the attributions were more accurate and robust than LIME. Since SHAP

considers all possible combinations of features, SHAP is able to capture complex interac-

tions between features. LIME provide local explanations by perturbing data and observing

changes in predictions. This can introduce noise by creating unrealistic data points, which

may lead to less accurate explanations, in contrast, SHAP’s method of using actual data

combinations rather than perturbations resulted in a more consistent explanation over the

entire dataset without unnecessary noise. These points captures the essence in why SHAP

was better than LIME when dealing with complex data such as medical images, however

both showed distinct strengths and weaknesses [54] [16].

6.1.1 SHAP vs. LIME

The performance metrics showed distinct strengths and weaknesses when comparing SHAP

and LIME. The metrics suggested that SHAP generally achieved better precision than

LIME, but over all remained moderately low. SHAP’s precision was shown at an average

of 0.60, which was significantly higher than LIME’s 0.16. This indicated that SHAP is more

reliable in identifying true positive instances with low false positives, making SHAP better

at actually marking the true region which is crucial in critical sections like healthcare,
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where the cost of false positives can be high [70].

Furthermore, it is observed that LIME performed slightly better than SHAP in the

Recall metric, where LIME achieved an average of 0.31, which was higher than SHAP’s

average at 0.20. This indicated LIME’s capability in capturing relevant areas, with the

cost of a higher rate of false positives. LIME’s higher recall might be more desirable and

preferred over SHAP’s higher precision in certain situations such as early diagnosis in the

healthcare domain.

The contrast between the two techniques became notable when comparing F1-scores

for both, which provides a balance between both precision and recall. SHAP achieved an

average F1-score of 0.30 and LIME was observed at 0.21. This indicated that SHAP’s

slightly higher F1-score, offered a better balance over the entire dataset than LIME.

When considering the average IoU, SHAP provided a slightly higher value at 0.14

compared to LIME’s average IoU at 0.11. The IoU metric provided a measurement of how

much each output overlaps the ground truth. This metric quantified the techniques ability

to represent the precise locations of the infiltrated region. The highest average of the two

techniques were SHAP with 0.14, this indicated a poor localization of region which could

be due to several reasons such as complexity of data.

When comparing the IoU with the Precision for SHAP, this indicated that SHAP was

often able to find the tumor area, but struggled to cover the entirety of the area, rather

giving indications of where the infiltrated region potentially could be.

Furthermore LIME provided a generally low precision and IoU but a slightly higher

Recall than SHAP, which indicated that LIME may not localize the ground truth as pre-

cisely as SHAP, but rather indicated the presence of infiltrated areas broadly. The slightly

higher Recall potentially indicated that LIME was better at ensuring that fewer relevant

areas were missed.

The best instance for SHAP in Table 5.4 recieved an IoU of 0.43, with a precision

of 1.0 and recall of 0.89. This indicates that the technique for the instance was able to

achieve perfect precision, meaning no false positives. The technique’s areas of importance

were all within the region of interest. This is important in fields such as medical imaging

where minimizing false positives is critical [70]. A strong recall of 0.89 suggested that

SHAP identified 89% of all relevant instances within the data without missing many true

positives. An IoU of 0.43 was substantial, however a higher IoU indicates more overlap

between the XAI output and ground truth, where the IoU means that 43% of the SHAP

output is overlapping with the ground truth. This showed that SHAP can approximate

the area of interest, but not capture the entirety of the area. With all metrics considered,

SHAP was able to identify highly likely correct areas, however struggled to capture the

entirety under ideal conditions.

Furthermore the best metrics for a single instance for LIME provided a slightly higher

IoU at 0.46, which showed the methods ability to capture relevant areas. An IoU of 0.46

implied that 46% of the LIME output lied within the ground truth. A Precision of 0.75

and a Recall of 1.0 was shown. When compared to SHAP it was noticed that LIME is able
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to perform better when considering minimizing the risk of not including True Positives

indicated by the perfect Recall for the optimal instance. This high recall is especially

crucial in critical fields such as cancer detection, where failing to capture a true positive

could lead to detrimental outcomes. A technique’s ability to identify all actual positives

can be seen as more important than being able to exclude all negatives in the respective

domain. In scenarios where this is important, LIME can be a valuable tool for capturing

true positives under ideal conditions, reducing the risk of overlooking critical information.

To compare the metrics observed in this study, previous research [71], where several

XAI techniques were employed and measured in the domain of medical images. The IoU

of SHAP and LIME were 0.06 and 0.1 respectively. This indicates that while the results

presented in this thesis showed similarity, the localization capability of both SHAP and

LIME remains a challenge, aligning with earlier research. This posed difficulty of achieving

high scores in several metrics when using complex datasets such as medical imaging. In

previous research, the XAI techniques described failed to meet medical clinical requirements

and standards [71].

6.2 Methodological Insights

In this chapter, insights in the applied methods are discussed, highlighting the techniques’

abilities to visualize important features aiming to aid in development of AI models and

healthcare decision-making. The chapter also contains discussion about the challenges and

limitations of applied XAI techniques.

6.2.1 Advantages of Applied Methods

Both SHAP and LIME offered a method to enhance transparency of AI model’s decisions.

This is especially crucial in departments such as healthcare, where understanding the pro-

cess behind diagnosis classification and detection of cancer is important. By breaking down

each prediction to show the impact of each region of pixel to the respective prediction is an

important element in understanding the model’s decision-making process. Therefore both

techniques offer a great explainability measurement. Both have a hierarchical process of

selecting the top chosen number positive or negative features to the respective prediction,

which offered a robust method of explainability.

Both techniques offered good visual outputs which are significant advantages in domains

such as medical imaging, since it is comparable to what is actually being done by medical

professionals, which is visual inspection of images from medical tools, as well as other

techniques. SHAP and LIME offer visualizations that translate complex inner workings

of a model to visible boundaries of regions of importance. This makes humans able to

visually inspect the techniques output and quantify its correctness to further develop and

trust models. These visualizations also offer more intuitive assessment of which regions are

most influential aiding to better understand the model’s behavior.

SHAP offers a set of values that determine the contribution of each region of pixel
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to the prediction by leveraging game theory, this to provide consistent explanations. By

leveraging this method, each region of pixel is fairly allocated, which can strengthen the

reliability of the interpretations [54].

LIME’s model agnostic approach allows it to be a versatile technique, being able to

be used on any model. This versatility can be seen as important in fields where various

models are employed [16].

With clear explanations of model outputs, XAI can aid in increasing confidence among

medical professionals such as radiologists when leveraging AI. With increased confidence of

AI decisions, professionals are potentially able to detect diagnosis earlier, leading to higher

survival rates in the healthcare domain [72] [73].

The benefits from leveraging XAI are not limited to professionals in the respective

domain, but also developers who can improve models by understanding which features

are underperforming or overperforming in a models decision-making process, leading to a

broader understanding and further refinement of models.

6.2.2 Disadvantages and Limitations

A limitation when considering both SHAP and LIME was their computational complexity,

particularily when dealing with complex models and large datasets. SHAP encountered

computational complexity when calculating the contribution for each feature over all pos-

sible combinations [12]. Furthermore, LIME encountered computational complexity when

generating and test with perturbed samples of original instances, which is needed for all

instances being explained [15]. These perturbed samples of the original image can face

challenges when working with complex medical images where LIME might not always gen-

erate meaningful or realistic perturbed samples, potentially leading to explanations that

are oversimplified or misleading as discussed in the paper [11]. This limitation is crucial in

healthcare, where accuracy and reliability of interpretations are important.

Both techniques SHAP and LIME can suffer from inconsistency in their explanations,

where similar cases might receive varying explanations, which could be due to model-

specific settings or distribution of data.

LIME’s ability to be model-agnostic allows it to function with any model, however this

ability can encounter potential issues because the technique is not specifically tailored to a

specific type of model, potentially leading to less precise explanations for complex models

[15].

Finally, the metrics used to evaluate the output from the techniques might not capture

the relevance of the technique’s outputs compared to the actual problem at hand.

6.3 Discussion of Research Questions

In this chapter the results are discussed with regards to the research questions for this

thesis. These questions aim to guide the structure and focus of this thesis.
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6.3.1 Discussion of Research Question 1 (RQ1)

To answer RQ1, several metrics were introduced, namely IoU, Precision, Recall and F1-

score. An observed IoU of 0.11, as well as Precision of 0.16 for the LIME technique

were measured. These metrics suggested that LIME struggled to accurately overlap the

predicted region with the actual tumor region, as well as poor performance in identification

of true positives without including false positives. The Recall for LIME was measured at

0.31, which reflected that LIME was able to capture a reasonable number of actual positives,

but at the cost of including some false negatives. The corresponding average F1-score for

LIME was observed at 0.21, which reflected an overall poor performance when considering

the balance between precision and recall, which is seen as crucial for medical imaging

applications, where minimizing false negatives and identifying true positives is vital. The

best individual LIME metrics showed more promising results with an IoU of 0.46, precision

of 0.75 and a perfect recall of 1.0. While these results indicated that LIME performed well

under optimal conditions, the variability showed by standard deviation, median and average

values indicate the need for further advancements in the implementation of LIME.

Furthermore SHAP received a slightly higher IoU and significantly higher precision

at 0.14 and 0.60 respectively compared to LIME. This indicates that SHAP inherited the

ability to more effectively identify true positives. The recall for SHAP was observed at 0.20,

which was lower than LIME’s, which indicated that SHAP missed a lot of true positives

in its output. SHAP received an F1-score of 0.30, which was better than LIME, but still

indicated poor effectiveness. The top SHAP metric for a single instance received an IoU

of 0.43, perfect precision and recall of 0.89. These values suggest that SHAP under ideal

conditions, can provide highly accurate segmentations. Similar to LIME, the variability in

the overall metrics showed that optimal performance was not achieveable for a multitude

of input images. The variability in performances across the metrics and instances for both

techniques underscores the challenge of leveraging XAI in healthcare as stated in [12]. The

variability can complicate deployment of these techniques, especially in critical sectors like

healthcare.

Inconsistent performance suggest that careful selection and tuning of these models is

needed to fit the specific problem at hand. The evaluation also shows the varying results

of both techniques, underscoring their limited usability in segmentation of tumor regions

whilst classifying. Building on the XAI techniques’ impact on early diagnosis, the paper

[74], used a light CNN model with LIME and SHAP as XAI techniques for enhancing

predictions in kidney abnormalities. The paper reported an overall test accuracy of 99%

when distinguishing between cysts, stones and tumors. The model’s effectiveness was en-

hanced by XAI techniques. SHAP and LIME were implemented to highlight the influence

of specific pixels in the image of specific predictions. The ability to visualize the impact

of individual features aligns with the need for clarity and precision in medical diagnostics.

The results were further shown to medical professionals who verified the results, which con-

firmed the correctness of the employed XAI techniques. These findings are important when

discussing RQ1, and showed promising results for employing XAI techniques to efficiently
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segmenting correct regions in medical imaging. Furthermore, the effectiveness of SHAP

and LIME is discussed in the paper [75], where it was found that SHAP was generally bet-

ter at providing more accurate explanations of the models predictions than LIME. SHAP

also highlighted more correct regions without much noise such as false positives, which was

verified by medical professionals. The effectiveness of the various XAI techniques was sim-

ilar to what was observed in this thesis, where SHAP had a significantly higher precision

than LIME, underscoring SHAP’s ability to correctly identify correct regions.

6.3.2 Discussion of Research Question 2 (RQ2)

XAI’s ability to provide transparent and interpretable decision-making can become impor-

tant especially in early disease diagnosis, where accurate decisions can significantly affect

patient outcomes.

Many deep learning models act like black-boxes, meaning their inner workings are un-

seen and not able to be understood by humans. These provide little insight into how

decision-making for respective predictions are made. This limitation is potentially critical

in complex fields like medical imaging where understanding the reasoning behind medical

decisions is crucial for trust, medical relevance and acceptance. Previous studies discussed

in Chapter 2, have shown that XAI techniques can bridge this gap by offering visualiza-

tions and insight into the inner workings of complex models, potentially enhancing the

predictive performance of machine learning driven tools [16]. Previous research has also

shown that visualization can aid researchers in identifying wrong reasoning in classification

problems that were previously overlooked [76]. This underscores the point of importance

of visualization tools in decision-making, and further strengthens the point of enhancing

predictive performance by leveraging XAI tools.

By integrating XAI techniques, namely SHAP and LIME, medical professionals have

the possibility to be informed on what diagnostics were made and why these decisions were

made. In tumor classification, these techniques will highlight the feature that was most

influential in its respective classification. The detailed explanation can enhance decision-

making, and being able to align the output of techniques to professionals in the field

potentially leading to more precise outputs over all.

Despite the advantages of XAI application, they also introduce challenges. Inconsis-

tency in results align with previous research and these inconsistencies lead to variability

in trust especially when trying to meet clinical standards [71]. By addressing these vari-

abilites through visualization from XAI techniques, and including feedback from clinical

outcomes could further improve reliability of such systems.

The inconsistency in the performance metrics such as varying IoU and recall across

different instances reflect how XAI techniques might influence clinical decision-making.

Inconsistent outputs lead to low metrics which reflects the degree of trust and reliance of

these techniques. Despite challenges, the ability to provide visual interpretations of models

can be considered important by assisting medical professionals by quantifying what feature

or area of an image influence predictions.
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Early diagnosis of diseases such as cancer has the possibility to reduce mortality as

mentioned earlier. XAI techniques like SHAP and LIME are increasingly vital due to their

potential of enhancing predictive performance and improve decision-making processes by

understanding the reasoning behind it. This could possibly improve decision-making by

aligning XAI outputs with clinical prognosis by professionals. In special cases where either

benign or malignant tumor exists, SHAP and LIME can provide detailed reasoning and

explanations of areas influencing the predictions by visualizing the areas potentially leading

to more accurate assessments and earlier detection.
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Chapter 7

Conclusion

7.1 Summary of Findings

In this thesis, the implementation and efficiency of XAI techniques SHAP and LIME in

medical imaging were explored, focusing on improving diagnostic accuracy of breast cancer

detection and classification. Furthermore, the findings display the limitations and under-

performance of the XAI techniques across all metrics evaluated being IoU, Recall, Precision

and F1 score. SHAP’s average Precision score was an important finding of this thesis, dis-

playing SHAP’s potential at locating the tumor in the image, however not fully the entire

area. Therefore SHAP was better than LIME at accurately finding the correct areas. The

low Recalls for both SHAP and LIME displayed that these techniques would not be able to

be used in a real world setting based on this thesis’ results, especially in healthcare domain

where false negatives are critical.

The overall underperformance of the XAI techniques suggested limitations of usability

in medical imaging, since it is considered a critical domain, where correctness is key and the

outcome of obeying from this has potentially detrimental outcomes. This raised important

questions about the use of these techniques in such critical domains, stating clear need for

further development and validation of XAI implementations before integrating them to the

medical workflow.

7.2 Recommendations for Future Research

Future research should focus on several key areas to enhance application of XAI techniques.

As seen in previous studies the need for improving XAI frameworks in medical imaging

is needed. The need of developing better models that integrate both AI and XAI with-

out compromising on performance metrics such as IoU, Recall, Precision and F1-score is

clear. A possibility to enhance efficiency could be found by leveraging multitude of XAI

techniques to provide best of both worlds scenarios. Furthermore, neural symbolic learning

for enhancing XAI in medical imaging is a field to dive in to, which might better fit the

problem at hand. Future research should explore the use and integration of such systems
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with regards to XAI, to possibly receive better results of interpretability and explainability

of AI models.

Another area to dive into is investigation of integration of XAI where data from different

medical image tools are leveraged and combined. Different XAI techniques could also be

used, where they might be better suited for medical images. Both areas could potentially

increase the robustness of interpretations by XAI techniques.

In this thesis only one model was considered as the XAI techniques input. However,

testing XAI techniques with a variety of models for comparison to find the most appro-

priate model is important to determine the best possible approach for application of XAI

techniques.

Finally the need for extensive validation of XAI techniques by medical professionals to

ensure outputs is clear and makes sense, as well as meeting medical and clinical standards

will ensure the implementation in real-world scenarios.
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Appendix A

AI statement

In this thesis, the use of Chat-GPT, a language model by OpenAI has been used. Through-

out the work on this thesis, current regulations from Faculty of Science and Technology

(REALTEK) has been followed. The regulations can be found at https://www.nmbu.no/

en/faculties/faculty-science-and-technology/kunstig-intelligens-ved-realtek.

ChatGPT was used throughout this thesis for the design of latex tables and aiding in the

formatting of such tables. Example prompts used for this include giving latex tables to

ChatGPT, ”make table header on top of table”, ”add a new column with X numbers” and

”collapse column in Table X”. ChatGPT was also used for suggestions of better flow of

already written text and aiding in rewriting sentences based on already written text to

clarify points. Careful examination of rewritten text were done as well as insuring that

no extra information was added. Example prompts are giving ChatGPT a sentence, or

paragraph of already written text, and making it rewrite to clarify more efficiently, while

ensuring flow. This was carefully examined and checked to make sure the output provided

by ChatGPT was correct without adding new information.

ChatGPT was also used when developing code, especially aiding by debugging helping

with debugging existing code. Example prompt include providing error messages with the

code.

Lastly, ChatGPT was also used to summarize existing literature. This was done to get

a quick overview of existing literature, finding out if the literature provided actually was

worth diving into, based on the context of this thesis. Every claim made by ChatGPT

was carefully fact checked to ensure the following of guidelines and regulations. Example

prompt were providing already found literature as PDF files, and asking ChatGPT to

summarize the contents.
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